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a b s t r a c t 

Carsharing has received increased attention from the Operations Research community in recent years. 

Currently, many systems are adopting electric vehicles that require charging when battery levels fall be- 

low a given level. To do this, staff is often used to move cars to charging stations. Repositioning cars, 

rather than simply moving them to the closest charging station, might provide a better distribution of 

cars and in turn generate increased revenue and customer service while only marginally increase the op- 

erational costs. We present a mathematical model for the problem of charging and repositioning a fleet of 

shared electric cars. The model considers the assignment of cars to charging stations and the routing of 

staff and service vehicles. The complexity of the resulting mixed integer program makes it impossible to 

solve real world instances using a commercial solver. Therefore, we propose a new Hybrid Genetic Search 

with Adaptive Diversity Control algorithm. Tests based on data from a real life carsharing organization 

demonstrate that the proposed method can handle real size instances and that combining repositioning 

and charging operations can give significant benefits. 

© 2019 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Carsharing systems have existed in various forms for several

ecades. Lately, due to the enabling power of internet technologies,

heir popularity has increased, making them a standard means of

ransport in several urban areas across the globe. Short-term car

ental can serve some of the users’ transportation needs with-

ut the financial commitment of purchase, insurance, parking, and

aintenance that comes with private ownership. Carsharing is

enerally defined as short-term vehicle access among a group of

embers who share the use of a vehicle fleet that is owned, main-

ained, managed, and insured by a Carsharing Organization (CSO).

he rental cars can be both gasoline and electric vehicles, imply-

ng different operational challenges. Carsharing services can be di-

ided into two categories; free-floating systems and station-based

ystems . Free-floating systems enable users to pick up available cars

nd deliver them anywhere within a specified business area. In a

tation-based system, the cars are allocated to dedicated stations.
∗ Corresponding author. 
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 station-based system is either a two-way or a one-way system.

n a two-way system, the user must pick up and return the car at

he same station, while in a one-way system the user can pick up

nd return the car at different stations. 

Charging and repositioning of rental cars are among the most

mportant operational challenges in electric vehicle free-floating

ystems. Charging consists of using staff to relocate a shared car

o a charging station when the battery level falls below a given

hreshold. Repositioning consists of redistributing rental cars in or-

er to improve the CSO’s ability to meet customer demand. In fact,

emand imbalances may result in rental cars accumulating in cer-

ain areas of the city while other areas remain unsupplied. CSOs

dopt different strategies for charging electric cars and for prevent-

ng or resolving poor distributions of shared cars, such as pricing

chemes which penalize parking in certain zones of the city or

ffering bonuses for customers plugging in shared cars with de-

leted batteries (see e.g., Hansen and Pantuso, 2018; Jorge et al.,

015 ). However, despite possible preventive measures, both charg-

ng and repositioning require the employment of dedicated staff

oving the cars from their current position to charging stations or

o other areas for rebalancing purposes. 

On the one hand, these operations typically result in substantial

osts for the CSO. On the other hand, efficient charging and repo-
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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sitioning can significantly increase both resource utilization and

customer satisfaction by means of a better supply of rental cars.

Ultimately, it is essential for the sustainability of carsharing sys-

tems to find good solutions to these problems. 

In this paper we study the integrated problem of charging

and repositioning a fleet of shared electric vehicles in a one-way

free-floating system, an operational planning problem which we

have denoted as the Free-Floating Electric Carsharing Charging and

Repositioning Problem (FFECCRP). Consistently with the operation

of the CSO that inspired this work, we assume that service oper-

ators (members of staff) are transported to electric rental cars in

need of charging by service vehicles (typically large cars or mini-

vans) with fixed capacity. After being dropped off, the operator

drives the rental car to the selected charging station (which is

also a decision), where a service vehicle (not necessarily the same

one that dropped him/her off) must pick him/her up and trans-

port him/her to his/her next rental car to be handled. This gives

a very complex routing problem, where one has to decide i) the

routes of the service vehicles that are dropping off and picking up

the service operators, ii) routes of the service operators, iii) which

rental cars to charge/reposition, and iv) to which charging station

(not necessarily the nearest one) to bring each rental car. The time

and location at which an operator is dropped off affect the pick up

of the operator leading to temporal and spatial interdependencies

between the routing of operators and service vehicles. 

Repositioning in one-way carsharing systems has recently re-

ceived increased attention in the literature due to the increased

flexibility for the users and the consequent imbalances caused in

the distribution of the fleet. Example of studies on the shared ve-

hicle repositioning are ( Boyaci et al., 2015; 2017; Bruglieri et al.,

2017; Cepolina and Farina, 2012; Correia and Antunes, 2012; Kaspi

et al., 2014; Kek et al., 2009; Kuhne et al., 2016; Nourinejad et al.,

2015; Repoux et al., 2015; Zhao et al., 2018 ) and, particularly for

free-floating systems ( Herbawi et al., 2016; Herrmann et al., 2014;

Schulte and Voß, 2015; Weikl and Bogenberger, 2013; 2015 ). Sim-

ilarly to Weikl and Bogenberger (2015) , we pursue the idea of

combining charging of Electric Vehicles (EVs) with depleted bat-

teries with relocation activities. In Weikl and Bogenberger (2015) ,

the authors propose a relocation model for free-floating carshar-

ing services consisting of six consecutive steps. First, the target

distribution of vehicles is obtained based on historical data. Sec-

ond, an optimization model is used to determine the inter-zone

relocation of vehicles in order to maximize the profit expressed as

the difference between the sales generated by the resulting dis-

tribution of vehicles, minus the costs incurred by the relocation,

e.g., vehicles movements and personnel wages. This step is fol-

lowed by two rule-based intra-zone relocation plans at the vehicle

level. Finally, service trips are defined for maintenance and charg-

ing activities. The authors show that this method is computation-

ally efficient also for large-scale systems. In this paper, we focus

on the planning of staff-based charging and relocation activities at

a higher level of granularity. The optimization model presented by

Weikl and Bogenberger (2015) determines the number of vehicles

to move between each pair of macro-zones, such that a number of

constraints are satisfied (e.g., bounds to the number of vehicles in

each zone enforced by public authorities). For each relocation, the

cost of driving the rental vehicle and the cost of the operators are

incurred. In order to take into account the movements of the oper-

ators, in addition to the relocation time, each relocation consumes

an “average approach time” that accounts for the fact that the op-

erator must somehow reach the rental vehicle in order to relocate

it. Our optimization model “zooms in“ on the relocation activities,

in order to define not only which moves should be performed, but

also how the operators should optimally move around the city in

order to perform relocations. That is, in addition to determining

which relocations to perform, our model determines routes and
chedules for each operator and service vehicle. Using the termi-

ology of Weikl and Bogenberger (2015) our approach is applica-

le to both intra-zone and inter-zone relocations, depending on the

ranularity of the zonification. 

Staff-based repositioning is also the focus of Zhao et al. (2018) ,

ho present a mathematical model for the integrated EV rebalanc-

ng and staff relocation for one-way station-based systems. With

espect to this study: a) we consider a free-floating system, allow-

ng the users to drop off cars at any common parking place, and

) we consider a system with real-time reservations rather than a

riori reservation. The first point entails that staff might have to

elocate cars with depleted batteries to charging stations as this is

ot necessarily done by users. This task is additional to car reloca-

ions pursuing a better distribution of the fleet. The second point

ntails that in the study of Zhao et al. (2018) , staff has to relo-

ate EVs in order to fulfill binding reservations by customers. That

s, staff-based relocation is used as a strategy to reduce the fleet

ize. In our study, staff is not responsible to fulfill reservations but

orks to ensure a more profitable distribution of cars. 

The routing of rental cars and operators is also included in sev-

ral other studies. Boyaci et al. (2015) and Boyaci et al. (2017) route

ental cars and operators separately, but do not consider the trade

ff between the costs and additional revenue of repositioning.

ourinejad et al. (2015) address the trade-off between reposition-

ng costs and gains by including both routing of rental cars and

perators in the same problem. However, only repositioning un-

er the assumption that the CSO must fulfill all demand is per-

ormed, with no attention to daily operations like charging. Sim-

larly, Herbawi et al. (2016) propose an evolutionary algorithm to

etermine the routing of both operators and a single service vehi-

le transporting the operators which severely restricts the routing

ossibilities. Finally, Bruglieri et al. (2017) propose heuristic meth-

ds for solving staff-based relocation problems with electric vehi-

les. The authors assume that users always drop off and pick up

ars at charging stations. This entails that cars are automatically

harged when not used. In this paper we relax this assumption,

nd consider the case of a purely free-floating service. This means

hat operators are responsible for moving cars with depleted bat-

eries to charging stations. 

One important aspect that distinguishes the problem that we

tudy in this paper with all previous studies is that we integrate

outing of the service vehicles and operators in the case where the

ervice operators are transported by service vehicles to the rental

Vs, dropped off and picked up (possibly by another service vehi-

le) after they have taken the EVs to their recharging station. This,

ombined with that the destinations for EVs to be charged (and

ossibly repositioned) are also determined within the optimization

akes the FFECCRP an extremely complex routing problem. This

lso makes it very different to the electric vehicle routing problem,

ee for example Schneider et al. (2014) . 

In this paper we present a mathematical model for the FFEC-

RP. Since the proposed mixed integer programming model is un-

ble to solve real world instances when using a commercial solver,

e design a solution algorithm for solving real-life problem in-

tances. The solution method consists of a Hybrid Genetic Search

ith Adaptive Diversity Control algorithm. The contributions of

his paper are therefore: 

1. A detailed description of a new problem emerging in carsharing

systems. 

2. A novel mathematical model for the problem of charging and

repositioning electric vehicles in a free-floating carsharing sys-

tem. 

3. A Hybrid Genetic Search with Adaptive Diversity Control algo-

rithm (HGSADC) capable of solving instances of size compatible

with real-life problems. 
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Fig. 1. Illustration of an example problem with four cars (1,2,3,4) in need of charging, two charging stations (1,2), two service vehicles (v1,v2), and three operators (d1,d2,d3). 
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4. Results showing the effectiveness of the proposed algorithm

and that combining charging and repositioning yields advan-

tages for the CSO. 

The paper is organized as follows. First, the FFECCRP is de-

cribed in Section 2 . Then, a mathematical model of the prob-

em is proposed in Section 3 before the HGSADC is described in

ection 4 . A computational study is presented in Section 5 , while

ection 6 discusses the economical implications of the model. Fi-

ally, we conclude in Section 7 . 

. Problem description 

In this section we provide a more thorough description of the

roblem. Most features of the problem are based on discussions

ith a CSO operating in a major European city, which, for the

ake of confidentiality, will remain unnamed. We define the Free-

loating Electric Carsharing Charging and Repositioning Problem

FFECCRP) as the problem of repositioning electric rental cars to

harging stations in a free-floating carsharing system when their

attery level falls below a predefined threshold. When a rental

ar needs charging, a member of staff (here and in what follows

amed operator ) relocates the rental car from its original position

o a charging station. Only cars with battery level below the fixed

evel are relocated. The charging station for each car is chosen,

mong those that can be reached with the available charge, taking

nto account the current distribution of cars in the business area.

his way charging and repositioning operations are combined. This

mplies that the CSO in some cases might want to reposition a car

o a far away charging station if this improves the distribution of

he fleet. In addition, a relocation to a far away charging station

ight also be used to move an operator from one area of the city

o another. Each charging station has a given number of available

harging slots and must have free capacity if a car is relocated to

hat station. We assume that users do not compete for charging

lots with the CSOs operator. 

Consistently with the operation of the CSO that inspired this

ork, operators are transported to rental cars by service vehi-

les (typically large cars or mini-vans) with fixed capacity. Subse-

uently, the operator drives the rental car to the selected charging

tation. After an operator has relocated a car to a charging station,

 service vehicle will pick him/her up at the charging station and

ransport him/her to his/her next rental car. Operators are not nec-

ssarily picked up by the same service vehicle that dropped them

ff, but service vehicles are the only available means of transport.

hough alternative means of movement for the operators are used

n some cities (e.g., foldable bikes or public transport), service ve-

icles are adopted by several CSOs, like the one this study is based
n. A given number of operators and service vehicles are available

t the depot in the beginning of the planning period. 

The planning period , i.e., the total time available for charging

nd repositioning the fleet of rental cars, may vary from one up to

everal hours depending on the hour of the day, the area to cover

different groups of operators might cover different areas of the

ity), and on the number of cars to charge and reposition. Typi-

ally, a shorter planning period is adopted during the day in order

o respond to the likely changes in the system while the fleet is be-

ng used by customers. Cars in need of charging are made unavail-

ble in the booking system and remain unavailable until they are

harged to a sufficient battery level. In practice, additional rental

ars might have their battery depleted during the planning hori-

on and thus need to be charged. However, these cars will be re-

ocated in the subsequent planning period or by a separated group

f operators starting their planning period at a later time. When

 rental car with depleted battery has been moved to a charging

tation, it is made unavailable to the customers until the battery

as been fully charged. Once the battery is fully charged the car

s again made available for customers and the charging slot it oc-

upied is made available (in practice either a customer or the first

perator visiting the charging station will unplug it). 

Fig. 1 illustrates a small example problem with four rental cars

n need of charging, two charging stations, two service vehicles,

nd three operators. Service vehicle 1 transports operator 3 to

ental car 2, which is relocated to charging station 1. Service ve-

icle 2 transports operators 1 and 2 to rental cars 1 and 3, re-

pectively. Operator 1 relocates the rental car to charging station

, where service vehicle 1 picks up both operators 1 and 3 and re-

urns them to the depot. Operator 2 relocates rental car 3 to charg-

ng station 2, and is picked up and transported to rental car 4 by

ervice vehicle 2. The operator relocates the rental car to charg-

ng station 2 where he is again picked up by service vehicle 2 and

ransported back to the depot. 

To quantify the distribution of rental cars in the system, the

oncept of states is introduced for each charging station. Each

harging station is assigned a surrounding area and from here on

he surrounding area is included when discussing charging sta-

ions. The initial state describes the number of rental cars avail-

ble for customers at the charging station when the planning pe-

iod starts, i.e. all rental cars at the charging station and in the

urrounding area with a battery level above a given threshold. The

deal state gives the ideal number of rental cars around each charg-

ng station. The ideal state is typically dependent on the mobility

emand and addressed in a separated planning problem. The mo-

ility demand for each time period is assumed to be known in

dvance and, consequently, the ideal state is known at the time
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of planning. After solving the FFECCRP, the final state is reached.

The final state equals the initial state at a charging station plus the

number of rental cars relocated to the station. 

The costs a CSO incurs are due to the direct costs of relocating

of rental cars, and to the opportunity cost due to the postpone-

ment of charging and to imbalances in the distribution of cars. Par-

ticularly, the cost of relocating cars is the cost of moving operators

with service vehicles to and from rental cars in need of charging

as well as the fixed cost for using each individual operator and ser-

vice vehicle. If charging is postponed, the rental car is unavailable

for customers for longer time or until the next planning period.

Furthermore, demand might be lost when there is a deviation be-

tween the ideal and final state at a charging station at the end of

the planning period. The CSO is in general able to quantify the op-

portunity cost for the unavailability of cars. In practice, the actual

state of the system might be different from the final state due to

customers using the available cars. Therefore, the opportunity cost

for imbalances and postponement of charging is to be understood

as a driver towards a better usage of the system rather than a cost

to include in balance sheets. 

The FFECCRP includes several connected decisions: i) The routes

of the service vehicles that are dropping off and picking up the ser-

vice operators, ii) the routes of the service operators, iii) to which

rental cars to charge/reposition, and iv) which charging station (not

necessarily the nearest one) to bring each rental car. The time and

location at which an operator is dropped off affect the pick up of

the operator leading to temporal and spatial interdependencies be-

tween the routing of operators and service vehicles. The objective

is to minimize the costs of relocating, postponement, and devia-

tions. Central to the problem is the trade off between the cost of

not meeting demand due to a disadvantageous distribution of cars

in the system and the cost of repositioning. 

3. Mixed integer programming model 

In this section we propose a mathematical formulation of the

FFECCRP. The underlying network consists of nodes representing

visits by service vehicles and operators to charging stations, rental

cars, and the depot and arcs between these visits. The m th visit to

i , called ( i, m ), by service vehicle v is the node ( i, m, v ), where i

being either a charging station, rental car, or the depot. Similarly,

the a th visit to i , called ( i, a ), by operator d is the node ( i, a, d ).

When creating the network, only rental cars in need of charging

are considered. Charging stations can be visited multiple times by

both operators and service vehicles while rental cars can only be

visited once. Furthermore, if a rental car is visited it must be relo-

cated. All service vehicles and operators start and end at the depot.

Service vehicles drive directly between nodes and cannot make in-

termediate stops at the depot. Operators can only be dropped off

in nodes representing rental cars or the depot and picked up in

nodes representing charging stations or the depot. 

In the following, we present the applied notation and model

formulation. Where applicable, the depot is given index i = 0 and

the first visit to a node ( i, m, v ) is indexed with m = 1 , the second

with m = 2 and so on. Similarly, the first visit by an operator to a

node ( i, a, d ) is indexed a = 1 and so on. 

3.1. Sets 

N Set of all nodes 

N 

CS Set of all charging stations, N 

CS ⊂ N
N 

EV Set of rental cars in need of charging, N 

EV ⊂ N
M i Set of all possible visits to node i by each service vehicle/operator 

V Set of all service vehicles 

D Set of all operators 
i

.2. Parameters 

Q CSP 
j 

Number of available charging slots at charging station j

C E 
j 

Cost for each car in excess or surplus of the ideal state at charging 

station j

C T 
i j 

Travel cost for the service vehicles between node i and j

C PH 
i 

Cost of postponed charging of rental car i 

C V Fixed service vehicle cost 

C D Fixed operator cost 

T i j Travel time between node i and j

T EV 
i 

Maximum travel time for rental car at node i 

T Length of the planning period 

Q Service vehicle capacity 

S 0 
j 

Initial state at charging station j

S I 
j 

Ideal state at charging station j

.3. Variables 

x im jn v 1 if service vehicle v drives directly from visit m at node i to visit n 

at node j, 0 otherwise 

f ima jnbv d 1 if operator d is transported from visit a at node i to visit b at node 

j by service vehicle v driving from visit m at node i to visit n at node 

j, 0 otherwise 

q i v d 1 if operator d is dropped off at rental car i by service vehicle v , 0 
otherwise 

g jnbv d 1 if operator d is picked up at visit ( j, b) by service vehicle v at visit 

( j, n ) , 0 otherwise 

h i jbd 1 if operator d relocates rental car i to charging station visit ( j, b) , 0 

otherwise 

t V 
im v Time of arrival to visit (i, m ) for service vehicle v 

t D 
iad 

Time of arrival to visit (i, a ) for operator d

z H 
i 

1 if rental car i is not charged, 0 otherwise 

y j Number of cars in excess or deficit of the ideal state at charging 

station j

s v 1 if service vehicle v is used, 0 otherwise 

w d 1 if operator d is used, 0 otherwise 

.4. Formulation 

min 

∑ 

j∈N CS 

C E j y j + 

∑ 

i ∈N 

∑ 

m ∈M i 

∑ 

j∈N 

∑ 

n ∈M j 

∑ 

v ∈V 
C T i j x im jn v 

+ 

∑ 

i ∈N EV 

C PH 
i z H i + 

∑ 

v ∈V 
C V s v + 

∑ 

d∈D 
C D w d (1)

.t. 
∑ 

j∈N\{ 0 } 
x 01 j1 v = s v v ∈ V (2)

∑ 

j∈N\{ 0 } 

∑ 

m ∈M j 

x jm 02 v = s v v ∈ V (3)

∑ 

j∈N\{ 0 } 

∑ 

n ∈M j 

x im jn v ≤ s v i ∈ N\{ 0 } , m ∈ M i , v ∈ V (4)

 

i ∈N 

∑ 

m ∈M i 

x im jn v = 

∑ 

i ∈N 

∑ 

m ∈M i 

x jnim v j ∈ N \{ 0 } , n ∈ M j , v ∈ V (5)

∑ 

 ∈N EV 

∑ 

b∈M j 

∑ 

d∈D 
h i jbd ≤ Q 

CSP 
j j ∈ N 

CS (6)

∑ 

j∈N CS 

∑ 

b∈M j 

∑ 

d∈D 
h i jbd + z H i = 1 i ∈ N 

EV (7)

∑ 

j∈N CS 

∑ 

b∈M j 

h i jbd = 

∑ 

v ∈V 
q i v d i ∈ N 

EV , d ∈ D (8)

∑ 

 ∈N EV 

h i jbd = 

∑ 

v ∈V 

∑ 

n ∈M j 

g jnbv d j ∈ N 

CS , b ∈ M j , d ∈ D (9)
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t  
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i ∈N 

∑ 

m ∈M i 

∑ 

a ∈M i 

∑ 

n ∈M j 

∑ 

v ∈V 
f ima jnbv d + 

∑ 

i ∈N EV 

h i jbd ≤ w d 

j ∈ N 

CS , b ∈ M j , d ∈ D (10) 

∑ 

j∈N\{ 0 } 

∑ 

v ∈V 
f 011 j11 v d = w d d ∈ D (11) 

 

i ∈N 

∑ 

m ∈M i 

∑ 

a ∈M i 

∑ 

v ∈V 
f ima 022 v d = w d d ∈ D (12) 

∑ 

k ∈N 

∑ 

o∈M k 

∑ 

c∈M k 

f jnbkocv d = 

∑ 

i ∈N 

∑ 

m ∈M i 

∑ 

a ∈M i 

f ima jnbv d + g jnbv d − q jv d 

j ∈ N \{ 0 } , n ∈ M j , b ∈ M j , v ∈ V, d ∈ D (13) 

∑ 

 ∈M i 

∑ 

b∈M j 

∑ 

d∈D 
f ima jnbv d ≤ Q x im jn v 

i ∈ N , m ∈ M i , j ∈ N , n ∈ M j , v ∈ V (14) 

 

V 
im v ≤ T s v i ∈ N , m ∈ M i , v ∈ V (15) 

(t V im v + T i j ) x im jn v ≤ t V jn v i ∈ N , m ∈ M i , j ∈ N , n ∈ M j , v ∈ V (16) 

 

D 
jbd g jnbv d ≤ t V jn v j ∈ N 

CS , n ∈ M j , b ∈ M j , v ∈ V, d ∈ D (17) 

 

D 
iad ≤ T w d i ∈ N , a ∈ M i , d ∈ D (18) 

(t D iad + T i j ) h i jbd ≤ t D jbd 

i ∈ N 

EV , a ∈ M i , j ∈ N 

CS , b ∈ M j , d ∈ D (19) 

(t V im v + T i j ) f ima jnbv d ≤ t D jbd 

i ∈ N , m ∈ M i , a ∈ M i , j ∈ N , n ∈ M j , b ∈ M j , v ∈ V, d ∈ D (20) 

 j ≥ S 0 j + 

∑ 

i ∈N EV 

∑ 

b∈M j 

∑ 

d∈D 
h i jbd − S I j j ∈ N 

CS (21) 

 j ≥ −S 0 j −
∑ 

i ∈N EV 

∑ 

b∈M j 

∑ 

d∈D 
h i jbd + S I j j ∈ N 

CS (22) 

 im jn v ∈ { 0 , 1 } i ∈ N , m ∈ M i , j ∈ N , n ∈ M j , v ∈ D (23) 

f ima jnbv d ∈ { 0 , 1 } 
i ∈ N , m ∈ M i , a ∈ M i , j ∈ N , n ∈ M j , b ∈ M j , v ∈ V, d ∈ D (24) 

 i v d ∈ { 0 , 1 } i ∈ N 

EV , v ∈ V, d ∈ D (25) 

 jnbv d ∈ { 0 , 1 } j ∈ N 

CS , n ∈ M j , b ∈ M j , v ∈ V, d ∈ D (26) 

 i jbd ∈ { 0 , 1 } i ∈ N 

EV , j ∈ N 

CS , b ∈ M j , d ∈ D| T i j ≤ T EV 
i (27) 

 

V 
im v ≥ 0 i ∈ N , m ∈ M i , v ∈ V (28) 

 

D 
iad ≥ 0 i ∈ N , a ∈ M i , d ∈ D (29) 

 

H 
i ∈ { 0 , 1 } i ∈ N 

EV (30) 

 j ∈ Z 

+ j ∈ N 

CS (31) 
 v ∈ { 0 , 1 } v ∈ V (32) 

 d ∈ { 0 , 1 } d ∈ D (33) 

The objective function (1) minimizes the cost of relocating and

he costs of deviating from the ideal state at each charging sta-

ion and for postponed charging. Constraints (2) and (3) state that

f a service vehicle is used, it must leave and return to the de-

ot, respectively. Constraints (4) enforce that only service vehicles

n use visit nodes and that only one arc is leaving a given visit

 i, m ). Constraints (5) ensure that a vehicle arriving a visit ( j, n )

eaves the node from the same visit. This must hold for all nodes

xcept the depot. Constraints (6) make sure that the number of

ental cars relocated to a station does not exceed the number of

vailable charging slots at the station. Note that in the model a ve-

icle occupies a charging slot until the battery is fully charged or

t least for the entire planning period. That is, we do not allow-

ng partial or split charging. This might be considered a current

imitation of the model. Constraints (7) force either the relocat-

ng variable or the postponed charging variable to 1 for all rental

ars. 

Constraints (8) and (9) state that an operator relocating a rental

ar is dropped off by the rental car and picked up at the charg-

ng station the rental car is relocated to, respectively. Constraints

10) make sure that an operator only makes a given visit b to a

harging station once, either by driving a rental car to the charg-

ng station or by being transported through the charging station.

onstraints (11) enforce that a service vehicle can only transport

perators in use and that an operator only can be picked up by

ne service vehicle at the depot. Constraints (12) ensure that oper-

tors are returned to the depot. Constraints (13) maintain the flow

f operators in all nodes, ensuring that an operator transported out

f a node must be transported to that node or picked up in that

ode and vice versa. q ivd only exist for i ∈ N 

EV and g jnbvd only exist

or j ∈ N 

CS . Constraints (14) make sure that a service vehicle does

ot exceed its seat capacity transporting operators and force the

ow on arcs not driven by a service vehicle to 0. 

Constraints (15) –(17) determine the service vehicle arrival time

n all nodes. Constraints (15) state that visits by the service ve-

icle must happen before the end of the planning horizon. Con-

traint (16) ensure that if the service vehicle travels directly from

 to j , the visit at node j happens at a later time than the visit at

ode i . Constraints (17) state that an operator should have arrived

t node j if he/she must be picked up at that node by a service

ehicle. Constraints (18) –(20) determine operator arrival times in

ll nodes. Constraints (18) state that an operator should arrive at a

ode before the end of the planning horizon. Constraints (19) state

hat if an operator moves directly from i to j , he/she arrives at j

fter he arrives at i . Finally, constraints (20) state that if an op-

rator is transported by vehicle v from i to j , he/she arrives at j

fter the arrival of the service vehicle at i and the duration of the

rive from i to j . Nonlinear constraints can be linearized using big-

 formulations. Constraints (21) and (22) assign the absolute value

f deviations from the ideal state in each charging station node to

he variable accounting for deviations. Finally, constraints (23) –(33)

efine the variable domains. 

. Hybrid genetic search with adaptive diversity control 

In this section we present a metaheuristic algorithm for solving

he FFECCRP represented by model (1) –(33) . The implementation

f the heuristic draws on the Hybrid Genetic Search with Adaptive

iversity Control (HGSADC) first presented by Vidal et al. (2012) .

he motivation for choosing the HGSADC is that is has proven to

erform well on a number of vehicle routing problems, see for
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Algorithm 1 Hybrid Genetic Search with Adaptive Diversity Control (HGSADC). 

1: Initialize population Section 4.3 

2: iterationsWithoutImprovement ← 0 

3: time ← 0 

4: while iterationsWithoutImprovement < I NI and time < T MAXRUN do 

5: Select parent individuals s 1 and s 2 Section 4.4 

6: Generate offspring s new 

from s 1 and s 2 
7: Educate offspring s new 

with probability ρEDU 
of f spring 

Section 4.5 

8: if s new 

is infeasible then 

9: Repair s new 

with probability ρREP 
of f spring 

Section 4.5 

10: end if 

11: if s new 

is still infeasible then 

12: Insert s new 

into infeasible subpopulation 

13: else 

14: Insert s new 

into feasible subpopulation 

15: end if 

16: if maximumPopulationSize μ + λ reached then 

17: Select survivors Section 4.6 

18: end if 

19: Adjust penalty parameters for violating feasibility condition Section 4.6 

20: if bestIndividual not improved then 

21: iterationsWithoutImprovement ← iterationsWithoutImprovement+1 
22: if bestIndividual not improved for I DIV iterations then 

23: Diversify population Section 4.6 

24: end if 

25: end if 

26: time ← updateTime() 
27: end while 

28: Return best feasible individual 
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p  
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example ( Borthen et al., 2018; Bulhões et al., 2018; Vidal et al.,

2012; 2013 ). The original HGSADC has been modified and extended

significantly to fit the FFECCRP. Algorithm 1 shows an overview of

the HGSADC proposed to solve the FFECCRP. The algorithm evolves

a population of individuals, where an individual represents a so-

lution to the FFECCRP. The population is divided into two disjoint

subpopulations; a subpopulation of feasible solutions and a sub-

population of infeasible solutions that together make up the entire

population. The metaheuristic literature indicates that allowing a

controlled exploration of infeasible solutions may enhance the per-

formance of the search ( Vidal et al., 2012 ). Hence, we allow solu-

tions to be infeasible with respect to the maximum duration and

the number of service vehicles used as we believe optimal solu-

tions lie near the feasibility boundary of these constraints. 

The algorithm breeds new individuals from the population as

long as there have been improvements within the last I NI itera-

tions or the maximum running time limit T MAXRUN is not reached.

In each iteration, the algorithm picks two parent individuals and

combines them, yielding a new individual denoted an offspring .

The offspring is improved using an education procedure and, if in-

feasible, further improved using a repair procedure. The maximum

population size (sum of feasible and infeasible subpopulation) is

given by μ + λ, where μ is the minimum population size and

λ is the generation size. When the maximum population size is

reached, the individuals with highest biased fitness , i.e. high cost

and low diversity contribution, are removed until there are only μ
individuals left in the population. This process is referred to as sur-

vivor selection . To prevent the algorithm from converging to a lo-

cal optimum, a diversification procedure is performed if there has

been no improvement for I DIV iterations. The initial population is

created using a construction heuristic and must be large enough

to contribute sufficiently to the diversity of the population. 
.1. Individual representation 

An individual describes the routes of all service operators

nd service vehicles. The operator routes include assignment of

perators to relocate each rental car, postponement of charging

r assignment of rental cars to charging stations, and the relo-

ating order of each operator. The routes of the service vehicles

nclude assignment of transport requests by operators and the

isit sequence of each service vehicle. 

Each individual s in the population S is represented by five

hromosomes . Here we describe these chromosomes and the infor-

ation they contain. In the subsequent sections we elaborate on

ow they are used when individuals are evaluated, created, and

hanged. The first chromosome is the rental car destination chro-

osome α( s ), determining the charging station to move a rental car

o. Alternatively, determining that the charging of the car is post-

oned. The second chromosome is the service operator chromosome

( s ), that for each rental car defines which service operator that is

oing to perform the relocation. The third chromosome is the relo-

ation sequence chromosome γ ( s ), that for each operator d defines

he order to relocate the rental cars assigned to the operator. Tak-

ng the first three chromosomes as given, transport requests for the

perators that need to be taken care of by the service vehicles are

ormulated. A transport request is formulated for each pick up of

n operator. The transport request is represented by a node pair,

he first node is the origin where the operator is picked up and

he second node the destination where the operator is dropped off.

ach transport request is denoted τ r ( s ) indexed by r and the set of

ll transport requests is denoted R . The transport request formula-

ion is used to define the fourth chromosome, the transport request

ssignment chromosome δ( s ), that assigns each transport request r

from τ r ( s )) to a service vehicle v . Finally, the last chromosome is
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Fig. 2. Example of an individual for a small fictitious problem instance: Four cars in need of charging, two charging stations, two service vehicles, and three operators. The 

corresponding five chromosomes are given in Figure 2a-e. In the transport request assignment chromosome, the origin and destination of each transport request is stored in 

a separate list shown in Figure 2f. In the route chromosome, the depot is denoted D, the four rental cars are denoted EV1, EV2, EV3, and EV4 and the charging stations are 

denoted CS1 and CS2, respectively. 
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he route chromosome ε( s ), that describes the route of each service

ehicle. The route chromosome determines the order a service ve-

icle visits the nodes defined by the transport request assignment

hromosome. Fig. 2 illustrates a simple example solution and the

orresponding chromosomes. 

The following subsections explain how the different chromo-

omes are generated and combined to create new individuals. 

.2. Evaluation of individuals 

A diverse population is important for GAs in order to avoid pre-

ature convergence to local optima and loss of information. The

valuation of individuals in the HGSADC is based on the biased fit-

ess function presented by Vidal et al. (2012) . The biased fitness

unction evaluates individuals based on their cost, how much they

ontribute to the diversity of the population, and how much they

iolate the constraints. 

To evaluate the cost of an individual, let A (s ) be the set of

outes in individual s ∈ S . Let c sa be the cost of driving route

 ∈ A (s ) , and C E s , C 
PH 
s , C V s , and C D s the cost of deviations from the

deal state, postponed charging, and use of service vehicles and op-

rators in s , respectively. The individuals are allowed to violate the

onstraints on time used to perform relocation and the number of

ervice vehicles used, i.e. constraints (15) and the size of the set of
ervice vehicles |V| . The penalty costs φT 
sa and φV 

s account for how

uch the time constraints are violated in route a and violations in

umber of service vehicles used in individual s , respectively. These

re given by equations (34) and (35) , where w 

T is the penalty pa-

ameter per unit violation of the constraints on duration and t sa is

he duration of route a in individual s. w 

V is the penalty parame-

er per unit violation of number of vehicles used by individual s ,

alculated by using the difference between the number of service

ehicles used in s , V USED 
s , and available service vehicles |V| . The

otal cost C s of an individual s is calculated by equation (36) . 

T 
sa = w 

T max { 0 , t sa − T } s ∈ S, a ∈ A (s ) (34) 

V 
s = w 

V max { 0 , V 

USED 
s − |V|} s ∈ S (35) 

 s = 

∑ 

a ∈A (s ) 

(c sa + φT 
sa ) + φV 

s + C E s + C PH 
s + C V s + C D s s ∈ S (36) 

The diversity contribution of each individual s is defined as the

verage distance to its closest neighbors. Let N 

CLO 
s be the set con-

aining the n CLO closest neighbors of s . The diversity contribution,

( s ), can then be calculated by equation (37) where π ( s, s ′ ) is

he normalized Hamming distance between individual s and s ′ .
he Hamming distance, first presented in Hamming (1950) , is here

aken as the number of different char ging station assignments and

he different relocation assignments, i.e. the difference between
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Algorithm 2 Determining time windows. 

0: T i j ← travel time between node i and j 

1: for each operator d ∈ D do 

2: for each transport request r by operator d, r ∈ { r | ηr (s ) = d, r ∈ R (s ) } do 

3: l o r (s ) ← l d 
(r−1) 

(s ) + T 
τ d 
(r−1) 

τ o 
r 

4: l d r (s ) ← l o r (s ) + T 
τ o 

r τ
d 
r 

5: end do 

6: for each transport request r by operator d, r ∈ { r | ηr (s ) = d, r ∈ R (s ) } 
(reverse direction) do 

7: u d r (s ) ← u o 
(r+1) 

(s ) − T 
τ d 

r τ
o 
(r+1) 

8: u o r (s ) ← u d r (s ) − T 
τ o 

r τ
d 
r 

9: end do 

10: end do 
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destination assignment α( s ) and α( s ′ ) and the relocation assign-

ment β( s ) and β( s ′ ). With 1 ( cond ) = 1 if condition cond is true

and 0 otherwise, the normalized Hamming distance can then be

expressed as in equation (38) . 

�(s ) = 

1 

n 

CLO 

∑ 

s ′ ∈N CLO 
s 

π(s, s ′ ) s ∈ S (37)

π(s, s ′ ) = 

1 

2 |N 

EV | 
∑ 

i ∈N EV 

(
1 (αi (s ) 	 = αi (s ′ )) + 1 (βi (s ) 	 = βi (s ′ )) 

)

s ∈ S, s ′ ∈ N 

CLO 
s (38)

Every individual is ranked based on its total cost and its diver-

sity contribution. Let Rank C ( s ) and Rank D ( s ) be the rank of individ-

ual s in terms of total cost and diversity contribution, respectively.

The individual with the lowest total cost will have Rank C ( s ) = 1,

and the individual with the highest total cost will have Rank C ( s )

= |S| . Equally, the individual s with highest diversity contribution

will have Rank D ( s ) = 1. Finally, the biased fitness, given by equa-

tion (39) , is calculated using the ranks. n ELI is the number of elite

individuals to survive to the next generation. If n ELI equals 0, the

cost and diversity ranks are given equal weight and if n ELI equals

|S| , the rank is set based on the cost rank only. Hence, the com-

position of the total population S is influenced by how diversity is

valued relative to the total cost because survivor selection is done

based on the biased fitness. 

BF (s ) = Rank C (s ) + 

(
1 − n 

ELI 

|S| 
)

Rank D (s ) s ∈ S (39)

4.3. Constructing the initial population 

The main idea behind the construction of the initial popula-

tion is the following: If the rental car destination, the operator,

and the relocation sequence chromosomes are given, the remain-

ing problem, i.e. to determine the transport request assignment

and the service vehicle routes, is similar to a dial-a-ride problem

(DARP). The first three chromosomes determine all the rental cars

and charging stations each operator has to visit, including the visit

order, and can therefore be used to formulate transport requests.

Each transport request is associated with the operator requesting

transport by the variable ηr ( s ), which is equal to d if operator d re-

quires transport request r . By specifying time windows for the for-

mulated transport requests, solution methods used for DARP can

be used to construct the transportation request assignment chro-

mosome and the route chromosome. 

The upper and lower limit for the time window of the origin

node of transport request r are denoted l o r (s ) and u o r (s ) for indi-

vidual s , respectively. Similarly, the upper and lower limit for the
estination node is given by l d r (s ) and u d r (s ) . The time windows are

etermined using travel times between nodes and the time win-

ows are set by considering the minimum possible time required

y the operator to either get to the origin node (lower limit) or

nalize all charging after the destination node (upper limit) as de-

cribed in Algorithm 2 . We use the notation r − 1 and r + 1 to de-

ote the transport request directly prior to and after r for operator

r ( s ). 

Finding the transport request assignment and route chromo-

omes by solving the subproblem as a DARP is done when-

ver new individuals are created in the HGSADC. However, the

ARP itself is NP-hard ( Healy and Moll, 1995 ). Hence, heuris-

ics are needed. Low computational time is prioritized poten-

ially at the expense of solution quality because the algorithm

s executed many times. The static DARP as discussed here, as

ell as variations of the problem, are well studied in the lit-

rature. An extensive literature survey of model formulations

nd heuristic solution methods for the DARP is presented by

ordeau and Laporte (2007) . Although this survey is somewhat

ated, it includes the majority of significant contributions to so-

ution methods for the static DARP relevant for this problem.

ore recent papers are Parragh and Schmid (2013) , Kirchler and

olfler Calvo (2013) , Braekers et al. (2014) , Osaba et al. (2015) ,

schwind and Drexl (2016) and ( Masmoudi et al., 2017 ). Because

f a simple formulation and low computational effort, the cluster

rst sweep second algorithm proposed by Xiang et al. (2006) is

mployed as a construction algorithm for the DARP subproblem. 

The initial population is created by the construction heuristic

escribed in Algorithm 3 . An individual s is created in four steps.

teps 1 to 3 create chromosomes α( s ), β( s ), and γ ( s ), respectively,

nd Step 4 creates the remaining chromosomes δ( s ) and ε( s ) by

olving a DARP. In the first step, each rental car i is assigned a

estination αi ( s ). A list G i ( s ) of the n CS closest charging stations

o rental car i is created. G i ( s ) is updated to only include charging

tations with available charging slots and charging stations within

he range reachable with the given battery level of the rental car.

he destination g for rental car i is chosen from G i ( s ) with proba-

ility ρg , but the charging of the rental car can also be postponed.

he probability ρg > ρg+1 , i.e. the probability of choosing the clos-

st charging station is higher than the probability of choosing the

econd closest, which is higher than the probability of choosing

he third closest, etc. The probability of postponing the rental car

s lower than the probability of chosing destination g = n CS . 

To guide how the remaining chromosomes are set, a pseudo

ime for each operator is used to avoid solutions with large

nfeasibilities in the total time constraints. Since only a small part

f the problem is determined after the first step of Algorithm 3 ,

he destination of each rental car is used to estimate the total

uration of the relocation. The travel time between i and j is given
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Algorithm 3 Construction heuristic. 

1: individualsCreated s ← 0 

2: while s < μK 

I NI T do 

STEP 1: Select destination pattern 

3: Create a sorted list G i (s ) with the closest charging stations to rental car i 

4: CS 
cap 
i 

(s ) ← Number of available charging slots at charging station i 

5: for each rental car i ∈ N 

EV do 

6: Choose charging station, with available charging slot , g ∈ G i (s ) with 

probability ρg , where ρg > ρ(g+1) , or postpone charging 

7: if charging not is postponed do 

8: αi (s ) ← g 

9: CS 
Cap 
g (s ) ← CS 

Cap 
g (s ) − 1 

10: end if 

11: end do 

STEP 2: Select relocation assignment pattern 

12: with probability ρassign do 

13: Apply Algorithm 3.1 to create relocation assignment pattern with low 

operator cost 

14: else do 

15: Apply Algorithm 3.2 to create relocation assignment pattern with low travel 

cost 

16: end do 

STEP 3: Select relocation sequence pattern 

17: for each operator d ∈ D do 

18: Create set of rental cars that are relocated by each operator, 

F d (s ) = { i | βi (s ) = d} 
19: while F d (s ) 	 = ∅ do 

20: with probability ρseq do 

21: add the rental i ∈ F d (s ) that is closest to the position of the operator 

to γd (s ) 

22: else do 

23: add random rental car i ∈ F d (s ) to γd (s ) 

24: end do 

25: Remove i from F d (s ) 

26: end do 

27: end do 

STEP 4: SOLVE THE DIAL-A-RIDE PROBLEM WITH THE THREE FIRST 

CHROMOSOMES AS INPUT 

28: Formulate transport requests and determine time windows using Algorithm 2 

29: Create list L (s ) , the node visit sequence sorted by the end time of the time 

window to serve all transport requests 

30: Create conflict table C(s ) of the transport requests with conflicting time 

windows 

31: Create initial service vehicle routes using Algorithm 3.3, use routes to set δr (s ) 

and ε v (s ) 

32: Educate generated individual with probability ρEDU 
construct 

33: if generated individual is infeasible then 

34: Repair individual with probability ρREP 
construct 

35: end if 

36: individualsCreated s ← s + 1 

37: end while 

b  

t  

t  

T  

p  

m  

a  

s  

o  

i  

K  

p  
y T ij . However, this time only accounts for the time spent while

he rental car is relocated. In addition to this, the operator must be

ransported to the rental car and picked up at the charging station.

his may take longer than the travel times between the pick up

oint and the drop off point for two reasons. First, the operator

ay have to wait by the charging station before a service vehicle
rrives to pick him/her up. Second, other rental cars or charging

tations might be visited by the service vehicle on the way to the

perator’s drop off point. To account for this, the relocation time

s multiplied by a constant K 

pseudo > 1. Results indicate that setting

 

pseudo dynamically contributes to the diversity of the generated

opulation. Hence, for this problem K 

pseudo = 1 . 5 initially and is
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Algorithm 3.1 Relocation assignment with low operator cost. 

1: d ← 1 

2: Create sorted list H(s ) of rental cars that are relocated, shortest relocation time first 

3: while H(s ) 	 = ∅ do 

4: EV ← first element of H(s ) 

5: if pseudo time of d ≤ T when EV is assigned to d then 

6: βEV (s ) ← d 

7: Update pseudo time and remove EV from H(s ) 

8: else if (d + 1 ≤ | D | ) then 

9: d ← d + 1 

10: else 

11: Set αi (s ) to postpone for the remaining rental cars i in H(s ) 

12: H(s ) ← ∅ 
13: end if 

14: end do 

Algorithm 3.2 Relocation assignment with low travel cost. 

1: for each charging station i ∈ N 

CS do 

2: Create set of rental cars being relocated to charging station H i (s ) 

3: d ← 1 

4: while H i (s ) 	 = ∅ do 

5: EV ← random rental car from H i (s) 

6: βEV (s ) ← d 

7: Remove EV from H i (s) 

8: d ← d + 1 

9: if d > | D | then 

10: d ← 1 

11: end if 

12: end do 

13: end do 
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increased by 0.5 four times during the construction algorithm. The

pseudo time can be expressed as: 

 

pseudo 

d 
(s ) = 

∑ 

i ∈ N EV | βi (s )= d 
K 

pseudo T iαi (s ) s ∈ S, d ∈ D (40)

Step 2 assigns an operator to relocate each rental car. With

probability ρassign the operator is chosen with priority on using

a low number of operators as presented in Algorithm 3.1 . Rental

cars are assigned to operators with a greedy algorithm, adding

rental cars to the operator as long as the pseudo time of the op-

erator does not exceed the planning time T . If the planning time

for an operator is exceeded by adding a rental car, that car is in-

stead added to the next operator. Alternatively, operators are as-

signed with priority on reducing the distance travelled by service

vehicles, presented in Algorithm 3.2 . This is done by attempting to

assign rental cars to operators so that cars relocated to the same

charging station are relocated by different operators to allow ser-

vice vehicles to do fewer charging station visits and thereby pos-

sibly travel a shorter distance. To do this, all rental cars assigned

to the same charging station are assigned to different operators.

Only if the number of operators is limited, multiple rental cars are

relocated to the same charging station by the same operator. 

The third step of the algorithm sets the relocation order of the

cars assigned to each operator. Until all cars have been included

in the sequence, a new car is added to the end of the sequence.

The car closest to the position of the operator after the previ-

ous relocation is added with a probability ρseq , otherwise a ran-

dom car is added. Using the time windows, the origin and des-

tination nodes of the transport requests are sorted, lowest upper

limit first, in a list L ( s ). The transport requests are split into origin

and destination nodes because a service vehicle assigned to that
equest does not necessarily drive directly from the origin to the

estination, other nodes can be visited in-between. Requests that

re in conflict, i.e. not possible to fulfill with the given time win-

ows on the same route, are stored in a conflict table C ( s ). Us-

ng L ( s ) and C ( s ), routes are created using the sweep heuristic pro-

osed by Xiang et al. (2006) . The algorithm iterates through the

ist L ( s ) adding unvisited nodes that are not in conflict with any of

he nodes already in the route. Furthermore, destination nodes are

nly added to the route if the origin node already is in the route.

fter all elements of L ( s ) are searched, a new route is created and

ll unvisited nodes in L ( s ) are searched and added by the same

riteria. The resulting assignment of transport requests to service

ehicles and service vehicle routes are stored in the transport re-

uest assignment and route chromosomes, respectively. 

.4. Parent selection and crossover 

The offspring generation scheme of the HGSADC selects two

arent individuals, s 1 and s 2 , and generates one offspring s new 

.

ach parent is selected by a binary tournament, i.e. randomly

icking two individuals from the entire population and choosing

he one with best biased fitness as the parent, as proposed by

idal et al. (2012) . The four-stepped crossover operator is described

n Algorithm 4 . In the first step (Step 1), the genes to inherit

rom each parent are decided. This is done by randomly divid-

ng the set of rental cars in three disjoint sets: �1 , �2 , and �mix 

ontaining rental cars inheriting patterns from s 1 , s 2 , and both,

espectively. 

Step 2 inherits data from s 1 . The destination and operator for

ll rental cars in �1 are copied directly from s 1 to s new 

. Two ran-

om cut-off points υ and υ , υ ≤ υ , are picked for the set � ,
1 2 1 2 mix 
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Algorithm 4 Crossover operator. 

STEP 0: Inheritance rule 

1: Pick two random numbers between 0 and | N 

EV | according to a uniform distribution. 

Let n 1 and n 2 be the smallest and the largest of these numbers, respectively 

2: Randomly select n 1 rental cars to form the set �1 

3: Randomly select n 2 − n 1 remaining rental cars to form the set �2 

4: The remaining | N 

EV | − n 2 rental cars make up the set �mix 

STEP 1: Inherit data from s 1 
5: for each rental car i belonging to the set �1 do 

6: Copy the destination αi (s 1 ) to αi (s new 

) and the operator βi (s 1 ) to βi (s new 

) 

7: end for 

8: Pick two random cut-off points υ1 and υ2 dividing the set �mix 

9: for each rental car i in the subset between υ1 and υ2 do 

10: Copy the destination αi (s 1 ) to αi (s new 

) and the operator βi (s 1 ) to βi (s new 

) 

11: end for 

12: Copy relocation sequence γd (s 1 ) to γd (s new 

) for all drivers and rental cars so far inherited from s 1 

STEP 2: Inherit data from s 2 
13: for each rental car i ∈ �2 ∪ �mix do 

14: if αi (s new 

) = ∅ and destination assignment not violates capacity at charging 

station αi (s 2 ) do 

15: Copy the destination αi (s 2 ) to αi (s new 

) 

16: Copy the relocation assignment βi (s 2 ) to βi (s new 

) 

17: else if αi (s new 

) = ∅ do 

18: Assign rental car i to the closest available charging station or postpone 

19: if rental car i not postponed do 

20: Copy the operator βi (s 2 ) to βi (s new 

) 

21: end if 

22: end if 

23: end do 

24: Copy the relocation sequence from s 2 to s new 

for all drivers and rental cars inherited form s 2 
25: Apply improvement heuristic to improve relocation sequence pattern 

STEP 3: Route service vehicles 

26: Apply step 4 from construction heuristic (Algorithm 3) to formulate transport requests and route service vehicles 

Algorithm 3.3 Route construction heuristic ( Xiang et al., 2006 ). 

1: for each unvisited node i in list L (s ) do 

2: if node i is a pick up site then 

3: Add node i as the first pick up site in a new route 

4: for each unvisited node j after node i in list L (s ) do 

5: if node j is a pick up site and does not conflict with any request 

already in this route or node j is a delivery site and its corresponding 

pick up site is already in this route then 

6: Add node j to the tail of this route 

7: end if 

8: end do 

9: end if 

10: end do 
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n

nd the destination and the operator for the rental cars in the se-

uence between these cut-off points are copied from s 1 to s new 

.

urthermore, the relocation sequence for the rental cars inherited

rom s 1 are copied directly from s 1 to s new 

. 

In Step 3, data is inherited from s 2 . For all the remaining rental

ars in �2 and �mix , the destination is copied to s new 

if capacity

onstraints on the charging stations are not violated. If the capac-

ty constraints are violated, the rental car is assigned to the clos-

st charging station with available charging slots. The operator is

opied directly. The relocation sequence are copied directly from s 
2 
o s new 

, except for the rental cars already in γ d ( s new 

). This ensures

hat all rental cars are relocated without conflict between opera-

ors. An improvement heuristic minimizing the travel distance of

he operator is then applied to improve the relocation sequence

atterns. 

Finally, in Step 4, transport requests and service vehicle routes

re constructed using Step 4 from the construction heuristic

 Algorithm 3.3 ). Due to the design of the crossover operator, off-

pring individual s new 

is feasible except in the time constraints and

umber of service vehicles used. 
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Fig. 3. Illustration of relocate-operator, inter and intra-route moves allowed. 1 + and 1 − denote pick up and drop off nodes of transport request 1, respectively. Equivalent 

notation applies for transport requests 1 to 4. This illustration shows an inter-route move and and intra-route move of request 1. 
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4.5. Education 

The education phase aims to decrease the total cost of an in-

dividual by improving the relocation sequence, transport request

assignment, and route chromosomes. As different rental car desti-

nation and operator chromosomes are evaluated as a part of the

overall HGSADC, these are not altered in the education module.

Simple improvement operators are sought in order to run a large

number of improvement iterations with little computational effort.

The education module also includes a repair procedure to make

infeasible individuals feasible. 

Neighbors are defined by a neighborhood operator based on

Braekers et al. (2014) . A transport request is removed from its cur-

rent position in a route and inserted in either another position in

the same route or in a different route. The neighborhood operator

is illustrated in Fig. 3 . Transport requests can be inserted in posi-

tions that require modification of the relocation sequence chromo-

some. This happens if the modified routes force an operator to visit

the rental cars in a different order than the order defined in the re-

location sequence chromosome. A change in this chromosome also

requires the transport requests to be modified, so that the trans-

port requests align with the flow of operators set by the relocation

sequence. Furthermore, if an improving inter-route move is found,

the transport request assignment chromosome is modified so that

it captures that a new service vehicle relocates the transport re-

quest. A first improvement strategy is implemented, meaning that

the first improvement found is accepted and the search for bet-

ter solutions continues by considering the next transport request.

First improvement is chosen because it has been shown that there

is little difference between best improvement and first improvement

( Breedam, 2001 ). The education procedure terminates when no im-

provements are found. 

Individuals that are feasible after education is performed are re-

ferred to as naturally feasible individuals . If an individual is infeasi-

ble, the individual is repaired with probability ρREP attempting to

make it feasible. This is done by multiplying the penalty parame-

ters by ten and running the education procedure again. If the indi-

vidual still is infeasible, the penalty parameters are multiplied by

100 and the education procedure executed. If the individual still

is infeasible, a module forcing the individual to become feasible is

employed. 
i  
The force feasibility module consists of two parts. The first part

epairs individuals that are using too many service vehicles and

he second individuals that exceeds the maximum time limit. If

oo many service vehicles are used, the module searches through

ll routes to find the vehicle that handles the fewest transport re-

uests. Then, all the rental cars corresponding to these transport

equests are postponed. The postponed rental cars are removed

rom the relocation sequence chromosome of the relevant oper-

tors and the DARP is re-solved with the updated chromosomes

o determine the transport request assignment and route chro-

osomes. This procedure is repeated until enough rental cars are

ostponed so that the service vehicle limit is no longer exceeded.

f an individual is exceeding the maximum time limit constraint,

ll routes are searched through to find the route with the longest

uration. Then, the rental car corresponding to the last transport

equest in the route is postponed. Similar to the first part of repair,

he relocation sequence chromosome is updated and the DARP re-

olved. The procedure is repeated until the individual no longer ex-

eeds the maximum relocation time. Note that even though repair

uarantees feasibility, the procedure is not run for all individuals.

ence, infeasible solutions are still present in the population. 

.6. Population management 

Three population management schemes are employed to im-

rove the performance of the genetic search algorithm. Survivor se-

ection is performed to increase the quality of the population by

emoving the worst quality individuals based on the biased fit-

ess. Survivor selection is executed on a population whenever the

umber of individuals in the population reaches its maximum limit

+ λ. Individuals are removed until there are μ individuals left. 

Penalty parameter adjustment updates the penalty parameters

or every 100 iterations with the goal of attaining the target ratio
REF of feasible individuals. If the proportion of feasible individu-

ls is below 5% less than the target ratio, the penalty parameter

s adjusted up by ξUP > 1. Similarly, if the target ratio is above 5%

ore than the target ratio the penalty parameter is adjusted down

y ξDOWN < 1. 

Diversification is executed to prevent the algorithm from con-

erging to a local optima. If no improvement is made to the best

ndividual in I DIV iterations, two thirds of the worst individuals are
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Fig. 4. Illustration of an extract of an instance showing the status of rental cars and the location of charging stations and the depot. Zones around charging stations are 

identified by rectangles. 

Table 1 

Details of computer and solver used in the computational study. 

Processor: Intel(R) Core(TM) i7-6700 CPU 3.40 GHz 

RAM: 32GB 

Operating system: Windows 10 Education 64-bit 

Xpress-IVE version: 1.24.08 64 bit 

Xpress optimizer version: 28.01.04 

Mosel version: 3.10.0 

Java version: 8 

Maximum computational time: 3600 s 
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emoved from each subpopulation. Then, μK 

DIV new individuals

re generated using the construction heuristic. 

. Computational study 

The FFECCRP has been solved using both the commercial MIP

olver Xpress and with the HGSADC algorithm, which has been im-

lemented in Java. The hardware and software specifications of the

omputational study are given in Table 1 . 
Table 2 

Overview of the key parameters of the constructed test instances. 

Instance # cars to be relocated # charging stations # servi

4_2 4 2 1 

6_3 6 3 2 

8_4 8 4 3 

60_20 60 20 10 

100_35 100 35 14 

125_40 125 40 16 

150_45 150 45 18 

175_50 175 50 20 

200_55 200 55 22 
.1. Instances and implementation 

Test instances are created based on data from the focal CSO. An

xtract of one of the instances is illustrated in Fig. 4 showing the

tatus of each rental car, the location of charging stations, and the

epot. All rental cars in need of charging within 30 minutes drive

rom the depot are considered. An overview of the size of the test

nstances and their parameters is shown in Table 2 . Three test in-

tances of each size with different initial distribution of rental cars

re created. The letters a, b , and c are used to distinguish between

est instances of equal size. Different test instances are used for

alibration and performance testing to avoid overfitting the model

nd algorithm to the data. 

Travel times are retrieved from Google maps and assumed

qual for both service vehicles and rental cars. We assume that

he ideal state is an even distribution of rental cars, that is, the

deal state of the system is set so that the number of rental cars

s equal in all charging stations. The initial state in each charging

tation consists of a random number of cars. However, the total

umber of rental cars in the system is equal to the total number

f rental cars in the ideal state. As an example, Fig. 4 shows an ex-

erpt of an instance consisting of three charging station and nine
ce vehicles # operators Planning period duration (min) 

4 120 

6 120 

8 120 

40 120 

56 120 

64 120 

72 120 

80 120 

88 120 
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Table 3 

Overview of the parameters used in the HGSADC and their values. 

Parameter Value Description 

μ 35 Minimum population size 

λ 100 Generation size 

I NI 10,000 Max. number of iterations without improvement 

ηDIV 0.2 Proportion of I NI , such that I DIV = ηDIV × I NI 

ηELI 0.5 Proportion of elite individuals, n ELI = ηELI × |S| 
ηCLO 0.2 Proportion of individuals considered in diversity contribution, 

such that n CLO = ηCLO × μ

K INIT 20 Construction heuristic size factor 

K DIV 20 Diversification size factor 

ρEDU 
construct 0.75 Probability of education in construction heuristic 

ρREP 
construct 0.25 Probability of repair in construction heuristic 

ρEDU 
crossov er 0.5 Probability of education in crossover 

ρREP 
crossov er 0.5 Probability of repair in crossover 

ζ REF 0.6 Desired ratio of feasible individuals 

w 

T 2 Duration violation penalty 

w 

V 0.5 Number of vehicles violation penalty 

ξUP 1.25 Penalty adjustment factor, up 

ξDOWN 0.75 Penalty adjustment factor, down 

T MAXRUN 3,600 Maximum running time (seconds) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i  

s  

t  

n  

d  

t  

s

5

 

fi  

p  

t  

a  

s  

d  

f

5

 

n  

c  

m  

o  

s  

e  

s  

M  

s  

t  

s  

i  

c  

t  

c  

o

 

i  

a  

o  

t  

t  

t  
rental cars. The ideal state is thus three cars for each charging sta-

tion. The initial state at each charging station (i.e., the number of

cars with sufficient battery level in the zone containing the charg-

ing station) is one car for each charging stations. A possible solu-

tion would be that of relocating the two cars in need of charging

in the top-left zone to the charging station in the bottom-left zone,

and the two-cars in need of charging in the right-hand-side zone

to its own charging station. Once the cars with depleted battery

are charged, this would leave each zone with three available cars

as in the ideal state. 

The solutions will clearly depend on how the cost parameters

are set, and especially the postponement costs and costs for devi-

ation from the ideal state can be difficult to estimate. These cost

parameters are set to reflect the relative size of costs for the focal

CSO. Costs per unit time have been estimated based on operator

salaries and transport costs with the service vehicles. The unit

costs are then scaled with travel or planning period time to arrive

at the final cost parameters. All costs associated with the service

vehicle are included in the travel cost and have been estimated

to a travel cost of ten cents per minute travelled. The employee

cost per hour is assumed to be 10 Euros per operator, which gives

a total cost of 20 Euros per operator since the planning period is

120 minutes. 

The postponement and deviation costs are set by observing the

CSO’s notion a good solution. The deviation cost is assumed to be

10 Euros per deviation and reflects the profit loss and badwill of

the trips lost due to no available cars. If handling of a rental car

is postponed (i.e., not performed during the current planning pe-

riod), the rental car is unavailable for users in the period following

the planning period. As it may result in lower customer satisfac-

tion as fewer rental cars are available, the cost of postponing is

assumed to be 25 Euros for the instances with less than 15 cars

in need of handling. For the larger instances, 50 Euros have been

used as postponement cost, as preliminary testing showed that this

gave more reasonable solutions. In real life, the cost parameters

discussed here are dependent on the preferences of the CSO and

how frequently the SFFCCRP is resolved. 

The set M i is defined for each node i , representing possible vis-

its to a node i for both service vehicles and operators. Preliminary

testing has revealed that setting the number of visits to charging

stations equal to the lower bound plus one ensures the best trade

off between solution quality and computational time. The lower

bound for service vehicles at each charging station is set to the

number of available charging slots at the station divided by the

seat capacity of the service vehicles, rounded up to the nearest
nteger. Similarly for operators, the lower bound at each charging

tation is set to the number of available charging slots at the sta-

ion divided by the total number of operators, rounded up to the

earest integer. All rental cars can only be visited once and it is

esirable to allow all operators to transport all rental cars. Hence

he number of allowable visits to rental cars is set to one for both

ervice vehicles and operators. 

.2. Parameter tuning 

The HGSADC relies on a set of correlated parameters and con-

guration choices for its key operators. Different values for each

arameter are tested individually, keeping the rest of the parame-

ers fixed. Once a parameter value is chosen, the remaining tests

re performed with all prior parameter values set to the cho-

en values. Each test is performed five times due to the non-

eterministic nature of genetic algorithms. The calibration results

or the parameters are shown in Table 3 . 

.3. Performance of the HGSADC 

The MIP solver can only solve instances with very few cars in

eed of charging. All three instances both with four and six rental

ars in need of charging are solved to optimality within the maxi-

um running time of 1 h. The instances with four rental cars take

n average around only one second, while the three instances with

ix rental cars take from 7 to 2088 s to solve. The instances with

ight rental cars could not be solved to optimality with the MIP

olver and returned optimality gaps from seven to 67%. Hence, the

IP solver cannot reliably produce high quality solutions for in-

tances with more than six rental cars in need of charging. Fur-

hermore, for instances with more than eight rental cars, the MIP

olver could not even find feasible solutions within one hour, and

n several cases it even fails to load the problem into memory. In

omparison, the HGSADC is capable of finding the optimal solu-

ions of all the instances with four and six rental cars in need of

harging solved to optimality by the MIP solver within a few sec-

nds. 

To further investigate the performance of the HGSADC, 15 large

nstances of five different sizes are solved ten times each, and the

verage run times and the average gaps after ten minutes and after

ne hour execution are reported in Table 4 . The table also shows

he coefficients of variance of the gap and computational time af-

er 1 h. It should be noticed that since we do not know the op-

imal solutions for these instances, the gaps are calculated from
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Table 4 

Final results of running the HGSADC on 15 instances with 100 to 200 rental cars in need of charging. Optimality 

gaps are calculated with respect to the best known solution. 

Instance Avg. time (s) Avg. gap% after 600s Avg. gap % Coeff. of Var. gap % Coeff. of Var. time % 

100_35_a 1212.1 2.6 1.9 0.9 76.4 

100_35_b 693.5 1.6 1.5 1.3 32.7 

100_35_c 743.5 1.3 1.2 0.9 29.3 

125_40_a 1185.8 2.7 2.0 1.6 85.5 

125_40_b 1302.6 2.5 1.9 1.2 68.2 

125_40_c 972.7 1.7 1.3 0.6 49.1 

150_45_a 1774.9 2.6 1.4 1.0 48.8 

150_45_b 760.7 1.0 1.0 0.8 26.0 

150_45_c 1362.9 2.1 1.3 0.9 47.4 

175_50_a 1453.7 1.8 1.2 1.0 32.2 

175_50_b 1849.1 2.9 1.7 1.1 51.1 

175_50_c 2137.4 1.8 0.6 0.5 31.2 

200_55_a 1496.9 1.5 1.0 0.4 26.4 

200_55_b 1265.5 1.0 0.6 0.5 36.7 

200_55_c 2403.4 2.1 1.2 0.8 42.8 

Average 1374.3 1.9 1.3 0.9 45.6 

Fig. 5. Histogram of objective value gap to the best known solution and run time from running the 100_35_c instance 100 times. 
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he best known solution obtained among the ten runs for each in-

tance. The average run time for the tested instances ranges from

93.5 to 2403.4 s. However, there is a relative large variation in

un times indicated by the average coefficient of variance of the

un time of 45.6%. One of the runs of the 100_35 instances, two

f the 125_40 instances, two of the 150_45 instances, two of the

75_50, and three of the 200_55 instances ran for the maximum

un time. However, all of these runs found a solution with less

han 4.1% gap from the best available solution after ten minutes

nd less than 3.5% gap at the end of the execution, making the

olutions usable for most practical purposes. There are several fac-

ors contributing to the large variation in run time. The most im-

ortant reason is simply randomization. Depending on the initial

ndividuals created and which individuals are chosen as parents,

he algorithm may have to run more iterations to reach good so-

utions. An observation made is that the average gap to the best

nown solution and the coefficients of variance of the gap and run

ime decrease with increasing instance size. This indicates that the

lgorithm scales well to large instances. 

The gap after ten minutes (600 s) is reported because we as-

ume that running the algorithm for a maximum of ten minutes is

esirable in real life scenarios. The average gap to the best found

olution after ten minutes is 1.9% with no averages above 2.9%.

urthermore, the average coefficient of variation of the objective

alue after ten minutes is equal to the value at the end of the al-

orithm execution at 0.9%. This demonstrates that the algorithm is

ble to produce acceptable solutions reliably within ten minutes.

he average gap at the end of the algorithm execution is 1.3%. For

he largest instances with 200 rental cars, these numbers are even
ower, with an average gap of less than 1.0% and coefficient of vari-

tion of 0.6%. These results are a clear indicator of the capabilities

f the algorithm to produce consistent, high quality solutions for

ealistic carsharing systems. 

To gain a deeper understanding of the stability of the algorithm,

00 runs on the 100_35_c instance have been executed. This in-

tance is chosen randomly as the purpose is only to show the

lgorithm’s performance. The results of these runs are presented

n the histograms in Fig. 5 . As can be seen from the plot, the

ean objective value gap to the best known solution is 2.0%. 58

ut of the 100 solutions found have equal or smaller gap than

he mean. Of the 42 solutions with objective value gap above the

ean, 39 are below 4.0%. The remaining three solutions have gaps

f 4.3, 5.1, and 5.1%, respectively. The mean run time of the al-

orithm is 655.7 s. 61 of the 100 algorithm executions completed

n less or equal run time as the mean. 91 of the runs completed

n less than 10 0 0 s. Of the remaining nine algorithm runs, eight

ompleted in less than 1314 s and one outlier required 1970 s to

omplete. 

Finally, the HGSADC consists of many modules making it a rel-

tively complex algorithm to design and implement. To rationalize

he added complexity, it is essential that the algorithm provides a

ignificant improvement in solution quality and/or computational

ime compared to the construction heuristic or a simple GA. To

rovide evidence of the value of the HGSADC, Table 5 compares

he results of running the HGSADC with different modules on four

nstance classes. The average computational times and gaps from

he best known solution are reported. In the first and the second

olumns, the results of running only the construction module of
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Table 5 

Average running time and optimality gap reported for runs of the construction heuristic without edu- 

cation and repair, the construction heuristic with education and repair, the HGSADC without education 

and repair, and the HGSADC with education and repair, respectively. Optimality gaps are calculated 

with respect to the best known solution. 

Instance CH 1 CH + E/R 2 HGSADC 3 HGSADC + E/R 4 

Time (s) Gap % Time (s) Gap % Time (s) Gap % Time (s) Gap % 

6_3 ∗ ≈ 0 0.1 3.6 0.0 28.4 0.0 22.8 0.0 

8_4 ≈ 0 18.6 ≈ 0 11.0 31.2 2.9 26.4 0.7 

60_20 N / A 5 N / A 5 5.6 8.3 2757.8 5.8 593.0 1.4 

100_35 N / A 5 N / A 5 27.8 5.9 1417.8 3.9 769.4 2.0 

∗Proven optimal. 

1: The construction heuristic without education and repair. 

2: The construction heuristic with education and repair 

3: The construction heuristic with education and repair, the HGSADC iterations without education and 

repair 

4: The HGSADC with all configurations. 

5: No feasible solution found. 

Table 6 

Comparison of costs, and number of deviations and postponements when repositioning 

is omitted and when repositioning is performed. The numbers are the average of five 

runs with the HGSADC. The test instance has 100 rental cars in need of charging. The 

average change when repositioning is considered is reported compared to when reposi- 

tioning is not considered. 

No repositioning With repositioning Change % 

Number of postponed cars 46.6 42.6 -8.6 

Number of deviations 84.6 79.0 -6.6 

Distance driven [km] 562.5 581.1 3.3 

Number of service vehicles 12.8 13.8 7.8 

Number of operators used 50.4 53.8 6.8 

Postponement cost 2330.0 2130.0 -8.6 

Deviation cost 846.0 790.0 -6.6 

Travel cost 112.5 116.5 3.3 

Service vehicle cost 256.0 276.0 7.8 

Operator cost 1008.0 1076.0 6.8 

Real cost 4552.5 4388.2 -3.6 
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the algorithm without and with education and repair, respectively,

are presented. Then, the third column presents the results of run-

ning the algorithm with education and repair in the construction

heuristic but without education and repair after an offspring is cre-

ated. Finally, the results of the full algorithm are presented in the

fourth column. Firstly, we observe that including education and re-

pair in the construction heuristic enables the algorithm to find fea-

sible solutions for all instances used in this comparison. Secondly,

it is clear that each module added to the algorithm contributes

to a significant reduction in the gap to the best known solution

for all the instances. However, the improvements come at the cost

of added computational time in the three first columns. Lastly,

the rightmost column illustrates that the full HGSADC-algorithm

significantly outperforms the other configurations of the HGSADC

as it finds the lowest gap to the best known solution for all in-

stances in considerably less time than the HGSADC without educa-

tion and repair. The reduced computational time from the third to

the fourth column in spite of added complexity is a result of the

full algorithm finding high quality solutions faster leading to fewer

iterations. 

Based on these results we conclude that the algorithm is able to

produce solutions with stable quality within a reasonable time for

most executions of the algorithm. In addition, the results demon-

strate that the HGSADC is suitable for problems with complex syn-

chronization constraints including spatial and temporal interde-

pendencies. 

6. Economical implications 

A central hypothesis of this paper is that combining necessary

daily operations with repositioning will increase the operational
osts of the CSO marginally, while harvesting the full benefits of

epositioning. To investigate the effect of repositioning, two differ-

nt configurations of the HGSADC are compared. In the first con-

guration all cars are either relocated to the closest charging sta-

ion or postponed. This represents the charging procedure with-

ut repositioning. In the second configuration the full HGSADC is

un. An instance with 100 rental cars to relocate has been run five

imes for each configuration and the average costs, number of de-

iations, and postponements are reported in Table 6 . The average

hange when repositioning is considered is reported in the fourth

olumn of the table, compared to when repositioning is not con-

idered. 

Even though the operational costs increase when reposition-

ng is considered, the total cost of the system decreases with 3.6%

hen repositioning is performed when using the cost parame-

ers described in Section 5 . The reduction in total costs can be

ttributed to the decreased number of postponements and devi-

tions. As the total cost (objective function) includes lost profits

hen deviations are present and cars are postponed, the total cost

o a large degree captures the profit effect of the repositioning op-

rations. Hence, the 3.6% decrease in total costs can be directly

ransferred to gross profit margin improvement, thereby represent-

ng a significant improvement of the economic viability of the CSO.

For some CSOs, charging without repositioning might closer re-

emble their operational mode, or the deviation cost in these sys-

ems may be too cumbersome to derive. When only considering

harging at the closest available charging station, the HGSADC can

imulate a situation where only charging is performed. When the

GSADC is run with no repositioning, the computational time is

educed by 61.2% and the stability of the solutions increase due

o a smaller search space. This implies that the HGSADC can be
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Fig. 6. The plots of the average objective value, number of rental cars relocated, number of vehicles used, and number of operators used when the number of available 

operators and service vehicles are varied. The number of available operators increases linearly by a factor of four as the number of service vehicles increases. There are 100 

rental cars in need of charging. 
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ighly valuable even if repositioning is not done in conjunction

ith charging. 

It is assumed in our model and solution method that a given

umber of operators and service vehicles are available at the de-

ot. By varying these numbers, the marginal benefit of added oper-

tors and service vehicles can be found. Figure 6 shows the plot of

he objective value, number of rental cars relocated, number of ve-

icles used, and number of operators used by the HGSADC solution

hen the number of available service vehicles is varied. The num-

er of operators is increased linearly with the number of service

ehicles. We have assumed a service vehicle capacity of four op-

rators, thus keeping a one to four ratio between service vehicles

nd operators. A clear insight from the figure is that the number

f available operators and service vehicles used for charging and

epositioning has a significant effect on the profitability of the sys-

em. In our case, the objective value decreases as the number of

perators and service vehicles increase as the benefit of charging

ore rental cars exceeds the added costs of service vehicles and

perators, and the increased travel costs. By running the algorithm

sing their own cost estimates, CSOs can find the marginal benefits

pplicable for their system. Using historical data, CSOs can use the

lgorithm to determine the strategically optimal number of opera-

ors to hire and service vehicles to invest in. 

A strength of the proposed formulation is the division of the

usiness area into smaller areas surrounding the charging stations.

y varying the size of the areas, the model can indirectly factor in

he flexibility of users, as described by Correia et al. (2014) . Fur-

hermore, if cars that require charging are made unavailable in the

ooking system, the HGSADC can easily be applied to charging and

epositioning throughout the day, without modifications. These op-

rations will then be performed based on information about charg-

ng requirements, traffic, and states available when the algorithm

xecution is started. We expect large scale carsharing systems to

ealize the biggest benefit from employing the algorithm. This is

ecause these systems can have a higher density of cars enabling
 f
igher utilization of service vehicles but added planning complex-

ty. 

. Conclusion 

This paper presents a mathematical formulation and a genetic

lgorithm for the Free-Floating Electric Carsharing Charging and

epositioning Problem (FFECCRP). Many companies already have a

eet of service vehicles and staff to move rental cars to charging

tations. Henceforth, considering repositioning to improve the dis-

ribution of cars in the system while moving cars to charging sta-

ions shows potential to realize the benefits of repositioning with-

ut a large increase in operational costs. Ultimately, this will im-

rove the profits and the economic viability of carsharing systems.

 novel Mixed Integer Programming (MIP) model is developed to

olve the problem. Because the MIP model is computationally cum-

ersome to solve, a Hybrid Genetic Search with Adaptive Diversity

ontrol (HGSADC) is proposed. 

The HGSADC is capable of solving instances with up to 200

ental cars in need of charging yielding seemingly high quality so-

utions in an average computational time of less than 2400 s. The

tability of the algorithm is acceptable for practical purposes with

n average gap to the best known solution of 1.3% and an objective

alue coefficient of variance of 0.9%. When comparing solutions

rom the HGSADC with solutions produced by the algorithm when

epositioning not is considered, the number of postponed rental

ars and the number of deviations decrease by 9.4% and 7.1%, re-

pectively. A reduction in postponed cars implies that more rental

ars are relocated when repositioning is considered. The reduction

n deviations imply that the rental cars relocated are relocated to

ore favorable destinations considering the distribution of rental

ars in the system when repositioning is considered. Hence, we

onclude that combining charging with repositioning is beneficial

or CSO. 
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The HGSADC developed for the FFECCRP demonstrates the per-

formance of HGSADC-algorithms on routing problems with com-

plex synchronization constraints. The FFECCRP consists of two

closely linked routing problems, one for the routing of rental cars

to charging stations and one for routing service vehicles transport-

ing operators to rental cars and from charging stations. As the drop

off time and location of an operator affects the time and location

of his/her pick up, spatial and temporal interdependencies emerge.

The work in this paper outline the merit of genetic algorithms for

solving this complex problem type. In conclusion, solving the FFEC-

CRP with the HGSADC produces high quality solutions within rea-

sonable computational time for realistic problem sizes. 
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