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Abstract. Autonomous surface vehicles and maritime autonomous surface ships must rely
on sense-and-avoid systems for navigating safely among other ships. The main objective of
this paper is to present examples of such systems, and their verification in full-scale collision
avoidance experiments as part of the research project “Sensor fusion and collision avoidance for
autonomous surface vehicles” (Autosea). Lessons learned from the progression of experiments
have led to increasing robustness of the methods, and provide a foundation for several important
topics of further research in the near future.

1. Introduction
Autonomous ship technology has emerged as a nascent research area in recent years. Building
upon successful demonstrations and commercial products in exhibiting high degrees of autonomy
in aerial, underwater and automotive systems, it is hoped that increased autonomy in shipping
can lead to cost reductions and improved safety. A key prerequisite for this is a trustworthy
collision avoidance (COLAV) system.

COLAV is also known as sense-and-avoid. The systems must use onboard sensors to perceive
obstacles in the surroundings. For several reasons, target tracking is an important part of this
processing pipeline. The motion of other obstacles (ships) is in general non-zero and unknown,
and must therefore be estimated. Furthermore, raw sensor images do not by themselves provide
any temporal continuity. Tracking methods must perform data association in order to link
detections from subsequent images, so that tracks can be established and their kinematic
attributes can be estimated. Most established tracking methods are variations of multiple
hypothesis tracking (MHT) or joint probabilistic data association (JPDA) [1]. In MHT, the
method attempts to enumerate all association hypotheses with significant probability involving
several scans, or to search more directly for the best hypothesis. In JPDA, the method merges
all the association hypotheses into a single hypothesis after every scan is received.

As for the avoid part, methods range from variations of path planning [2], [3] to highly
reactive methods which are tightly integrated with the control system [4]. In between these
two extremes we find several popular methods such as the velocity obstacle (VO) [5] [6] and
the dynamic window (DW) method [7]. The VO method searches for a safe and optimal linear
velocity vector. In its plain-vanilla form it assumes that the ownship (i.e., the ASV attempting
to avoid collision) immediate is able to achieve this velocity. The DW method searches for a
safe and optimal pair of surge (i.e., forward velocity) and turn rate. In land robotics this means
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that candidate avoidance maneuvers are circular arcs, while the resulting maneuvers must be
calculated by simulation when the DW method is adapted to second-order nonholonomic vehicles
such as ships [8].

Obstacle avoidance for ASVs has been a topic of active research since the mid 2000’s. Early
works such as [9] focused on adapting fundamental technology from the more mature field of
unmanned ground vehicles (UGVs). The first comprehensive description of an ASV system in a
journal publication dates from 2010 [10]. In this work, MHT with interacting multiple models
(IMM) was used for obstacle tracking with input from several input sensors, including X-band
radar and stereo vision. Few details of the motion control system were given; waypoint navigation
and replanning were mentioned on a superficial level. A COLAV system more targeted towards
low-cost applications was described in [11]. In this work, radar tracking by means of JPDA with
IMM was used in the perception pipeline, while an A* search was used to find a collision free
path.

When the research project “Sensor fusion and collision avoidance for autonomous surface
vehicles” (Autosea) was commenced in 2015 there was hence a need for more in-depth and
precise understanding of how local COLAV methods could be integrated with tracking systems.
The focus of the Autosea project has been to design algorithms for target tracking and COLAV,
and verify these in closed-loop full-scale experiments. The purpose of the present paper is to
provide the reader with a bird-eye overview of these developments and experiments, which is
not available from the previous publications of the project. The paper is written in a colloquial
style, with absolutely no equations. Familiarity with ASV technology, motion control and sensor
fusion is taken for granted.

The paper is organized as follows. In Section 2 we present COLAV methods developed in
Autosea, while Section 3 provides a fairly detailed description of the tracking system that was
used in the experimental work, which again is summarized in Section 4. Topics for future
research and suggestions for definitions of COLAV terminology are discussed in Section 5 before
a brief conclusion follows in Section 6.

1Centre for Autonomous Marine Operations and Systems - NTNU AMOSwww.ntnu.edu/amos
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Figure 1. Block diagram of the
system architecture for a COLAV
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2. Variations of model-predictive control for collision avoidance
Model predictive control (MPC) is an approach to optimal control that works by searching for
a control input, as a function of time up to a given prediction horizon, that will make the
system behave as close to the desired behavior as possible. While MPC typically is associated
with applications in process control, it appears to be less established in autonomous vehicle
navigation. We will therefore provide a general overview of our perspective on MPC in general,
before we delve into recently proposed MPC-based COLAV methods in greater detail.
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Figure 2. Basic principles of
MPC. In the illustration, the goal
is to reach a constant value of the
reference. In a COLAV system this
could for example be a particular
course angle. The cost function
depends on both the reference, the
predicted trajectory and the control
input. Penalties on, e.g., high
values of derivatives may lead the
algorithm to choose control inputs
that give a slower convergence
to the reference than theoretically
possible.

Key design choices in the development of an MPC method include the parametrization of the
control input, the parametrization of the cost function and the search technique. Regarding the
control input, the MPC method may search for a good sequence of low level actuator controls,
or it may search for higher-level trajectory descriptions, which then are fed to the low level
controllers. As for the cost function, it may include a variety of measures derived from both the
desired reference, the predicted trajectory and the control input. Examples of such measures can
be deviation between reference and prediction, risk measures derived from the prediction, fuel
costs derived from the suggested control input, etc. Finally, a key distinction goes between MPC
methods that perform a gradient-based search for optimal control input, and MPC-methods that
search for a good control input over a discrete search space.

2.1. The Simulation-Based MPC (SB-MPC) method
The simulation-based MPC (SB-MPC) method was developed in [12] as a sample-based method
that aims to find an optimal combination of desired surge speed and course. For each such surge-
course combination, the method simulates how the ASV would behave if that combination was
given to its guidance system. The simulation outcomes are analyzed and quantified into several
performance measures which are used in the objective function. In [12], terms representing
collision risk, collision cost, COLREGs compliance, nominal path deviation and grounding risk
were included.

Key benefits of this approach are flexibility, scalability and ease of implementation. The
cost function can be expanded to include terms related to vessel dynamics, weather conditions,
uncertainty in the prediction of other vessels, etc. It is capable of handling a large number of
target vessels since each vessel enters the objective function as just another term to minimize
cost over, and because the method automatically gives priority to avoiding nearby vessels over
vessels further away. The combination of all the hazard measures into a single cost function
means that there is no need for multi-objective optimization. Also, the use of a single cost
function mitigates the need for additional logic in the form of if-else-clauses. The method can
be tuned to prefer course changes over speed changes or vice versa. Typically, course changes
are preferred to produce ASV behaviors that are clear to observing operators/vessels [13].

In a more recent version of SB-MPC, transition costs were included in the cost function to
penalize control behaviors that will cause the ASV to pass an obstacle on a different side than
what is predicted with the current control behavior [14]. The transition costs play the same role
as hysteresis does in standard VO implementations [6].
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2.2. Mid-Level COLAV and the hybrid architecture
In [15] a hybrid architecture for maritime COLAV has been proposed, building upon ideas that
were first formulated in [16]. The hybrid architecture consists of three layers: Energy-optimized
path planning, mid-level COLAV and short-term COLAV. Both these COLAV methods are
based on MPC. The mid-level COLAV method searches for a trajectory with clear maneuvers
and otherwise mainly straight motion that avoids collision with other ships. The method is
gradient based and calculates derivatives by means of automatic differentiation in the CASADI
framework. The cost function accounts for deviation from the desired path, deviation from
desired velocity and COLREGs compliance. Moving and static obstacles are avoided by means
of hard inequality constraints, and velocity limitations of the ownship are also modeled by
inequality constraints. The mid-level method adheres strictly to COLREGs. In a situation
where the maneuvering aspects of COLREGs must be ignored to stay safe, the short-term
COLAV method takes over.

2.3. The Branching Course MPC method
The Branching Course MPC (BC-MPC) algorithm [17] is also a sample-based MPC method,
especially designed to be robust with respect to noisy obstacle estimates. As part of this,
the method is designed without discontinuities or logic, which reduces the sensitivity to noise
in obstacle estimates. The search space is constructed based on a set of motion primitives,
generating trajectories with continuous acceleration, which can provide the vessel controllers
with acceleration feedforward information. The trajectories consist of maneuvers and straight-
line segments, representing common maritime maneuvers. Each trajectory consists of multiple
maneuvers, making the algorithm able to plan for future maneuvers which can be necessary to
find suitable solutions in complex situations. In [18], the BC-MPC algorithm is extended to also
consider static obstacles.

The algorithm is used as a short-term algorithm in the hybrid architecture. Therefore, it is
designed to comply with the maneuvering aspects of COLREGs when possible, although with
the possibility of ignoring them in emergency situations. Emergency situations include situations
where obstacles violate COLREGs, such as not maneuvering in a crossing situations where the
ownship is the stand-on vessel, requiring the ownship to maneuver even though it has a stand-on
obligation. Having a numerically robust sample-based algorithm at the bottom layer allow for
using less numerically robust algorithms at the higher levels of the hybrid architecture, such as
the gradient-based mid-level algorithm.

2.4. Dynamic reciprocal velocity obstacle method
Other COLAV methods such as DW and VO can also be viewed as simplifications or special cases
of the MPC paradigm, by re-phrasing the methods in terms of objective function, constrains,
search strategy and input parametrization. For example, the plain-vanilla VO assumption of
immediate velocity change can be viewed as a rather simplified kind of simulation.

The impossibility of reaching the avoidance velocity instantaneously, combined with lack of
cooperation between ownship and target ship, may lead to oscillatory behavior for the plain-
vanilla VO method. When this happens, both ships make avoidance maneuvers simultaneously,
and as collision appears to have been avoided, they both go back to their nominal velocities,
and so on. Variations of so-called Reciprocal VO (RVO) have been developed to mitigate
this problem, see e.g., [19]. In RVO, both ships share the responsibility for avoiding collision.
A variation of RVO that takes COLREGs into account was developed in [20] as part of the
Autosea project. This method, known as Dynamic Reciprocal VO (DRVO) also includes a
dynamic assessment of whether the target ship is cooperating, which is used to control the
degree of reciprocity.



MTEC/ICMASS 2019

IOP Conf. Series: Journal of Physics: Conf. Series 1357 (2019) 012020

IOP Publishing

doi:10.1088/1742-6596/1357/1/012020

5

3. Variations of probabilistic data association for obstacle tracking
In this section we describe the tracking system that has been used in the Autosea experiments.
The system is a further development of the track system originally described in [21]. To provide
context, we will first take a look at underlying assumptions and rationale for the design choices.

3.1. A very brief review of target tracking
Most established tracking methods, including MHT and JPDA, are based on the following at-
most-one assumptions:

O1 Point target assumption: Any target generates at most one measurement.

O2 No merged measurement assumption: Any measurement comes from at most one target.

Tracking methods typically make use of a process model, a measurement model and also
models for detection probability, clutter intensity etc. Both MHT and JPDA can employ several
different process models in parallel, using the IMM framework. For example, such an ensemble
can include a low noise constant velocity (CV) model, a high noise constant velocity (CV) model
and a constant turn rate (CT) model [11]. Both MHT and JPDA are multi-target tracking
methods which have the capability to resolve measurement contention, i.e., when it is unclear
which of several targets a measurement originates from. Single target tracking methods do
not possess the same awareness, but can still be used to track multiple targets in parallel,
with a potential loss of optimality if the targets are close to each other. The single-target
versions of the JPDA is known as the probabilistic data association filter (PDAF). Another key
topic is existence modeling. JPDA and PDAF assume a fixed number of targets, and track
confirmation and termination are typically performed by M -out-of-N logic. In contrast, the
integrated probabilistic data association (IPDA) models target existence as a binary random
variable that evolves according to a hidden Markov model (HMM) [22]. Track confirmation and
termination can then be performed by setting thresholds on the existence probability.

3.2. Design choices
The tracking system is tuned for optimal performance on medium-size vessels such as
Munkholmen 2 (MH2), the Ocean Space Drone 1 (OSD1) or FF Gunnerus (see Figure 3). Since
the distance between ships tends to be fairly large, measurement contention was not deemed
to be a main issue, and single-target tracking methods were used in the experiments. PDAF
was chosen instead of MHT-based methods because of its simplicity and modest computational
complexity. The tracking system uses a single process model instead of multiple models. The
rationale for this choice has partly to do with simplicity, and partly with limited expectations
regarding the performance gain from IMM methods. See Section 4.1 for further discussion about
this.

False tracks and misdetections were considered to be the most serious challenge in the early
stages of the tracker development. For this reason the original PDAF tracker described in [21]
was converted into an IPDA tracker. The IPDA tracker can utilize detailed information about
clutter intensities through clutter maps [23] and also estimate the detection probability [24].

3.3. Tracking pipeline description
The tracking system is processing data from a Simrad 4G broadband radar and a navigation
system, and provides tracks to the COLAV system. An AIS receiver is included for ground truth
reference. All these sensors communicate with the processing unit (PU). The PU implements
all the methods described below, and handles the tracking interface for the various COLAV
methods, which may be implemented on both the PU or on a built-in on-board computer (OBC).
The radar pipeline is implemented in the robot operating system (ROS) and consists of steps
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Table 1. List of experiments

# When Where COLAV Data Tracker Target Pub.

1 May 2017 Trondheimsfjorden DW Radar PDA Motorboat [25]

2 May 2017 Trondheimsfjorden SB-MPC AIS None MH2 [14]

3 Oct. 2017 Trondheimsfjorden BC-MPC Radar PDA OSD1 [17]

4 Nov. 2017 Den Helder SB-MPC AIS None RIB++ [26]

5 Sept. 2018 Trondheimsfjorden
SB-MPC
BC-MPC
DRVO

Radar IPDA
MH2
OSD1

[13]
[24]
[18]

6 June 2019 Trondheimsfjorden
SB-MPC
BC-MPC

Radar IPDA
MH2
Gunnerus

for detection, projection, land filtering, clustering and target tracking. A detailed description is
given in [21].

Key tasks of the pipeline are synchronization and measurement extraction. Radar data are
timestamped on the arrival in the PU, synchronized with the navigation system and transformed
to Cartesian world coordinates, before measurement extraction by means of clustering. The
clustering procedure uses a single-linkage approach. A cluster consists of a centroid and its
footprint, which is based on the convex hull of the points in the cluster. Every cluster in a scan
is given the mean timestamp of the scan. Notice that the footprint information is not used in
the tracking system.

The current version of the tracking system is based on a non-parametric IPDA with CV
process model as described in [22]. New tracks are initiated on all measurements that are not
associated with existing tracks. In the COLAV experiments from October 2017 and later the
value (0.05m/s2)2 was used for the continuous-time process noise covariance. The probability
of existence is initiated at a fairly low value, and tracks are not confirmed until the existence
probability is close to unity.

3.4. Tracking interface
The tracking system outputs tracks in two main ways. For the ROS-based COLAV systems, a
ROS service is provided. Instead of passively listening to tracks, the COLAV system requests
tracks at specified timestamps, and the tracking system handles prediction and interpolation.
For other systems, a TCP-based publisher/subscriber interface is provided, and tracks will be
output on the network at the specified rate.

4. Lessons from full-scale collision avoidance experiments
Table 1 summarizes most of the COLAV experiments conducted as part of the Autosea project.

4.1. Experiment 1: Modified DW with PDAF radar tracking [25]
This very first closed-loop COLAV experiment had the goal of testing purely reactive COLAV,
to be used as a last resort if more advanced and proactive methods fail. The hypothesis was
that the modified DW method [25], by directly controlling the yawrate, would give a fast and
strong response suitable for a last resort reactive method. As ownship, Maritime Robotics’
dual manned/unmanned sport vessel Telemetron was used in autonomous mode, while a small
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Figure 3. Some of the ships used in Autosea experiments: Telemetron, Munkholmen 2, Ocean
Space Drone 1 and FF Gunnerus.

motorboat equipped with a radar reflector was used as target ship. The tracking system as
described in [21] was used to process the radar data.

The biggest surprise in these experiments was that the course estimates (i.e., direction of
estimated velocity vector) from the PDAF fluctuated significantly more than anticipated from
purely theoretical considerations. With a typical error of approximately 20◦, and occasionally
exceeding 45◦, the COLAV system had a hard time choosing sensible trajectories. The direct
control of yawrate made the ownship react very strongly to these noisy course estimates. This
could both result in wobbling and failure to make any evasive maneuver at all, or it could lead to
evasive maneuver so strong that they would pose a significant safety threat. Another weakness of
this COLAV system was that it did not include any COLREGS compliance. Thus, the ownship
would chose to pass on whichever side of the target ship that was most convenient.

A possible solution to the challenges with course estimation could have been to replace the
standard PDAF with an IMM-based tracking method. This direction was, however, not followed
for two reasons. For IMM methods to give significant improvement over a single Kalman filter,
the so-called maneuvering index should be larger than 0.5 according to [27]. For tracking of
civilian aircraft, where IMM is known to work well, it will typically reach values of 2 or higher.
For maritime target tracking, where velocities are significantly lower, typical values may be
around 0.2. Second, while IMM enables better estimation of the velocity vector, it does not
prevent sudden and large jumps in the course estimate. We have observed occasional errors up
to 40◦ also when using an IMM tracker similar to the one used in [11].

In any case, the results from the experiments indicated that the COLAV method should be
made less sensitive to sudden course fluctuations. This could be achieved if the COLAV method
to a larger extent was making a plan, and would stick to it unless there was sufficient evidence
to do otherwise. This led to the BC-MPC method presented in Section 2.3.

4.2. Experiment 2: SB-MPC with AIS [14]
The first experiments with the SB-MPC method took place independently the same month. In
these experiments, the focus was entirely on the behavior of the COLAV method itself, and AIS
was therefore used as data source, instead of a radar tracking system with its many complexities.
Again, the ownship was Telemetron while the tugboat Munkholmen 2 was used as a target ship.
In addition to verifying the COLREGs compliance of the SB-MPC method, the experiments
also verified that SB-MPC was capable of violating COLREGs when deemed necessary. The
COLAV system gave satisfactory results even though the weather conditions were somewhat on
the rough side, with wind speeds up to 15 m/s and wave height of about 1 m.

4.3. Experiment 3: BC-MPC with radar [17]
This experiment, performed during the Autumn 2017, was the first time the BC-MPC method
(see Section 2.3) was tested. Again, Telemetron was used as ownship, and OSD1 was used as
target ship. A PDAF-based radar tracking system was used as data source. Four scenarios were
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repeated several times each: Head-on, crossing from starboard, overtaking and crossing from
port. The BC-MPC algorithm solved the situations in accordance with COLREGs, and displayed
good performance when coupled with the radar tracking system, demonstrating much better
noise robustness than the modified DW algorithm. Occasionally, other vessels entered the test
area. In one such situation, Telemetron was overtaken by the high-speed ferry Trondheimsfjord
II, and the BC-MPC method was forced to make an unanticipated evasive maneuver. The biggest
limitation of the BC-MPC method was perhaps its short prediction horizon, which caused the
algorithm to drive alongside the obstacle in a crossing from port situation where the obstacle
ignored its give-way obligation. This is less of a problem if the BC-MPC method is only used
as a bottom layer in a hybrid architecture as described in Section 2.2.

4.4. Experiment 4: SB-MPC with AIS outside Den Helder [26]
The background for these experiments, in November 2017, was that authorities in the
Netherlands, together with Deltares, invited selected companies to undergo a verification exercise
in the Dutch North Sea in order to demonstrate and validate the capabilities of ASVs. Maritime
Robotics was invited with Telemetron as ownship. Several target ships were involved. The most
important ones were the Fast Raiding, Interception and Special forces Craft (FRISC) of the
Royal Netherlands Navy and the Coastguard’s Zirfaea. Both of these were equipped with AIS
transmitters. The same SB-MPC method as was used in Section 4.2 was also used in these
experiments. The scenarios progressed from simple head-on, crossing and overtaking scenarios
via multi-vehicle scenarios combining overtaking and crossing, to scenarios that challenged
the boundaries between different COLREGs regimes and scenarios with significant target ship
intention uncertainty. Some scenarios were adapted on the fly by supervisors from the Navy
with the aim of exploring challenging situations that may develop due to an unexpected change
in behavior.

The main concerns identified in [26] had to do with AIS-latency and the challenges related
to prediction when intentions are unclear. The latency of AIS data is up to 10 seconds. While
this may be a negligible time in scenarios with long distances or low velocities, it can introduce
significant delays for shorter distances and higher velocities, making the COLAV method behave
in a more reactive manner than desirable. However, a tracking system using only the Simrad
4G radar also will need at least 10 seconds to discover that a maneuver has happened, because
more than 3 scans are needed to confidently estimate a turn rate.

4.5. Experiment 5: Several COLAV methods with IPDA radar tracking [13] [24] [18]
After the summer 2018 the IPDA-based tracking system described in Section 3 replaced the
earlier PDAF-based tracking system from [21]. In September 2018, the BC-MPC method was
tested with the IPDA-based tracking system, for avoidance of both static and moving obstacles
[18]. The IPDA-based tracking system was also used as data source for a new version of the
SB-MPC method with several robustness enhancements [13]. These were specifically designed
to manage the additional uncertainties due to radar tracking that had posed challenges in the
experiments reported in [25] and [17]. In particular, the following two robustness enhancements
were central. First, an obstacle management interface was introduced to keep both obstacles
currently being tracked, and obstacles whose tracks recently were terminated. A geometrically
decaying track-loss factor was used to reduce the relevance of the latter kind of obstacles. This
was done to prevent sudden changes in situational awareness due to track-loss events. Second,
the predictions of obstacle motion were supplemented with branching scenarios representing
possible changes of speed and course at the beginning of the prediction horizon.

The experiments again included several multi-vehicle situations, with both cooperating and
non-cooperating obstacles, as well as static obstacles. The main target ships were Munkholmen
II and the OSD1. The utility of the obstacle management interface was indeed verified during a
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crossing-head on scenario where multiple tracks were established on Munkholmen II, which was
in head-on situation.

4.6. Experiment 6: BC-MPC with IPDA radar tracking
During the final demonstrations of the Autosea project on June 14th 2019 the IPDA radar
tracker was also used together with the BC-MPC method. Two scenarios were demonstrated for
this combination: An overtaking scenario and a head-on scenario. Both involved FF Gunnerus
as target ship. During the head-on scenario an additional complication arose as three very fast
RIBs with so-called “water rafters” entered the test area, coming straight towards Telemetron,
which was prompted to make a rapid evasive maneuver towards Gunnerus, before eventually
making the main evasive maneuver to pass Gunnerus on the port side. See Figures 4 and 5.

5. Future research
5.1. Global, local, proactive and reactive methods
It is desirable to establish more precise terminology for categorizing the many different COLAV
methods that exist. To provide some suggestions, we distinguish between global and local
methods, and then we divide local methods into proactive and reactive methods. By global
methods we mean methods that come up with a path or trajectory for an entire mission1,
such as crossing a fjord or traveling between two harbors. By local methods we mean methods
that come up with a temporary deviation from a desired path, and which aim to return to
the path as soon as it is considered safe. For maritime COLAV we generally want the local
methods to be of a proactive nature rather than a reactive nature. While no agreed upon
definition of proaction exists, we suggest that such a definition should include the ability to
make and follow a plan according to situational awareness in a predictable manner. COLAV
methods whose evasive control inputs depend directly on the state vector through a functional
relationship (e.g., [4]) should automatically be considered reactive. It is also possible to divide
local methods into long-term methods and short-term methods, where long-term methods utilize
a more complete information picture, and short-term methods need a better understanding of
the vehicle dynamics to provide more sudden evasive maneuvers. Short-term methods can be
both proactive or reactive.

It is clear that both SB-MPC and the hybrid architecture/BC-MPC have huge potentials for
further development. The SB-MPC cost function can be expanded to include more information
sources, such as risk assessments [28]. It may sample candidate trajectories in a more deliberate
manner than using a uniform grid, etc. The hybrid architecture has to be verified in experiments
to evaluate its practical robustness and identify potential weaknesses to mitigate.

5.2. Heterogeneous multi-sensor fusion
It is clear that reliable COLAV systems must utilize a larger variety of sensors than the lone
radar used in the Autosea experiments. Key reasons include the lower update rate and angular
resolution of typically maritime radars, the limited feature information provided a radar, and
the need for additional sensors for cross-validation.

The main research results on multi-sensor fusion from the Autosea project are reported in [29],
where a multi-sensor version of the Joint IPDA (JIPDA) was used to track small vessels using
radar, long-range lidar, optical camera and infrared camera. It was found that the inclusion
of cameras, whether infrared or optical, prevented merged measurements from causing track
coalescence. Lidar was found to be very useful for rapid track initiation, albeit at the expense of
a significant increase in false tracks due to clutter caused by lidar returns from the sea surface.

1 In the sequel we will simply write path instead of the phrase “path or trajectory”. In other words, the path
may or may not be time-parameterized. The word path may also refer to a path with a velocity assignment.
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Nothwithstanding its weaknesses, radar is ubiquitous in maritime collision avoidance. Key
strengths include the fact that it works well on longer ranges than other sensors, and that radar
data are significantly easier to interpret. While convolutional neural networks were used to
extract detections from the cameras in [29], simple thresholding and clustering operations are
sufficient to extract detections from radar images.

The sharper resolution of other sensors can also be a double edged sword, as it leads
to violations of the standard at-most-one-assumptions. This may require novel methods for
extended object tracking (EOT) [30].

None of the closed-loop experiments of the Autosea project used radar and AIS
simultaneously. The scientific literature on this kind of fusion is rather scarce, encompassing
only a couple of references such as [31] and [32]. Figure 4 illustrates some of the challenges
involved in radar-AIS fusion: While it is straightforward to match the radar track of Gunnerus
with its AIS track, it is not at all clear which of the 3 RIBs that the AIS track of Crazy Raven
should be matched with. This is partly due to the fact that only one of the RIBs had AIS, and
partly because of the poor quality of this AIS track.
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Figure 4. Radar tracking and AIS data from
the Autosea final demonstration.

Figure 5. The same scenario seen from drone
video.

5.3. Approaching the shore and harbors
EOT and multi-target tracking are of particular relevance in more confined and congested
environments such as harbors or water canals, where the available space between different
ship domains will be much smaller. Simultaneous localization and mapping (SLAM) or related
localization methods are needed to prevent groundings and shore collisions. Shore constraints
can also be included in the COLAV methods from existing electronic nautical charts (ENCs).
This has been done for the SB-MPC method in [33] and for the BC-MPC method in [18]. When
space is more limited, stop-and-go maneuvers may be preferred over the course changes that are
preferred in open sea [34].

5.4. Elements of situational awareness
The overall challenge in developing a safe and reliable COLAV system is to ensure that the
system itself is in possession of adequate situational awareness (SITAW). Sensor fusion and
motion control are obvious building blocks in this, but several additional components are needed
to realize good SITAW.

In particular, let us mention risk assessment and intention prediction as important research
topics in SITAW. In order to act according to a complete risk picture, the COLAV system should
utilize more of the uncertainties involved in the tracking methods, such as the probabilities of
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the different association hypotheses or the covariances of individual tracks. A stepping stone
towards such a system could be methods to calculate collision probabilities [28] [35]. Methods for
intention prediction are another stepping stone for risk assessment. Prediction methods based on
historical AIS data have been developed by MSc students affiliated with the Autosea project in
[36] and [37]. There is a need for merging such data-driven methods with model-based methods
such as the bridging distribution approach suggested in [38], and with online information from
AIS or other communication protocols.

6. Conclusion
As part of the Autosea project complete COLAV systems for ASVs including target tracking and
motion control have been developed and verified in full-scale experiments. Frequent interaction
between researchers working on sensor fusion and researchers working on motion control has
ensured that the tracking part of the the COLAV system is well adapted to the COLAV part,
and that the COLAV part is well adapted to the tracking part. Strengthening SITAW and
enabling ASVs to enter more congested and confined environments have been identified as broad
topics for future research.

Acknowledgement
This work was supported by the Research Council of Norway (NFR) through the projects 223254
and 244116/O70. The work was supported both with funding and in-kind contributions by the
Autosea consortium, including DNV GL, Kongsberg Maritime and Maritime Robotics.

References
[1] Bar-Shalom Y and Li X R 1995 Multitarget-Multisensor Tracking: Principles and Techniques (Storrs, CT,

USA: YBS Publishing)
[2] Smierzchalski R and Michalewicz Z 2000 Modeling of ship trajectory in collision situations by an evolutionary

algorithm IEEE Transactions on Evolutionary Computation 4 227–241 ISSN 1089-778X
[3] Naeem W, Irwin G W and Yang A 2012 COLREGs-based collision avoidance strategies for unmanned surface

vehicles Mechatronics 22 669 – 678 ISSN 09574158
[4] Wiig M S, Pettersen K Y and Savkin A V 2017 A reactive collision avoidance algorithm for nonholonomic

vehicles Proceedings of CCTA pp 1776–1783
[5] Fiorini P and Shiller Z 1998 Motion planning in dynamic environments using velocity obstacles International

Journal of Robotics Research 17 760 – 72 ISSN 0278-3649
[6] Kuwata Y, Wolf M, Zarzhitsky D and Huntsberger T 2014 Safe maritime autonomous navigation with

COLREGs, using velocity obstacles IEEE Journal of Oceanic Engineering 39 110–119 ISSN 0364-9059
[7] Fox D, Burgard W and Thrun S 1997 The dynamic window approach to collision avoidance IEEE Robotics

&Automation Magazine 4 23–33 ISSN 1070-9932
[8] Eriksen B H, Breivik M, Pettersen K Y and Wiig M S 2016 A modified dynamic window algorithm for

horizontal collision avoidance for AUVs Proceedings of CCA (Buenos Aires, Argentina) pp 499–506
[9] Larson J, Bruch M and Ebken J 2006 Autonomous navigation and obstacle avoidance for unmanned surface

vehicles Proceedings of SPIE vol 6230
[10] Elkins L, Sellers D and Monach W R 2010 The autonomous maritime navigation (AMN) project: Field tests,

autonomous and cooperative behaviors, data fusion, sensors, and vehicles Journal of Field Robotics 27
790 – 818 ISSN 15564959

[11] Schuster M, Blaich M and Reuter J 2014 Collision avoidance for vessels using a low-cost radar sensor
Proceedings of IFAC World Congress vol 19 (Cape Town, South africa) pp 9673 – 9678 ISSN 14746670

[12] Johansen T A, Perez T and Cristofaro A 2016 Ship collision avoidance and COLREGS compliance using
simulation-based control behavior selection with predictive hazard assessment IEEE Transactions on
Intelligent Transportation Systems 17 3407–3422 ISSN 1524-9050

[13] Kufoalor D K M, Wilthil E, Hagen I B, Brekke E F and Johansen T A 2019 Autonomous COLREGs-compliant
decision making using maritime radar tracking and model predictive control Proceedings of ECC (Naples,
Italy)

[14] Hagen I B, Kufoalor D K M, Brekke E F and Johansen T A 2018 MPC-based collision avoidance strategy
for existing marine vessel guidance systems Proceedings of ICRA (Brisbane, Australia) pp 7618–7623 ISSN
2577-087X



MTEC/ICMASS 2019

IOP Conf. Series: Journal of Physics: Conf. Series 1357 (2019) 012020

IOP Publishing

doi:10.1088/1742-6596/1357/1/012020

12

[15] Eriksen B O H, Bitar G, Breivik M and Lekkas A M 2019 Hybrid collision avoidance for ASVs compliant
with COLREGs rules 8 and 13–17 submitted to Frontiers in Robotics and AI

[16] Eriksen B O H and Breivik M 2017 MPC-based mid-level collision avoidance for ASVs using nonlinear
programming Proceedings of CCTA pp 766–772

[17] Eriksen B O H, Breivik M, Wilthil E F and Brekke E F 2019 The branching-course MPC algorithm for
maritime collision avoidance Journal of Field Robotics

[18] Eriksen B O H and Breivik M 2019 Short-term ASV collision avoidance with static and moving obstacles
submitted to CAMS 2019

[19] van den Berg J, Lin M and Manocha D 2008 Reciprocal velocity obstacles for real-time multi-agent navigation
Proceedings of ICRA pp 1928–1935 ISSN 1050-4729

[20] Kufoalor D K M, Brekke E F and Johansen T A 2018 Proactive collision avoidance for ASVs using a dynamic
reciprocal velocity obstacles method Proceedings of IROS (Madrid, Spain) pp 2402–2409

[21] Wilthil E F, Flaten A L and Brekke E F 2017 A target tracking system for ASV collision avoidance based
on the PDAF Sensing and Control for Autonomous Vehicles vol 474 ed Fossen, Pettersen and Nijmeijer
(Alesund, Norway: Springer) pp 269 – 288

[22] Musicki D, Evans R and Stankovic S 1994 Integrated Probabilistic Data Association IEEE Transactions on
Automatic Control 39 1237–1241 ISSN 0018-9286

[23] Wilthil E F, Brekke E and Asplin O B 2018 Track initiation for maritime radar tracking with and without
prior information Proceedings of Fusion 2018 (Cambridge, UK)

[24] Wilthil E F, Bar-Shalom Y, Willett P and Brekke E 2019 Estimation of target detectability for maritime
target tracking in the PDA framework Proceedings of Fusion 2019 (Ottawa, Canada)

[25] Eriksen B H, Wilthil E F, Fl̊aten A L, Brekke E F and Breivik M 2018 Radar-based maritime collision
avoidance using dynamic window Proceedings of IEEE Aerospace Conference (Big Sky, Montana, USA)

[26] Kufoalor D K M, Johansen T A, Brekke E F, Hepsø A and Trnka K 2019 Autonomous collision avoidance
in the North Sea: Verification of ASV behavior in challenging scenarios submitted to Journal of Field
Robotics

[27] Kirubarajan T and Bar-Shalom Y 2003 Kalman filter versus IMM estimator: When do we need the latter?
IEEE Transactions on Aerospace and Electronic Systems 39 1452–1457

[28] Tengesdal T 2019 Uncertainty Management in a Scenario-Based MPC for Collision Avoidance Master’s
thesis NTNU

[29] Helgesen Ø K, Brekke E F, Helgesen H H and Engelhardtsen Ø 2019 Sensor combinations in heterogeneous
multi-sensor fusion for maritime target tracking Proceedings of Fusion (Ottawa, Canada)

[30] Ruud K A, Brekke E F and Eidsvik J 2018 Lidar extended object tracking of a maritime vessel using an
ellipsoidal contour model Proceedings of SDF (Bonn, Germany)

[31] Habtemariam B, Tharmarasa R, McDonald M and Kirubarajan T 2015 Measurement level AIS/radar fusion
Signal Processing 106 348 – 57 ISSN 0165-1684

[32] Gaglione D, Braca P and Soldi G 2018 Belief propagation based AIS/radar data fusion for multi-target
tracking Proceedings of Fusion (Cambridge, UK)

[33] Midj̊as T 2019 SBMPC Collision Avoidance for the ReVolt Model-Scale Ship Master’s thesis NTNU
[34] Thyri E H 2019 A Path-Velocity Decomposition Approach to Collision Avoidance for Autonomous Passenger

Ferries Master’s thesis NTNU
[35] Park J and Kim J 2016 Predictive evaluation of ship collision risk using the concept of probability flow IEEE

Journal of Oceanic Engineering 42 1–10 ISSN 0364-9059
[36] Hexeberg S, Fl̊aten A L, Eriksen B O H and Brekke E F 2017 AIS-based vessel trajectory prediction

Proceedings of Fusion 2017 (XiAn, China) submitted to Fusion 2017
[37] Dalsnes B R, Hexeberg S, Fl̊aten A L, Eriksen B O H and Brekke E F 2018 The neighbor course distribution

method with gaussian mixture models for AIS-based vessel trajectory prediction Proceedings of Fusion
2018 (Cambridge, UK)

[38] Ahmad B I, Murphy J K, Langdon P M and Godsill S J 2018 Bayesian intent prediction in object tracking
using bridging distributions IEEE Transactions on Cybernetics 48 215–227 ISSN 2168-2267


