
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 N
at

ur
al

 S
ci

en
ce

s
D

ep
ar

tm
en

t o
f C

he
m

ic
al

 E
ng

in
ee

ri
ng

M
as

te
r’

s
th

es
is

Andreas Johannesen

Initialization Methods for large
Process Models

Master’s thesis in Chemical Engineering
Supervisor: Heinz A Preisig, Arne Tobias Elve

June 2019

Andreas Johannesen

Initialization Methods for large Process
Models

Master’s thesis in Chemical Engineering
Supervisor: Heinz A Preisig, Arne Tobias Elve
June 2019

Norwegian University of Science and Technology
Faculty of Natural Sciences
Department of Chemical Engineering

Summary

Model building is an essential part of any model-driven research. Many
aspects of modeling are time-consuming, one of which being the initializa-
tion when the models become large. This thesis presents the implementa-
tion of an instantiating class for adequately and efficiently formulating and
initializing process models. To develop the models, the class combines two
model components, namely a directed graph, providing the model struc-
ture, and a mathematical framework, providing the possible variables and
equations the model can contain. The directed graph consists of nodes and
arcs, where the nodes represent a capacity containing conserved quantities
such as mass and energy, while the arcs represent the transport of these
quantities between the nodes. The nodes have the ability to be grouped
into a group node by assuming equal properties and thereby also create a
group of arcs connecting the children of the group node. To build the math-
ematical model, a set of states has to be chosen. The states are variables
containing enough information to describe the entire system. By using the
states as a starting point, the class formulates a mathematical model only
dependent on constants and the states, giving an initial value problem with
zero degrees of freedom. The acquired constants and initial values of the
states need to be assigned values. Various initialization schemes can be
executed initializing on either single nodes and arcs or groups, giving the
same value to all entities contained in that group. The model with complete
initialization is exported to a modeling software, providing the necessary
information to simulate the model. The initialization is also saved as a
case in a repository, and the class offers the ability to load the case into a
model which is using the same graph and mathematical framework. The
initial states of the model often have non-trivial values making it difficult
to assign the correct values. In many cases, equations already present in
the mathematical model is used to calculate the states by the use of more
accessible variables. The thesis also looks into the possibility of locating
these equations and check if they can be solved by a proposed variable set.
A model example with the use of the class is presented to show proof of
concept.

i

ii

Sammendrag

Modellbygging er en viktig del av enhver modelldrevet forskning. Mange
aspekter ved modellering er tidkrevende, hvorav en er initialiseringen når
modellene blir store. Denne oppgaven presenterer implementeringen av en
instanserende klasse for tilstrekkelig og effektiv formulering og initialiser-
ing av prosessmodeller. For å formulere modellene, kombinerer klassen to
modellkomponenter, nemlig en rettet graf, som gir modellstrukturen og et
matematisk rammeverk, som gir mulige variabler og ligninger som mod-
ellen kan inneholde. Den rettede grafen består av noder og buer, hvor
nodene representerer en kapasitet som inneholder konserverte mengder som
masse og energi, mens buene representerer transporten av disse mengdene
mellom nodene. Nodene har muligheten til å bli gruppert i en gruppen-
ode ved å anta like egenskaper, og dermed også lage en gruppe buer som
forbinder barnenodene til gruppenoden. For å bygge den matematiske mod-
ellen må et sett tilstander velges. Tilstandene er variabler som inneholder
nok informasjon til å beskrive hele systemet. Ved å bruke tilstandene som
utgangspunkt, formulerer klassen en matematisk modell som bare er avhengig
av konstanter og tilstandene, og gir et initialverdiproblem med null frihets-
grader. Konstanter og initielle verdier av tilstandene må tilordnes verdier.
Forskjellige initialiseringsordninger kan utføres på enten enkeltnoder og
enkeltbuer eller grupper, og gir samme verdi til alle enheter som finnes i den
gruppen. Modellen med fullstendig initialisering blir eksportert til en mod-
elleringsprogramvare, og gir den nødvendige informasjonen for å simulere
modellen. Initialiseringen lagres også som et tilfelle i et lager, og klassen
gir muligheten til å laste saken til en modell som bruker samme graf og
matematiske rammeverk. De opprinnelige tilstandene til modellen har ofte
ikke-trivielle verdier som gjør det vanskelig å tilordne de riktige verdiene. I
mange tilfeller brukes ligninger som allerede er tilstede i den matematiske
modellen til å beregne tilstandene ved bruk av mer tilgjengelige variabler.
Avhandlingen ser også på muligheten for å finne disse ligningene og se om
de kan løses av et foreslått variabelt sett. Et modelleksempel med bruk av
klassen presenteres for å vise bevis av konsept.

iii

iv

Preface

This thesis has been written as a part of the degree of Master Of Science at
Norwegian University of Science and Technology. The work has been car-
ried out at the Department of Chemical Engineering with Professor Heinz
A Preisig as supervisor and Arne Tobias Elve as co-supervisor from Jan-
uary 2019 to June 2019.

I want to express my sincerest gratitude towards Heinz and Tobias for the
guidance and help provided on this thesis. Working with this project has
been an invaluable experience. Thanks to my family for the support and en-
couragement you have given through this journey. Finally, I would like to
thank my friends who have made these years some of the most memorable
years of my life. Thank you.

Declaration of compliance
I hereby declare this thesis as an independent work in agreement with the
exam rules, and regulations of the Norwegian University of Science and
Technology.

Trondheim June 16, 2019

Andreas Johannesen

v

vi

Table of Contents

Summary i

Sammendrag iii

Preface v

Table of Contents viii

List of Tables ix

List of Figures xii

Abbreviations xiii

1 Introduction 1
1.1 Background and motivation 1
1.2 Goals . 3

2 Theoretical fundation 5
2.1 Topology . 5
2.2 Ontology . 8
2.3 Index sets . 9
2.4 The Grand Scheme . 11

2.4.1 Balances . 11
2.4.2 Transport . 12
2.4.3 Kinetics . 13

vii

2.4.4 State variable transformation 13

3 Implementation 15
3.1 Building the class . 19

3.1.1 Structuring the nodes and arcs 19
3.1.2 Adding species and conversions 20
3.1.3 Building the equation set 21
3.1.4 Initial state calculation 26
3.1.5 Adding states and constants 31
3.1.6 Initialization . 31
3.1.7 Assembling the output and loading cases 33

4 Simulation of a heat exchanger 37
4.1 Structural model . 37
4.2 Ontology . 38
4.3 Mathematical model . 40

4.3.1 Balances . 42
4.3.2 Transport . 42
4.3.3 Closure . 43

4.4 Cases . 44
4.4.1 Case 1: All singles 44
4.4.2 Case 2: Large model 47

4.5 Initial state calculation 50

5 Discussion 51
5.1 Results from model example 51
5.2 Separation of nodes and arcs 51
5.3 Equation building . 52
5.4 Initial state calculation 53
5.5 Initialization . 54

6 Conclusion 55

Bibliography 57

Appendix 61

viii

List of Tables

2.1 Incidence matrix for mass transfer in the system. 8
2.2 Incidence matrix for heat transfer in the system. 8

4.1 An overview of all the variables used in the heat exchanger
model. 40

4.1 An overview of all the variables used in the heat exchanger
model. 41

4.2 List of mathematical operators used in the model example. 41

ix

x

List of Figures

1.1 The physical outline of a distillation column with its match-
ing topology. 2

1.2 Topology of a distillation column with the tray section grouped
into one node for the liquid nodes and one for the gas nodes. 4

2.1 Simple topology of a cup of coffee 5
2.2 The most common arcs and nodes used for graph-based

models of chemical systems. 6
2.3 Example of a tree-structured ontology. 9
2.4 Visualization of an arbitrary topology. 10
2.5 The Grand Scheme presented as a block diagram. 12

3.1 Illustration of how the instantiating scheme is working as a
black box model. 16

3.2 An overall algorithm of how the entire instantiating class
works. 18

3.3 Illustration of stacking of arcs. 20
3.4 The graphical user interface where the modeler is instanti-

ating the model and building the equation set. 21
3.5 Equation options for the calculation on the pressure. 22
3.6 Visualization of the equation building scheme. 23
3.7 Visualization of an implicit equation building scheme. . . . 25
3.8 Illustration of a variable tree with mass as the state. 27
3.9 Branch of the variable tree. 28

xi

3.10 Algorithm for assessment of variable set for initial state cal-
culation. 29

3.11 Algorithm for locating equation and assessment of vari-
ables in the equation. 30

3.12 The GUI used to initialize the different entities included in
the model. 34

3.13 The GUI used to initialize the different entities included in
the model . 35

4.1 A physical outline of a simple counter-current heat exchanger. 37
4.2 A topology of a simple counter-current heat exchanger. . . 38
4.3 Ontology for a gas phase counter-current heat exchanger. . 38
4.4 The rules for the behavior and structure in the heat exchanger. 39
4.5 Topology of the structural model for case 1. 44
4.6 Simulation of number of moles in case 1. 45
4.7 Simulation of enthalpy in case 1. 46
4.8 Low level topology of the structural model for case 2. . . . 47
4.9 High level topology of the structural model for case 2. . . . 47
4.10 Simulation of number of moles in case 1. 48
4.11 Simulation of enthalpy in case 1. 49

xii

Abbreviations

GUI = Graphical user interface
PDE = Partial differential equation
ODE = Ordinary differential equation

xiii

xiv

Chapter 1
Introduction

1.1 Background and motivation
Modeling, as a skill, has become an important tool in a process engineers
repertoire. Model-based research, in comparison to experimental-based re-
search, is often less time consuming and less expensive. Models also allow
us to explore areas well beyond the possibilities of experiments, making it
generally more practical than experimental work. Even though modeling
usually is the more effective option, both the process of building the model
and simulating can be quite time-consuming. The modeler has to formu-
late the model, implement it in a programming language, and initialize it.
To make these tasks easier, different software has been developed, such as
MODEL.LA (Stephanopoulos et al., 1990; Bieszczad, 2000) and ASCEND
(Piela et al., 1991). The ProcessModellerSuite (Elve and Preisig, 2019),
which this thesis is a part of, is also such a software. The ProcessMod-
ellerSuite uses a context-dependent ontology that structures a mathemati-
cal framework for which the process models are modeled in (Elve, 2015),
an idea that was first applied in MODKIT (Bogusch et al., 2001; Yang and
Marquardt, 2004) that utilized OntoCAPE (Marquardt et al., 2010) in the
implementation. The modeler interactively generates a graph-based model
providing information on the communication between the principal com-
ponents of the model. An example of such a graph-based model is shown
in (1.1b), and is termed the model topology. The model is of a distillation
column with the physical outline shown in (1.1a). The topology breaks the
physical model down into smaller parts. Breaking down a distillation col-

1

Chapter 1. Introduction

umn, creates three main sections, namely the condenser, the reboiler, and
the tray section. Each of the sections will have a liquid and a gas phase,
needing to be separated in the topology. Each of the sections will have a
source or drain where mass is transported from or to, and the condenser
and reboiler needs an energy drain and source, respectively. The tray sec-
tion can also be divided into smaller sections for each tray. The resulting
topology then becomes as depicted in Figure (1.1b).

Feed

Distillate

Bottom

(a)

CL CV

L4 V4

L5 V5

L6 V6

L3 V3

RL RV

L1 V1

L2 V2

D

F

B

EC

ER

Condenser

Trays

Reboiler

(b)

Figure 1.1: The physical outline of a distillation column with its matching topol-
ogy. A liquid with 2 or more components is transported from the feed (F) into the
column on tray 4. L1-L6 represent the liquid part of each tray in the column while
V1-V6 represent the vapor part. The reboiler is located on the bottom with the
drain for the bottom product to B. The liquid in RL is heated by the energy source
(ER). The difference in volatility will make one of the components in the mix-
ture vaporize at a lower temperature than the rest, resulting in vapor with higher a
fraction of that component transported to the condenser at the top. The condenser
cools the vapor and transports some of the liquid to the distillate outlet, D, while
the rest cycle back down.

2

1.2 Goals

The topology consists of two principal components, namely nodes and arcs,
the circles and arrows, respectively. The nodes represent control volumes
containing conserved quantities, while the arcs represent the transport be-
tween the nodes. The software combines the information from the graphs
and the ontology to generate executable program code for simulation of the
model. Generation of executable code for a modeler to use has also been
the focus of more recent software, such as Mobatec (Westerweele and Lau-
rens, 2008), Modeller (Westerweele, 2003) and MOSAIC (Kuntsche et al.,
2011). To simulate the model, initial conditions and various properties for
each node and arc, based on the ontology, has to be set by the modeler. For
smaller systems, this is not a very large task, but as models get larger and
the complexity increases, this becomes quite a cumbersome task. There-
fore, the main objective of this thesis is to create an automated instantiating
procedure for the mathematical representation of the model to provide an
easier and faster initialization process.

1.2 Goals

The main concept used to improve initialization time is already a funda-
mental part of the ProcessModellerSuite, something that separates it from
the previously mentioned software, and the key component that makes
this modeling approach different from using software based on unit oper-
ations. Unit operations-based software uses a predefined library of blocks
where every block represents an input/output model of a unit operation.
The blocks generated by the ProcessModellerSuite are fundamental enti-
ties, meaning that the model can operate as a contained entity without any
inlets and outlets. As an example, we can have two separate models, one of
a gas-liquid separator and one of a simple counter-current heat exchanger.
Both models can be simulated by themselves, but can also be connected,
creating a new higher-level block to be simulated. This concept of seeing
all underlying nodes and arcs in a system as a group is the same concept
we used to create the instantiating scheme. If the assumption that the cir-
cular nodes have the same properties, then the nodes can be arranged into
groups. When applying this concept to the topology of the distillation col-
umn, two group nodes can be constructed. One for the liquid parts of the
trays and one for gas systems. The resulting higher-level topology is de-
picted in Figure (1.2). By assuming all the trays in the distillation column

3

Chapter 1. Introduction

CL CV

L4 V4

RL RV

D

F

B

EC

ER

Figure 1.2: Topology of a distillation column with the tray section grouped into
one node for the liquid nodes and one for the gas nodes.

have the same properties, the modeler can then to initialize the model on
the level best suited for the simulation. Implementing this concept into the
instantiating of the models is the main objective of this thesis.

The second objective for this thesis was to make initialization of the mod-
els more intuitive. For an initial value problem, the initial states have to be
given by the modeler. Typical states for a chemical system is the number of
moles and some form of energy, such as enthalpy. Giving the initial value
for the states is not, in all cases, an intuitive task. The modeler already
has to calculate them from other variables, such as mass, temperature, and
pressure. Such variables are often monitored in the plants and systems that
the model shall represent and is, therefore, more accessible for the modeler.
The mathematical model of the system already contains equations with the
possibility of calculating the initial states if they are properly restructured
and given a complete set of variables. Checking if the initial states can be
calculated by a variable set provided by the modeler, and creating the math-
ematical framework, if the variable set is complete, will be the second topic
of this thesis.

4

Chapter 2
Theoretical fundation

2.1 Topology

The structural component in the model is called a topology. It is a graphical
network representation depicting the different entities of the model and how
they are connected. It represents the structural part of the model. An exam-
ple of the topology of a cup of coffee is presented in Figure (2.1b). The two

Liquid
coffee (L)

Vapor (V)

 Cup (C)

Surface (S)

Air (A)

(a)

C

V

LS

 A

(b)

Figure 2.1: Simple topology of a cup of coffee. Some of the hot liquid in the cup
will evaporate and be transported to the vapor layer above the liquid before going
further to the surrounding air. The heat will be transported from the liquid and
vapor to the cup, which will transport it to the surrounding air and the surface the
cup sits on.

5

Chapter 2. Theoretical fundation

R

L

D

= Lumped system

= Reservoir

= Distributed system

= Mass

= Energy (Heat)

= Boundary

Figure 2.2: The most common arcs and nodes used for graph-based models of
chemical systems.

main components of a topology are the nodes and the arcs. The nodes repre-
sent individual control volumes containing conserved quantities, while the
arcs represent the transport of these quantities between the nodes. These
quantities, ”living” and ”moving” in these networks, are called tokens, a
term that has been borrowed from petri nets as described in (Petri, 1966).
For chemical models, these tokens are typically mass and energy. There
are several different types of nodes and arcs, with the most important ones
shown in Figure (2.2). The circular nodes are called lumped systems. A
lumped system is characterized by assuming a uniform distribution of the
intensive properties, such as temperature and pressure, meaning the system
is only dependent with regards to time and not any spatial variable. The
oval nodes, named distributed systems, are in contrast to lumped systems
dependent on both time and spatial coordinates. The introduction of de-
pendency on the spatial coordinates also introduces PDE’s into the model,
while a model with only lumped systems only needs ODE’s. PDE’s adds
another level of complexity that makes the simulation of the model signif-
icantly harder and potentially more time-consuming. It is therefore ben-
eficial to avoid using distributed systems unless the spatial dependency is
paramount to the model. A method often used to avoid distributed systems
is to model it as a series of lumped systems. The last important type of node
is the reservoir, depicted with a half circle. A reservoir is a node thought of

6

2.1 Topology

to be so much bigger than the order nodes that any transport between the
reservoir and a lumped or distributed system is having a negligible effect
on the properties in the reservoir. For instance, if a glass with hot water is
set in the middle of a room. There will be a transport of both energy and
mass from the water to the air in the room, but neither the temperature nor
the mass the of the air in the room will change significantly and therefore
is assumed constant. Moreover, the reservoirs also set the standards for the
driving forces in the model. Meaning that if the mass transfer in the model
is only determined by the pressure difference between the nodes, there will
ultimately be no transport of mass if the pressure is set equal in all the reser-
voirs.

As for the arcs, the most important ones, used for chemical models, are
shown in Figure (2.2). The labels given to the arcs are specific to what types
of models that are being developed. In our case, this is going to be chem-
ical models, hence the labels of mass and energy. The whole-drawn black
arrow represents mass transport. In the models used as examples in this
project, this is usually pressure driven mass transport or diffusion driven
by a difference in chemical potential. The red dotted arcs account for en-
ergy transport through heat, with conductivity or convection (Geankopolis,
2003). The direction of the arrows indicates what the positive direction of
the flow is. This does not exclude the possibility of the flow of any token in
the opposite direction.

In the topology, there are several different systems with all the systems
being divided into zones using different background colors on the nodes,
depending on the phase of the system. One section for the gas phase, one
for liquid and one for solid phase. The sections are divided by black lines
as markings for phase boundaries, for which the token must travel across.
In this model, all the system are assumed to be lumped or reservoirs for a
more simple example.

Once the topology is set, the incidence matrices can be constructed. These
matrices mathematically represent the directionality of the flow of tokens
between the nodes in the system. If the node in question is a source node,
it is denoted by a 1 and -1 if it is a sink node. With the tokens for the model
of a cup with water is mass and energy, these incidence matrices can be
constructed.

7

Chapter 2. Theoretical fundation

Table 2.1: Incidence matrix for mass transfer in the system.

L|V V|A
L -1 0
V 1 -1
A 0 1
C 0 0
S 0 0

Table 2.2: Incidence matrix for heat transfer in the system.

L|V V|A L|C V|C C|A C|S
L -1 0 -1 0 0 0
V 1 -1 0 -1 0 0
A 0 1 0 0 1 0
C 0 0 1 1 -1 -1
S 0 0 0 0 0 1

2.2 Ontology
The ProcessModellerSuite is a multi-discipline modelling tool. The knowl-
edge about the different disciplines is stored in an ontology. The ontol-
ogy is structured in a tree-like formulation where each branch inherits the
behavior from its root. An example of such a tree structure is shown in
Figure (2.3). The set of ”rules” that is being defined in the ontology is
called taxonomy. The ontology provides one set of ”rules” defining the
structural-related model components and one set to capture the mathemat-
ical behavior of the individual model components. Most of the terms are
defined in the root node of the tree and inherited throughout the entirety of
the tree. For each level in the tree, the taxonomy can be extended with new
terms that are only inherited to the branches unfolding from that node. Af-
ter the root node, the tokens are introduced, hence the separation between
physical properties and control properties. These sections are referred to as
networks. The taxonomy for each network is then sequentially adding more
information, refining the taxonomy for the networks. For instance, we de-
fine tokens in the physical network, then being defined for all sub-networks
of the physical network. As an example, we can use the model example

8

2.3 Index sets

Root

Physical

LiquidGas Solid

Control

Water Organic

Figure 2.3: Example of a tree-structured ontology.

from the topology section. The tokens defined in the physical network are
mass and energy, but there is more than one aggregated state. Three sub-
networks for each of the aggregated states are therefore created, whom all
inherit the tokens defined. In these nodes, we then add new terms. For
instance, there are different ways to calculate the pressure of a system with
a gas and a system with liquid. The different transport mechanisms for
the tokens are also introduced at this level. The expanding of the network
ultimately creates a multi-network ontology. Further description of the con-
cepts of creating ontologies is described in (Preisig and Elve, 2016). For
this project, the ontology provides the mathematical framework for which
the model has to be modeled in. The possible equations, variable and typed-
tokens come from the ontology, along with the dimensionality of said items.

2.3 Index sets

Index set is a concept used by the software to provide information on the
mathematical dimensionality of the variables. Each variable has assigned
an index set. An index set, such as the Node set, AN , would then corre-
spond to the nodes in the model and a variable has the dimensionality of

9

Chapter 2. Theoretical fundation

a column vector with the same length as the number of nodes in the sys-
tem. If a variable has assigned two index sets, such as Node set and Arc
set, AN ,A, it has the dimensionality of a matrix with column length indexed
by the first index set and row length indexed by the second. Index sets are
not limited to correspond with nodes and arcs. For chemical systems, it is
typical to introduce species. Species are defined in the software as a Typed
token. A typed token is a kind of sub-property of a token. Species is an
example of a sub-property of mass. A typical index set can then be Species
in node, ANS . Since the number, and types, of species in each node, may
vary, the dimensionality of such a variable is not trivial. Two nodes with the
same number of species and the same types may have a different order of
the species in the mathematical description of the node. Therefore, keeping
track of the order is also paramount to get the correct calculations. Further
elaboration on index sets can be found in (Elve and Preisig, 2019).

As an example, we can use an arbitrary topology as visualized in Figure
(2.4). A variable applicable for every node, such as temperature, will have

1

2

3 4

A

B

A, B

Figure 2.4: Visualization of an arbitrary topology. Species A is transported from
1 to 3 and species B is transported from 2 to 3, before both A and B is transported
to 4.

the node index set assigned to itself, TN . Hence, it will be a column vector
of length four, as there are for nodes in the system.

TN =


298
298
298
298


10

2.4 The Grand Scheme

A variable such as the the mass flow incidence matrix, Fm
N ,A, has to index

sets assigned to itself, making it a matrix with the node set giving the di-
mensionality of the columns and the arc set giving the rows. There are four
nodes and three arcs, resulting in a 4x3 matrix.

Fm
N ,A =


−1 0 0
0 −1 0
1 1 −1
0 0 1


2.4 The Grand Scheme
A proper computational framework is a key part of any simulation-driven
research. Making sure that we have a complete equation set with the cor-
rect order and zero degrees of freedom was one of the tasks for this project.
To ensure this, we used the concept of The Grand Scheme as proposed
in (Preisig, 2010). A visual representation of the concept is presented in
Figure (2.5) as a block diagram. The four major blocks that make up the
scheme are balances, transport, kinetics and state variable transformation.
By inserting the initial condition of the states a time equal zero, the time
derivatives of the states are calculated. An integrator predicts the values
of the states for the next time step and the cycle continues for as long as
the modeler wants to. The length of the simulation, as well as the time
step, have to be predetermined by the modeler before starting the cycle. As
small step sizes give a higher computational accuracy but a larger computa-
tional load, the modeler has to do a cost-benefit analysis to determine these
settings.

2.4.1 Balances
The balances block is the last block in the computational cycle. This block
combines the variables from both the kinetics and the transport block to
make the time derivatives. The states can be of both a conserved nature,
such as mass and also of a not conserved nature, such as moles when reac-
tions are a part of the model. By taking both of these cases into account, the
general term for the time derivatives of the states, or accumulation terms,
becomes:

Accumulation = Transport across the boundary + Internal conversion

11

Chapter 2. Theoretical fundation

Figure 2.5: The Grand Scheme presented as a block diagram showing the different
blocks and how they are connected as described in (Preisig, 2016).

These terms are, in turn, inserted into the integrator. The integrator updates
the states before the next cycle starts. Many possible integrator schemes
can be used. It all again comes down to the evaluation between accuracy
and efficiency. The more efficient schemes do the update in one step, like
the explicit Euler scheme (Hanna, 1988), while some schemes use interme-
diate calculations to increase accuracy, such as higher order Runge-Kutta
schemes(Butcher, 1996).

2.4.2 Transport
The transport box holds the equations used to calculate the transport be-
tween the nodes, represented in the system as arcs. The difference in effort
variables, such as pressure, temperature, and chemical potential, drives the
transport between adjacent systems who share boundaries. All the effort
variables are functions of the derivatives of the states (Callen, 1985). Other
factors, such as valves can also manipulate the flows between the systems.
The reservoirs set the boundary conditions. The nodes in the system will

12

2.4 The Grand Scheme

stabilize to a gradient between the reservoir in the system depending on the
difference in the effort variables in said reservoirs.

2.4.3 Kinetics
The kinetics box accounts for the internal conversion in the accumulation
term, usually as a reaction between species in chemical systems. The con-
version in systems with reactions goes in ratios. These ratios are described
by using the stoichiometric coefficients of the species in the reaction. As
for the dynamics, they are described using the change in the extent of reac-
tion based on the empirical relation stating that the species physically have
to meet for the reaction to occur and that there is a sufficient amount of
energy (Atkins and de Paula, 2006).

2.4.4 State variable transformation
The state variable block links the states and the variables in all the other
blocks. The equations in this block are also known as the closure equa-
tions as they close the equation set. These variables, linking the blocks, are
termed secondary states. Often these secondary states are the variables we
would like to observe. Some examples of such variables are concentration,
pressure, and temperature. Creating this block is often the hardest part of
the modeling. The relationships between the primary states and the sec-
ondary states can potentially be quite complex. Equations of state or partial
differential equations of the fundamental energy functions with respect to
the extensive quantities are some examples of such complex relationships
(Haug-Warberg, 2006). Some relationships are also simple empirical rela-
tions, such as volume being the relationship between moles and concentra-
tion and density is the relationship between mass and volume.

13

Chapter 2. Theoretical fundation

14

Chapter 3
Implementation

Before diving into the work done in this thesis, a little clarification on the
difference between the words instantiating and initializing may be in or-
der, as they are quite frequently used and may be thought of having the
same meaning. In this thesis, instantiating and initializing can be thought
of as the qualitative and quantitative parts of the program, respectively. In-
stantiating is the structuring of the information provided by the various in-
formation sources (Decker and Mendling, 2009), while initializing is the
assigning of values for states and variables (Esche et al., 2018).

The main objectives for this thesis were to create an instantiating proce-
dure for the graph based models constructed by the ProcessModellerSuite
(Elve and Preisig, 2019). The scheme was programmed as a python class.
By making it as a class, the program is easily implemented into the Pro-
cessModellerSuite by importing the class. Creating an instantiating object
ensures a proper data structure that the class functions can operate on re-
gardless of changes in the structure in the rest of the software. Moreover, it
creates a possibility of different schemes based on what intermediate steps
the modeler wants to use to reach to the final initialized model. As a block
box model the general scheme would look something like Figure (3.1) From
the ontology, chosen by the modeler, the program receives a set of equa-
tions, a set of variables and the possible typed tokens for this ontology.
These sets give the possibilities that can be used to create the mathemati-
cal model of the system. The states give the ”starting points” from where
we need to build the mathematical model and make sure the loop comes

15

Chapter 3. Implementation

Instantiating
scheme

From the ontology:
- Equation set
- Variable set
- Typed tokens

From the graph editor:
- Model structure
- Set of states

From the user:
- Initial values
- Value of constants
- (Initial states

variable set)

Output:
- Model equations
- Initialized nodes
- Initialized arcs
- Initialized constants
- (State equations)

Figure 3.1: Illustration of how the instantiating scheme is working as a black box
model.

16

back around to, as the equation system need to have zero degrees of free-
dom. The information on the dimensionality of each variable and constant
comes from the model structure, as well as information about the group-
ing of nodes and arcs. The initial values of the states and the values of the
constants, needed for the calculation of the model equations, are given as
inputs by the user when the scheme is executing. Setting these values can
be done in different ways, with the easiest way being to set it for each node
and arc separately. We wanted to be able to utilize the grouping structures
in the model structure to initialize more than one node and arc at the time
and thereby reducing the time needed for initialization. By defining groups
for both arcs and nodes, this was made possible.

The output needed to make the simulation program in the ProcessModeller-
Suite is the model equations in the correct computational order, an overview
over all the nodes and arcs with their respective constants initialized and the
initial conditions for the states. The simulation also needs network infor-
mation, such as incidence matrices, and selection matrices, but they are
handled elsewhere. The ”state equations” are put in parenthesis because
they are optional. They represent an equation set to calculate the initial
states. These equations require a variable set with all the variables need to
compute one or more states by using a subset of equations from the model
equations set. This procedure is not something the modeler has to use but
will have the possibility to use. Combining all these tasks gives the algo-
rithm presented in Figure (3.2). The overall algorithm shows the pathway
of the information and what choices the modeler has along the way. The
following sections will describe each of the boxes function and implemen-
tation in detail.

The shape of the different boxes in the algorithm scheme provides sepa-
rate uses. A circular box indicates information, in the form of variables
or boolean statements. These boxes are either, or both, inputs and return
values that are being sent in to or extracted from the rectangles. The rectan-
gular boxes represent functions. They take inputs and use them to return a
variable or statement to the user. The diamond boxes are logic boxes where
a binary question is asked. Depending on the answer, which is always
yes/no or true/false, the algorithm continues in the direction with the an-
swer to the question. The information travels along with the arrows, which
are uni-directional.

17

Chapter 3. Implementation

Separate nodes and arcs

Model
structure

Add species Build equation
set States

Calculate initial
states

Node and
arc

dictionaries

Equation
and

variable
set

Variable
set

Add variables
and states

Initialization

Assemble output

Calculate initial
states?

Complete set?
Yes

Yes

No
No

UserValues

Figure 3.2: An overall algorithm of how the entire instantiating class works.

18

3.1 Building the class

3.1 Building the class

3.1.1 Structuring the nodes and arcs

The first task of the class is to structure the information coming from the
model structure file from the graph editor and properly store it. This pro-
cess is executed when the instantiating object is created. Dictionaries were
used for storing all the information as well as used for the outputs. Dic-
tionaries have the advantage of being able to store different data types and
can hold multiple layers of data with easy to use searching algorithms for
needed data.

The program creates three separate dictionaries for nodes and three dictio-
naries for arcs. For nodes, the categories are reservoirs, group nodes, and
single nodes. First, the program asses which nodes that are group nodes and
which nodes that are a child node of this group. There are no restrictions
on having multiple layers of group nodes. A recursion function assesses
if there are any group nodes in the list of children for a group node. If
there is, the function calls itself to asses how many layers of nodes there
are. During this assessment, the function adds every group node to the dic-
tionary creating the opportunity to initialize the group nodes at any level.
With the group nodes and their children established, the single nodes and
reservoirs can be handled. The structure of the dictionaries for single nodes
and reservoirs are the same, but we decided to divide the two to ensure that
reservoirs were initialized properly, as they define the boundary conditions
of the simulation. For the same reason, reservoirs are not allowed to be part
of a group. The function separating the nodes will remove any reservoirs
from the set of children in a group node to avoid having multiple reservoirs
with the same boundary conditions, resulting in no transport in the system.
If the modeler wants to test a system with all the same boundary conditions,
these conditions can be set in the initialization phase.

The arcs are divided into single arcs, group arcs inside group nodes, and
group arcs that located between group nodes. The software first establishes
which arcs that lies in one of the two types of arc groups. For an arc to be
part of a group inside a node, both the sink and source node of that arc has
to be children of the group node. Arcs that lie between group nodes are sets
of arcs that have the same group nodes as sources and sinks. In topologies,

19

Chapter 3. Implementation

it is visualized as a single arc stretching between the nodes, as shown in
Figure (3.3b). In reality, are all the arcs from Figure (3.3a) stacked on top
of each other, creating the illusion of one group arc. The remaining arcs,

C1

H9 H1

C9

(a)

Hot
group

Cold
group

(b)

Figure 3.3: An illustration of how two sets of node are being grouped together
into two group nodes, and the ”stacking” effect of the arcs going between the
nodes inside the group nodes.

not stored in any of the group dictionaries, are stored in a separate dictio-
nary. The arcs in the group dictionaries are further divided into tokens. The
variables are the same for all arcs, but the values of these variables may be
quite different. For instance, a typical variable, such as the cross-sectional
area. The cross-sectional area for a pipe transporting mass will usually be
smaller than the heat transferring area of a heat exchanger. This structure
of nodes and arcs is the base that the rest of the program was constructed
around.

3.1.2 Adding species and conversions
With the structures for nodes and arcs established, the species and reactions
could be added. The information about the species and conversions comes
from the ontology as typed-tokens, but the order of the species may dif-
fer from system to system and arc to arc. Keeping track of this order is,
therefore, paramount to ensure correct calculations in the simulation. For
single nodes and arcs, a list with the species was added to their respective
dictionaries. If the systems is a mass-based model with no conversions,
meaning there are no species, the lists would be empty. The same concept

20

3.1 Building the class

was used for the group nodes and arcs, but as lists within a list were the
corresponding list and node, or arc, will have the same index. Also, a list
with all the species in the group node was added to get an overview, and to
have a more accessible variable to iterate over. The reasoning for this will
be discussed further later. The same structure and storage methods were
used for the potential conversion that may occur in the nodes.

3.1.3 Building the equation set

Obtaining the mathematical model of the entire system is the overall ob-
ject of this program. Solving the equations obtained by this program reflect
the behavior of the model that is being constructed(Aris, 1978). To get the
model equations and constants of the system, the grand scheme, from the-
ory section (2.4), was used. The program requires that the modeler picks
the states of the system, which will be the starting point from where the
equation set is built. This can be done in a roll-down menu, located in the
top right corner in the GUI shown in Figure (3.4). The chosen ontology

Figure 3.4: The graphical user interface where the modeler is instantiating the
model and building the equation set.

21

Chapter 3. Implementation

p

p = δU/δV p = nRT/V p = p₀ + ρgh

Figure 3.5: Equation options for the calculation on the pressure. All are valid
options for calculating the pressure in a node, and gives the same units.

has a finite set of states for models that are constructed under its domain.
The menu shows all the possible combinations of states the modeler can
choose from. With the starting points in place, the software uses a back-
ward approach of the grand scheme to get the equations. A function evalu-
ates which equation that is needed to compute the state variable. Knowing
the equation needed for the state, the function executes a recursive function
to ”dive” through the variables and equations, provided by the ontology.
Visualization of such a process is present as a flow diagram in Figure (3.6).
After the equation for the state has been determined, the recursive function
assesses which variables that are needed for the equation. All the variables
have an attached list of possible equations that can be used to calculate
it. If there is more than one option, a choice has to be made. Ideally, this
choice would be taken automatically based on what type of phase that dom-
inates the modeled system. By matching the phase and what networks of
the ontology the different equations lie in, a choice could be made on that
comparison. When the program was written, all equations were put into the
physical layer of the ontology, making it impossible to distinguish between
phases. For now, the equations are listed to the modeler, as shown with
an example using pressure in Figure (3.5), and the modeler has to choose
which equation to use. If the list of equations only contains on possibil-
ity, the function continues using this function. When the list is empty, the
variable is a constant. The variable can then be a frame variable, such as

22

3.1 Building the class

State

Eq.1

Var.2Var. 1

Eq.2 Eq.3

Var.5 Var.6Var.4Var.3

Eq.4

State

Eq.1

Var.2Var. 1

Eq.2 Eq.3

Var.5 Var.6Var.4Var.3

Eq.4

Figure 3.6: A visualization of a simple example of how the equation builder
works. By using the state as the starting point, the program works through vari-
ables and equations until it reaches a constant or have returned to the state.

23

Chapter 3. Implementation

time or a spatial variable, a network variable, such as incidence matrices,
or constants, termed global variables, such as reference temperature. All
of these variables are static, meaning they do not change during the simu-
lation. The constants for frame and network are being handled elsewhere,
and are ignored by the program. The global variables, which are the con-
stants the modeler needs to set before the simulation, are kept track of in a
list. All the variables that the function examines tracked in a list to ensure
that the equation used to calculate this variable only appears once. The re-
cursive function then runs until it hit equations only dependent on constants
and states. For the model not to be static, only dependent on set constants,
one of the variables has to depend on each of the states to be updated every
computational cycle. The ontology takes care of this requirement, so the
program does not need to check the connection. When the function termi-
nates, the results are a list of constants that need to be assigned a value and
a list of equations that needs to be organized incorrect computational order.

Another issue we encountered was the problem of implicit equation sys-
tems. If a variable is needed in an equation that calculates a variable which
in turn is going to calculate the original variable, then we have an implicit
system, as depicted in Figure (3.7). When this set is being solved, equation
4 need both the state and variable 1 to be known before it can calculate vari-
able 3, but variable 1 is not calculated at that point. Variable 1 is calculated
using variable 3 and variable 4. When the program builds the equation set,
this creates a loop going from variable 1 to equation 2 to variable 3 to equa-
tion 4 and back again to variable 1. Our problem is then recognizing the
implicit relation. The solution became to track the variables in each part
of the tree separately. When the program has assessed which variables are
needed to calculate the state, it will check these variables one at the time.
Meaning that it will close the loop back to the state for variable 1 before
doing any checks for variable 2. By tracking which variables that already
have been assessed in that branch of the tree, the function can identify an
implicit relation if it encounters something it already has encountered in
that branch and then gives the same commands as if it had encountered a
constant or state. Variable 1 thereby add an additional initial value problem,
thus needing an initial value to be set for the variable in the same manner
as for the states. When the recursive function then returns to the top of a
branch, the set of tracked variables in branches below itself is wiped clean
ready for the next branch.

24

3.1 Building the class

State

Eq.1

Var.2Var. 1

Eq.2 Eq.3

Var.5 Var.6Var.4Var.3

Eq.4

State

Eq.1

Var.2Var. 1

Eq.2 Eq.3

Var.5 Var.6Var.4Var.3

Eq.4

Figure 3.7: The same equation building scheme as shown in Figure (3.6), but with
an added implicit relation on variable 1.

25

Chapter 3. Implementation

3.1.4 Initial state calculation

Setting initial values for the states, such as the number of moles and en-
thalpy, is not necessarily a trivial task. Process plants are usually not talked
of in terms of states, but rather in terms of secondary states, like mole frac-
tion, temperature, and pressure. Often, the initial values already have to be
calculated using secondary states. Therefore, one of the objectives of this
project was to be able to calculate the initial states of the system by using
a set of variables more accessible to modeler or process engineer. Utiliz-
ing this part of the class is optional and not called upon unless the modeler
wants to.

The set of variables, combined with the constants that are already being
tracked in the building of the equation set, is required to span a complete
subset of the variables used in the model. To evaluate the possible variable
options used to calculate the states, a tree-structured visualization of the
dependency of each used variable and state was created. An outline of such
a structure is presented in Figure (3.8). The root, top layer, consists of the
state. The state then branches out to the variables directly needed to calcu-
late itself. Those variables continue to branch out to the variables needed to
calculate them, and so forth. To create this structure, the program uses the
same kind of recursion scheme as used to build the equation set with a few
modifications. The recursion function runs until the variables needed to cal-
culate a higher level variable is either constants or states. The bottom layer
constants and states are not stored in the tree structure as they are going
to be set anyways. The function also does not stop if it reaches a variable
it has encountered before to visualize all the possibilities for all the states.
Moreover, the modeler does not get the chance to pick a different option
of equations than what has already been selected in the equation building
scheme to keep this scheme within the same mathematical framework.

Once the tree structure is complete, the modeler needs to provide a sug-
gested set of variables to calculate the initial states. If the modeler only
wants to calculate the initial values for some of the states, the remaining
states must be included in the variable set. The states, not being calculated,
can then be used as a variable. By using the suggested variable set, the vari-
able tree for the model, and the states as inputs, the class executes a function
using the algorithm presented in Figure (3.10). Since the only incidence, in

26

3.1 Building the class

mdot

m

V

kappap

Rg

mhat

TMmm

Cp HrefTref H

T0 m cp hrefm

Figure 3.8: Illustration of a variable tree with mass as the state.

27

Chapter 3. Implementation

V

p

Rg TMmm

Figure 3.9: A branch of the variable tree showing the calculation of p by using the
equation for ideal gas, where the state m is a variable.

the equation set, where a state is calculated explicit as a function of other
variables is at the integrator, the program has to find a variable that depends
directly on a state and rearrange the equation to be solved for the state. The
”Locate equation and check variable” function locates a branch of the tree
where the state in question is used as a variable, as shown by the branch in
Figure (3.9), by using the algorithm depicted in Figure (3.11). The func-
tion then assesses each of the variables on both the right and left-hand side
of the equation. If a variable is in the proposed variable set, previously cal-
culated, or a constant, the function returns a true statement, and the state
is added to a list containing all the states that have been calculated. If the
left-hand side variable does not meet any of these requirements, the func-
tion checks if the variable can be calculated implicitly by using the same
scheme used on the states. The right-hand side variables that do not match
any of the requirements are checked using an explicit scheme. The explicit
scheme evaluates if the variables known to the creates a complete subset of
the variables used to calculate the parent variable. If the explicit scheme
returns a true statement, the equations needed to calculate the variables are
added to a set in the correct order. If not, the function returns a false state-
ment. The right-hand variable should ideally also be check for possible
implicit calculations, but trying to achieve this sends the program into an
endless loop, which there has been no time to fix.

When a state has been calculated the main function checks all the states
that are not calculated once more. This because the calculated states have
been added to the variables known to the function. The function assesses
if the addition of the calculated state makes it possible to calculate any of
the other states. If, in the end, the list containing the calculated states con-
tains all the states, the variables set is complete. The program keeps track

28

3.1 Building the class

States Variable
tree

Locate equation
and check
variable

True
or

False
?

Bottom
of tree?

Remaining
tree

structure

Uncalculated
states?

Add calculated
state to variable

set

Update
variable

set

Complete
variable set

and equation
set

Used
variable and
equation set

Add sets to
complete variable
and equation sets

Uncalculated
states?

Delete all
equation and
variable sets

Not complete
variable set

Yes

No Yes

Yes

No

No
True

False

Variable
set

Figure 3.10: A visualization of how the algorithm assesses if a proposed variable
set can calculate the initial states by finding solving root functions where the states
are variables.

29

Chapter 3. Implementation

State Variable
tree

Locate equation

Equation
found?

Equation

Variables

Update variable
set and equation

set

Assess variables

Return
True

Variables
good?

Uncalculated
variables

Mother
variable?

Check explicit
calculation

Check implicit
calculationGood? Good?

Return
False

Yes

No

Yes

Yes

Yes

Yes

No

No

No

No

Variable
set

Figure 3.11: The algorithm for the ”Locate equation and check variable” function.
The function locates a single equation from the variable tree. If the function can
not find an equation, it returns False to the top function. If an equation is found, the
function assesses if the variables in the equation are known or can be calculated
by known variables. If all variables check out, the variable and equation sets are
updated, and the function returns True to the top function. If not the function
returns False.

30

3.1 Building the class

of which variables have been used to make up the complete set. If the re-
cursive function never uses one or more of the variables in the proposed
variable set, and the set is complete, the unused variables are discarded
from the complete set to avoid unnecessary initialization. If the variable set
is not complete, all tracking lists, equation, and variable lists are deleted.

3.1.5 Adding states and constants
The states, constants, and variable set used to calculate the initial states are
added to the nodes dictionaries, arcs dictionaries, or a separate dictionary
depending on the index set they are assigned. If the variable set is empty,
the states are added, but if the set contains variables, they are added instead
of the states. All the constants are stored as keys with a column vector
attached to it. The length of the vector is dependent on the index set. A
constant with index set node will have a vector with length one attached
to it, while a constant with arc & species will have a vector with the same
length as the number of species in that arc it is stored in. We opted to use
this approach with the constant to keep the nodes and arcs in the center of
the initialization scheme. Thus, the functions will iterate through the nodes
and arcs, and not through the variables. Constants that are not assigned to
nodes or arcs, termed global variables, are stored in a separate dictionary.
The constants in this dictionary have index sets related to the typed tokens
in the system, such as species and conversions, or no index sets at all. The
constant without an index is a scalar, such as the gas constant. The re-
maining vector dimensions are set by using the information about the type
tokens provided by the ontology.

3.1.6 Initialization
With all the mathematical parts of the model sorted, values for all the vari-
ables and initial states can be set. The initialization part of the modeling
is where we attempt to give the modeler a chance to save time by utilizing
the preset groups from the graphical model. Meanwhile, we also want to
allow the modeler to use only as much of the group structures as needed,
and not limit the program to use all or nothing. All the variables of all the
separate entities are initialized to one before the modeler is allowed to set
the wanted values to reduce the potential of a system crash when the simu-
lation is running as using the zero as an initial value can cause problems.

31

Chapter 3. Implementation

The main scheme was broken up into two parts, namely initialization of
the entire system and initialization of a single entity. The single initializa-
tion is then again dived into functions for all the different possibilities of
entities in the system. The modeler chooses a single entity, for instance, a
single arc. The program locates to where this arc is stored. This can either
be in the single dictionary or one of the two group dictionaries. When the
location is known the function iterates over each variable stored in the arc
object. If there are more than one species present in the arc, a second iter-
ator sets in and iterates over all the species in the variables with index sets
relevant to species. On every instance, the function asks for an input from
the user, which in turn is set for that variable. If the arc resides inside a
group, the same procedure happens, but the altered values for the single arc
does not affect the other arcs in this group. The single entity can also be a
group. If a group node is chosen, the procedure more or less the same as
for a single node or arc. The difference being that when iterating over the
variables and species, the program initializes all the nodes or arcs, who are
children of this group, with this value. The list containing all the species,
and their order in each child, in the initialized object, ensure that the values
are placed in the right place in the value list. Children who already have
been initialized are not overwritten. A part of the model that lies on a lower
level than the current initialization object cannot be overwritten unless it is
reinitialized at the same level it was initialized before. This concept also
applies to group nodes that are children of a higher level group node. We
assume that when a modeler initializes a part of the model on a lower level,
it is because the modeler wants to keep this single entity different from the
rest of the group, but still being able to group it.

If the modeler wants to use all the groups at their highest levels, the system-
wide initialization scheme can be called. This scheme utilizes many of
the same functions as used in the single object initialization. The func-
tion iterates over all the nodes and arcs in the system at their highest level.
The function can be used as an insurance policy to check if all the parts
of the system have been initialized. The modeler can use the single ob-
ject function at nodes or arcs the needs special attention before executing
the system-wide function. The system-wide version will not overwrite any
changes made using the single object function. Besides, will the system
function also initialize the global variables not subject to any node or arc,

32

3.1 Building the class

as discussed earlier. The initialization function for these variables is written
as a separate function being called at the end of the system function.

These initialization schemes would work regardless of the completion of
a graphical user interface(GUI). The implementation of the concepts ex-
plained over gave GUI-window, as shown in Figure (3.12). The scroll-down
menu on the top provides access to all nodes, arcs, groups, and global vari-
ables. When selecting an object to initialize all the variables and states are
listed, along with the documentation for the variables, as depicted in Figure
(3.13). The only column where the modeler can make changes is the far
right column. This column contains the vectors with values for the vari-
ables. For single entities, the vector is the correct length and denoted with
the position each species holds. For a group entity, the window displays a
vector with the same length as the number of different species that occur in
the group. When the modeler then makes a change, a function updates the
values in the chosen entity based on the same principles described above.
The same concept of initialization levels applies for the GUI.

3.1.7 Assembling the output and loading cases
The instantiating scheme is not the final product of the ProcessModeller-
Suite, and the information about the initialized variables and states need
to be stored in a convenient way for the other parts of the modeling tool
to use. We settle on a format where every node, arc, and global constant
is stored separately and allow another part of the modeling software to as-
semble into the correct vectors for the simulation. Only the single entities
are stored to avoid any double information in the output files. The single
arcs and nodes that are contained inside groups in the instantiating object
are extracted with the vectors referring to the same index in the value lists
as the entity has in the list of children. The nodes, arcs, and global variables
are stored in separate files under a case name unique to the model.

The cases are stored in a case library in the model repository of the Pro-
cessModellerSuite. An instantiating object can load the values stored in the
output files into the different entities in the object. This allows the modeler
to test cases and make small changes without the need to instantiate the
entire model from scratch.

33

Chapter 3. Implementation

Figure 3.12: The GUI used to initialize the different entities included in the model.

34

3.1 Building the class

Figure 3.13: The GUI used to initialize the different entities included in the model

35

Chapter 3. Implementation

36

Chapter 4
Simulation of a heat exchanger

To show proof of concept, a couple of models were constructed. The basis
for all the models was a simple gas-phase counter-current heat exchanger.
A physical layout of the heat exchanger is presented in Figure (4.1). Both
the cold and hot side consist of a single chamber with one inlet and outlet
and energy being transferred from the hot side to the cold through the wall.

Hot side

Cold side

Hot inlet Hot outlet

Cold inletCold outlet

Figure 4.1: A physical outline of a simple counter-current heat exchanger.

4.1 Structural model
By breaking down the physical model of the heat exchanger, a topology, as
shown in Figure (4.2), can be constructed. The heat exchanger is modeled
with reservoirs for inlets and outlets on both the hot and cold stream. The
inside is broken up into N equal lumped systems on the hot side and M

37

Chapter 4. Simulation of a heat exchanger

H_1 H_N

C_M C_1

H_in H_out

C_in...

...

C_out

Figure 4.2: A topology of a simple counter-current heat exchanger.

lumped systems on the cold side. With mass transfer between the nodes in
the chambers on each side. Heat transfer is limited to occurring between
nodes directly across from each other, and any heat loss to the surrounding
environment is considered negligible.

4.2 Ontology
To accommodate all the necessary features of the heat exchanger, an ontol-
ogy, as visualized in Figure (4.3), with the extension of the rules in Figure
(4.4), was created. As there was only one phase for this model and no
need to differentiate between control and physical properties, the ontology
became fairly simple.

gas

root

Figure 4.3: Ontology for a gas phase counter-current heat exchanger.

38

4.2 Ontology

behaviour

arc

graph

node

gas

structure

transport

network

frame

state

constant

sec_states

balances

kinetics

arc

node

token

energy

mass

heat lumped

volumetric lumped

constant

dynamic

event

lumped

lumped

distributed

lumped

distributedenergy

mass species

Figure 4.4: The rules for the behavior and structure in the heat exchanger. The
nodes highlighted with a circle are rules added in the gas network, while the rest
are inherited from the root.

39

Chapter 4. Simulation of a heat exchanger

4.3 Mathematical model
By combining the ontology with the topology, and setting the states to be
number of moles, n, and enthalpy, H, the following mathematical model
was created by the class. The model will be presented in detail, in the same
order as the program builds it, with all variables used listed in Table (4.1)
with explanation, as well as the mathematical operators used listed in Table
(4.2).

Table 4.1: An overview of all the variables used in the heat exchanger model.

Variable Documentation Type
ṅNS Component balance Balances
ḢN Energy balance Balances
AA Cross sectional area flow Constant
MmS Molar mass Constant
R Gas constant Constant
T 298 Temperature reference Constant
T ref

N Temperature reference Constant
UA Heat transfer coefficient Constant
VN Volume constant Constant
cpNS Heat capacity Constant
cpS Heat cap. components Constant
eN unit vector Constant
eNS unit vector species Constant
h0S enthalpy ref Constant
hrefNS enthalpy ref in nodes Constant
1
2

half, 0.5 Constant
κA Mass transfer coefficient Constant
∆t time step Frame
t time Frame
tn integrator end Frame
t0 integrator start Frame
F q

N ,A incidence matrix heat flow Network
Fm

N ,A incidence matrix mass flow Network
F n

NS,A incidence matrix Network
F n

NS,AS incidence matrix Network
PS,AS projection matrix Network
PR,NR projection matrix Network

40

4.3 Mathematical model

Table 4.1: An overview of all the variables used in the heat exchanger model.

Variable Documentation Type
PS,NS projection matrix Network
PNS,AS projection matrix Network
RN

S,R convertion ratio matrix Network
CpN Heat capacity Secondary state
Href

N Enthalpy reference Secondary state
TN Temperature Secondary state
cNS concentration Secondary state
ntot

N amount of moles in node Secondary states
pN pressure Secondary states
HN Enthalpy State
nNS Amount of component State
ĤA Enthalpy flow Transport
V̂A Volumetric flow Transport
ĉAS Concentration in flow Transport
dA direction of flow Transport
n̂AS Component flow Transport
q̂A Heat flow Transport
sN ,A Flow node selection Transport

Table 4.2: Overview of the mathematical operator used in the model with expla-
nation as used in (Elve and Preisig, 2019)

Operator Explanation
xN ,A

A
? yA Reduction product over A

xNS � yNS Kahtri Rao product(Kahtri and Rao, 1968)
xN · yN Expansion product
xN + yN Addition
xN − yN Subtraction
sign(xN) Sign function
abs(xN) Absolute value function
inv(xN) Inverse

41

Chapter 4. Simulation of a heat exchanger

4.3.1 Balances
With n and H as the selected states the time derivatives became as described
in Equation (4.1) and (4.2).

ṅNS = F n
NS,AS

AS
? n̂AS (4.1)

ḢN =
(
Fm

N ,A
A
? ĤA

)
+
(
F q

N ,A
A
? q̂A

)
(4.2)

Since there are no reactions in the system the changes in the system is
only due to transport of components and energy. ṅ is only dependent on
the mass transport, while Ḣ is dependent on both the energy transfer that
occurs between the hot and cold side through conduction, q̂, and the energy
that is transferred with the mass, Ĥ .

4.3.2 Transport
The transport of the species through the system was calculated by using
Equation (4.3)-(4.7)

n̂AS = V̂A� ĉAS (4.3)

ĉAS = (sN ,A�PNS,AS)
NS
? cNS (4.4)

V̂A = ((− (κA)) . (AA)) . (Fm
N ,A

N
? pN) (4.5)

sN ,A = (
1

2
) . ((abs (Fm

N ,A)) + ((Fm
N ,A) . (dA))) (4.6)

dA = sign
(
Fm

N ,A
N
? pN

)
(4.7)

The flow of the species, n̂AS , is calculated by using the volumetric flow,
V̂A, and concentration flow, ĉAS . The volumetric flow is calculated using
pressure as the driving force in a linear valve equation. sN ,A gives the
direction of the flow. The arrows in the topology indicates the positive
flow direction making any flow values with a negative sign flow against the
arrows direction. The energy transport was calculated using Equation (4.8)
and (4.9).

42

4.3 Mathematical model

ĤA = ((inv
(
sN ,A

N
? VN

)
) . (V̂A)) . (sN ,A

N
? HN) (4.8)

q̂A = ((− (UA)) . (AA)) . (F q
N ,A

N
? TN) (4.9)

4.3.3 Closure
To close out the equation set, the following secondary states needed to be
calculated:

pN = (((inv (VN)) . (ntot
N)) . (TN)) . (R) (4.10)

TN =
(
(inv (CpN)) . (HN −Href

N)
)

+ T ref
N (4.11)

T ref
N = (eN) . (T 298) (4.12)

Href
N = hrefNS

S ∈NS
? nNS (4.13)

CpN = cpNS
S ∈NS
? nNS (4.14)

ntot
N = eNS

S ∈NS
? nNS (4.15)

cNS = inv (VN) �nNS (4.16)

cpNS = cpS
S
? PS,NS (4.17)

hrefNS = h0S
S
? PS,NS (4.18)

F n
NS,AS = Fm

N ,A�PNS,AS (4.19)

PNS,AS = PS,NS
S
? PS,AS (4.20)

As can be seen from the closure equation, they all end up depending on
variables that are of the types network, constant, or state, which are all
set by the system or by the user, confirming that there are zero degrees of
freedom.

43

Chapter 4. Simulation of a heat exchanger

4.4 Cases
To illustrate the possible initialization schemes, a couple of different mod-
els with various sizing and groups will be presented in the section.

4.4.1 Case 1: All singles
The simplest version of the model is a model without groups, only single
nodes, and reservoirs, as depicted in Figure (4.5). All the nodes and are

H_1 H_3

C_3 C_1

H_in H_out

C_inC_out

H_2

C_2

Figure 4.5: Topology of the structural model for case 1.

initialized one by one using the single unit initialization scheme. By setting
the nodes one by one, the initial condition is set as a gradient between the
two reservoir making the simulation arriving faster at the solution. A stop
can then be set when the change in value is lower than the preset value.
The results from the simulations can be seen in Figure (4.6) and (4.7). The
simulation was performed using a simulation template, as shown in the Ap-
pendix. The main simulation template collects the initial values, constants,
and network variables from attached files.

44

4.4 Cases

Figure 4.6: Simulation of number of moles in case 1.

45

Chapter 4. Simulation of a heat exchanger

Figure 4.7: Simulation of enthalpy in case 1.

46

4.4 Cases

4.4.2 Case 2: Large model
To showcase the main reason the class was built, a model with a substan-
tial number of nodes on each side was made. The lowest level topology
is shown in Figure (4.8). To reduce the initialization time all the dynamic

1 22

44 23

H_in H_out

C_in...

...

C_out

Figure 4.8: Low level topology of the structural model for case 2.

nodes on both the hot and cold side was grouped into one group node, as-
suming equal properties for all nodes on both sides. This assumption gives
the higher level topology shown in Figure (4.9). Using the group structure

H_in H_out

C_inC_out

Group

Figure 4.9: High level topology of the structural model for case 2.

in the initialization of the model gives the results depicted in Figure (4.10)
and (4.11)

47

Chapter 4. Simulation of a heat exchanger

Figure 4.10: Simulation of number of moles in case 1.

48

4.4 Cases

Figure 4.11: Simulation of enthalpy in case 1.

49

Chapter 4. Simulation of a heat exchanger

4.5 Initial state calculation
The initial state calculation scheme is not implemented into the Process-
ModellerSuite so it can not be called from a GUI, but an example can be
made from the generated model for this thesis. To calculate the initial states,
we chose two secondary states to be used. The temperature in the nodes,
TN , and the pressure in the nodes, pN . Combined with the preset con-
stant, these two variables provide enough information to calculate the ini-
tial states. The first state the program calculates is nNS by finding Equation
(4.21).

ntot
N = eNS

S ∈NS
? nNS (4.21)

eNS is a constant already set in the system, but ntot
N is not known to the

system. ntot
N is therfore checked for implicit calculation options finding

Equation (4.22).

pN = (((inv (VN)) . (ntot
N)) . (TN)) . (R) (4.22)

All the variables in this equation, except for ntot
N , is know to the system,

making it possible to calculate ntot
N by rearranging the equation, and thus be

able to calculate nNS . The equation with the possibility to calculate HN is
Equation (4.23).

TN =
(
(inv (CpN)) . (HN −Href

N)
)

+ T ref
N (4.23)

By use of Equation (4.24)-(4.28) all the variables in the equation where
made known to the system, and thus give the ability to calculate HN .

cpNS = cpS
S
? PS,NS (4.24)

CpN = cpNS
S ∈NS
? nNS (4.25)

hrefNS = h0S
S
? PS,NS (4.26)

Href
N = hrefNS

S ∈NS
? nNS (4.27)

T ref
N = (eN) . (T 298) (4.28)

50

Chapter 5
Discussion

5.1 Results from model example
The model example provided a step-by-step approach to how the class in-
stantiates an actual model by combining knowledge from the ontology and
the topology. The class generated a suitable equation set with the required
equations to constitute a mathematical model with zero degrees of freedom.
The separation of nodes and arcs was done accordingly to the specification
in each case topology and initialized the case using the various initializa-
tion schemes, with the following simulations performing in line with the
expectations for a heat exchanger model. By giving the option of a faster
initialization, the class helps the modeler with the main objective for this
thesis, namely saving time.

5.2 Separation of nodes and arcs
The different nodes and arcs get separated into three categories for node and
three for arcs. The nodes get separated into reservoirs, singles, and groups.
The single and reservoir are stored in an identical structure only in differ-
ent dictionaries. The idea, when doing this split, to build in some extra
safety mechanisms to ensure that the reservoirs were properly initialized.
The system-wide initialization function took care of that for reservoirs, but
also all the other pieces of the model. As of now, the most important func-
tion the separation provides is helping the software distinguish between the

51

Chapter 5. Discussion

different types of nodes when printing out the different options in the roll-
down window. They could be combined into one dictionary to minimize
the number of storage options.

The different categories for arcs are single, groups, and groups that connect
group nodes. The single arcs and ”normal” groups work as they should, but
a decision has to made about the last group. As there is a possibility that
several layers of groups will arcs that connect group nodes, that are children
of higher level group nodes, both connect the higher level nodes, the lower
level nodes, and the higher level with the lower level nodes. An arc can then
exist in several different groups. The easiest way of dealing with this is by
saying all the are belong to the top level nodes. This solves the immediate
problem, but can potentially create a new problem where the modeler does
not want the same properties for all the arcs but want them divided into
the groups they consist of on a lower level. If this is the case, the modeler
would then waste time initializing all the arcs in question individually. For
many systems, this type of group might even not be necessary, and the acti-
vation of the groups could be a choice the modeler has to make. The groups
become instrumental when dealing with models such as the heat exchanger
discussed in this thesis. When a model has two systems, that ideally would
be modeled as distributed systems but are modeled as a series of lumped
systems, connected, the grouping is beneficial to the user. As of now, they
are connected to the top level group node.

5.3 Equation building

By using the selected states as starting points, the program builds a set of
equations with zero degrees of freedom as the state ultimately on will de-
pend on itself, another state, and a number of constants with values set by
the user. To update the state, the equation calculating the state is always an
integrator integrating the time-derivative of the state. Each ontology that
is created has a finite set of variables at its disposal, of which a few are
states. The modeler selects which states that are going to be calculated, and
potentially a state will be dependent on another state. Such as mass and
enthalpy, as shown in the heat exchanger example that is discussed earlier
in this thesis. If the modeler only selects mass as the state, then the mass is
still dependent on the enthalpy. Our solution to this problem is to treat the

52

5.4 Initial state calculation

enthalpy as a constant and assume that the modeler wants to see how the
system develops without any heat transport other than what is transported
with the mass.

If a variable has more than one possible equation to calculate itself, the
modeler has to choose which equation that is going to be used in the model.
Since only one equation can be used, the equation will potentially not be
valid for all the nodes as they can have different phases. A method to uti-
lize the correct equation for the phase is, therefore, something to be worked
on in the future. A potential method is to map the node and arc structures
into intermediate structures for each phase. Each of the intermediates will
use equations best suited to their phase, before being mapped back into one
single structure before the integrator.

5.4 Initial state calculation

To check if the program can build an equation set to calculate the initial
states, the modeler needs to propose a set of variables that possibly will be
able to do so. As of now, the modeler does so without knowing anything
about the structure in the variable tree. A future update to the software
will be to show the structured tree in a GUI. Hence, the modeler will have
the opportunity to locate potential equations and propose a specific set of
variable needed for that equation. For simple mathematical models, with
a low number of states, this can be a trivial task, but with increased model
complexity locating and assessing the variables can be a difficult task. To
help with the decision process, the program could do the locating scheme
and variable checking that it does in this version, but in addition, it could
also present the user with options for variables that can be set to complete
the variable set. The question then is; what limitations should be set for the
variables that can be suggested to the modeler? If the all possible combina-
tions of variables are presented, the sheer number of possibilities could be
confusing to the modeler unless they were properly categorized from ”eas-
iest” to ”hardest” to calculate, though such a general categorization do not
exist. Some restrictions could be, only giving variables directly involved
in the equation where the state is a variable, limiting it to a set number of
levels up and down in the variable tree, or only present variables that are
secondary states. Making such limitation would decrease the number of

53

Chapter 5. Discussion

possibilities significantly, but could also rule out potential options that are
”easy” on a higher or lower level.

5.5 Initialization
When working with large groups of nodes, often one or more nodes have
properties different from the majority of the nodes, as they are added to the
group due to their position in the user interface. A function to assign values
to variables and states for such nodes, without interfering with the rest of
the nodes in the group, was implemented. When such a node is initialized,
the program does not allow the user to change the values of the node unless
the same ”single function” is called with the node as the argument. This
does not cause a problem as long as the modeler is thorough in the initial-
ization process. If the modeler should happen to set the variables a random
node in a group to values that will make the simulation crash, the error
could be difficult to find in a large system of nodes with multiple groups
at potentially many initialization levels. As of now, the system does not
give any warning if an entity has been initialized on a lower level than the
current initialization, but this can be a possible solution. Another solution
might also be to give the user the option to overwrite the lower level ini-
tialization. This keeps the modeler constantly updated on what nodes have
been initialized before, but also corrupt the idea of faster initialization a bit.
In a large system, just giving the modeler a node number or name might
not be enough information for the modeler to know if the node needs to be
overwritten or not. Hence, the modeler needs to spend time investigating.

54

Chapter 6
Conclusion

This thesis has presented the implementation of an instating scheme for
ontology-based model software. The class was implemented in a soft-
ware called the ProcessModellerSuite, to reduce time spent on building the
model and initializing it. The central concept used to reach this objective
was the grouping of nodes and arc in the model topology, assuming uni-
form properties for all entities in a group. The implementation procedure,
along with a model example as proof of concept, was presented. The model
example combined the ontology and topology of a counter-current heat ex-
changer to instantiate a mathematical model with zero degrees of freedom.
The different initialization schemes were tested by initializing the model
on different levels, both for single entities and groups. A scheme to assess
if the initial states could be calculated from a set of secondary states was
added to the class, but not implemented in the model software. An exam-
ple of the scheme’s procedure was provided in the model example. The
complete initialization was stored in the model software, with the ability to
being loaded into a model utilizing the same structure and ontology, to al-
low reusing a previous initialization. The initialized variables and constants
were used to simulate the model, showing a working implementation of the
class in the ProcessModellerSuite.

55

Chapter 6. Conclusion

56

Bibliography

Aris, R., 1978. Mathematical modelling techniques. Pitman, London.

Atkins, P., de Paula, J., 2006. Physical chemistry. Oxford.

Bieszczad, J., 2000. A framework for the language and logic of computer-
aided phenomena-based process modeling. PhD thesis.

Bogusch, R., Lohmann, B., Marquardt, W., 2001. Computer-aided process
modeling with modkit. Computers and Chemical Engineering (25),
963–995.
URL https://www.sciencedirect.com/science/
article/pii/S0098135401006263

Butcher, J. C., 1996. A history of runge-kutta methods. Applied Numerical
Mathematics (20), 247–260.
URL https://www.sciencedirect.com/science/
article/pii/0168927495001085

Callen, H. B., 1985. Thermodynamics and an Introduction to Thermostatis-
tics. John Wiley & Sons.

Decker, G., Mendling, J., 2009. Process instantiation. Data & Knowledge
Engineering (68), 777–792.
URL https://www.sciencedirect.com/science/
article/pii/S0169023X09000329

Elve, A. T., 2015. Ontology Design for Representation of mathematical
Models. Master thesis, NTNU.

57

https://www.sciencedirect.com/science/article/pii/S0098135401006263
https://www.sciencedirect.com/science/article/pii/S0098135401006263
https://www.sciencedirect.com/science/article/pii/0168927495001085
https://www.sciencedirect.com/science/article/pii/0168927495001085
https://www.sciencedirect.com/science/article/pii/S0169023X09000329
https://www.sciencedirect.com/science/article/pii/S0169023X09000329

Elve, A. T., Preisig, H. A., 2019. From ontology to executable program
code. Computers & Chemical Engineering (122), 383–394.
URL https://www.sciencedirect.com/science/
article/pii/S0098135418309311

Esche, E., Bublitz, S., Tolksdorf, G., Repke, J.-U., 2018. Automatic
decomposition of nonlinear equation systems for improved initialization
and solution of chemical engineering process models. Computer Aided
Chemical Engineering 44, 1387 – 1392.
URL http://www.sciencedirect.com/science/
article/pii/B9780444642417502263

Geankopolis, C. J., 2003. Transport Processes and Separation Process Prin-
ciples. Pearson Education.

Hanna, O. T., 1988. New explicit and implicit ”improved euler” methods
for the integration of ordinary differential equations. Computers &
Chemical Engineering (12), 1083–1086.
URL https://www.sciencedirect.com/science/
article/pii/0098135488870303

Haug-Warberg, T., 2006. Den termodynamiske arbeidsboken. Kolofon For-
lag AS.

Kahtri, C. G., Rao, C. R., 1968. Solutions to some functional equa-
tions and their application to characterization of probability distributions.
Sankhya (30), 167–180.
URL https://www.jstor.org/stable/25049527?seq=6#
metadata_info_tab_contents

Kuntsche, S., Barz, T. amd Kraus, R., Arellano-Garcia, H., Wozny, G.,
2011. Mosaic a web-based modeling environment for code generation.
Computers & Chemical Engineering (35), 2257–2273.
URL https://www.sciencedirect.com/science/
article/pii/S0098135411001128

Marquardt, W., Morbach, J., Wiesner, A., Yang, A., 2010. OntoCAPE:
A Re-Usable Ontology for Chemical Process Engineering. Springer-
Verlag, Berlin Heidelberg.

58

https://www.sciencedirect.com/science/article/pii/S0098135418309311
https://www.sciencedirect.com/science/article/pii/S0098135418309311
http://www.sciencedirect.com/science/article/pii/B9780444642417502263
http://www.sciencedirect.com/science/article/pii/B9780444642417502263
https://www.sciencedirect.com/science/article/pii/0098135488870303
https://www.sciencedirect.com/science/article/pii/0098135488870303
https://www.jstor.org/stable/25049527?seq=6#metadata_info_tab_contents
https://www.jstor.org/stable/25049527?seq=6#metadata_info_tab_contents
https://www.sciencedirect.com/science/article/pii/S0098135411001128
https://www.sciencedirect.com/science/article/pii/S0098135411001128

Petri, C. A., 1966. Communication with Automata. Technical Report
RADC-TR-65-377. NewYork: Griffiss Air Force Base.

Piela, P., Epperly, T., Westerberg, K., A., W., 1991. Ascend: an object-
oriented computer environment for modeling and analysis: The
modeling language. Computers & Chemical Engineering (15), 53–72.
URL https://www.sciencedirect.com/science/
article/pii/009813549187006U

Preisig, H. A., 2010. Constructing and maintaining proper process models.
Computers & Chemical Engineering (34), 1543–1555.
URL https://www.sciencedirect.com/science/
article/pii/S0098135410000669

Preisig, H. A., 2016. The ABC of modelling, Lecture notes TKP4106 &
TKP 4135. NTNU.

Preisig, H. A., Elve, A. T., 2016. Ontology construction for multi-network
models. Computer Aided Chemical Engineering (38), 1087–1092.
URL https://www.sciencedirect.com/science/
article/pii/B9780444634283501867

Stephanopoulos, G., Henning, G., Leone, H., 1990. Model.la a modeling
language fro process engineering–i. the formal framework. Computers
& Chemical Engineering (14), 813–846.
URL https://www.sciencedirect.com/science/
article/pii/009813549087040V

Westerweele, M. R., 2003. Five Steps for Building Consistent Dynamic
Process Models and Their Implementation in the Computer Tool Mod-
eller. Technische Universiteit Eindhoven.
URL http://books.google.no/books?id=T3T8NwAACAAJ

Westerweele, M. R., Laurens, J., 2008. Mobatec modeller - a flexible and
transparent tool for building dynamic process models. Computers Aided
Chemical Engineering (25), 1045–1050.
URL https://www.sciencedirect.com/science/
article/pii/S1570794608801800

59

https://www.sciencedirect.com/science/article/pii/009813549187006U
https://www.sciencedirect.com/science/article/pii/009813549187006U
https://www.sciencedirect.com/science/article/pii/S0098135410000669
https://www.sciencedirect.com/science/article/pii/S0098135410000669
https://www.sciencedirect.com/science/article/pii/B9780444634283501867
https://www.sciencedirect.com/science/article/pii/B9780444634283501867
https://www.sciencedirect.com/science/article/pii/009813549087040V
https://www.sciencedirect.com/science/article/pii/009813549087040V
http://books.google.no/books?id=T3T8NwAACAAJ
https://www.sciencedirect.com/science/article/pii/S1570794608801800
https://www.sciencedirect.com/science/article/pii/S1570794608801800

Yang, A., Marquardt, W., 2004. An ontology-based approach to conceptual
process modelling. Computer aided Chemical Engineering (18), 1159–
1164.
URL https://www.sciencedirect.com/science/
article/pii/S1570794604802591

60

https://www.sciencedirect.com/science/article/pii/S1570794604802591
https://www.sciencedirect.com/science/article/pii/S1570794604802591

Appendix

Main template

Automatically generated, do not edit!

"""
What: Python simulation
Author: ingolf
Contact: arne.t.elve(at)ntnu.no
Date: 2019-06-14 11:12:51
Model: cc_HEX_single_nodes
Case: done
"""

Import packages:
import numpy as np # Numerical python library
from scipy.integrate import ode # Integrator in scipy
import matplotlib.pyplot as plt # Data illustration
from funcUtils import IndexSet, khatriRao, blockReduce,

blockProduct # Custom

from constants import * # Import all constants
from networks import * # Import all network variables
from selections import *
from selections_ import * # Import equation selections
from initial_states_ import *
======== BODY =========#

INDEX SETS:
N = IndexSet(’node’, mapping = [1, 2, 3, 4, 5, 6, 7, 8, 9,

10],
blocking = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1])

A = IndexSet(’arc’, mapping = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9
, 10],

blocking = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])

61

S = IndexSet(’species’, mapping = [0, 1, 2], blocking = [1,
1, 1])

N_x_S = IndexSet(’node & species’, mapping = [1, 2, 3, 4, 5
, 6, 7, 8, 9, 10],

blocking = [1, 1, 1, 1, 1, 2, 2, 2, 2, 2])
A_x_S = IndexSet(’arc & species’, mapping = [0, 1, 2, 3, 4,

5, 6, 7, 8, 9, 10],
blocking = [1, 1, 1, 1, 2, 2, 2, 2, 0, 0, 0])

R = IndexSet(’species_conversion’, mapping = [0], blocking
= [1])

N_x_R = IndexSet(’node & species_conversion’, mapping = [1,
2, 3, 4, 5, 6, 7, 8, 9, 10],

blocking = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

Constant equations:
T_ref = np.multiply(en, T_298)
h_ref = np.transpose(np.dot(np.transpose(h_0),

P_node_species))
cp = np.transpose(np.dot(np.transpose(cpn), P_node_species)

)
Pnsas = np.dot(np.transpose(P_node_species), P_arc_species)
Fn = khatriRao(F_mass_volumetric, [N, A], Pnsas, [N_x_S,

A_x_S])

INTEGRATING FUNCTION:
def derivative(t, n, H):

"""
t: time
state: n, H
Integrating function:
dxdt = derivative(t, state)

Note: sequence of variables depends on integrator. Using
scipy’s ode requires

time before state, while odeint needs state before time.
Also the integrator

want flat vectors, no column vectors. I, therefore,
transpose the vectors

manually. Normal transpose is not sufficient.
"""
EQUATIONS:
H_ref = blockReduce(h_ref, S, N_x_S, n)
Cp = blockReduce(cp, S, N_x_S, n)

62

T = np.add((np.multiply((np.reciprocal(Cp)), (np.subtract
(H, H_ref)))), T_ref)

qhat = np.multiply((np.multiply((-(U)), A_heat)), (np.dot
(np.transpose(F_energy_heat
), T)))

ntot = blockReduce(ens, S, N_x_S, n)
p = np.multiply((np.multiply((np.multiply((np.reciprocal(

Vg)), ntot)), T)), Rg)
dir = np.sign(np.dot(np.transpose(F_mass_volumetric), p))
s_flow = np.multiply(half, (np.add((np.abs(

F_mass_volumetric)), (np.
multiply(F_mass_volumetric,
np.transpose(dir))))))

Vhat = np.multiply((np.multiply((-(kappa)), A_cross)), (
np.dot(np.transpose(
F_mass_volumetric), p)))

Hhat = np.multiply(Vhat, (np.dot(np.transpose(s_flow), (
np.multiply((np.reciprocal(
Vg)), H)))))

Hdot = np.add((np.dot(F_mass_volumetric, Hhat)), (np.dot(
F_energy_heat, qhat)))

c = khatriRao(np.reciprocal(Vg), [N], n, [N_x_S])
chat = np.dot(np.transpose((khatriRao(s_flow, [N, A],

Pnsas, [N_x_S, A_x_S]))), c
)

nhat = khatriRao(Vhat, [A], chat, [A_x_S])
ndot = np.dot(Fn, nhat)
return np.multiply(Selection_ndot, ndot), np.multiply(

Selection_Hdot, Hdot)

def integrand(t, state):
HACK: Integrator give flat state vectors while our

model is column vector
n = state[0:15, np.newaxis]
H = state[15:25, np.newaxis]
ndot, Hdot = derivative(t, n, H)
return np.concatenate([np.transpose(ndot)[0], np.

transpose(Hdot)[0]])

INTEGRATOR
data = {}
data[’n’] = []
data[’H’] = []
data[’t’] = []
dt = 0.1

63

t_start = 0
t_end = 10.

Handcoded!!!
integrator = ode(integrand).set_integrator(’dop853’)
state = np.concatenate([np.transpose(n)[0], np.transpose(H)

[0]])
integrator.set_initial_value(state, t_start)
while integrator.successful() and integrator.t < t_end :

state = integrator.integrate(integrator.t + dt)
data[’t’].append(integrator.t)
data[’n’].append(state[0:15, np.newaxis])
data[’H’].append(state[15:25, np.newaxis])

data[’n’] = np.transpose(data[’n’])[0]
for i, (dat) in enumerate(data[’n’]):

plt.plot(data[’t’], dat)
plt.legend()
plt.show()

data[’H’] = np.transpose(data[’H’])[0]
for i, (dat) in enumerate(data[’H’]):

plt.plot(data[’t’], dat)
plt.legend()
plt.show()

Information files

Automatically generated, do not edit!

"""
What: Python initialization file
Author: ingolf
Contact: arne.t.elve(at)ntnu.no
Date: 2019-06-13 16:43:32
Model: cc_HEX_single_nodes
Case: done
"""

Import packages:
import numpy as np # Num

erical python library

Imutable variables:S

64

en = np.array([[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1
.0], [1.0], [1.0], [1.0]])

ens = np.array([[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [
1.0], [1.0], [1.0], [1.0], [1
.0], [1.0], [1.0], [1.0], [1.
0]])

h_0 = np.array([[1.0], [1.0], [1.0]])
n = np.array([[15500.0], [13500.0], [12000.], [11000.], [

10000.0], [7500.0], [7500.0],
[6000.0], [6000.0], [3000.0]
, [3000.0], [2000.0], [2000.0
], [1000.0], [1000.0]])

H = np.array([[150000000.0], [50000000.0], [50000000.0], [
50000000.0], [50000000.0], [1
.0], [1.0], [1.0], [1.0], [1.
0]])

U = np.array([[0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.
0], [0.0], [10000.0], [10000.
0], [10000.0]])

cpn = np.array([[75.0], [75.0], [75.0]])
half = np.array(0.5)
kappa = np.array([[0.000001], [0.000001], [0.000001], [0.

000001], [0.000001], [0.
000001], [0.000001], [0.
000001], [0.000001], [0.
000001], [0.000001]])

Vg = np.array([[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1
.0], [1.0], [1.0], [1.0]])

T_298 = np.array(298.0)
A_cross = np.array([[0.1], [0.1], [0.1], [0.1], [0.1], [0.1

], [0.1], [0.1], [10.], [10.]
, [10.]])

Rg = np.array(8.314)

Automatically generated, do not edit!

"""
What: Python initialization file
Author: ingolf
Contact: arne.t.elve(at)ntnu.no
Date: 2019-06-13 16:43:32
Model: cc_HEX_single_nodes
Case: done
"""

65

Import packages:
import numpy as np #

Numerical python library

Imutable variables:
F_energy_heat = np.array(
[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., -1., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., -1., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -1.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]])

F_mass_volumetric = np.array(
[[-1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[1., -1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 1., -1., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 1., -1., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., -1., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 1., -1., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 1., -1., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 1., -1., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0.]])

F_species_volumetric = np.array(
[[-1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[1., -1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 1., -1., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 1., -1., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., -1., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 1., -1., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 1., -1., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 1., -1., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0.]])

P_arc_species = np.array(
[[1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0

., 0., 0., 0.],
[0., 0., 0., 0., 1., 0., 1., 0., 1., 0., 1., 0

., 0., 0., 0.],
[0., 0., 0., 0., 0., 1., 0., 1., 0., 1., 0., 1

., 0., 0., 0.]])

66

P_conversion_species = np.array(
[])
P_node_species = np.array(
[[1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0

., 0., 0., 0.],
[0., 0., 0., 0., 0., 1., 0., 1., 0., 1., 0., 1

., 0., 1., 0.],
[0., 0., 0., 0., 0., 0., 1., 0., 1., 0., 1., 0

., 1., 0., 1.]])

67

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 N
at

ur
al

 S
ci

en
ce

s
D

ep
ar

tm
en

t o
f C

he
m

ic
al

 E
ng

in
ee

ri
ng

M
as

te
r’

s
th

es
is

Andreas Johannesen

Initialization Methods for large
Process Models

Master’s thesis in Chemical Engineering
Supervisor: Heinz A Preisig, Arne Tobias Elve

June 2019

	Summary
	Sammendrag
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Background and motivation
	Goals

	Theoretical fundation
	Topology
	Ontology
	Index sets
	The Grand Scheme
	Balances
	Transport
	Kinetics
	State variable transformation

	Implementation
	Building the class
	Structuring the nodes and arcs
	Adding species and conversions
	Building the equation set
	Initial state calculation
	Adding states and constants
	Initialization
	Assembling the output and loading cases

	Simulation of a heat exchanger
	Structural model
	Ontology
	Mathematical model
	Balances
	Transport
	Closure

	Cases
	Case 1: All singles
	Case 2: Large model

	Initial state calculation

	Discussion
	Results from model example
	Separation of nodes and arcs
	Equation building
	Initial state calculation
	Initialization

	Conclusion
	Bibliography
	Appendix

