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Abstract. In this paper, we demonstrate a data-driven methodology
for modelling the local similarity measures of various attributes in a
dataset. We analyse the spread in the numerical attributes and estimate
their distribution using polynomial function to showcase an approach
for deriving strong initial value ranges of numerical attributes and use
a non-overlapping distribution for categorical attributes such that the
entire similarity range [0,1] is utilized. We use an open source dataset
for demonstrating modelling and development of the similarity measures
and will present a case-based reasoning (CBR) system that can be used
to search for the most relevant similar cases.
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1 Introduction

CBR has gained popularity in the recent years due to its novel approach to
abstract and transfer domain-specific expert knowledge into a user-friendly tool
which offers appropriate reasoning for solutions to problems ranging from simple
daily life tasks to complex tasks which otherwise necessitate expert guidance.

Modelling the local similarities of attributes while preparing a CBR model
can be a challenging task for small and simple, and large and complex data sets
alike. In this paper, we direct our attention towards the knowledge engineer-
ing process of creating a CBR model and present a data-driven approach for
modelling local similarity measures using the openly available User Knowledge
Modelling dataset3 in the myCBR workbench [2,6]. The main contribution of
this paper is a methodology for modelling the local similarity measures using a
data-driven approach. We will showcase how the knowledge stored in a data set
can be leveraged to define strong initial value ranges for both numerical and cat-
egorical attributes and therewith moderate and stratify the knowledge modelling
process.

3 https://archive.ics.uci.edu/ml/datasets/User+Knowledge+Modeling

http://www.idi.ntnu.no
http://www.ntnu.no/ism
https://archive.ics.uci.edu/ml/datasets/User+Knowledge+Modeling


The remainder of this paper is organised into sections as follows: in section 2,
we discuss related work about the use of data-driven similarity measure develop-
ment and its application in CBR, followed by section 3 wherein we present our
similarity modelling approach. Finally, section 4 concludes the work presented
in this paper.

2 Related Work

Similar to the preference-based similarity measure development framework pre-
sented by authors in [4,1], we are presenting a framework for modelling local
similarity measures based on the data set available. Therewith we can tailor
each similarity measure to the application domain. Using a data-driven approach
for automatic similarity learning and feature weighting has been presented by
Gabel and Godehardt [3] where they trained a neural network to induce local
and global similarity measures [5]. While we are not automatically assigning the
similarity measures, we use the existing cases to derive them.

3 Data-driven Knowledge Modelling

In this section, we explain how we implement a CBR system that can be applied
to find the most similar and relevant cases. We use the local-global-principle
[5] for tailoring the similarity measure for each attribute and thereby build a
knowledge model. Once the local similarity measures are defined, we continue to
use weighted sum for defining the global similarity.

Some of the most common challenges for utilizing any dataset for developing
a CBR system are the identification of suitable dataset context for the problem
at hand, definition of initial similarity measures, representation of cases and
determination of valuable cases for populating the case base. In this section, we
first describe how we populate the case base and generate cases in the developed
case representation. Then we present our method for utilizing a given dataset
to model the local similarity measures for both numerical as well as categorical
attributes.

3.1 Case Generation

Developing a case representation is the first step of the CBR system development.
Depending on the domain and the available data this can be a challenging process
on its own. For presenting our data-driven modelling technique, we use the User
Knowledge Modelling dataset, which comprises of six attributes, five numerical
and one categorical. The description of all the attributes is presented in table 1.

The categorical attribute USN has four permitted values: Very Low, Low,
Middle, High. Table 2 shows the data statistics of the numerical attributes in
the dataset.

The case base is then populated by loading the dataset into the previously
defined case representation in the myCBR workbench. A single case in myCBR



Attribute Description

STG The degree of study time for goal object materials

SCG The degree of repetition number of user for goal object materials

STR The degree of study time of user for related objects with goal object

LPR The exam performance of user for related objects with goal object

PEG The exam performance of user for goal objects

UNS The knowledge level of user

Table 1. Description of attributes in User Knowledge Modelling dataset

STG SCG STR LPR PEG

count 403 403 403 403 403

mean 0.3531 0.3559 0.4576 0.4313 0.4563

min 0 0 0 0 0

max 0.99 0.90 0.95 0.99 0.99

Table 2. Data set Statistics

is represented as shown in Figure 1, where User is the name of the concept which
comprises of six attributes present in the original dataset.

Fig. 1. Case representation in myCBR

3.2 Data-driven Similarity Measures Development

The local-global-principle requires both the local similarity measure on the at-
tribute level and the global one on the conceptual to be defined.

Researchers in CBR domain face the challenge of balancing the input from
the domain experts and the available data while modelling the local similarity
measures for different attributes in myCBR. Having a criteria which can lead the
knowledge modelling process is helpful for both parties. We therefore suggest to
make use of the existing data in this process. While setting upper and lower limits
for numerical attributes is straight-forward, assigning the similarity behaviour



is not. Consecutively, we assume that local similarity measures for continuous
numerical attributes are polynomial distance functions (due to their flexibility
and better converging ability) and the question is how steep of a similarity
decline should be chosen. Therefore, we focus on the polynomial function of the
similarity measure for numerical attributes and our goal is to determine their
degree. We use box plots for visualizing the distributions and variations in the
data set and map this into modelling local similarity measures.

Fig. 2. Example for Data-driven Local Similarity Modelling: On the left there is a
screen shot of a polynomial similarity function for a value range between 0 and 1. With
the arrows we depict how the box-plot for attribute STR relates to the decrease in
similarity at a certain distance.

Figure 2 shows an example of a local similarity measure for a numerical
attribute. From there we look into the Q1 and Q3, which indicate the majority
spread of the attributes in the data set. In line with [1,7], we decided to take
these values as reference points for determining the decrease in similarity.

Hence, creating a box-plot of the data set will allow modelling each attribute
since we only take the Inter Quartile Range (IQR) and the range (min to max)
into account:

r1 = IQR

r2 = range
(1)

It represents the difference between upper (Q3) and lower (Q1) quartiles in
the box-plot, that is IQR = Q3 −Q1.

We assume that all similarity functions are polynomial and adjust the poly-
nomial degree of the similarity function such that

y(r1) ≈ 0.30

y(r2) ≈ 0
(2)



We can observe in Figure 2 how the similarity function varies with respect
to the attribute value after applying the methodology in equation 1 and 2. The
bigger the polynomial degree, the steeper the similarity function and more precise
the attribute values in retrieved cases. The decline in the similarity function is
steeper in the beginning until at r1 it reaches close to y(r1) and then decreases
gradually until at r2 it is approximately close to y(r2). This way, the similarity
function covers the entire attribute range as well as the similarity measure range
[0, 1]. We use this as the initial definition of similarity measures.

While the local similarity measures for numerical attributes can be derived
using their data distributions, assigning the similarity behaviour for categori-
cal attributes can be challenging as it depends on whether or not there is a
pre-existing relationship between the categorical values. In our dataset, the cat-
egorical attribute UNS has four permitted values which have an implicit rela-
tionship amongst each other. The local similarity measure for such an attribute
can be modelled such that the relationship amongst the values is preserved while
achieving the desired variation in the similarity measure in the range [0,1], as
shown in Figure 3. In case of no relationship amongst the values, the similarity
of one value to every different value can be set to zero.

Fig. 3. Similarity measure modelling for non-overlapping categorical attribute

3.3 Retrieving Similar Cases

Once the casebase and similarity measures are in place, the model can be used
to find similar cases. Figure 4 shows the result of one such query retrieval in
myCBR. The retrieved cases are sorted by similarity value in descending order,
that is, most similar case are displayed at the top while least similar are at the
bottom. On the lower part of the figure, the four most similar Users are shown
in a detailed view. The tool marks closer matches darker.

4 Discussion and Conclusion

In this paper, we have presented an approach to model the local similarity mea-
sures of a given dataset in myCBR in a data-driven manner. Our approach can
be applied on any dataset to model the similarity measures. A more detailed
evaluation of our approach can be found in [7] where we statistically evaluated
its effectiveness using a public health domain dataset and showed that the CBR



Fig. 4. A Query and its retrieval result in the myCBR workbench

model created using our approach outperforms the k-NN regressor model in find-
ing the most similar cases. The approach presented in this work can significantly
reduce the efforts required to create new CBR models using different data sets
from scratch. Therefore, it is safe to conclude that the approach works well on
the used dataset and may also be applicable to other domains.
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4. Hüllermeier, E., Schlegel, P.: Preference-based cbr: First steps toward a methodolog-
ical framework. In: Ram, A., Wiratunga, N. (eds.) Case-Based Reasoning Research
and Development. pp. 77–91. Springer, Berlin, Heidelberg (2011)

5. Richter, M.M.: The knowledge contained in similarity measures. In: Veloso, M.M.,
Aamodt, A. (eds.) Case-Based Reasoning Research and Development, Proc of the
First International Conference, ICCBR-95. LNCS, vol. 1010. Springer (1995)

6. Stahl, A., Roth-Berghofer, T.R.: Rapid prototyping of cbr applications with the
open source tool mycbr. In: ECCBR ’08: Proc. of the 9th European conference on
Advances in Case-Based Reasoning. pp. 615–629. Springer, Berlin (2008)

7. Verma, D., Bach, K., Mork, P.J.: Modelling similarity for comparing physical ac-
tivity profiles - a data-driven approach. In: Cox, M.T., Funk, P., Begum, S. (eds.)
Case-Based Reasoning Research and Development. pp. 415–430. Springer Interna-
tional Publishing, Cham (2018)


	Similarity Measure Development for Case-Based Reasoning- A Data-driven Approach
	Introduction
	Related Work
	Data-driven Knowledge Modelling
	Case Generation 
	Data-driven Similarity Measures Development
	Retrieving Similar Cases

	Discussion and Conclusion 


