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Abstract—Software Defined Networking aims to separate net-
work control and data plane by moving the control logic from
network elements into a logically-centralized controller. Using a
well-defined, unified control-channel protocol, such as OpenFlow,
the controller is able to configure the forwarding behavior of
data plane devices. Here, the OpenFlow protocol is translated
to vendor- and device-specific instructions that, for instance,
manipulate the flow table entries of a switch. In practice, SDN-
enabled switches often feature different hardware capabilities
and configurations with respect to the number of flow tables,
their implementation, and which kind of data plane features
they support. This leads to device heterogeneity within the
SDN landscape, thereby obstructing the increased scalability and
flexibility promised by the SDN paradigm. To overcome this
challenge we propose TableVisor, a transparent proxy-layer for
the SDN control channel that enables the flexible abstraction
of heterogeneous data plane devices into a single emulated data
plane switch. In this paper, we extend our previous work by
introducing features to integrate modern P4 devices into an
existing SDN environment and perform a detailed performance
evaluation to quantify the overhead induced by our approach.

Index Terms—Software-defined networks, data plane abstrac-
tion, programmable hardware, p4

I. INTRODUCTION

SDN-enabled switches often feature different hardware ca-
pabilities and configurations with respect to the number of
flow tables, their implementation, and which kind of data
plane features they support [1], [2], [3], [4], [5], [6]. From
the perspective of SDN application developers, the lack of
devices that cover all required capabilities on their own is
especially challenging, as the manual partitioning of workload
on multiple devices requires extra care. Assume a switch with
a total TCAM capacity of N entries and a maximum number
of M flow tables. Regardless of potential optimizations, both
N and M are constrained numbers and the control plane runs
into a bottleneck if more than N rules need to be installed or
more than M flow tables are required.

A common way for developers to deal with this problem is
creating explicit mitigation strategies for missing capabilities
or bottlenecks based on resources from multiple devices. This
however, is a redundant, complex and time-consuming task,
which leads to additional development effort and costs in
the best case, and to feature abandonment and prevention of

innovation in the worst. These issues, in return, lead to longer
development times and release cycles which adversely affect
the adoption of SDN as a mainstream technology.

TableVisor addresses the problem of missing or limited
capabilities by creating a pool of multiple physical hardware
devices and exposing an emulated single switch with extended
capabilities towards the control plane. This emulated device
can then leverage the functionality provided by TableVisor to
alleviate the mismatch between control plane requirements and
data plane capabilities. At the same time, TableVisor is able
to translate between different control channel protocols and
is thus able to incorporate hardware devices into the network
that could otherwise not be controlled centrally.

This functionality not only enables new, more complex use
cases in the context of softwarized networks, but primarily
enables rapid prototyping during application development and
allows researchers without access to often expensive, bleeding-
edge hardware to experiment with emulated devices featuring
state-of-the-art capabilities. Hence, the main focus of Table-
Visor is to be used as a tool for application development and
research activities, while the deployment in live environments
is certainly feasible, as our performance evaluation shows.

The TableVisor concept was originally proposed in [7] and
has previously been extended in [8]. This paper extends our
previous work on TableVisor to further increase its flexibility
and enable use cases beyond hardware accelerated, fully-
featured multi-table processing. To this end, we investigate
the applicability of our approach in combination with pro-
grammable data plane devices and extend the feature-set of
TableVisor to enable the translation between different control-
channel protocols. We present a mechanism that allows the
integration of non-OpenFlow capable devices, such as propri-
etary P4 hardware, into existing softwarized networks without
the need for a major redesign.

We implemented two example use cases, effectively creating
a low cost MPLS label edge router based on a programmable
P4 device as well as a multi-stage ACL device using a com-
bination of widely available single table OpenFlow switches.
Furthermore, we present a detailed measurement study regard-
ing the performance of our approach and discuss its impact
on the performance of SDN-enabled networks. We show that



our approach induces a constant, minor overhead when used
with hardware devices and thereby presents a viable solution
to extending device capabilities and rapid prototyping during
application development and emulation state-of-the-art devices
for research purposes. The main contributions of this paper are:

• Introduction of control channel translation to allow the
transparent integration of P4 hardware devices into exist-
ing softwarized networks.

• Presentation and implementation of real world examples
introducing MPLS support to standard SDN switches as
well as realizing multi table processing using widely
available single table switches.

• Performance evaluation of the TableVisor approach, prov-
ing the viability of the proposed concept.

II. BACKGROUND AND RELATED WORK

Many SDN applications rely on sophisticated packet pro-
cessing and advanced pipelining. Examples include source ad-
dress validation [9], d-dimensional packet classification [10],
wildcard rule caching [11], controller modularization or hier-
archical network management [12]. The available hardware,
on the other hand, does not necessarily support all required
capabilities. We call this phenomenon a “mismatch” between
control plane requirements and data plane capabilities (first
introduced in [8]).

There are different approaches to deal with this problem.
The easiest solution is to just buy devices that provide the
required capabilities or use devices with high overall flexi-
bility. Programmable switches in combination with OpenFlow
or P4 are promising candidates here. Another, more realis-
tic, approach is to accept – and maybe even encourage –
heterogeneous infrastructures and then hide the heterogeneity
with unified and silicon-independent APIs. P4 Runtime is
a promising recent development that does exactly that. And
finally, there are various works that try to improve flexibility
and scalability of switches themselves, e.g., with respect to
pipeline processing (see Table I). There are, however, two
fundamental problems that cannot be solved with just unified
APIs or improved switches: the conceptual limits of flexibility
and the resource constraints of individual devices.

A. Conceptual Limits of Flexibility

From our view, it is not likely that current (or future)
device generations provide sufficient flexibility in the long
run. Various enhancements to the OpenFlow protocol and
corresponding devices – the last generation so to speak
– clearly demonstrate this. [13] extended the match-action
abstraction to support autonomous stateful decision making.
[14] added a new API to allow autonomous generation of
packets. [15] proposed approximation techniques to enable
application of otherwise excessive data plane procedures. [16]
tackled the problem of slow flow table entry installation. Even
more important: completely new control plane requirements
may emerge that cannot be realized with a new configuration
file, pipeline template or firmware update, e.g., in-network
support for distributed machine learning and time-sensitive

networking [17]. As a result, it is simply not realistic to control
every possible device with a unified API such as P4 Runtime,
especially if we are talking about devices with bleeding-edge
capabilities often used in the research community.

Instead, we need a way to efficiently deal with different
existing control channel protocols. The proxy-layer archi-
tecture of TableVisor in conjunction with the new protocol
translation concept introduced in this paper is a first step
in this direction. The method of transparently processing
OpenFlow messages is not particularly new. Similar techniques
are used for network virtualization [18], [19], [20], to realize
hypervisor functionality [21], to inter-operate with non-SDN
legacy network equipment [22] or to transparently deal with
flow table limitations [23]. The novelty of our approach is
that developers can easily create and deploy their own trans-
lation application for every possible control channel protocol,
without extensive changes to the network operating system
or the control apps, which simplifies rapid prototyping and
research work. Furthermore, TableVisor allows the utilization
of resources from more than one device, which is discussed
in detail in the next section.

B. Constraints of Individual Devices

The second problem – resource and capability constraints
of individual devices – is equally important. Programmable
switches are, like all other hardware devices, limited to the
resources and capabilities of a single device. Control plane
requirements going beyond what is provided by a single
device cannot be satisfied, even if two cooperating devices
could easily fulfill the request. Existing work to alleviate this
limitation can be distinguished into two categories: software-
based solutions that do not touch the switch hardware and
hardware-based solutions. We present prominent related work
for both categories and explain how previous work differs from
our approach. A brief summary of this analysis can be found
in Table I.

1) Software-based Approaches: Most software-based solu-
tions focus on either pipeline flexibility or scalability aspects.
We start by elaborating on flexibility by comparing the studies
in category C1 in Table I and discuss software-based scalabil-
ity solutions later on.

Several works try to address the problem of pipeline flex-
ibility. SDFTP [12] introduces software-defined flow table
pipelines with an arbitrary number of stages and adaptive
table sizes. A special mapping logic is used to embed vir-
tual software tables into the hardware tables of the switch.
FlowAdapter [24] is a middle layer between the hardware
and software data plane that provides support for multi-
stage pipeline processing by properly mapping rules onto
existing hardware capabilities. FlowConverter [25] tries to
generalize the above ideas and presents an algorithm that can
translate between different forwarding pipelines. Table Type
Patterns (TTP) [31] for OpenFlow also introduce flexibility
by allowing the controller to negotiate pipeline details with
hardware switches. ALIEN HAL [32] focuses not directly on
pipeline flexibility, but follows similar design principles as



TABLE I
COMPARISON BETWEEN TABLEVISOR AND SELECTED APPROACHES FROM RELATED WORK
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FlowAdapter [24] 4 8 8 4 8 4 8

FlowConverter [25] 4 8 8 8 8 4 8

C2
Infinite CacheFlow [26] 8 4 8 4 (4) 8 8

Port Based Capacity Extensions [23] 8 4 8 4 4 4 8

Palette [27], One Big Switch [28] 8 (4) 4 8 4 4 8

H
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C3
NOSIX [29] 4 (4) 8 8 4 8 8

ESwitch [30], RMT [1] 4 (4) 8 4 8 8 8

TableVisor (our approach) 4 4 (4) 4 4 4 4

FlowAdapter and TTP by using a hardware abstraction layer
to realize OpenFlow capabilities on legacy network elements.
Furthermore, previously proposed approaches like Frenetic
[33] and Pyretic [34] revolve around high level languages for
programming collections of network switches. However, these
approaches are largely limited to OpenFlow and, like other
previously proposed solutions, don’t address the limitations
imposed by the constraints of singular hardware devices.
Instead, these approaches focus on a simplification of the
programming interface of SDN-enabled devices.

Because TableVisor is also a software-based approach, there
are similarities to the above approaches, primarily with respect
to the basic motivation. However, there are three important
conceptual differences. (1) Existing solutions for software-
based pipeline flexibility are, by design, limited to the re-
sources of a single switch, i.e., the approach can only be
used if there is enough free space left in at least one of
the hardware tables, which imposes inherent restrictions with
respect to scalability. TableVisor copes with this important
challenge by combining the resources and capabilities of
multiple devices into one emulated device. (2) TableVisor is
used in a fully transparent fashion as neither the controller nor
the applications have to be modified and the approach can be
used out-of-the-box in any OpenFlow based network. While
some approaches like FlowAdapter and HAL have similar
properties, others sacrifice transparency. SDFTP [12], for
example, introduces a new southbound interface for all table
operations which requires non-trivial changes in the control
plane. (3) TableVisor does not solely focus on flexible pipeline
processing but rather considers it as one single use case among
a broader set of different applications. The application engine
presented in Section III-A can be seen as a generic platform
to transparently include different functions. Following this
approach, we can combine pipeline flexibility with use cases
from other research domains such as TCAM space optimiza-
tions, control channel logging or protocol conversion.

Category C2 in Table I is addressing device as well as
overall network scalability. Solutions for device scalability
try to cope with limited capacities and capabilities of a
single device, e.g., by adding a virtual switch with high
table capacity [26], [16]. However, this requires infrastructural
changes and is associated with a performance degradation for
all flows that are forced to use the slow path via the virtual
switch. Performance characteristics and limitations of virtual
switching were intensively studied in the recent past [35],
[36], [37]. Even if only a fraction of the traffic is affected,
this might be inapplicable for many scenarios [26]. Others
try to achieve similar results by exploiting spare resources
of co-located devices [23]. However, unlike TableVisor, these
approaches do not consider pipeline processing.

Solutions for overall network scalability usually consider
flow tables and TCAM space as a shared resource. Palette [27],
DIFANE [38] and One-Big-Switch (OBS) [28] are prominent
examples. The general idea of gathering shared resources
under a unified abstraction is similar to what TableVisor does.
However, these solutions have a fundamentally different scope
and try to abstract the whole infrastructure (i.e., every switch),
while TableVisor is a more localized solution focusing on
smaller sets of switches. In addition, the aforementioned solu-
tions introduce policy abstractions that change how networks
are used and programmed, which impedes transparency to
and compatibility with legacy applications. The high level of
abstraction introduced by these changes is a blessing and a
curse at the same time. It shields application programmers
from low level details but makes it difficult, if not impossible,
to realize proper pipelining, because the pipelining itself is
not covered by the individual abstractions. Looking at the
various use cases that are difficult to realize without explicit,
application controlled pipelining [9], [10], [11], [12], we argue
that this kind of abstraction is not necessarily a panacea. As
a result, we designed TableVisor as a transparent proxy layer
without changing the interface that is used for pipelining.



2) Hardware-based Approaches: Category C3 in Table I
compares prominent examples of hardware-based solutions.
The core idea here is to provide programmable network
devices with freely definable packet processing pipelines. The
FlexPipe architecture of Intel’s FM6000/FM7000 series [39]
allows programmable parsing of incoming traffic based on a
TCAM/SRAM/MUX structure. Protocol Oblivious Forward-
ing [40] introduces a generic flow instruction set to make the
data plane protocol-oblivious. Reconfigurable Match-Action
Table (RMT) [1] proposes a model for re-configurable match
tables and enables dynamic, in-field reconfiguration of the
data plane. Recently, dRMT [41] introduced a new RMT
architecture, in which memory as well as compute resources
are disaggregated and moved to a general pool that can be
accessed by all pipeline stages over a crossbar. ESwitch [30]
proposes a novel architecture that is able to generate efficient
machine code for SDN switches based on packet processing
templates inspired by the OpenFlow pipeline.

The limitations of programmable switches are twofold.
First, they require special hardware currently not available in
large quantities. While this may change in the future, it is
more likely that such devices will complement existing infras-
tructures, rather than completely replace them. So the control
plane has to either deal with this expected device heterogeneity
directly, by differentiating between programmable and non-
programmable devices in the applications, or use some kind
of abstraction as is provided by TableVisor. Second, even
if we assume that every device in the network supports the
same degree of programmability, these devices will still be
equipped with fixed resources, say a total TCAM capacity of
N entries and a maximum number of M flow tables. Existing
solutions such as RMT [1] and ESwitch [30] can boost these
numbers, so that N and M might be much larger compared
to currently used OpenFlow switches. But in the end, they
are still constrained numbers and the control plane runs into
a bottleneck if an application requires N + X, X > 0 rules
for such a device. TableVisor, on the other hand, allows the
dynamic emulation of a device that can access the combined
resources of a set of switches, say N ∗ K and M ∗ K if
the set consists of K identical switches. This allows for very
fine grained scalability by tuning K according to the actual
demand in the network. NOSIX [29] is the only hardware-
based approach that we are aware of that follows a similar
design paradigm by exploiting shared resources. Similar to
TableVisor, NOSIX envisions a lightweight portability layer
for the control plane and can make use of special-purpose
tables in different switches. However, in contrast to TableVisor,
the approach requires special hardware support and breaks
transparency.

III. TABLEVISOR

This section covers the design concept of TableVisor1,
presents available functionality, and concludes with possible
use cases that can be realized by applying its features.

1https://github.com/lsinfo3/JTableVisor
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Fig. 1. TableVisor Architecture, including new P4 translation functionality.

A. Architecture and Design

TableVisor has a modular structure in order to allow the
addition of extensions and further functionalities in the future.
It comprises a central core and three main logical layers, the
upper layer endpoint, the application engine, and the lower
layer endpoint, as show in Figure 1. The separation between
upper and lower layer endpoints as well as the application
engine allows a clear separation of responsibilities with regard
to the workflow of TableVisor. This is realized through internal
Java APIs exposed by the TableVisor Core which enables easy
implementation of additional endpoints or application engine
modules, compromising novel applications.

The upper layer endpoint is responsible for the communi-
cation with the controller and handling of protocol specific
mechanisms (e.g., keep alive messages). The endpoint parses
control protocol messages into a workable data structure that
can be processed by the application engine and vice versa.
The addition of further upper layer endpoint implementations
allows TableVisor to work with control plane instances that
are not OpenFlow-capable, e.g., legacy network management
systems.

The application engine is responsible for passing mes-
sages through all loaded applications. An application specifies
whether and how a message is processed, e.g., rewriting of
table IDs or actions. TableVisor comes with a number of
pre-selected applications, including basic applications such
as for maintaining the OpenFlow Control Channel, but also
applications that change the representation and behavior of
the virtual switch.

The applications themselves are structured as an ordered
pipeline. Control messages are passed through all loaded
applications in a predefined order, which is specified at a
global scope during their implementation. Applications can be
loaded and unloaded in the configuration file. If an application
is loaded, all messages are passed to it, unless blocked by an
earlier application. The application order of messages from
the upper and the lower layer endpoints are opposed, i.e., the
last application that is passed by a control message from the
upper layer endpoint is traversed first by messages from the
lower layer, and vice versa. The feature set supported by the
current version of the implementation is listed in Table II.

The lower layer endpoint maintains the communication
paths towards data plane devices. It parses, encodes and
decodes messages that are to be sent to or received from



TABLE II
TABLEVISOR APPLICATION ENGINE MODULES.

Transparent Single Switch Application
Transparently forwards OpenFlow messages between a single switch and
the control plane. Can be used in conjunction with other applications to
add functionality, such as the control channel logging application that
monitors an OpenFlow control path.

Multi Switch Application
Aggregates multiple switches into a single pipeline that is presented
towards the controller as a single multi-table switch. Allows the realization
of multi-table use cases and exploits the heterogeneity inherent to the
landscape of OpenFlow-enabled hardware switches.

Control Channel Logging Application
Monitors OpenFlow control messages between the lower and upper layer
endpoints. This can be used in conjunction with other applications either
for debugging or live monitoring purposes.

P4 Control Application
Provides OpenFlow functionality towards the control plane and constructs
OpenFlow messages based on statistics and rule sets provided by propri-
etary P4 management tools.

P4 Translation Application
Provides translation functionality between OpenFlow in the control plane
and proprietary control protocols in the data plane.
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Fig. 2. Illustration of the control channel translation features between specific
OpenFlow versions, and generally between different control plane protocols.

the respective data plane devices. This could be OpenFlow
messages, implemented by the Generic OpenFlow Endpoint,
P4 control messages, managed by the Netronome P4 Endpoint,
or additional novel or existing protocol implementations.

By exploiting upper and lower level endpoints, this archi-
tecture can achieve complete transparency towards both data
plane as well as control plane. Therefore, it allows the usage
of standard controller implementations as well as data plane
devices without the need for modifications.

B. Features

The application set of TableVisor is focused around three
major feature sets. The main tool used for their implementation
is the mapping of global table IDs, as seen by the controller, to
local devices and tables, while handling all their intermediate
communication. The individual feature domains, as directly
applicable by the use cases, are explained in the following.

1) Control Channel Translation: The control channel trans-
lation functionality encompasses everything that involves the
modification of control messages for compatibility reasons.
This includes not only the translation between different proto-
col families, but also different versions of the same protocol,
as detailed in the following.

OpenFlow device heterogeneity. The idea of control chan-
nel translation originally evolved around the problem of device
heterogeneity in the early OpenFlow hardware implemen-
tations, as different switches exhibit different feature sets
and device specific behavior with respect to the supported
OpenFlow versions, default table numeration, and general con-
formability with the standard. This problem is most prominent
when comparing early implementations of different vendors.
TableVisor can be used in such situations to alleviate the
problem of protocol mismatches and different expectations
between control and data plane. The general instructions of
various SDN controllers can be tailored to the needs of specific
devices’ behavior, and their replies can be generalized to be
understood by a standard-conformant software implementation
of OpenFlow. This is shown on the left in Figure 2, where
TableVisor translates between different OpenFlow versions.

P4 device integration. Going one step further, the new
implementation of TableVisor features a semi-automatic trans-
lation between the OpenFlow protocol and the P4 running
configuration. Therefore, the translation application expects
an OpenFlow packet from the upper layer endpoint. As both
protocols are based on a similar match-action architecture, the
translation engine must merely match the intents contained
in the original message to the available table names, action
names, and header fields in the P4 program. Note that, as with
each translation, the expressiveness of the resulting control
channel is limited by the intersection of possible command sets
from both languages. In this case, OpenFlow supports a subset
of P4 capabilities, hence the level of control is limited by the
highest supported OpenFlow version in the controller and the
actually deployed P4 program. However, if necessary, unused
OpenFlow header fields may be used to address sophisticated
headers in P4 programs. In many scenarios, the required
operations can be triggered implicitly in the P4 control flow.

TableVisor leverages the existing P4 program in order to
learn the respective mappings. Therefore, the program is
annotated with the corresponding table IDs, header field names
as well as action names and parameters. TableVisor parses
these annotations and stores their respective mappings. The
following example snipped of a P4 program shows a simple
mapping from the OpenFlow table ID 0 to the P4 table name
acl_tbl.
// @TV table 0
table acl_tbl {

reads {
...

Similarly, the header field names can be mapped to their
OpenFlow counterpart inside the reads block of the table.
Note that this mapping might be applied locally for this
specific table, which enables the use of different mappings in
different tables, if desired. Our current implementation applies
a global mapping to reduce administrative overhead during
configuration. The following annotations map OpenFlow’s
in_port to the corresponding P4 metadata field, and the
ipv4_dst to our defined destination address header field
name.



// @TV table 2
table routing_tbl {

reads {
// @TV field in_port
standard_metadata.ingress_port: exact;
eth.etype: exact;
// @TV field ipv4_dst
ipv4.dstAddr: exact;

}
actions {

set_dst_mac;
}

}

Finally, mapping actions requires special care. They do not
only contain their own name, but also a list of parameters
that may be supplied by the controller at runtime. In addition,
OpenFlow allows to execute multiple actions at the same time,
while P4 is limited to a single, custom defined action for each
table entry. Therefore, a single P4 action set_dst_mac is
mapped to multiple OpenFlow actions, and vice versa.

// @TV action SET_FIELD_ETH_DST ETH_DST=mac
// @TV action GOTO_TABLE_123
action set_dst_mac(mac) {

modify_field(eth.dst, mac);
}

Note here that the GOTO_TABLE instruction is called ex-
plicitly in OpenFlow, while the table transition is defined
separately in the control block in the P4 program.

These name mappings are utilized by the translation appli-
cation to create a JSON string. As our current implementation
is designed for the Netronome Agilio CX SmartNIC2, this
JSON string is then passed into the RTECLI interface by
the respective lower layer endpoint which pushes the new
flow rules to the SmartNIC that is associated with it. The
entire example mapping, along with further explanation, can
be found in the GitHub repository3.

This implementation is shown in the middle of Figure 2.
Further extensions. Note that the concept can be further

extended and generalized to support additional protocols by
adding new endpoints, both in the upper and lower layer. With
little more effort, new applications could handle the inclusion
of additional devices well beyond the match-action abstraction,
for example to enable control of hardware accelerated security
features in legacy networking devices. These use cases are,
however, beyond the scope of this paper.

The general translation between different implementations
of SDN protocols is illustrated on the right in Figure 2.

2) Table Capacity Extension: In early deployments of
OpenFlow switches, hardware accelerated table capacity was
very limited, with some models only allowing a few hundred
OpenFlow rules stored in their TCAM4. Some use cases
require large amounts of flow rules [42], which then need to
be handled explicitly by the network administrator or the SDN

2https://www.netronome.com/
3https://github.com/lsinfo3/JTableVisor/tree/master/example2
4https://support.hpe.com/hpsc/doc/public/display?docId=c04217797&lang=

en-us&cc=us
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control plane deployment. With the TableVisor abstraction,
multiple hardware tables can be mapped to a single, virtual
table and presented in a single device to the control plane.
In this scenario, TableVisor would handle dependencies be-
tween the different match-action rules, such as implicit header
matches due to higher priority flow rules. This concept has
been discussed in detail in [8].

Figure 3 provides a visual example of the intended use.
TableVisor presents a single table hosted by a single device
towards the controller. The individual match-action flow rules
are split between Switch A and Switch B in order to provide
the necessary TCAM space.

3) Device Aggregation: Similarly to the table capacity
extension, some features of a single deployed switch are often
not sufficient for a task. Simply deploying a “bigger” device
would often solve problems with respect to number of ports,
number of tables, or even supported features. However, such
hardware is not always available, or may be too expensive
for the task at hand. TableVisor features a cost-efficient way
to aggregate features from multiple networking devices in
a single, virtual device. This is especially useful if these
devices feature very different characteristics, e.g., a “dumb”
forwarding device with many ports and a smart router, VNF,
or programmable NIC.

The general approach towards the different aggregation
features is shown in Figure 4. The capabilities of multiple
devices (Switch A, B, and C) are presented as a single switch
with a mix of all of their capabilities, tables, and ports towards
the control plane, based on the intended use case.

Port extension. If a single device does not provide sufficient
ports to connect to all of its neighbors, but features all of
the required functionality, TableVisor can be used to extend



the port number by seamlessly integrating another device.
The devices would best be connected via dedicated trunk
links at higher rates due to the increased amount of traffic
between these two switches. Alternatively, multiple ports can
be spent for the inter-device communication, depending on the
situation.

Extension of number of tables. In many cases, SDN
forwarding devices perform multiple actions based on multiple
matching criteria. To prevent an exponential explosion of flow
rule numbers [43], multiple tables can be used in succession
for these tasks. However, not all devices support multiple
tables natively. TableVisor can be used to aggregate existing
devices and present their tables next to each other in a single,
multi table device to the controller. In particular, it would
handle the mapping of global table IDs to local, device-specific
tables, as well as ensure interoperability, e.g., by translating
GOTO_TABLE messages to their respective OUTPUT actions
if the desired table is located on another switch.

Aggregation of features. Finally, not all tables of an SDN
switch provide the same capabilities. For example, only a
limited number of hardware accelerated rules is often able
to push or pop header fields at line rate in the data plane.
Sometimes, the required characteristics for a specific task are
not simultaneously supported by a single device, e.g., required
number of ports and a specific set of actions, possibly provided
by sophisticated hardware such as P4 devices like Barefoot’s
Tofino hardware5. In these cases, TableVisor’s mapping can be
used for a seamless combination of separate devices with the
required capabilities. This way, the required characteristics can
easily be recreated by available, cheap hardware in a brown-
field deployment or for rapid prototyping of new concepts as
well as to emulate devices for research purposes.

C. Supported Topologies

This section covers the different underlying topologies the
TableVisor approach is able to leverage for its data plane
abstraction. Figure 5 shows the four most common pipeline
structures. Note that these topologies represent common design
patterns. The TableVisor approach is not limited to these types
of topologies and can be adapted to the specific use case.

Staged Pipeline. Figure 5a shows the staged pipeline, in
which each element provides additional features or TCAM
space. All hosts or uplink switches, represented by circles in
the figure, are connected to the first stage of the pipeline.
From there, packets only need to enter the stage providing the
capabilities needed for their specific processing requirements.
This minimizes the overhead induced by the abstraction while
still enabling more complex use cases. The abstraction is
realized by emulating multiple tables, each represented by at
least one switch of the pipeline.

Unidirectional Pipeline. An extension of the staged
pipeline is shown in Figure 5b. The unidirectional pipeline
allows hosts or up-link devices to connect to both ends of
the pipeline. However, packets may only traverse the pipeline

5https://www.barefootnetworks.com/technology/

in one direction. A direct communication between network
elements connected to different pipeline ends is thus not pos-
sible in this scenario. Instead, this emulation type is especially
useful in VNF (Virtual Network Function) offloading scenarios
that only need to handle unidirectional traffic.

Bidirectional Pipeline. The third extension supported by
the TableVisor concept is the bidirectional pipeline illustrated
in Figure 5c. This layout allows the connection of hosts
or up-link switches to either the first or last switch of the
pipeline respectively. Simultaneously, the direction of paths
through the pipeline is arbitrary in this case and packets can
enter as well as leave the switch aggregate at both ends.
This structural layout further increases the capabilities of the
emulated switch at the cost of further management complexity.
This pipeline type is best used in VNF offloading cases that
require bidirectional traffic, e.g., in request-response scenarios.

Circular Pipeline. The final pipeline type supported by
TableVisor is the circular pipeline shown in Figure 5d.
Thereby, data plane devices are arranged in a ring topology
and hosts as well as up-link switches can be connected to
every element of the pipeline. This significantly increases the
total number of ports available for the emulated switch. Hence,
this emulation type can be used to deploy use cases in which a
large number of ports is required. The drawback of this setup
is the need for internal forwarding rules in order to ensure
that traffic still reaches its intended destination. Depending
on the specific use case, this may, in the worst case, lead
to one forwarding rule per connected host or up-link device,
significantly reducing the effective TCAM space available for
the application.

Finally, these different topologies can be used by multiple
TableVisor instances in a single network deployment, as shown
in Figure 6. In this case, the controller sees five devices in
the network, indicated by the control channel connections.
The switches connected to each of the respective TableVisor
instances are abstracted into a single emulated device. Note
that in addition to the TableVisor instances, additional data
plane devices can be used without the abstraction layer.

D. Use cases

In the following section, we present two specific exem-
plary use cases that show how the features presented in the
Section III-B can be leveraged to design complex scenarios
using simple and affordable network components. We start
by detailing an access control list (ACL) setup comprised
of multiple, non-expensive and highly available single table
switches and how the device aggregation feature is used to
realize this use case. Furthermore, we show how control
channel protocol translation can be used to realize powerful
use cases using common network components by describing
an MPLS label edge router realized through the incorporation
of non-expensive, P4-enabled devices into the data plane.

1) ACL Multi Table Switch: The first example we detail is
the realization of an emulated multi-table switch performing
access control as well as forwarding. A scenario like this
can be especially useful in brownfield deployments in which
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Fig. 5. Available topologies for TableVisor abstraction.
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Fig. 6. Schematic depiction of a network using multiple TableVisor instances.

new applications and devices have to co-exist with legacy
solutions in both control as well as data plane. The idea here
is to combine multiple widely available and affordable single
table switches to enable a single, multi table application. In
this specific use case, the usage of multiple forwarding tables
alleviates the common problem of flow table explosion [43]
with legacy SDN devices. This problem essentially describes a
combinatorial problem occurring whenever a single or multiple
actions need to be performed based on combinations of two
or more input values, like ACL rules and MAC addresses.
In a single table scenario, all ACL rules would need to be
recombined with all possible output MAC addresses, leading
to N ×M flow rules in total. When moving to a multi table
scenario, the total number of required flow rules to achieve
the same functionality is reduced to N + M . Thereby, the
first table can perform the access control lookups and an
independent, second table is used to perform the L2 forwarding
task. Figure 7 shows a schematic setup of TableVisor realizing
this multi table switch by combining two single table devices.
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Fig. 7. Schematic ACL setup using two single table devices.

More specifically, we leverage the device aggregation fea-
ture discussed in Section III-B, to combine two, potentially
heterogeneous, data plane devices into a single, emulated
switch featuring two tables. This emulated device is then
transparently presented to the controller as a regular hardware

device. Hence, neither the devices, nor the controller are
required to provide any specialized functionality to be used
in this environment. Instead, all involved parties communicate
using their version of the OpenFlow protocol. Thanks to the
control-channel protocol translation functionality of TableVi-
sor, the two switches as well as the controller can thereby
speak different versions of OpenFlow, or even a different pro-
tocol all together. At the time of writing, TableVisor supports
OpenFlow versions 1.0 and 1.3 as well as the proprietary
control API used by Netronome P4 devices used in the
example use case in the next section. The processing required
for this level of transparency, from control as well as data
plane point of view, is fully handled by TableVisor.

Through this message processing performed by TableVisor,
the system is able to emulate a multi-table switch towards
the control plane without the need for modification of the
controller or the involved data plane devices, which in turn
increases the reusability of legacy devices in brownfield de-
ployments and allows researchers to quickly prototype con-
trol plane applications for which expensive hardware devices
would be required, otherwise.

2) P4 Label Edge Router: The second example application
we discuss in this work is the realization of an MPLS label
edge router using a regular OpenFlow device in combination
with a two port P4 PCIe extension card. The goal here is to
extend the functionality of a simple, affordable and widely
available OpenFlow device by adding the programmability of
a single P4 device. By this, we are able to leverage the port
capacity of the OpenFlow switch as well as the processing
flexibility of the P4 device and combine them into a single,
powerful, emulated data plane device towards the controller.
The general setup of this application is shown in Figure 8.
It is essentially a combination of the port extension, feature
aggregation and P4 device integration features described in
Section III-B.
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Fig. 8. Schematic MPLS lable edge router setup using a P4 device.

Here, the switch communicates with TableVisor using regu-



lar OpenFlow. The P4 device, a Netronome Agilio CX Smart-
NIC 2x10G, is controlled via the proprietary CLI tool shipped
with these kinds of PCIe extension cards. TableVisor thereby
handles the translation between the OpenFlow protocol used to
connect to the controller and the proprietary control interface
of the card. This control channel translation mechanism allows
the transparent integration of the P4 device into the data plane
without the need for modifications of any part of system. As
the SmartNIC only features two ports, the OpenFlow switch
is instructed to output all GotoTable instructions at one
port connected to the NIC and forward packets coming from
the other port connected to the NIC. Information required for
the forwarding process can be included using the metadata
functionality of TableVisor, as described in [8]. The P4 device
then performs all the heavy lifting, like pushing and popping
MPLS headers, essentially using the OpenFlow switch as a
port replicator. Note that the Netronome devices used in this
use case feature two 10 GbE ports while the OpenFlow switch
only features 1 GbE regular ports and two 10 GbE uplink
ports6. The implementation of this use case can be found in
the GitHub repository accompanying this work7.

Note that the P4 device in this scenario could also be
replaced by a VNF performing the processing tasks. This
again simplifies rapid prototyping and seamless integration of
complex networking functionality without modification of the
control plane in a brownfield deployment.

IV. PERFORMANCE EVALUATION OF TABLEVISOR

In order to evaluate the implications of TableVisor in dif-
ferent use cases, we conducted extensive delay measurements
with respect to different control plane interactions. We evaluate
scenarios in which we measure the controller’s interaction with
the data plane devices, specifically:

1) how TableVisor influences the overall control channel
delay of a bulk of operations, namely FlowMod instal-
lations targeted to multiple switches,

2) how delays of individual messages during regular oper-
ation are influenced, for example, FlowStatsRequests.

Thereby, the influence of the number of installed FlowMods
as well as the number of connected switches is investigated
with both software and hardware switches as well as varying
controllers.

Figure 9 provides an overview of the experiment setups for
the performance comparisons. Here, Figure 9a represents the
topology use in a staged pipeline scenario with one to three
hardware switches, as well as two hosts8 for the controller and
TableVisor itself. The switches are either connected directly to
the controller, or to the TableVisor instance, which acts as a
single multi-table switch towards the controller. In order to
investigate the impact of horizontal scaling of the pipeline, a
similar topology with up to 50 switches has been emulated
using Mininet, as shown in Figure 9b.

6HP 2920-24G + 2x10G
7https://github.com/lsinfo3/JTableVisor
8Controller: Intel Xeon X5650 @2.67GHz with 36GB RAM, TableVisor:

Intel Xeon D-1548 @2.00GHz with 32GB RAM

In particular, we measure the FlowMod installation times
with and without TableVisor by sending multiple FlowMod
messages followed by a single BarrierRequest. Thereby,
without TableVisor, each switch receives its FlowMods di-
rectly from the controller. In the scenario with TableVisor,
all FlowMods are sent to the TableVisor instance, which then
distributes the rules to its underlying hardware devices acting
as tables in the emulated switch. The installation time is
then given by the time difference between the first FlowMod
and the last BarrierReply as seen on the controller host.
This measurement methodology has been evaluated in detail
in [44]. For all such experiments, 10 repetitions of each
configuration were performed, and all displayed results show
the mean installation time with a 95% confidence interval. The
flowmods used during the evaluation consist of a match on
ethertype 0x800 (IP), the TCP protocol as well as a randomly
chosen TCP port. Additionally, the priority of the flowmod is
chosen at random between 1 and 255.

For the single-response delay measurements, we cap-
tured 30 seconds of ONOS’ regular operations after in-
stalling the FlowMods. During this time, ONOS sends
FlowStatsRequest messages to every connected switch
every 5 seconds. For each such request, we measure the
time difference between the FlowStatsRequest and the
corresponding FlowStatsReply message as perceived by
the controller. Note that TableVisor does not aggregate mul-
tiple FlowStatsReplies into a single message, but passes
each of them separately to the controller by leveraging the
ReplyMore flag. Based on all such request-reply-delays
observed during the 30 second interval, we display their mean
values with 95% confidence intervals.

A. FlowMod Setup Times

Figure 10 shows the FlowMod installation times with one,
two, and three hardware switches, using the Ryu controller
on the left, and the ONOS controller on the right. On the x-
axis, the number of FlowMods that every switch receives is
given, while the y-axis displays the corresponding setup times
in seconds. The color indicates the number of switches used in
the experiment. Solid lines indicate the bare controller-switch-
scenario, and dashed lines refer to the same scenario including
TableVisor, as depicted in Figure 9a.

In both controllers’ scenarios, the installation times without
TableVisor, as shown by the solid lines, are very similar. They
range from 0.1 to 1.5 seconds, and the number of connected
switches only has a minor impact on the measurements. The
steep increments after 200 and 350 FlowMods are expected
to originate from the switches’ underlying hardware setup,
i.e., the time it takes for the switches to process the Flow-
Mods increases with their TCAM utilization [4]. With ONOS,
TableVisor causes an additional delay of roughly 0.2 up to 0.25
seconds in the control plane throughout all switch counts and
FlowMod numbers. With Ryu, this additional delay shows a
slight linear increase with FlowMods after connecting multiple
switches. This is due to Ryu generating and sending the
messages through a single thread while ONOS uses multiple



Controller
ONOS / Ryu

Hardware 
Switch

HP 2920-24G

Hardware 
Switch

HP 2920-24G

Hardware 
Switch

HP 2920-24G

Controller
ONOS / Ryu

TableVisor
Multi-Switch App

Hardware 
Switch

HP 2920-24G

Hardware 
Switch

HP 2920-24G

Hardware 
Switch

HP 2920-24G

(a) Performance overhead measurements with hardware switches.

…

Mininet Host

OVS OVS

Controller
ONOS / Ryu

…

Mininet Host

OVS OVS

Controller
ONOS / Ryu

TableVisor
Multi-Switch App

(b) Mininet scenarios for switch number performance tests.

Fig. 9. Evaluated scenarios and topologies for the performance tests with variable number of flows and switches.
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Fig. 10. FlowMod setup times for 2 controllers (Ryu, ONOS), 1 to 3 hardware switches, with and without TableVisor, and 50 to 500 FlowMods.

threads to send messages. Overall, the additional delay caused
by the TableVisor proxy layer is dominated by the inherent
FlowMod installation times of the hardware switches for
higher loads.

The FlowMod installation times obtained from the software
scenario in Figure 9b are presented in Figure 11. Hereby,
the x-axis shows the number of OVS instances connected to
either the controller or TableVisor, and the y-axis contains the
respective setup times, as before. The graph is split into groups
for each of the both controllers, Ryu and ONOS, and each of
the FlowMod counts of 50 and 250, while the color indicates
whether the switches were connected directly or TableVisor
was used.

When using Ryu, the FlowMod installation times increase
linearly with the number of connected devices, both in the 50
and 250 FlowMods case, peaking at 0.25 and 1.25 seconds,
respectively. In low-load scenarios, the use of TableVisor
causes an additional latency of up to 0.13 seconds. This
overhead is decreasing with increasing load on the setup, and
after 15 switches with 250 FlowMods, it becomes negligible
compared to the bottleneck Ryu introduces. This increment
in the performance of TableVisor is likely due to the Java
JIT compiler that is able to perform various optimizations at
runtime. The results obtained in the ONOS scenarios show a
much smaller installation time due to more efficient processing
via multi-threading. With 250 FlowMods, ONOS setup times
peak at only 0.25 seconds without TableVisor, and rise up
to 0.75 seconds with TableVisor. This additional delay is not
only caused by the processing time of TableVisor, but also
by ONOS itself as it generates and transmits the FlowMod
messages in a much slower pace when connected to Table-
Visor, presumably due to its internal multi-threading structure

as we only present a single virtual switch to the controller.
Note that, when the abstraction of large device numbers is
desired, the devices can be split into multiple TableVisor
instances. Consider the scenario indicated by the purple line
in Figure 11, in which two TableVisor instances each handle
50% of all connected devices. Here, the installation times peak
at 0.5 seconds when both instances handle 25 switches, which
effectively halves the overhead introduced by our concept in
that case.

B. FlowStats Request-Reply Delay
Figure 12 presents the delays for the individual FlowStats

Requests with up to three hardware switches as well as
up to 50 OpenvSwitches. In the hardware measurement in
Figure 12a, the x-axis depicts the number of installed flow
rules, while the y-axis shows the measured delay between
FlowStatsRequest and FlowStatsReply. The latency without
TableVisor ranges from roughly 10 ms to 155 ms and is
mostly independent of the switch count. The additional delay
introduced by TableVisor is steady around 10 ms to 15 ms
throughout all investigated FlowMod counts for one and two
switches, rising much slower compared to the overall latency.
With three switches, this difference peaks at 25 ms with 500
FlowMods, which equals a 16% overhead compared to the
pure ONOS case.

Finally, Figure 12b presents the FlowStatsRequest delays
with an increasing number of software switches. In this case,
the y-axis again shows the measured delay of the request-
response pair, while the x-axis shows the number of connected
software switches. While the pure ONOS measurements ap-
pear to be nearly constant for 50 FlowMods, they increase
linearly from 3 ms to 13 ms when the FlowStats Replies
contain 250 FlowMods each. The TableVisor measurements
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Fig. 12. FlowStats Request-Reply delays for hardware and software switches with the ONOS controller.

show a notable overhead of 12 ms to 34 ms with 50 FlowMods,
and 22 ms to 76 ms with 250 FlowMods, respectively, peaking
at a mean response time of 89 ms with 50 connected switches
and 250 FlowMods. However, it should be noted that these
results apply to this specific scenario, and do not only comprise
the processing delay of TableVisor. Albeit the mean latency
remains quite stable throughout the different samples, the
delays of individual switches vary a lot when using TableVisor.
Most notably, it should be considered that all software switches
are located on the same host in the Mininet scenario. When
TableVisor receives the FlowStatsRequest message, it
immediately sends 50 copies of it towards the switches.
However, when ONOS is directly connected to them, the
individual requests are spaced out throughout a certain pe-
riod, allowing the Mininet host to spread the workload and
reply to individual requests faster. If we compare the time
difference between the first FlowStatsRequest and the
last FlowStatsReply, similarly to the previous FlowMod
installation time measurement, we observe 0.175 seconds with
TableVisor and 0.202 seconds with ONOS directly connected
to 50 switches in the 250 FlowMod scenario. Overall, although
individual messages receive an overhead delay from TableVi-
sor during such a bulk update, the total time until the controller
receives all updates is even shortened by this approach.

C. Data Plane Overhead
As TableVisor only interacts with the control plane of

OpenFlow devices, the above evaluation does not consider data
plane performance. Here, we evaluate the latency introduced
in the data plane by concatenating multiple data plane devices
into a single pipeline. To do so, we measure the end-to-end
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Fig. 13. Data plane delay of an emulated multi-table switch for different
frame lengths and load levels.

delay of the emulated pipeline using a Spirent C1 Testcenter
as the traffic generator.

Figure 13 shows the average delay in a pipeline comprised
of four identical HP 2920-24G switches along the y-axis.
Different load levels, in percent relative to the maximum of
1 Gbps, and frame lengths are indicated along the x-axis and
by differently colored bars, respectively. The whiskers describe
95% confidence intervals. It can be seen that both the delays
and the confidence intervals are independent of the load and
are constant for all three load levels. The frame length, on the
other hand, has significant influence on the end-to-end delay,
which indicates that a large portion of the time is used to write
the information to the transmission media while the processing
of packets is independent of the packet size.

Note that this evaluation is independent of the TableVisor
implementation. This particular scenario is similar to the multi



stage ACL deployment presented in Section III-D1 to alleviate
shortcomings in the devices’ capabilities. Although the setup
is achieved by our TableVisor proof of concept, there is no
further interaction after preparing the configuration as the data
plane traffic does not trigger actions in the control plane.

V. CHALLENGES AND LIMITATIONS

In this work we propose the concept of data plane device
aggregation and provide a proof-of-concept implementation
of our approach. In order to detail required considerations
and limitations of TableVisor, we discuss the most important
points regarding the operation of TableVisor. Furthermore, we
explain current limitations of the implementation as well as
general limitations of the approach and describe trade-offs that
come with the application of TableVisor. Where applicable, we
provide potential mechanisms to alleviate the limitations due
to the device abstraction.

Performance Characteristics. The performance with re-
spect to additional control plane delay as well as data plane
latency when using our approach has been described in the
previous section. However, there are some aspects that need to
be taken into account when it comes to real world deployments
of TableVisor, including research and development scenarios.

Regarding data plane performance, one has to consider the
limitations of all devices involved in a TableVisor emulated
switch. As traffic needs to traverse multiple devices, the total
delay to go through the emulated switch will be the sum of
individual device delays. This effectively limits the number of
stages used in a specific deployment in order to not exceed the
data plane delay requirements. However, as observed in Figure
13, the relevant timescales are in the order of tens of microsec-
onds. Additionally, in the real world, it can be expected that
this issue only impacts very specific use cases, as we have
shown in Section III-D that the size of aggregates can be kept
low, while still able to solve complex use cases. Furthermore,
the available bandwidth between physical devices needs to be
taken into account as the traffic of multiple input ports may
need to be passed on to a second stage. However, depending on
the use case and the available hardware devices, the impact of
this limitation can be alleviated by mechanisms like providing
multiple uplink ports between stages as a trade-off between
externally available ports and internal bandwidth capacity.

When it comes to control plane performance, the response
time needs to be considered as well as the feature set of
emulated devices. The response time of messages is in general
limited by the slowest device in the aggregate. However, Table-
Visor’s use of the SEND_MORE flag allows modern controllers
to start processing replies before all switches answer to a
request, resulting in faster control plane updates.

Finally, it needs to be considered that TableVisor is in many
cases not a drop-in solution for already deployed networks.
Instead, it is well suited to combat heterogeneity of single
devices as well as to provide missing functionality by adding
a carefully selected set of devices in combination with Table-
Visor’s aggregation features. However, the actual devices to be
combined need to be selected carefully as TableVisor allows

the aggregation of nearly arbitrary devices. As TableVisor does
not currently provide any form of sanity checks or implicit
optimization, it is possible to create emulated devices with
unexpected behavior, e.g., unevenly sized tables or specialized
tables that lack basic features. This needs to be taken into
account during deployment and must be avoided either by
using a suitable set of switches or worked around on the
controller or application side.

Fault Tolerance. When assessing the fault tolerance of a
proxy-based abstraction approach, both the failure probability
of the proxy itself and the underlying abstracted devices
are relevant. As for TableVisor itself, of course, additional
components in the system increase the overall failure prob-
ability, as it potentially adds another single point of failure
to the control channel. To alleviate this issue, TableVisor was
designed without the need to track run-time state to enable
fast re-initialization in case of software failures. An outage
of TableVisor, from both the controller’s and the devices’
view, appears as a short disconnect of the control channel and
no data is lost in this case. Additionally, the stateless nature
of TableVisor enables mechanisms like fast fail-over through
hot standby to minimize downtime. These mechanisms will
be implemented in future extensions of this work. If hosted
on similar hardware as the actual SDN controller, TableVisor
is subject to the same hardware failure conditions as the
controller itself.

As for failures in the data plane, due to the abstraction,
problems of individual data plane devices result in the outage
of the entire abstracted device chain. This is a limitation of
the proposed approach and can not easily be worked around.
Potential approaches to alleviate this issue includes the use of
backup devices or the dynamic deployment of OVS instances
to take over from a failed device.

Scalability. Finally, when it comes to the scalability of the
TableVisor approach, multiple aspects that are related to the
previously mentioned points have to be taken into account.
First, the introduction of TableVisor into the control channel
affects the control plane performance of emulated devices.
This has been evaluated in detail in Figures 10 and 11. The
evaluation has shown that, when using hardware switches,
TableVisor induces a constant offset regarding control plane
delay. We have also seen that the behavior strongly depends on
the controller used. In general, our measurements have shown
that TableVisor scales linearly with the number of devices
in the evaluated scenarios with up to 50 switches and 250
FlowMods per switch. We assume that this linear scaling holds
true for larger scenarios. However, this needs to be verified by
means of additional measurements in the future. However, as
with the data plane delay mitigation, we assume that in many
real world applications, like the examples shown in Section
III-D, the number of devices will be limited. Hence, the results
shown in Figure 10 should be considered for real world use
cases.

For scalability aspects regarding data plane performance as
well as the impact of TableVisor on the fault tolerance of a
network, we would like to refer the reader to the previous



paragraphs covering those aspects in particular.
Overall, it needs to be taken into account that the emulation

features provided by TableVisor come with certain trade-offs
regarding the control plane and data plane performance, and
may also impact other aspects of a network such as resiliency
and fault tolerance. Some of these can be worked around using
the controller, while others can be limited to a certain extent,
e.g. by restricting the number of hardware devices used in a
single TableVisor emulated device.

VI. CONCLUSION

In this paper we present TableVisor, a transparent proxy
layer that allows the emulation of hardware-accelerated data
plane devices towards a standard SDN controller. On the
one hand, this functionality allows the aggregation of devices
towards the controller to simplify its view of the network
and reduce overhead, e.g., through topology discovery. On
the other hand, it enables more powerful and more flexible
use cases through the introduction of hardware-accelerated
pipeline processing using multiple data plane devices. In this
context, we extended the functionality of previous versions by
allowing the integration of P4 hardware into an OpenFlow con-
trolled network and introduced further abstraction concepts.
These allow the application of TableVisor as a tool during
rapid prototyping and the emulation of state-of-the-art devices
for research purposes in addition to the realization of new,
more complex use cases.

We performed an extensive performance evaluation to in-
vestigate the impact of our approach on the control plane
performance. Measurements involving hardware devices have
revealed that TableVisor introduces a constant additional delay
in the control channel that is independent of the respective
workloads.

Our investigation has shown that TableVisor is a suitable
tool to realize not only complex new use cases using a
combination of hardware devices, but also to support the
rapid development promised by the SDN paradigm. In con-
stantly changing and developing networks, the high flexibility
provided by TableVisor allows SDN application developers,
network orchestrators and researchers to realize use cases that
face limitations using single, dedicated hardware devices.
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