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Background: Relative enhanced diffusivity (RED) is a potential biomarker for indirectly measuring perfusion in tissue using
diffusion-weighted magnetic resonance imaging (MRI) with 3 b values.

Purpose: To optimize the RED MRI protocol for the prostate, and to investigate its potential for prostate cancer (PCa)
diagnosis.

Study Type: Prospective.

Population: Ten asymptomatic healthy volunteers and 35 patients with clinical suspicion of PCa.

Sequence: 3T T,- and diffusion-weighted MRI with b values: b = 0, 50, [100], 150, [200], 250, [300], 400, 800 s/mm? (values
in brackets were only used for patients).

Assessment: Monte Carlo simulations were performed to assess noise sensitivity of RED as a function of intermediate
b value. Volunteers were scanned 3 times to assess repeatability of RED. Patient data were used to investigate RED’s
potential for discriminating between biopsy-confirmed cancer and healthy tissue, and between true and false positive
radiological findings.

Statistical Tests: Within-subject coefficient of variation (WCV) to assess repeatability and receiver-operating characteristic
curve analysis and logistic regression to assess diagnostic performance of RED.

Results: The repeatability was acceptable (WCV = 0.2-0.3) for all intermediate b values tested, apart from b = 50 s/mm?
(WCV = 0.3-0.4). The simulated RED values agreed well with the experimental data, showing that an intermediate b value
between 150-250 s/mm? minimizes noise sensitivity in both peripheral zone (PZ) and transition zone (TZ). RED calculated
with the b values 0, 150 and 800 s/mm? was significantly higher in tumors than in healthy tissue in both PZ (P < 0.001, area
under the curve [AUC] = 0.85) and PZ + TZ (P < 0.001, AUC = 0.84). RED was shown to aid apparent diffusion coefficient
(ADC) in differentiating between false-positive findings and true-positive PCa in the PZ (AUC; RED = 0.71, ADC = 0.74,
RED+ADC = 0.77).

Data Conclusion: RED is a repeatable biomarker that may have value for prostate cancer diagnosis. An intermediate
b value in the range of 150-250 s/mm? minimizes the influence of noise and maximizes repeatability.

Level of Evidence: 2

Technical Efficacy Stage: 1
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ULTIPARAMETRIC MAGNETIC RESONANCE
IMAGING (mpMRI) of the prostate is traditionally
performed with the combination of anatomical T,-weighted
(T2W)
dynamic contrast-enhanced (DCE) imaging. mpMRI plays an

imaging and functional diffusion-weighted and

important role in the diagnosis and management of prostate
cancer (PCa), especially after the Prostate Imaging Reporting
and Data System (PI-RADS) guidelines were introduced.

Diffusion-weighted imaging (DWI) probes the diffusion
of water molecules within different tissues, without the need
for an extraneous contrast agent.” Especially, apparent diffu-
sion coefficient (ADC) maps have proven to be useful for
PCa diagnosis.” However, the mathematical model underly-
ing the calculation of ADC assumes monoexponential signal
decay as a function of & value due to pure diffusion of water
molecules. In reality, most tumors also have a perfusion com-
ponent resulting from microcirculation of blood in the capil-
lary network, which contributes to signal decay at lower
b values.t

More the
intravoxel incoherent motion (IVIM) model, take this perfu-

advanced diffusion models, such as
sion component into account. IVIM was introduced by Le
Bihan et al® in 1988 and describes the signal decay as
biexponential in tissues with a strong perfusion component.
The IVIM model remains popular in the DWI community
because of the apparent direct association with physical
properties of the tissue microvasculature,’ and improve-
ments in comparison to the ADC model for prostate tumor
detection” and grading8 have been reported. IVIM is corre-
lated with DCE-derived parameters in renal tumors,” head
and neck tumors,'® and breast tumors,'! and has therefore
been proposed as an alternative to DCE imaging to probe
tissue microvasculature without the use of contrast agents.12
IVIM, however, typically requires 210 different 4 values to
probe the signal decay, and thus comes at the cost of a sub-
stantial increase in acquisition time, which limits its use in
routine clinical practice.

Teruel et al recently introduced a novel marker for
microcirculation, called relative enhanced diffusivity (RED),"?
which only requires the acquisition of one low, one interme-
diate, and one high & value. RED expresses the relative
change in ADC between lower and higher 4 value regimes
and is expected to be higher in more perfused tissue. Teruel
et al’® found that RED could distinguish malignant from
benign breast cancer lesions with high sensitivity and specific-
ity. Furthermore, the study found a moderate correlation
between RED and breast cancer microcirculation parameters
from DCE MRI. The latter finding is especially interesting
for PCa, as biparametric MRI, leaving out the DCE
sequence, shows promise in the clinic."*™"” The reduced use
of gadolinium contrast is also desirable because of the cost
and the risk of gadolinium accumulation, with unknown
long-term effects.'®
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While et al'® showed with Monte Carlo simulations
that the choice of the intermediate 4 value is important for
the calculation of RED when it comes to minimizing sensitiv-
ity to noise, and that an optimal intermediate & value for
breast and liver tissue was ~100 s/mm” and 50 s/mm?
respectively. While et al'” also demonstrated that RED can
be regarded as a reparameterization of the simplified IVIM
estimates for the perfusion fraction fand the diffusion coeffi-
cient D, also obtained with only three & values, as first pro-
posed by Le Bihan et al.”

The purpose of this study was to optimize the RED
MRI protocol for the prostate, by finding the optimal inter-
mediate & value that minimizes the impact of noise, and to
investigate the diagnostic potential of RED as a biomarker for
PCa in comparison to ADC, as well as D and f from
simplified IVIM.

Materials and Methods

Patients and Asymptomatic Healthy Volunteers

This study concerns prospectively acquired MRI data, approved by
the Regional Committee for Medical and Health Research Ethics
(REC Mid Norway, identifiers 2017/576 and 2014/1289). Ten
asymptomatic healthy volunteers and 35 patients were prospectively
recruited between 2017 to 2018. All participants provided written
informed consent.

This study included two cohorts. The volunteer cohort con-
sisted of 10 asymptomatic healthy volunteers (median age: 31; range:
24-43 years), each scanned at three different timepoints. The
median interval between scans 1 and 2, and 2 and 3, was 12 and
15 days, respectively. This cohort was used to investigate the repeat-
ability of region of interest (ROI)-based RED.

The patient cohort consisted of 35 patients referred for a
prebiopsy MRI exam due to clinical suspicion of PCa (median age:
65; range: 51-80 years). Patients were subdivided into an optimization
cohort with PI-RADS-negative patients (2 = 18), and a diagnostic
cohort with PI-RADS-positive (PI-RADS >3 as defined by PI-RADS
v2, scored by a radiologist) patients (z = 17). The optimization
cohort was used for protocol optimization and comparison to simu-
lated RED values in healthy tissue. The patients in the diagnostic
cohort all underwent systematic biopsies or targeted MRI / transrectal
ultrasound (TRUS) fusion biopsy, the results of which were consid-
ered the gold standard for the presence of cancer. The diagnostic
cohort was therefore used to investigate the diagnostic potential of
RED. Patient characteristics for all the cohorts and lesion information

for the diagnostic cohort are shown in Table 1.

Imaging Protocol

All imaging was performed with a 3T Magnetom Skyra scanner
(Siemens Healthineers, Erlangen, Germany). The imaging protocol
for both cohorts included T, W and DWI as described below.

The T,W imaging for the volunteer cohort was performed
with a turbo spin-echo (TSE) sequence with repetition time / echo
time (TR/TE) = 7740/104 msec; 384 X 384 matrix size; 0.5 X
0.5 mm in-plane resolution; 3.0 mm slice thickness; and 26 trans-
verse slices. The DWI acquisition was performed in the rightleft



TABLE 1. Patient Characteristics for the Volunteer,
Optimization, and Diagnostic Cohort, and Lesion
Information for the Diagnostic Cohort

Patient table

Patient characteristics

Volunteer cohort
Volunteers

Mean age (range)

Mean days between
scan 1 and 2

Mean days between
scan 2 and 3

Optimization cohort
Patients

Mean age (range)
Mean PSA (SD)

Mean prostate
volume (SD)

Diagnostic cohort
Patients

Mean age (range)
Mean PSA (SD)

Mean prostate
volume (SD)

Lesion information

Diagnostic cohort

Lesions by zone

False positive
lesions by zone

Mean TP lesion
size (SD)

Mean FP lesion
size (SD)

PIRADS 3 (TP lesions) 7 = 7 (3)
PIRADS 4 (TP lesions) z = 8 (3)
PIRADS 5 (TP lesions) 7 =9 (8)

Gleason score 3 + 3

N =10

31.1 years
(24-43)

11.9 days

18.8 days

N=18

64.6 years
(52-77)

6.9 ng/mL
(3.14)

51.3 ml (24.6)

N =17

66.5 years
(51-80)

11.9 ng/mL
(14.3)

46.9 ml (23.1)

Peripheral zone Transition

zone
n=14 n=>06
n=10 n=2

19.8 mm (13.5) 19.0 mm (9.1)

13.2 mm (6.9) 15.0 mm (8.5)
n=3(2)
n=1(1)
n=4(3)

n=1 n=2
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TABLE 1. Continued

Patient table

Gleason score3+4  n=9 n=1
Gleason score 4 + 3 n=0 n=3
Gleason score 4 + 4  n=1 n=0
Gleason score 4 +5  n=3 n=0

SD (standard deviation), PSA (prostate specific antigen), PZ
(peripheral zone), TZ (transition zone), TP (true positive), FP
(false positive).

phase-encoding direction, using a spin-echo sequence with single-
shot echo planar imaging (SS-EPI) readout. Six & value scans (0, 50,
150, 250, 400, 800 s/mm?) were acquired in three orthogonal diffu-
sion directions using the following settings: TR/TE = 4400/63 msec;
128 X 120 matrix size; 2.0 X 2.0 mm in-plane resolution; 3.0 mm
slice thickness; 6 averages (8 averages for b = 800); and 26 transverse
slices. Trace images were used for further processing.

The T,W imaging for the patient cohort was performed with
a TSE sequence with TR/TE = 5330/104; 384 X 384 matrix size;
0.5 X 0.5 mm in-plane resolution; 3.0 mm slice thickness; and
26 transverse slices. The DWI acquisition was performed in the
right-left phase-encoding direction, using a spin-echo sequence with
SS-EPI readout. Nine & value scans (0, 50, 100, 150, 200, 250,
300, 400, 800 s/mm?) were acquired in three orthogonal diffusion
directions using the following settings: TR/TE = 3400/63 msec;
128 X 120 matrix size; 2.0 X 2.0 mm in-plane resolution; 3.0 mm
slice thickness; 3 averages (8 averages for b = 800); and 20 transverse
slices. Trace images were used for further processing.

Region of Interest Delineation

In the volunteer cohort, T,W images were used as a reference to
place four circular regions-of-interest (ROIls) (diameter 8 mm) in
both the peripheral zone (PZ) and transition zone (TZ) in the
diffusion-weighted images on the day 1 scans. The same eight ROIs
were manually replicated for the scans on days 2 and 3.

In the optimization cohort, T,W images were used as a refer-
ence to place six circular ROIs (diameter 8 mm) in healthy-
appearing tissue in both the PZ and TZ in the diffusion-weighted
images. In the diagnostic cohort, one circular ROI (diameter 8 mm)
was placed in each PI-RADS-positive PZ or TZ lesion in the ADC
images. ROIs of the same size were placed in contralateral healthy-
appearing tissue in the PZ and TZ. An example of ROI placement
and size for a false-positive case in the diagnostic cohort is shown in
Appendix 1. ROIs in the volunteer and optimization cohort were of
the same size.

Data Analysis

RED values were calculated for all voxels of the selected ROIs in the
volunteer cohort. RED, ADC, and the simplified IVIM parameters
(D and f) were calculated for all voxels of the selected ROIs in the
diagnostic and optimization cohort. Full IVIM parameters (D, f; and
D*) were estimated for all voxels of the selected ROIs in the
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optimization cohort (for the purpose of generating synthetic data).
ADC values were calculated by fitting the monoexponential signal
decay function to the & values 0, 150, and 800 s/mm>2, given by
Eq. 1, where S}, is the signal for a given & value and S is the signal
for b = 0 s/mm?:

Sp -bx ADC
2 _ 1
5= (1)

RED values were calculated as given by Eq. 2,'° where
ADC,,,, was calculated between b = 0 s/mm? and the intermediate
b value (ie, b = 50, 150, 250, or 400 s/mm? for the volunteers, or
b = 50, 100, 150, 200, 250, 300, or 400 s/mm?> for the patients),
and ADClgp, between the intermediate 4 value and b = 800 s/mm?:

2)

RED (%) =100 x (m-l)

ADChigh

The parameters from the full IVIM® model were estimated by
fitting a biexponential function given by Eq. 3, using a segmented
approach with automatic thresholding,20 which includes a diffusion
coefficient (D), a pseudodiffusion (cf. perfusion) coefficient (D¥),
and a perfusion fraction parameter (f):

Sp/So=(1-f)e P+ fe(P+D) (3)

For simplified IVIM using three & values, D* was explicitly
omitted and Ds ~ D and f5 ~ f'were calculated as given by Eqs. 4
and 5, respectively, where biyerm is the intermediate & value:

Ds = ADChigh (4)

fo=1-bmem (ADCigw - ADCiigs ) (5)

Simulations

Monte Carlo calculations were performed to simulate the sensitivity
of RED to noise as a function of intermediate & value, as previously
described by While et al.'” The full IVIM parameter estimates from
the nine & value data of the optimization cohort were used exclu-
sively to generate synthetic data for this purpose. The mean and
standard deviation for these estimates were used to define normal
distributions, from which 10,000 samples were then drawn ran-
domly for each full IVIM parameter (D, D¥, f).

For every set (10,000) of the three synthetic full IVIM parame-
ters, normalized signal (S,/Sy) was simulated using Eq. 3 and subse-
quently corrupted by three different levels of Rician noise, to produce
datasets with SNRs (signal-to-noise ratios) of 10, 20, and 40 with
respect to the normalized signal at 6 = 0 s/mm” after three averages
(ie, in line with the processing of the clinical data for the patient
cohort, with eight averages used for b = 800). For each dataset (noise-
free; SNR 10; SNR 20; SNR 40) and sample (10,000), RED values
were calculated over the full domain of possible intermediate & values
Bincerm = 1-799 s/mm?; integer increments), with the first and last
b values fixed at b = 0 and 800 s/mm?, respectively. Simplified IVIM
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parameters, D, and f;, were also calculated similarly from the synthetic
data for comparison.

Statistical Analysis

The within-subject coefficient of variation (WCV) was calculated to
assess the ROI-based within-patient repeatability of RED in the vol-
unteer cohort.

First, for each ROI of the volunteer cohort, the CV over time
of the ROI mean RED value was calculated as given by Eq. 6, where
Xror represents the vector of mean RED values at the 3 different
imaging sessions:

SD(X ror)

CVrgor =
ot mean (XRO])

(6)

Subsequently, the WCV, ie, repeatability, was estimated by
combining all of the individual ROI CVs according to Eq. 7, where
N is the total number of ROIs:

Parameter repeatability was defined as excellent when WCV was
<0.1, good between 0.1-0.2, acceptable between 0.2-0.3, and poor
when MdAPD was >0.3, as defined in Kakite et al.?! The 95% confi-
dence intervals were similarly calculated using the above root mean
square (RMS) method.”? The significance of differences in WCV using
different intermediate & values was tested by applying the Wilcoxon
signed-rank test to the paired sets of squared individual ROI CVs.

The median absolute percentage deviation (MdAPD), a non-
parametric analog to the CV, was calculated to assess the voxel-based
precision in simulations and in the optimization cohort. The
MdAAPD was chosen in favor of the CV because it is much more
robust to the presence of outliers in the voxelwise data. In Eq. 8,
Y represents either the RED values of all 10,000 samples in the sim-
ulations, or the RED values of all voxels in all ROIs of all patients,
for the given intermediate & value:

median(|Y - median(Y)|)

MdAAPD =
median(Y 1)

X 100 (8)

To avoid points of divergence in the simulations where RED
approaches 0 (eg, at high intermediate 4 values), MdAPD was set
relative to median(¥7) rather than median(Y), where Y7 represents
the RED values obtained from the noise-free simulated data. Fur-
thermore, to allow for direct comparison with the simulations, the
same values were used in the denominator of Eq. 8 for calculating
the MdAPD of the experimental data. Similarly, in calculating
MdJAPD for the simplified IVIM parameters D, and f;, the vector Y7
in Eq. 8 contained instead the corresponding specified full IVIM
parameter values used in the simulations.

Receiver-operating  characteristic (ROC) curve analysis was
used to assess the performance of parameters in discriminating
between healthy tissue and tumors (RED), as well as between true-
and false-positive PI-RADS findings (RED, ADC, D,, f), in the



diagnostic cohort. The significance of differences in imaging parame-
ters between healthy tissue and tumors was tested with the Wilcoxon
signed-rank test, while the difference between true- and false-positive
PI-RADS findings was tested with the Mann-Whitney U-test. P <
0.05 was considered significant.

Logistic regression was performed to assess the diagnostic per-
formance of different combinations of parameters (RED, ADC, D,
/) for false-positive vs. true-positive findings. Permutation testing
was performed to test for significance, by randomizing cancer sta-
tus (true- and false-positive) for the samples, repeating the analysis
1000 times for each combination. The P-value was calculated as
the proportion of permuted models achieving an equal or lower
error than the nonpermuted models. The correlation between
RED and ADC was assessed using the Pearson correlation coeffi-
cient, as well as the correlation between ADC values from the pro-
tocol used at our institution (b = 50, 800 s/mm?) and ADC values
from our suggested protocol (b = 0, 150, 800 s/mm?), which also
allows for the calculation of RED and simplified IVIM parameters.
All analyses were performed in MatLab R2017a (MathWorks,
Natick, MA).

Results

Protocol Optimization

Figure 1 shows RED as a function of an intermediate & value
in the optimization cohort as boxplots, with overlapping cal-
culations of RED from the Monte Carlo simulations assum-
SNRs. The
(mean = standard deviation) used for the simulations were
D (x10° mm?%s) = 1.52+40.27, D* (x10° mm?%/
s) = 779 £2.85, and f = 0.12 £ 0.031 in the PZ, and
D (x10° mm*s) = 127£0.13, D* (x10° mm?/
s) = 10.09 = 3.25, and f'= 0.14 &= 0.026 in the TZ. Both

the experimental data and the simulations show that RED

ing different IVIM  parameter values

decreases with increasing intermediate & value, indicating the
highest sensitivity to perfusion at lower intermediate & values.
The simulations show that the median RED for noisy data

RED values, Peripheral zone

200
—SNR =10
—SNR =20
150 —SNR = 40| -
—SNR = 0
S
a 100
&
50 [ _
]
50 100150200250300 400 800

Intermediate b value (s/mmz)
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with SNR >20 matches the median noise-free RED over a
large range of intermediate & values, but the interquartile
range increases substantially as the SNR decreases. The simu-
lated RED values were in general found to agree with the
experimental data (see Appendix 2 for corresponding plots of
the simplified IVIM parameters). The best agreement is seen
when assuming a SNR of 40 for the simulations (red line).

Figure 2 shows boxplots of precision as a function of an
intermediate & value in the optimization cohort for both the
PZ and TZ, with overlapping calculations of precision from
the Monte Carlo simulations assuming different SNRs. The
precision in the optimization cohort and the simulations
appear to be in general agreement. The simulations imply
that the best precision (lowest MdAPD) should be achieved
using an intermediate & value in the range of 150-250
s/mm?, regardless of SNR, as observed also in the experimen-
tal data (see also Appendix 3 for corresponding plots of accu-
racy and bias, and Appendix 4 for plots of precision,
accuracy, and bias for the simplified IVIM parameters). The
best agreement between the experimental data and the simu-
lations is again seen when assuming an SNR of 40 in the
simulations.

In the volunteer cohort, the repeatability over time was
acceptable (0.2-0.3) for all intermediate & values tested, in
both the PZ and TZ, apart from b = 50 s/mm? (0.3-0.4), as
illustrated in Fig. 3. The median WCV values for the PZ
were 0.38 (b = 50), 0.28 (b = 150), 0.28 (b = 250), 0.26
(b = 400). The median WCV values for the TZ were 0.39
(b = 50), 0.29 (b = 150), 0.25 (b = 250), 0.24 (b = 400).
There was a significant difference in WCV between b = 50
and the other 4 values (P < 0.05), but not between these
higher & values (b = 150, 250, and 400 s/mm?). Using the
same method, the median WCV values of ADC (Appendix
5) for both zones was shown to be between 0.096 and 0.098

RED values, Transition zone

200
—SNR =10
—SNR =20
150F _ —SNR =40
—SNR = 00

RED (%)
S
7=

50

—

50 100 150200 250 300 400 800
Intermediate b value (s/mmz)

FIGURE 1: Boxplot showing RED as a function of intermediate b value in the optimization cohort, with overlapping Monte Carlo
simulations showing RED as a function of intermediate b value, assuming different SNRs, for both the PZ (left) and the TZ (right). The
solid continuous lines represent the median RED values from the simulations and the shaded areas the corresponding interquartile
ranges. The boxplots represent the median RED values (horizontal red lines) and interquartile ranges (blue boxes) from the

experimental data.
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RED Precision, Peripheral zone

AN

RED precision, Transition zone

300 300
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FIGURE 2: Boxplot showing precision of RED as a function of intermediate b value in the optimization cohort, with overlapping
Monte Carlo simulations showing precision of RED as a function of intermediate b value, assuming different SNRs, for both the PZ
(left) and the TZ (right). The solid continuous lines represent the median MdAPD values from the simulations and the shaded areas
the corresponding interquartile ranges. The boxplots represent the median MdAPD values (horizontal red lines) and interquartile

ranges (blue boxes) from the experimental data.

for the & values 0, 150, 250, and 400 s/mm?, which was sig-
nificantly lower than all the WCV values calculated for RED.

Figures 2 and 3 suggest that RED calculations using an
intermediate & value in the range of 150-250 s/mm? would
be optimal. Because of the higher SNR in lower & value
images (Appendix 6), RED using an intermediate & value of
b = 150 s/mm® was examined closer regarding diagnostic

potential.

Diagnostic Potential of RED

Of the 32 suspicious lesions (PI-RADS 23), 14 were true-
positive in the PZ, six true-positive in the TZ, 10 false-
positive (ie, positive PI-RADS, negative biopsy) in the PZ,
and two false-positive in the TZ. Because of the low sample
size in the TZ (n = 6 true-positive, n = 2 false-positive), we
only investigated the PZ and the combination of the PZ
+ TZ. Figure 4 shows the difference in mean RED (b = 0,

Repeatability of RED

-Peripheral zone | |
[_ITransition zone

0.45
0.40 |
035}
0.30

3025}

=020t
0.15}
0.10
0.05}

b=50 b=150 b=250

Intermediate b value (s/mmz)

FIGURE 3: Grouped bar chart showing repeatability of RED
(within-subject coefficient of variation, WCV) as a function of
intermediate b value in the volunteer cohort, for the peripheral
zone (blue) and transition zone (cyan). The error bars represent
the 95% confidence intervals.

b=400

150, 800 s/mm?) between biopsy-confirmed tumor tissue and
contralateral healthy tissue, and ROC curves, for both the PZ
and the combination of PZ + TZ. There was a significant dif-
ference in RED between tumor and contralateral healthy tis-
sue for both the PZ (P < 0.001) and PZ + TZ (P < 0.001).
The area under the curve (AUC) was 0.85 and 0.84 for the
PZ and PZ + TZ, respectively. Similar results (AUC = 0.73
and 0.79) were obtained for RED using an intermediate
b value of b = 250 s/mm? (see Appendix 7). For comparison,
the AUC for ADC (0.99 and 0.99) was close to 1, but these
values are likely biased due to the ROI placement on
ADC maps.

Table 2 shows the results of the logistic regression anal-
ysis of RED, ADC, and simplified IVIM parameters f; and D,
in differentiating between false-positive PI-RADS findings
and biopsy-confirmed tumors, with mean values and relative
difference in mean value between false-positive healthy tissue
and true-positive tumor tissue for the different parameters.
The differences between false-positive tissue and tumors were
not significant in the PZ for RED (P = 0.084), ADC
(P = 0.057), or f (P = 0.46) but was significant for
D (P = 0.024). Various combinations of parameters resulted
in higher AUCs, which were generally significant in the PZ
and in the PZ + TZ.

Figure 5 shows different parametric maps overlaid on a
T,-weighted map using the & values 0, 150, and 800 s/mm?
for the calculation of RED, ADC, and the simplified IVIM
parameters f; and D,, for one patient with a malignant lesion
in the peripheral zone (PIRADS 5, PSA 22.4, Gleason score
4 +5).

A moderate negative correlation was observed between
RED and ADC using & values of 0, 150, and 800 s/mm?
(tho = —0.453, P < 0.001), which indicates that the parameters
probe distinct physiological processes (see Appendix 8). Fur-
thermore, there was a near-perfect correlation of 0.998 (P <
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FIGURE 4: Box-and-whisker plot showing mean RED as a
function of zone (PZ + TZ vs. PZ), and healthy (H) vs. tumor (T).
ROC curve for RED using an intermediate b value of 150 s/mm?,
with AUC values of 0.84 and 0.85 for the PZ + TZ (lesion n = 20)
and PZ (lesion n = 14), respectively.

0.001, slope = 0.98, intercept = 51) between the ADC values
from the protocol used at our institution (b = 50, 800 s/mm?)
and ADC values from our suggested protocol (b = 0, 150, 800
s/mm?), which also allows for the calculation of RED and sim-

plified IVIM parameters (see Appendix 8).

Discussion

The number of PCa patients are increasing,zy25 and so is the
demand for prostate MR imaging. The commonly used
mpMRI protocol takes between 30 and 45 minutes. Shorter
MRI protocols are desirable to reduce pressure on the
healthcare system. RED has previously been proposed as a
fast and simple way to extract perfusion information from
DW images acquired with three & values,'® without the use
of contrast. In this study, we showed that the optimal inter-
mediate 4 value for RED imaging in the prostate is between

Billdal et al.: RED Protocol Optimization

150 and 250 mm/s®, and that RED was reproducible over
time. RED was also shown to differentiate cancer from
healthy tissue and could aid in finding biopsy-positive lesions.

PI-RADS v. 2 recommends that DWI include a low
b value at 50-100 s/mm?® and a high & value at 800-1000
s/mm?, with optional intermediate 4 values between
100-1000 s/mm* for more accurate ADC calculations.’ Con-
sequently, only minor adjustments to the DWI protocol are
required for the calculation of RED (and simplified IVIM
parameters D, and f), which would have limited impact on
the total scan time (an increase of <30 sec in most cases).
Furthermore, we showed that ADC calculated with & values
of 50 and 800 s/mm? and with 0, 150, and 800 s/mm?” had a
near-perfect correlation.

The healthy RED values were similar for the patients in
the optimization and diagnostic cohort, but were in general
higher for the asymptomatic healthy volunteers, which can
partially be explained by the age-related differences in the
prostate. We showed that RED was dependent on the inter-
mediate & value, especially in the PZ. The precision plots
suggested that an optimal intermediate & value for minimiz-
ing the sensitivity to noise is in the range of 150-300 s/mm”
for both the PZ and TZ. This finding was confirmed by the
repeatability analysis, showing a significantly worse repeatabil-
ity using b = 50 s/mm? in comparison with the rest. Further
support for this optimal range was provided by simulations of
accuracy and bias. An intermediate 4 value in the lower range,
eg, b = 150 s/mm?, makes RED more sensitive to perfusion
and allows for images with a higher SNR, because of the
higher signal at lower & values. However, an even lower inter-
mediate & value risks reduced precision and repeatability and
mixing of perfusion effects into the high 4 value regime
(ADChigh). An intermediate & value in the higher range, eg,
b = 250 s/mm?, gives more reliable estimates of £ and D,
because of the better separation of perfusion and perfusion-
free areas, but at the cost of lower SNR. Using the calculated
full IVIM parameters, it was estimated that perfusion effects
contributed to less than 5% of the signal in the high 4 value
regime when the intermediate 4 value was set to 150 mm/s”.
The measured SNR for our experimental data using a subset
of patients (z = 5), calculated using the difference method as
described by Dietrich et al*® was found to be (median
(range)) 20 (13.1-31.1) for the b= 0 s/mm> images in both
the PZ and TZ. The experimental RED precision was found
to be within the 25" and 75" percentile of the simulated
precision, with an SNR of 20, although the median values
were closer to those of simulations with an SNR of 40.

While et al"’ investigated the optimal intermediate
b value for breast and liver tissue using the same simulation
described in this and found that
100 s/mm” for breast and 50 s/mm? for liver imaging (given

method as article,

low and high 4 values of 0 and 700 s/mm?®) was optimal for
limiting the impact of noise. Liver tissue is in general more
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Parameter False positive (FP)
RED (%) 53.75 (48.87)
ADC (x10” mm?/s) 1.09 (0.17)

f 0.059 (0.050)
D, (x10” mm?/s) 1.03 (0.17)

False positive (FP)

RED (%) 51.62 (53.72)
ADC (x10” mm®/s) 1.13 (0.15)
f 0.059 (0.055)
D, (x10” mm®/s) 1.08 (0.15)
AUC values
Parameter (unit) PZ+TZ
RED 0.70%
ADC 0.71%
f 0.61
D, 0.74%*
RED + ADC 0.73
RED + D, 0.76*
f+ D, 0.78%*
ADC + f. + D, 0.79%
RED + ADC + £, + D, 0.88%*

tive), T (tumor), Relative difference = 100*(T-FP)/avg(T,FP).
*P < 0.05.

TABLE 2. Logistic Regression Analysis of the Ability of Different Combinations of RED, ADC, f,, and D; in
Discriminating Between False-Positive Lesions and Biopsy-Confirmed Tumors

False positive lesions vs. cancer

PZ + TZ, parameter mean (standard deviation)

PZ, parameter mean (standard deviation)

Mean values and relative difference in mean value between healthy and tumor for the different parameters. The sample size for the PZ
was 7 = 10 false-positive lesions and 14 biopsy-confirmed tumors. The sample sizes were 2 and 6 for the TZ, respectively.

RED (relative enhanced diffusivity), ADC (apparent diffusion coefficient), f (perfusion fraction), D (diffusion coefficient), FP (false posi-

Tumor (T) Relative difference (%)
77.72 (40.18) 36.5
0.92 (238.63) -16.9
0.079 (0.031) 29.0

0.85 (0.23) -19.1

Tumor (T)
80.67 (46.16)
0.91 (261.10)
0.079 (0.037)

0.84 (0.25)

Relative difference (%)
43.9
-21.6
29.0
-25.0

PZ
0.71
0.74
0.59
0.78%
0.77
0.81%
0.83%*
0.84%*
0.91%*

7729 wwhich leads to faster signal

perfused than the prostate,’
decay at lower & values, and therefore a lower optimal inter-
mediate & value for minimizing the impact of noise.

The logistic regression analysis showed how RED could
aid in differentiating between false-positive PI-RADS findings
and biopsy-confirmed lesions in the PZ. The low sample size
in the TZ made the analysis sensitive to overfitting and there-
fore no conclusions can be made regarding the performance
of the different parameters in the TZ. In the logistic regres-

sion analysis, RED performed better than the perfusion
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fraction £ in discriminating between false-positive and true-
positive tissue, but the diffusion coefficient D, was the best-
performing single parameter. This agrees with the literature
investigating the full IVIM approach in PCa, where
D outperforms fand the pseudodiffusion coefficient D*.”*°
ADC + RED performed better than ADC alone, while com-
bining all the parameters performed better than ADC + f
+ D, with an AUC of 0.907 for the PZ. These results show
that RED in combination with the other parameters may be

able to help prevent false-positive PI-RADS findings.
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FIGURE 5: Representative parametric maps using the b values 0, 150, and 800 s/mm?, obtained for a 72-year-old man with biopsy-
proven prostate cancer in the peripheral zone (PIRADS 5, PSA 22.4, Gleason score 4 + 5). Parametric maps of (a) RED, (b) ADC and
simplified IVIM parameters (c) f; and (d) D, overlaid on a T,-weighted image. The arrows in each image point at the same biopsy-

confirmed cancer lesion.

There were 12 false-positive lesions in the diagnostic
cohort, 10 in the PZ, and two in the TZ, defined as positive
PI-RADS, but negative biopsies. Most of the patients in the
diagnostic cohort underwent systematic biopsies (7 = 16),
with one patient having targeted MRI-TRUS fusion biopsy.

In the case of systematic biopsies, the decision to classify a
lesion as true-positive was made when the PI-RADS lesion
and positive biopsy were in the same anatomical area in the
prostate, as described in PI-RADS 2.0.°> This can lead to
some uncertainty when assessing if the cancer and radiological
findings are the same, which is less of a problem for targeted
biopsies.

As demonstrated by While et al,'” RED can be viewed
as a simple reparameterization of IVIM modeling in the limit
of only three 4 values (ie, explicitly omitting D*), as proposed
in the original IVIM article.” Nonetheless, this study indi-
cates that RED might have potential to provide additional
discriminatory power if used in addition to other parameters,
such as ADC, £, and D,. Similar results were found by Vidic
et al, who investigated the combination of ADC, RED, and
IVIM in breast cancer.”’

An obvious weakness of the RED parameter is the high
sensitivity to noise compared with the ADC parameter, which
would limit its application as a single biomarker for PCa in
clinical practice. Although relative differences between false-
positive and true-positive findings were larger for RED than

for ADC, RED was also associated with higher standard devia-
tions and significantly lower repeatability. While et al'® found
that RED in general displays greater sensitivity to noise than
the perfusion fraction f; alone, because RED compounds errors
associated with both £ and D, However, this study showed
that when averaging over ROIs with clinically realistic sizes,
repeatability was acceptable and an additional value of RED in
combination with other DWI parameters was demonstrated.

The full IVIM parameters (f, D, and D* from Eq. 3)
used for generating the simulated data in the optimization
cohort were calculated from a suboptimal set of & values,
potentially not sufficiently sampling the signal in the
b = 0-100 s/mm? range, as recommended when performing
IVIM.?® Nevertheless, the TVIM parameter values in this
study were in the same range as previously reported for the
prostate.”*”?** The simplified IVIM parameters from
Egs. 4 and 5 were, on the other hand, entirely valid, since
they only depend on three & values. Finally, the simulations
were restricted to a simple Rician noise model, and did not
include physiological noise or other artifacts. Nevertheless,
the correspondence between the simulations and experiments
suggests that these latter effects were minimal.

Limitations
The results of this work are limited by the small cohorts,
especially in the diagnostic cohort. Stratification of patients
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into different Gleason grade groups was therefore not possible
and the results need to be validated in a larger and more het-
erogeneous cohort. There were only a limited number of TZ
tumors in the diagnostic cohort, which made significance test-
ing and logistic regression analysis unreliable for lesions in
this zone. Another issue when calculating RED in the TZ is
that the difference in perfusion between healthy tissue and
cancer in the TZ is small compared to the PZ,** which can
be explained by the presence of highly perfused benign pros-
tate hyperplasia (BPH). Another limitation is that most
patients underwent systematic instead of targeted biopsies.
Because of the preliminary nature of this study, only a limited
cohort size was available for the logistic regression analysis
comparing false-positive and true-positive lesions. Ideally,
cross-validation should be performed to test the predictive
performance against overfitting, which was not possible in
this dataset, and should be investigated in a larger dataset
with independent training and test sets.

In conclusion, RED appears to be a repeatable bio-
marker that may have value for PCa diagnosis. The optimal
intermediate 4 value for minimizing noise and maximizing
repeatability is between 150 and 250 s/mm”. These results
provide a solid basis for further investigation of the value of
RED in larger and more heterogeneous PCa cohorts, includ-
ing comparison with perfusion measurements from DCE-

MRI and IVIM models.
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