
Future Generation Computer Systems 96 (2019) 552–562

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Performance analysis ofmachine learning classifiers on improved
concept vector spacemodels
Zenun Kastrati ∗, Ali Shariq Imran
Norwegian University of Science and Technology, Norway

a r t i c l e i n f o

Article history:
Received 24 July 2018
Received in revised form 29 December
2018
Accepted 5 February 2019
Available online 18 February 2019

Keywords:
Document representation
CVS
iCVS
Document classification
Deep learning
Ontology

a b s t r a c t

This paper provides a comprehensive performance analysis of parametric and non-parametric machine
learning classifiers including a deep feed-forward multi-layer perceptron (MLP) network on two
variants of improved Concept Vector Space (iCVS) model. In the first variant, a weighting scheme
enhanced with the notion of concept importance is used to assess weight of ontology concepts. Concept
importance shows how important a concept is in an ontology and it is automatically computed by
converting the ontology into a graph and then applying one of the Markov based algorithms. In the
second variant of iCVS, concepts provided by the ontology and their semantically related terms are
used to construct concept vectors in order to represent the document into a semantic vector space.

We conducted various experiments using a variety of machine learning classifiers for three different
models of document representation. The first model is a baseline concept vector space (CVS) model
that relies on an exact/partial match technique to represent a document into a vector space. The
second and third model is an iCVS model that employs an enhanced concept weighting scheme
for assessing weights of concepts (variant 1), and the acquisition of terms that are semantically
related to concepts of the ontology for semantic document representation (variant 2), respectively.
Additionally, a comparison between seven different classifiers is performed for all three models using
precision, recall, and F1 score. Results for multiple configurations of deep learning architecture are
obtained by varying the number of hidden layers and nodes in each layer, and are compared to those
obtained with conventional classifiers. The obtained results show that the classification performance
is highly dependent upon the choice of a classifier, and that the Random Forest, Gradient Boosting,
and Multilayer Perceptron are among the classifiers that performed rather well for all three models.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The global Internet population has reached 3.8 billion in 2017
from 3.4 billion the year before, which is 47% of the world’s
population [1]. According to IBM [2], in 2013 the amount of
data produced was 2.5 quintillion when the Internet users were
around 2.7 billion only. The number is expected to grow in
coming years which means that the amount of data produced will
be tremendous. By 2020, it is estimated that around 1.7 MB of
data will be created every second for every person on earth.

The penetration of Internet of Things (IoT) and smart gadgets
to households and a huge amount of data produced every minute
as a result has created a need for better organization and struc-
turing of the data, which according to [3] is mostly unstructured.
Despite the computational resources available nowadays, orga-
nizing and structuring tremendous amount of data is not a trivial
task and without it, finding and extracting useful information
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from massive Internet resources is a challenge [4]. Nearly 3.87
million Google searches are conducted every minute of the day
by the users [1]. Finding relevant information for every query
from plethora of resources is a challenging task. For text-based
documents, ontology can play a vital role in this regard [5].

An ontology is a data representation techniques that not only
help better organize data but also help categorize and classify
data objects for easy search and retrieval. Many text document
classification approaches widely employ ontologies to classify and
organize text-based documents. A text document is generally
represented by a vector space model [6]. A vector space model
is a feature vector representation constructed by terms/words
occurring in a document and their corresponding weights. Each
term denotes a dimension in the vector space and it is indepen-
dent to other terms in the same document. This representation
technique is based on string literals and fail to consider order of
words and semantic relationships between them i.e. taxonomic
and non-taxonomic relations. In order to overcome these issues,
a conceptual space document representation emerged as a means
that takes advantages of using wide coverage of concepts and
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relations provided by ontologies. In a conceptual space repre-
sentation, a document is represented as a vector comprised of
concepts (rather than words) and their weights. Concepts are
identified and located in a document through a matching tech-
nique which links the terms appearing in that document with
the concepts in the ontology. In fact, the link between a term
t and a concept c is a mapping denoted by ⟨t, c⟩ in which
textual description defined in label of t is replaced with textual
description defined in label of c. The weights of concepts are
defined by counting the occurrences of the concepts within a
document i.e. concept relevance. Researchers in [7–12] have
widely used concept vector space model for document classifica-
tion. Even though this approach has proven useful for document
classification of many domains, it however has some limitations.
Two major limitations of this approach are: (1) it relies on the
exact technique in which a document is represented into vector
space using concept vectors built by mapping terms occurring
in a document with concepts appearing in a ontology, and (2)
weighting technique that treats all concepts equally important
regardless of where the concepts are depicted in the hierarchy
of an ontology [13]. The importance is not equal for all concepts
and it depends on relations of concepts with other concepts in
the ontology hierarchy. Concepts which have more relations with
other concepts are more important than the concepts which have
less relations [14].

These limitations are addressed in this paper by proposing an
improved concept vector space model in which

1. a weighting technique enhanced with the new concept
importance parameter is used to assess weight of ontology
concepts. The concept importance in our case is computed
automatically by first converting the ontology into an on-
tology graph and then implementing one of the Markov
based algorithms called PageRank. The obtained impor-
tance is then aggregated with the concept relevance in
order to achieve the final weight of that particular concept.

2. concept vectors used to represent the document into a
semantic vector space are constructed by using concepts
provided by the ontology through exact technique and by
acquiring terms that are related and can be attached to
concepts of that ontology.

The rest of the paper is structured as follows. Section 2 de-
scribes related work. Section 3 gives an overview of the proposed
architecture and presents a detailed description of our proposed
concept vector space model. Section 4 describes the concept
importance calculation procedure and presents the performance
of conventional and deep machine learning classifiers on the IN-
FUSE dataset for classifying funding documents in to five distinct
categories. Lastly, Section 5 concludes the paper and gives an
insight into the future work.

2. Related work

The field of document classification has attracted a lot of
attention in recent years, thereby resulting in a wide variety of
approaches. Depending on the vector space document represen-
tation model employed there are two main categories of these
approaches relevant to the classification task: (1) Keyword based
vector space approach, and (2) Concept (ontology) based vector
space approach.

The first approach relies on a set of terms (words) extracted
from the documents in the dataset. This approach has some limi-
tations as it does not consider the dependency between the terms
and it also ignores the order and the syntactic structure of the
terms in the documents. To overcome these limitations, concept
based vector space approach comes into effect. This approach

relies on a set of concepts taken from an ontology to derive the se-
mantic representation of documents. There is some research work
in which concepts exploited by ontologies are used for semantic
document representation. One example is presented in [15], in
which the authors introduced a classification approach that relies
on a document representation model constructed using concepts
gathered by a domain ontology. In particular, a domain ontology
for Health, Safety, and Environment for oil and gas application
contexts is used for classifying documents dealing with accidents
from the oil and gas industry. An extended version of classifica-
tion approach given in [15] is presented later in [9]. This extended
work proposed a classification approach that employs a semantic
document representation model that, besides concepts derived by
the ontology, uses a list of semantically related terms. Although
the approach presented in this paper is similar to our work, we
differ in the way of how we acquire semantically related terms.
An extraction technique that relies on semantic and contextual
information of terms is used in our approach to find and extract
the most semantically related terms instead of n-gram extraction
technique used in [9].

Concept vector space approach employs a weighting technique
for assessing weight of concepts that relies on the concept rele-
vance as a discriminatory feature for document classification. A
drawback of this weighting technique is that it considers all con-
cepts equally regardless of where in the hierarchy the concepts
occur. There have been some efforts to find concepts importance
depending on the position of concepts where they are depicted
in the hierarchy. For instance, researchers in [16] used three
different weights for concepts depending on the position where
they occur in the ontology hierarchy. The first weight was as-
signed to concepts which are occurring as classes, second weight
for concepts occurring as subclasses and the third weight for
concepts occurring as instances. The value of these weights is set
empirically through trial and error by conducting experiments.
The value of 0.2 is set for concepts which occur as classes, 0.5 for
concepts occurring as subclasses and 0.8 when concepts occur as
instances.

A slightly different approach of computing weights is imple-
mented in [17,18] where layers of ontology tree are used to
represent the position of concepts in the ontology. The weight of
each concept is then computed by counting the length of path
from the root node to the given concept. The same approach
of using layers for calculating weight values of concepts is used
in [19]. Path length is also used to compute the weight of concepts
but rather than considering all ontology concepts, only the leaf
concepts are used. The idea behind this approach is that more
general concepts, such as superclasses, are implicitly taken into
account through the use of leaf concepts by distributing their
weights to all of their subclasses down to the leaf concepts in
equal proportion.

The drawback of above presented approaches is that they
compute concepts’ weight either empirically through trial and er-
ror by conducting experiments thus keeping these weights fixed
or using the path length. Furthermore, the approach presented
in [19] uses only the top-level ontology for computing weights.
Our approach uses a Markov based PageRank algorithm to com-
pute the concept importance. The algorithm uses all concepts of
ontology and the importance of a concept is computed relative to
all other concepts in the ontology.

From classification perspective, studies presented above have
not established well the representation of documents which is
one of the main aspects that influences the performance of on-
tology based classification models. Documents are represented as
vectors containing relevance of the concepts that are gathered by
an ontology by searching only the presence of their lexicalizations
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Fig. 1. Architecture of the proposed classification model.

(concept label) in the documents. As a result of this, classifica-
tion models are limited to capture the whole conceptualization
involved in documents.

Another strand of research covers the work related to the use
of machine learning approaches for document classification. For
instance, the authors in [8] proposed a machine learning based
classification approach for understanding sentiment through dif-
ferentiating good news from bad news. This is achieved using a
vector space document representations learned by deep learning
and convolutional neural networks with a test accuracy of 85%.
Another example of using convolutional recurrent deep learning
model for classification is proposed in [7]. This approach is similar
to our work but our focus is on classification of documents
instead of sentences and we use feature vectors constructed by
concepts derived by an ontology.

3. Architecture of the proposed model

The main goal of the proposed model shown in Fig. 1 is
classification of image and textual documents using an improved
concept vector space which relies on semantically rich document
representations and an enhanced concept weighting scheme. An
image document in our case is a movie frame containing hand-
written lecture notes on the chalkboard extracted from a lecture
video employing image processing techniques while the textual

documents are financial documents that are stored in pdf format.
The model consists of seven main modules that are described in
the following subsections.

3.1. Text analysis module - TAM

The input of proposed classification model is a collection of
documents that can be stored either as unstructured textual data
or image. If the input is a document image, it initially goes
through a text analysis module called TAM to extract texts from
that image.

TAM module itself consists of three steps and preprocessing
is the very first one which ensures that the image has a readable
text. The readable quality of a text in a document image is mostly
affected by blocking and blurring artefacts as a result of com-
pression and denoising. These readable text issues are avoided
by using a metric designed for evaluating text quality called a
reference free perceptual quality metric (RF-PQM) [20]. The image
is then converted into binary format using Otsu technique [21]
and text regions are localized using a 4-connected component
based labelling approach as illustrated in Fig. 2.

The next step of TAM module is segmentation and extraction
of text lines from the connected components obtained as blobs
after localization followed by extraction of words using vertical
1-D projection histogram. We assume that the text documents
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Fig. 2. Labelling approach using 4 connected-components.

obtained at this stage are correct since the evaluation of TAM
itself is beyond the scope of this paper. Readers are therefore
advised to refer to [22] and [23] for full details on the TAM
module.

3.2. Preprocessing

This module takes as input text documents extracted from
the image documents in the TAM module and/or a collection
of documents stored in unstructured textual formats, e.g. Word,
PDF, Powerpoint slides, etc. These text documents undergo pre-
processing steps including morpho-syntactic analysis. The first
preprocessing step involved is tokenization in which the text is
split in small pieces known as tokens. Next, stop words and du-
plicate words are removed, and finally a stemming is performed
to normalize the retrieved words.

The output of this module is a collection of documents com-
posed of plain text with no semantics associated to them and it
is linked directly to the concept extraction module in order to
embed semantics into those text documents.

3.3. Concept extraction

Concept extraction module concerns with construction of fea-
ture vectors. A feature vector is an n-dimensional vector com-
prised of concepts provided by domain ontologies so as to make
a move from the keyword-based vector representation towards
the semantic-based vector representation. To achieve this step
toward semantic representation, we primarily need to associate
terms extracted from documents with concepts of the ontology.
Terms are located and extracted from documents using a Lucene
inverted indexing technique which generates a list of all unique
terms that occur in any document and a set of documents in
which these terms occur. The extracted terms are stemmed using
a stemming method. Further, noisy terms, i.e terms with single
character, are removed from the list of extracted terms. The
extracted terms are associated with the concepts of the ontology
using: (1) the matching method in which terms appearing in
a document are mapped with the relevant concepts from the
domain ontology, and (2) acquisition of relevant terminology that
is semantically related and can be attached to concepts of that
domain ontology.

The matching method [12] follows the idea of searching for
concepts in the domain ontology that have labels matching either
partially or exactly/fully with a term occurring in a document.
To put it simply, each term identified and located in a document
is searched in the domain ontology, and if an instance term
matches its concept label than term is replaced with the concept.
Concept labels are considered all lexical entries and lexical vari-
ations contained in a concept. The obtained concepts are used
to construct concept vectors. An exact match is the case where
a concept label is identical with a instance term occurring in
the document. A partial match is the case when concept label
contains a term occurring in the document. The exact and partial
match is formally defined as following.

Definition 1. Let Ont be the domain ontology and let D be
the dataset composed of documents of this given domain. Let
Doc ∈ D be a document defined by a finite set of terms Doc =

{t1, t2, . . . , ti}. Mapping of term ti ∈ Doc into concept cj ∈ Ont is
defined as:

EM(ti, cj) =

{
1, if label (cj) = ti
0, if label (cj) ̸= ti

PM(ti, cj) =

{
1, if label (cj)contains ti
0, if label (cj)does not contain ti

where, EM and PM denote exact match and partial match, respec-
tively.

If EM(ti, cj) = 1, it means that term ti and concept label cj are
identical, then term ti is replaced with concept cj. For example, for
a concept in the ontology such as Organization or Call as shown in
Fig. 3, there exists an identical term that appears in the document.

If PM(ti, cj) = 1, it means that term ti is part of concept
label cj, then term ti is replaced with concept cj. For example,
the ProjectFunding compound ontology concept shown in Fig. 3,
contains terms that appears in the document such as Project
and/or Funding.

Extraction of concepts through acquisition of relevant termi-
nology that is related and can be attached to ontology concepts
is a more complex task which is achieved through exploitation of
both contextual and semantic information of terms occurring in
a document.

Contextual information of a term is defined by its surrounding
words and it is computed using Eq. (1).

Context(ti, tj) =
ti · tj

∥ti∥∥tj∥
(1)

The vectors, ti and tj, are composed of values derived by three
statistical features, namely, term frequency, term font types, and
term font sizes, respectively. Different font types, i.e. bold, italic,
underline, and font sizes, i.e. title, level 1, level 2, are introduced to
derive the context. In our case, values of these statistical features
are extracted from input pdf documents using Apache PDFBox
library, that is, an open source Java library which allows creation
of new pdf documents, manipulation of existing documents and
the extraction of content from documents.

Semantic information of a term is calculated using a semantic
similarity measure based on the English lexical database Word-
Net. Wu&Palmer similarity measure [24] is employed to compute
a semantic score (Eq. (2)) for all possible pairs of terms ti and tj
occurring in a document.

Semantic(ti, tj) =
2 ∗ depth(lcs)

depth(ti) + depth(tj)
(2)

Parameter, depth(lcs) shows the least common subsumer of terms
ti and tj, and parameters depth(ti) and depth(tj) show the path’s
depth of terms ti and tj, in the WordNet.

Combination of contextual and semantic information gives an
aggregated score as shown in Eq. (3).

AggregatedScore(ti, tj) = λ∗Context(ti, tj)+(1−λ)∗Semantic(ti, tj)

(3)

where, λ is set to 0.5 showing an equal contribution of context
and semantic components on the aggregated score.

Aggregated score through a rank cut-off method is used to
acquire terms that are related to concepts of the ontology. More
concretely, terms that are above the specified threshold (top-N)
are considered to be the relevant terms.
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Fig. 3. A part of INFUSE ontology graph.

3.4. Domain ontology

This module covers domain ontology which interfaces Term-
to-Concept mapper component in the concept extraction module
and the weighting scheme module. A domain ontology is a data
model which represents concepts and relations between them in
a given domain. An ontology structure is formally represented by
a 5-tuple [25], as shown in Eq. (4).

Ont := (C, R,HC , rel, A) (4)

where,

• C is a set of concepts, e.g. Funding, Call;
• R is a set of relations, e.g. announces, promotes;
• HC is a hierarchy or taxonomy of concepts with multi-

ple inheritance, e.g. ProgrammeFunding is a Funding and
FinanceProgramme is a ProgrammeFunding;

• rel is a set of non-taxonomic relations which are described
by their domain and range restrictions, e.g. isReceivedBy,
appliesFor;

• A is a set of ontology axioms, expressed in an appropriate
logical language, which describe additional constraints;

The ontology definition shown in Eq. (4) can be domain spe-
cific by defining a lexicon which is a 3-tuple Lex := (L,F, G)
consisting of a set of lexical entries L for concepts and relations,
and two sets F and G that link concepts and relations with their
lexical entries.

3.5. Weighting scheme

The weight of a concept is a numeric value which is assigned
to each concept in order to assess its power in distinguishing a
particular document from others. A technique used to compute
the weight of concepts is known as concept weighting scheme.
There exist various weighting schemes that typically rely on the
relevance of concepts reflected by frequency of occurrences of
concept’s lexicalizations within a document. In this module we
present an enhanced concept weighting scheme which besides
concept relevance, introduces a new parameter called concept
importance that reflects the contribution of a concept in the
ontology. Concept importance is processed offline and it involves
the following steps: (1) mapping the domain ontology into an
ontology graph, (2) applying Markov based algorithms, and (3)
calculation of concept importance and aggregation with concept
relevance.

The first and the foremost step of this module is to convert the
domain ontology described in Section 3.4 into an ontology graph
for calculating concept importance. To achieve this, we adopt a
model where the ontology is represented as a directed acyclic
graph. The modelling is an equivalent mapping which means
that an ontology concept is mapped into a graph vertex and an
ontology relation into a graph edge which connects two vertices.
The formal definition of this graph, known as ontology graph, is
given as follows.

Definition 2. Given a domain ontology Ont , the ontology graph
G = {V , E, f } of Ont is a directed acyclic graph, where V is a finite
set of vertices mapped from concepts in Ont , E is a finite set of
edge labels mapped from relations in Ont , and f is a function from
E to V × V .

In Fig. 3, we present part of the INFUSE ontology graph which
consists of a subset of concepts and relations from the funding
domain. The details of the INFUSE ontology are given in Section 4.

In the semantic web, a formal syntax for defining ontologies is
Web Ontology Language (OWL) and Resource Description Frame-
work (RDF) Schema. These languages represent the ontology as
a set of Subject–Predicate–Object (SPO) expressions known as
RDF triples. The set of RDF triples is known as RDF graph where
subject is the source vertex and object is the destination vertex,
and predicate is a directed edge label which links those two
vertices. The formal definition of RDF graph is given as following.

Definition 3. Given a set of RDF triples T , the RDF graph G =

{V , E, f } of T is a directed acyclic graph, where V is a finite set
of vertices (subjects and objects) in G defined as V = {vu : u ∈

(S(T ) ∪ P(T ))}, E is a finite set of edge labels (predicates) in G
defined as E = {eSPO : SPO ∈ T }, f is a function linking subject
S to an object O by an edge E defined as f = {fP : fP = VS →

VO, VS, VO ∈ T }

The ontology graph and RDF graph are not the same for a given
ontology. The difference is that a relation in an ontology graph
is defined as a vertex in the RDF graph. For example, relation
isReceived in ontology graph shown in Fig. 3 is represented as a
vertex in RDF graph, as shown in Fig. 4. In other words, a relation
in RDF graph is a link between a subject denoted by rdfs:domain
property and an object denoted by rdfs:range property as given in
Definition 3.

The next step is computation of the importance of vertices
of the graph using an adoption of the Markov based algorithms.
The graph can be either ontology graph or RDF graph as defined



Z. Kastrati and A.S. Imran / Future Generation Computer Systems 96 (2019) 552–562 557

Fig. 4. An example RDF graph representation.

above. The idea behind Markov based algorithms is representing
the graph as a stochastic process, more concretely as a first-
order Markov chain where the importance for a given vertex is
defined as the fraction of time spent traversing that vertex for
an infinitely long time in a random walk over the vertices. The
probability of transitioning from a vertex i to a vertex j is only
dependent on the vertex i and not on the path to arrive at vertex
j. This property, known as the Markov property, enables the
transition probabilities to be represented as a stochastic matrix
with non-negative entries and the maximum probability of 1.

In this paper, we use PageRank [26] algorithm as one of
the most well known and successful example of Markov based
algorithms [27].

A simplified principle of work of PageRank algorithm is as
follows. It initially defines the importance of a vertex i as given
in Eq. (5).

PR(i) =

∑
j∈Vi

PR(j)
Outdegree(j)

(5)

where, PR(j) is the importance of vertex j, Vi is the set of vertices
that links to vertex i, and Outdegree(j) is the number of vertices
that have outlinks from vertex j.

As we can see from Eq. (5), the PageRank is an iterative
algorithm. It assigns an initial importance to a vertex i as shown
in Eq. (6).

PR(0)(i) =
1
N

(6)

where, N is the total number of vertices in the graph. Then
PageRank iterates as per Eq. (7) and continues to iterate until a
convergence criterion is satisfied.

PR(k+1)(i) =

∑
j∈Vi

PR(k)(j)
Outdegree(j)

(7)

The process can also be defined using the matrix notation.
Let M be the square, stochastic transition probabilities matrix
corresponding to the directed graph G, and Imp(k) is the Im-
portance vector at the kth iteration. Then the computation of
one iteration corresponds to the matrix–vector multiplication as
shown in Eq. (8).

PR(k+1)
= M ∗ PR(k) (8)

The entry of transition probability matrix M, for a vertex j
which links to vertex i, is defined using Eq. (9).

pi,j =

{ 1
Outdegree(j) , if there is a link from j to i
0, otherwise

(9)

There are two properties that are necessary to be satisfied in
order for a Markov based algorithm to converge. It should be
aperiodic and irreducible [28]. The transition probability matrix
M is a stochastic matrix with probability 1 and this makes the
PageRank algorithm aperiodic. The PageRank algorithm is not
irreducible due to the definition given in Eq. (9), where some
of the transition probabilities in matrix M may be 0. This does
not meet the criteria of irreducibility property which requires the
transition probabilities to be greater than 0.

To make the PageRank algorithm irreducible in order to con-
verge, a damp factor 1−α is introduced. As a result of this, a new

Table 1
An example of building concept vector space.

Doc GeographicalArea Applicant

Imp Rel w Imp Rel w

d1 0.130 0.797 0.104 0.020 0.797 0.016
d2 0.130 0.624 0.081 0.020 0.624 0.012
d3 0.130 0.000 0.000 0.020 0.860 0.017

transition probability matrix M∗ is defined where a complete set
of outgoing edges with probability α/N are added to all vertices
in graph. The definition of matrix M∗ is given in Eq. (10).

M∗
= (1 − α)M + α

[
1
N

]
N×N

(10)

The damp factor besides enabling the PageRank algorithm to
converge also overcomes the problem of rank sinks [28].

Replacing M∗ with M in Eq. (8), the PageRank algorithm is
defined as given in Eq. (11).

PR(k+1)
= (1 − α)M × Pr (k) + α

[
1
N

]
N×N

(11)

Finally, concept importance is defined as given in Eq. (12).

Imp(ci) = PR(k+1) (12)

The final step of this module is aggregation of concept impor-
tance and concept relevance to compute weight of concepts. The
value of a concept weight is in the range of [0,1] because both
concept importance and concept relevance are normalized.

w(ci) = Imp(ci) × Rel(ci) (13)

Concept importance Imp is computed using Eq. (12) described
above, while concept relevance Rel is computed using Eq. (14).

Rel(ci) =

m∑
i=1

Freq(ci) (14)

where, Freq(ci) is the frequency of occurrences of lexicalizations
of concept ci in the document to be classified.

3.6. Document representation

The output of both modules, concept extraction and weighting
scheme, will serve as an input to semantic document represen-
tation module for representing a document. More concretely,
concepts obtained from concept extraction module and their
weights computed through weighting scheme module are used
to represent a document in a vector space as defined in Eq. (15).

Doc = {(c1, w1), (c2, w2), (c3, w3), . . . , (ci, wi)} (15)

where ci is the ith concept obtained from concept extraction
module and wn is its weight computed from weighting scheme
module.

Table 1 illustrates an example of semantic document repre-
sentation through a vector space that is constructed by using
concepts (GeographicalArea and Applicant) and their weights com-
posed of two components, Importance (Imp) and Relevance (Rel),
as described in Section 3.5.

3.7. Document classification

The last module of proposed model deals with classification
of documents into appropriate categories using conventional ma-
chine learning classifiers and deep learning. In essence, a docu-
ment represented via concept vector space is fed into the classi-
fier to build a prediction model that can be used to classify a new
unseen document.
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Table 2
Concept importance for the top ten concepts of the INFUSE ontology.
No Concept Concept importance

1 Coverage 0.20
2 GeographicalArea 0.13
3 Topic 0.11
4 County 0.07
5 Participant 0.06
6 Programme 0.05
7 Organization 0.05
8 Funding 0.05
9 Applicant 0.04
10 Candidate 0.04

4. Results and analysis

This section describes the calculation of concept importance
of a real-world ontology. It also gives a description of the dataset
used to perform the experiments for demonstrating the appli-
cability of our proposed document representation models. Fi-
nally, it provides a thorough comparison of document classifica-
tion results achieved using both conventional machine learning
techniques and deep networks.

4.1. Concept importance calculation

A real-world domain ontology called INFUSE ontology is used
for computing concept importance. This ontology is developed
as part of the INFUSE1 project and it comes from the funding
domain. It is composed of 85 concepts, e.g. Funding, GrantSeeker
and 18 object properties, e.g. isGivenBy, appliesFor, that connect
these concepts. A part of INFUSE domain ontology represented as
an ontology graph is shown in Fig. 3.

To convert the ontology into an ontology graph and compute
the concept importance, we have used the RDF rank algorithm.
This algorithm is part of the extensions module of GraphDB [29]
and it computes the importance for every vertex in the entire RDF
graph. Table 2 shows the concept importance values of the top
ten concepts of the INFUSE ontology. The concept importance is
a floating point number with values varying between 0 and 1.

Fig. 5 shows the concept importance values in ranking order
after having computed them for all the concepts of the INFUSE
ontology. As can be seen from the chart diagram, the concept
importance is different for different concepts, varying from 0.2–
0.02 for almost half of the concepts set, while for the rest of the
concepts it is 0.01. These findings confirm the idea that the contri-
bution of ontology concepts in terms of concepts’ discriminating
power is different and thus some concepts are more important
than the others with respect to document classification.

4.2. Performance evaluation of baseline CVS and iCVS

In order to demonstrate the general applicability of our pro-
posed classification model and to validate its effectiveness, exten-
sive experiments using various classifiers are conducted on the
INFUSE dataset.

The INFUSE dataset consists of 467 grant documents that had
been collected and classified into 5 categories by field experts
as part of the INFUSE project. The dataset is split randomly, in
which 70% of the documents are used to build the classifier and
the remaining 30% to test the performance of the model. The
number of documents in each category varied widely, ranging
from the Society category which contains 165 documents to the
Music category which contains only 14 documents. Table 3 shows

Fig. 5. Concept importance for all concepts of the INFUSE ontology.

Table 3
Dataset size.
No Category # Train # Test Total

1 Culture 102 44 146
2 Health 73 32 105
3 Music 10 4 14
4 Society 115 50 165
5 Sportssociety 26 11 37

6 Total 326 141 467

five categories along with the number of training and testing
documents in each category.

Parametric and nonparametric machine learning techniques
are used for experimenting. A parametric machine learning tech-
nique assumes that the data can be parameterized by a fixed
number of parameters. In essence, the statistical model of para-
metric techniques is specified by a simplified function through
two types of distributions, namely, the class prior probability, and
the class conditional probability density function (posterior) for
each dimension. On the contrary, a nonparametric machine learn-
ing technique assumes no prior parameterized knowledge about
the underlying probability density function and the classification
uses the information provided by training samples alone.

Naive Bayes is a parametric machine learning technique ap-
plied for classification in this paper, while nonparametric tech-
niques applied in this paper include Decision Tree and Random
Forest. We also have chosen to use Support Vector Machine (SVM)
for classification that can be either parametric or non-parametric
technique. Linear Support Vector Machine contains a fixed size of
parameters represented by the weight coefficient and thus it be-
longs to the parametric techniques. On the other side, Non-linear
Support Vector Machine is a non-parametric technique and Radial
Basis Function Kernel Support Vector Machine, known as RBF
Kernel SVM, is a typical example of this family. In addition, we
have applied two boosting techniques, namely Gradient Boosting
and Ada Boosting, which grant power of ensemble classifiers that
generate multiple predictions and majority voting among the
individual classifiers.

Additionally, a Multilayer Perceptron (MLP) is used in this
study. An MLP is a feed-forward Artificial Neural Network (ANN).
The artificial neurons in the network compute a weighted sum
of its inputs xi, adds a bias b, and applies an activation function.
A simple ANN is represented as: y = f (wxi + b), where w is
the weigh and f is the activation function. Most commonly used
activation functions are sigmoid, which is σ (z) = 1/(1+ e−z) and
rectified linear units which is ReLU(z) = max(0, z). The weight

1 https://www.eurostars-eureka.eu/project/id/7141.

https://www.eurostars-eureka.eu/project/id/7141
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Table 4
Performance of conventional ML techniques using baseline CVS.
Technique Precision (%) Recall (%) F1 (%)

Naive Bayes 67.24 60.99 61.90
Decision Tree 66.10 66.40 65.50
Random Forest 77.69 77.30 77.25
SVM 81.73 77.30 78.85
Gradient Boosting 82.99 82.26 82.58
Ada Boosting 58.61 53.90 54.69

and bias terms are estimated by training the network on the
observable data to minimize the loss using cross-entropy or mean
square error. In an MLP, the neurons are structured into layers.
These layers are fully-connected which implies that every neuron
in one layer is connected to every neuron in the adjacent layer.
The input and the output layers are the visible layers in the
network while a network may contain multiple hidden layers.
Normally, a network containing more than one hidden layer is
known as a deep neural network.

The standard information retrieval measures such as precision,
recall and F1 measure, are used to evaluate the performance of
the document classification. Precision is the number of docu-
ments which are classified correctly with respect to all classified
documents. It is given as: tp/(tp+fp). Recall is the number of clas-
sified documents with respect to the total number of documents
in the dataset. Recall is defined as: tp/(tp + fn), where tp, tn, and
fn are true positive, true negative, and false negative samples. F1
measure is the harmonic mean of precision and recall and it is
defined as: 2((precision ∗ recall)/(precision + recall)).

Best results are obtained on the conventional machine learn-
ing techniques for following configurations. For the Bayesian
classifier, a Gaussian NB is used whereas for SVM, a radial basis
function (RBF) kernel SVM is used. A value of 0.001 is used for
gamma which describes how much influence a single training
sample has, and a maximum value is set for the regularization
parameter c. The depth of the tree for RF classifier is set to 10
which gave best results. For all other parameters of the classi-
fiers, default configurations are used. For deep learning based
MLP architecture, multiple simulations consisting of L × N are
carried out by varying the number of hidden layers L and the
number of neurons N in each layer, where L = {3, 5, 7}, and
N = {64, 128, 256, 512, 1024}. Fig. 6 shows the total number of
trainable parameters for a 5-hidden layer MLP containing 1024
neurons in each layer. The input to the network shown is 323 size
concept vector for iCVS variant 2. Relu is applied as the activation
function, adam is used as the optimizer, while the learning rate
α is set to 1e−3. A softmax function is applied at the last layer to
convert the likelihood of a test sample belonging to one of the 5
classes.

Three different models of vector space document represen-
tation are used to test the classifiers. In the first model called
baseline CVS, we conducted a document classification experiment
on the INFUSE dataset in which an exact/partial match technique
is employed to match term occurring in a document with relevant
concepts of the ontology to build concept vectors for representing
documents into vector space. Precision, recall, and F1 results
obtained from six conventional Machine Learning techniques and
a deep MLP with different number of hidden layers and neurons
are shown in Tables 4 and 5, respectively. As can be seen from the
results, Gradient Boosting classifier shows the best performance
compared to other conventional classifier achieving a 82.58% of
weighted F1 score. On the other hand, MLP with 3 hidden layers
and 1024 neurons in each layer outperforms other deep network
achieving an F1 score of 80.02%.

In the second experiment, we performed document classifica-
tion using the same classifiers on the same corpus of documents

Table 5
Performance of MLP using baseline CVS.
# of hidden layers # of neurons Precision (%) Recall (%) F1 (%)

3

64 79.32 78.72 78.47
128 77.80 78.01 77.89
256 77.05 77.30 77.08
512 79.75 79.43 79.07
1024 80.13 80.14 80.02

5

64 78.11 78.01 77.50
128 78.29 78.01 77.96
256 75.21 74.46 74.36
512 77.21 76.59 76.64
1024 77.87 77.30 77.24

7

64 77.99 78.01 77.77
128 77.93 77.30 77.40
256 76.53 75.58 75.89
512 75.00 73.75 73.92
1024 78.73 76.59 76.90

Table 6
Performance of conventional ML techniques using iCVS variant 1.
Technique Precision (%) Recall (%) F1 (%)

Naive Bayes 66.63 53.90 57.73
Decision Tree 69.10 70.00 68.80
Random Forest 84.54 80.85 82.07
SVM 66.65 53.19 56.64
Gradient Boosting 83.06 81.56 82.14
Ada Boosting 61.72 60.28 60.33

Table 7
Performance of MLP using iCVS variant 1.
# of hidden layers # of neurons Precision (%) Recall (%) F1 (%)

3

64 72.84 73.04 72.77
128 67.40 69.50 68.22
256 71.86 70.92 71.29
512 73.69 73.75 73.55
1024 73.35 73.04 72.81

5

64 70.33 69.50 69.53
128 72.65 73.04 72.77
256 72.16 72.34 72.16
512 68.30 68.79 68.23
1024 73.14 73.04 72.82

7

64 66.55 68.08 66.46
128 67.79 69.50 68.30
256 76.82 76.59 76.64
512 77.10 75.17 75.87
1024 73.48 73.75 73.47

from the INFUSE dataset, but employing the second model of
document representation. The second model called iCVS vari-
ant 1 is an enhanced concept weighting scheme that is used
for assessing weight of concepts of the ontology. Six different
conventional Machine Learning techniques, and a Multilayer Per-
ceptron with different number of hidden layers and different
number of neurons per layer, are used for classification and the
obtained results are shown in Tables 6 and 7, respectively. As
with baseline CVS model, the obtained results using iCVS variant
1 show that Gradient Boosting classifier achieved the highest
improvement compared to other conventional machine learning
and deep learning techniques. In the context of deep networks,
the best performance is achieved by an MLP architecture with
7 hidden layers and 256 neurons per layer with an F1 score of
76.64%,.

iCVS variant 2 model is also evaluated in a similar fashion.
In this model, concept vectors for representing documents into
vector space are build through acquisition of new terms that
are semantically related and can be attached to concepts of the
ontology. In our case, for each concept of the INFUSE ontology
we used only the top-5 terms found as relevant in terms of
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Fig. 6. Model summary for a 5-hidden layer MLP architecture for 323 concept input vector size with 1024 neurons.

Table 8
Performance of conventional ML techniques using iCVS variant 2.
Technique Precision (%) Recall (%) F1 (%)

Naive Bayes 67.02 65.95 65.28
Decision Tree 79.20 77.90 76.70
Random Forest 77.04 74.46 75.06
SVM 85.66 83.68 84.11
Gradient Boosting 84.35 83.68 83.96
Ada Boosting 69.79 60.99 62.56

Table 9
Performance of MLP using iCVS variant 2.
# of hidden layers # of neurons Precision (%) Recall (%) F1 (%)

3

64 85.05 85.10 84.98
128 80.12 80.14 79.55
256 79.04 79.43 78.79
512 81.47 81.56 81.29
1024 81.68 82.26 81.80

5

64 80.11 80.85 80.11
128 78.07 79.43 78.06
256 80.76 80.85 80.34
512 78.79 78.72 77.82
1024 78.42 79.43 78.58

7

64 77.68 78.01 77.21
128 80.76 80.85 80.47
256 77.50 77.30 77.17
512 82.99 83.68 83.07
1024 81.69 82.26 81.57

relatedness. For example, terms fund, amount, part, subsistence,
and grant, are the top-5 terms that are found to be the most
semantically related terms with ontology concept funding. The
performance of document classification, in terms of precision,
recall and F1 measure, achieved by six conventional Machine
Learning techniques and a Multilayer Perceptron with different
number of hidden layers and neurons, is given in Tables 8 and 9,
respectively. As can be seen from the results shown in Tables 8
and 9, the best performing classifier is an MLP having three
hidden layers and 64 neurons in each layer with an F1 score of
84.98% which is slightly better than SVM with an F1 score of
84.11%.

A side by side comparison is illustrated in Fig. 7 for three mod-
els. The figure presents a complete picture of the performance
of conventional machine learning and deep learning techniques
on the INFUSE dataset for the proposed models. The bar chart
shows the weighted F1 score obtained by conventional machine
learning, namely Naive Bayes (NB), Decision Tree (DT), Random
Forest (RF), Support Vector Machine (SVM), Gradient Boosting

Fig. 7. F1 measure of different classifiers using exact/partial match (baseline
CVS), enhanced weighting scheme (iCVS variant 1), and acquisition of related
terms (iCVS variant 2).

(GB), and Ada Boosting (AD), and a Multilayer Perceptron (MLP)
with 3 hidden layers and 64 neurons per layer, tested on three
different models of document representation.

As can be seen from the results shown in Fig. 7, a higher
weighted classification F1 score is achieved by all classifiers using
iCVS variant 2. An exception is Random Forest that gives slightly
worse classification performance than other classifiers. Random
Forest is an ensemble method that employs the same decision
tree classifier on different training sets generated using the boot-
strap sampling method. In a bootstrap sampling, a new training
set is created by taking data from the original training set, thus
some data may be used several times to construct the forest and
others not at all. This may be one of the reasons that this classifier
performs worse.

It is also interesting to note from Fig. 7 that in general MLP
classifier outperforms all conventional machine learning classi-
fiers achieving a classification F1 score of 84.98%. On the other
hand, the worst performance is shown by Naive Bayes classifier
which may have happened due to the imbalanced classes of
the INFUSE dataset. Imbalanced classes may result in biasing
of the classifier towards the majority of the class and thus the
performance of Naive Bayes classifier can quickly turn poor.

An interesting fact that also can be observed from the bar
chart shown in Fig. 7 is that iCVS variant 1 model has different
impact on the performance of classifiers. While nonparametric
and boosting machine learning techniques demonstrate a posi-
tive impact on document classification using an iCVS variant 1,
parametric and MLP show a negative impact on classification
performance giving worse accuracy.
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5. Conclusion and future work

In this paper, we have investigated and analysed the document
classification performance using a concept vector space model
improved with new concept weighting scheme, and semantic
document representation. Concept weighting scheme is enhanced
with new parameter that takes into account the importance of
ontology concepts. Concept importance is computed automati-
cally and this is achieved by converting the ontology into a graph
and then employing the PageRank algorithm on it. Importance of
an ontology concept is then aggregated with concept relevance
which is computed using the frequency of appearances of a con-
cept in the document. A semantic representation of document is
achieved using concepts derived from ontology through matching
technique and acquisition of new terms that can be semantically
related with ontology concepts.

We conducted various document classification experiments on
three models of document representation i.e. baseline CVS model
and iCVS model with two variants. Additionally, a comparison be-
tween seven different classifiers is performed for all three models
using precision, recall, and F1 score. For all three models, Random
Forest, Gradient Boosting, and Multilayer Perceptron, performed
rather well. Furthermore, a thorough investigation is carried out
to evaluate the performance of MLP by varying the number of
hidden layers and the number of neurons in each layer. A three
hidden layer MLP with 64 neurons achieves higher classification
performance compared to other architecture configurations.

Generally, iCVS variant 1 employing an enhanced weighting
scheme used for assessing weights of concepts did not add much
to the overall performance except for Random Forest which gave
better results employing baseline CVS and iCVS variant 2 with an
F1 score of just over 81%. Our findings showed that adding more
concepts to ontology improves the classification performance by
4.78 percentage point on average in all cases, however, it is com-
putationally expensive due to a large number of feature vectors.
The classification performance is also highly dependent upon the
choice of a classifier and we can achieve the same performance
on the iCVS model (variant 1 and variant 2) with Random Forest
and Gradient Boosting classifier.

Investigation and analysis of classification performance is done
on real-world ontology and dataset consisting a small number of
documents, so in future work we plan to conduct a performance
analysis in a large-scale dataset. We also plan to implement
and test other Markov based algorithms for computing concept
importance as fundamental part of concept weighting scheme
and compare those techniques with the PageRank algorithm.

Furthermore, the primary focus of our study was address-
ing two major concept vectors limitations namely exact match-
ing and weighting scheme by proposing an improved concept
vector space model. However, our proposed approach does not
handle another concept vectors limitation which is ontological
relationships. Future studies on the current topic are therefore
suggested in order to establish representation of documents in
which concept vectors can be redefined to consider the various
relationships that exist in an ontology.
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