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Universidad de la Salle

Email: maxbueno@unisalle.edu.co

Marta Molinas
Norwegian University of Science and Technology

Email: marta.molinas@ntnu.no

Abstract—This paper shows a method to locate actives sources
from pre-processed electroencephalographic signals. These sig-
nals are processed using multivariate empirical mode decomposi-
tion (MEMD). The intrinsic mode functions are analyzed through
the Hilbert-Huang spectral entropy. A cost function is proposed
to automatically select the intrinsic mode functions associated
with the lowest spectral entropy values and they are used to
reconstruct the neural activity generated by the active sources.
Multiple sparse priors are used to locate the active sources
with and without multivariate empirical mode decomposition
and the performance is estimated using the Wasserstein metric.
The results were obtained for conditions with high noise (Signal-
to-Noise-Ratio of -5dB), where the estimated location, for five
sources, was better for multiple sparse prior with Multivariate
Empirical Mode Decomposition, and with low noise (Signal-to-
Noise-Ratio of 20dB), where the estimated location, for three
sources, was better for multiple sparse prior without MEMD.

I. INTRODUCTION

Electroencephalographic (EEG) Source Localization (ESL)
has been widely used in different medical fields (neuroscience
studies or clinical applications) for its high temporal resolution
that allows to measure the changes of neural activity in time
intervals of the order of milliseconds. The main drawback of
ESL is to solve the neuromagnetic inverse problem which is
ill-posed and it does not have an unique solution. Therefore,
to obtain an approximated locations of neural current sources
from EEG, it is necessary to solve the inverse problem using
some a priori information or applying some constraints over the
source space [1], [2]. Nowadays, spatio-temporal constraints
have been used in different works, in [1] was included, to
improve the spatial resolution, a basis set for smoothing the
source space (localized areas that could be potentially active

brain regions) and based on a Markovian assumption applied
at each sample time to estimate the brain activity, the time
resolution was improved. Another spatio-temporal constraints
were incorporated as a small and locally patches to reconstruct
sparse brain activity; to smooth the solution over the time,
temporal constraint was imposed for penalizing the difference
between consecutive time points [2].
Currently, some research have focused their studies to analyze
the neural activity in frequency bands, in this way, they have
found it e.g. some theta-band activities of low-amplitude
desynchronised were associated to visual areas when they
were compared among motion stimuli and static stimuli [3].
Besides, in [4], the authors focused the research in alpha-band
oscillations because they are the main frequency components,
associated to neural activity, present in EEG signals. Recently,
some works have proposed a method whose structure is
based on data-driven analysis. An example for this kind of
analysis is the empirical mode decomposition (EMD) and some
applications in brain activity reconstruction are shown in [5],
[6]. One of the results shown in [6] was the way how the neural
activity was split in frequency bands which can be seen in the
intrinsic mode functions (IMFs). Similar results can be seen in
[5], but these results were analyzing according to the retained
energy and the amount of entropy in each IMFs. Despite of
the relevant results, some issues associated to EMD method
were regarded in the full reconstruction, namely, mode mixing
and mode splitting.
Solutions for reducing the mode mixing have been highlighted
in [7] e.g. Noise aided EMD computation (EEMD) and
multivariate empirical mode decomposition (MEMD). In this



paper is presented a method, based on data-driven analysis
using MEMD, to improve the localization of the actives sources
in the brain and for reducing the mode mixing problem. To
separate the frequency bands is used MEMD method and
the relevant IMFs are chosen from marginal Hilbert-Huang
spectrum (MHHS) and entropy analysis. A cost function based
on entropy is proposed to dismiss the IMFs with Hilbert-Huang
Spectral Entropy (HHSE) greater than the estimated HHSE
threshold, and those IMFs with lower HHSE are chosen to
located the actives sources. The proposed method is evaluated
by comparing ESL using multiple sparse prior (MSP) with
and without MEMD, and the performance is measured with
Wasserstein metric on simulated brain activity.

II. MATERIAL AND METHODS

A. Multivariate Empirical Mode Decomposition (MEMD)

Signals represented in multivariate form should have a co-
herent treatment to obtain a suitable time-frequency estimation,
because these signals contain generalized oscillations (joint
rotational modes). Therefore, it is important to remark that
when the single EMD is applied (channel by channel) to
multichannel signals, this approach is obstructed by [7]:

• Nonuniformity. Each channel would not be decomposed
with the same number of IMFs using standard EMD.

• Scale alignment. It is possible that the scales across data
channels do not have the same-index.

• Nature of IMFs. It is not convenient to enforce the
same number of IMFs for each channel, because the t-f
estimation could be affected, as such IMFs are typically
not monocomponent.

Common mode alignment and nonuniqueness have been the
greatest obstacles for application of the EMD in studies where
is necessary same-index IMFs within of the same scale for the
corresponding information (synchrony, causality, data/image
fusion), being a problem in applications data/image fusion
[7]. For multivariate signals, the local maxima and minima

can not be calculated directly and, the notion of ”oscillatory
modes” to define an IMF is confuse in this case [8]. This
method proposes to take a signal projections along of multiple
directions that have been distributed in a uniform way within
of a n-dimensional space to obtain multiple envelopes which
are averaged and then, interpolated (using cubic spline) their
extrema to estimate the local n-dimensional mean. Especial
attention is required to choose a suitable set of directions from
the signal projections taken in the n-dimensional space [7].

The following algorithm summarizes how the MEMD works
[7]:

1) Using the Hammersley sequence, as a uniformly sampling
a n-dimensional sphere, generate a P-point.

2) Projections qθp(tk) of the signal y(tk) must be calculated
in the same direction vector xθp , for p = 1, ..., P and
then to obtain a set of projections {qθp(tk)}Pp=1.

3) Find the time instants {tiθp}
P
p=1 that correspond to the

maxima of the set of projections of signals {qθp(tk)}Pp=1.
4) Interpolate [tiθp ,s(tiθp)] to obtain the envelope curves
{eθp(tk)}Pp=1.

5) Calculate the mean of the P multidimensional envelopes

m(tk) =
1

P

P∑
p=1

eθp(tk) (1)

6) Extract the “detail” d(tk) = s(tk) − m(tk). If d(tk)
fulfills the stoppage criterion for a multivariate IMF,
apply the above procedure to s(tk)− d(tk), else repeat
for d(tk).

B. Hilbert-Huang Spectral Entropy

Spectral entropy can be defined as a measure of the amount
of disorder and this definition is based on the spectrum of
a signal. The Hilbert-Huang Epectral Entropy (HHSE), for
non-stationary signals, is calculated from Hilbert spectrum
following these steps [9]:

1) The signal x(t) is decomposed into a series of IMFs
(IMFj).

2) The hilbert transform is applied to IMFj (1 ≤ j ≤ n)
to obtain YIMFj

3) The analytical signal is calculated for each IMFj :

ZIMFj (t) = IMF j(t) + iYIMFj (t) = aj(t)e
iθj(t)

(2)
where

aj(t) = [IMF 2
j (t) + Y

2
IMFj (t)]

1
2 (3)

and

θj(t) = arctan(
YIMFj

IMF j(t)
) (4)



4) The instantaneous frequency is calculated for IMFj

(1 ≤ j ≤ n):

ωj(t) =
dθj(t)

dt
, (5)

The time series is expressed as:

x(t) =

n∑
j=1

aj(t)exp(i

∫
ωjdt) (6)

The equation 6 represents, as function on time, the amplitude
and the instantaneous frequency, therefore, this equation
corresponds to the Hilbert Transform H(ω, t). The Hilbert
spectrum is the energy-time-frequency distribution over the
signal x(t) y HHSE es calculated using the frequency marginal

by integrating the Hilbert spectrum over the time-axis.

C. Neuromagnetic Inverse Problem

The neural activity can be generated through the following
model of EEG generation:

y(tk) =Mx(tk) + ε(tk) (7)

being the EEG at sample time tk termed y(tk) ∈ Rd×1,
the lead field matrix M ∈ Rd×n and the neural activity
x(tk) ∈ Rn×1. The forward problem indicated in (7), allows
to define that the estimation of the neural activity can be
obtained by solving the inverse problem based on the EEG
measurements y(tk) and the knowledge of the lead field
matrix M . Besides, to get an unique solution, it is necessary
to consider some spatio-temporal dynamics of EEG signals,
which can improve the approximated location of the active
sources [1]. The MSP method was proposed by [10] and this
method apply a hierarchical or empirical Bayes model as spatio-
temporal constraints to reconstruct the inverse problem in a
distributed way, and multiple cortical sources with a spatial
support, specified in terms of empirical priors, are automatically
selected.

III. EXPERIMENTAL SETUP

Studies in neuroscience have set five frequency bands,
namely: delta-band (0-4 Hz), theta-band (4-8 Hz), Alpha-band
(8-14 Hz), beta-band (14-30 Hz) and gamma-band (30-150Hz)
[3]. The aim was to simulate brain activity for three sources
and five sources, these sources were randomly located in three
(delta, alpha and beta bands) and five (delta, theta, alpha, beta
and gamma bands) different frequency bands, they were also

located randomly in different areas in the brain. The activity
in each source was simulated using the following expression:

xi(tk) = e
− 1

2

(
tk−ci
σ

)2

sin (2πfitk) , (8)

ci being the center of the windowed signal in seconds
(1, 3 and 5 seconds for three sources and 1, 2, 3, 4 and 5

seconds for five sources), the frequency of the signal (fi)
was chose randomly within of the ranges according with the
frequency bands mentioned above and σ = 0.2. In this work
were simulated 30 trials for Signal-to-Noise-Ratio (SNR) of
20dB, 10dB, 0dB and −5dB using the model of generation (7).

After applying the HHSE to each trial and each noise level,
It was possible to find that the lowest spectral entropy values
were associated to the IMFs where the simulated activity was
observed in the frequency bands. For this reason, the subset of
of IMFs whose entropy was under a threshold τe were chosen
to locate the active sources.

The proposed entropy function is the following:

ej = −
∑
k

‖IMF j(t)‖22 log(‖IMF j(t)‖22) (9)

It is applied over each IMF IMF j(t) where ej is the entropy
of each IMF, and e = [e1 . . . eN ]. The estimated EEG signal
ỹ(t) from IMFs with highest entropy (chosen automatically)
is rebuilt according to the measured entropy ei.

ỹ(t) =
∑
i∈O

IMF j(t) (10)

Access to a standard EEG database is important because it
is necessary to know the underlying source activity to evaluate
the methods for solving the inverse problem. We used a model
with n = 8, 196 sources and 32 electrodes for simulation, as
described by ( [1]).

IV. RESULTS

After analyzing all the trials with four noise levels, it
could be found that the most suitable threshold to choose
the relevant IMFs for locating the active sources, was the
IMFs with lowest spectral entropy and the chosen IMFs
were those whose sum did not exceed 40 percent of the
normalized HHSE for all IMFs. Two simulations were carried
out under controlled conditions to show the results of this
work, especially with respect to the location of the active



sources, which were located for a clear visualization.

The first one was simulated for three active sources with
f1 = 2Hz, f2 = 9Hz and f3 = 22Hz, the SNR was of 20dB.
In fig. 1 are shown three of the six IMFs chosen by entropy
cost function; the simulated EEG fig. (1A), IMF2 Fig. (1B)
associated to frequency beta-band (f3 = 22Hz), IMF5 fig. (1C)
associated to frequency alpha-band (f2 = 9Hz) and IMF8 fig.
(1D) associated to frequency delta-band (f1 = 2Hz).

A

D  

C

B  

Fig. 1. Selected IMFs for 3 sources with SNR 20dB

Each IMF used to locate the active source can be seen in
fig. 2 whose sum allows to obtain the full location for the
three active sources fig. 2B. The Wasserstein metric for this
estimation was the 3.1467 and the location without MEMD was
3.2313 fig. 2C, this measurements compared with the ground
truth fig. 2A.
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Fig. 2. Wasserstein metric with and without MEMD for 3 active sources
located with SNR of 20dB

The second simulation was done for 5 sources with f1 =

1.5Hz, f2 = 4Hz, f3 = 9Hz, f4 = 20Hz and f5 = 45Hz,
the SNR was of −5dB. The high level of noise can be seen
in fig. 3A and the another figures are shown 5 of the 6 IMFs

chosen. The advantage by using the MEMD is to be able to
separate the activity in different bands of frequency e.g., in
fig. 3B corresponds to gamma-band (f5 = 45Hz) and was
decomposed in the IMF2 with some noise. In the IMF4 (fig. 3C)
was located the frequency associated to beta-band (f4 = 20Hz)
and the same way, it can be seen in fig. 3D the IMF5 with
the frequency in alpha-band (f3 = 9Hz), in fig. 3E the IMF7
with the frequency in theta-band (f2 = 4Hz) and in fig. 3F
the IMF9 with the frequency in delta-band (f1 = 1.5Hz).
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Fig. 3. Selected IMFs for 5 sources with SNR -5dB

In the fig. 4 is presented that the Wesserstien metric for
MSP with MEMD (fig. 4B) was lower than the metric for
MSP without MEMD (fig. 4C), compared with the ground
truth fig. 4A.

+
Wss=6.6882

Wss=6.4651
MEMD

A

B

C

IMF9

IMF7

IMF5

IMF2  

IMF4

Fig. 4. Wasserstein metric with and without MEMD for 5 active sources
located with SNR of -5dB



V. CONCLUSION

A method based on data-driven analysis, for improving the
accuracy for EEG source localization (ESL), was evaluated.
The MEMD was used in order to decompose the EEG signal in
its main modes and separate the noisy components in order to
locate the active sources with a minimum noise. It could also
be seen that the EEG signal was decomposed in IMFs within
different frequency bands and to each IMF was associated a
specific spectral entropy value. Those IMFs with incorporated
frequency band or source activity allow to reconstruct the
brain activity of that source. The cost function of entropy was
proposed for choosing the IMFs with lowest spectral entropy
(calculated by using HHSE) and up to a maximum of 40
percent, with this cost function, all the active sources were
located. The performance of MSP with MEMD, according to
the Wesserstein metric, was better under SNR of -5db while
for SNR of 20dB the performance of MSP was better without
MEMD. In both cases, the method for choosing the IMFs
took in account additional IMFs, because of the mode splitting
generated by the MEMD method.
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