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Summary

Scanning precession electron diffraction (SPED) enables the lo-
cal crystallography of materials to be probed on the nanoscale
by recording a two-dimensional precession electron diffrac-
tion (PED) pattern at every probe position as a dynamically
rocking electron beam is scanned across the specimen. SPED
data from nanocrystalline materials commonly contain some
PED patterns in which diffraction is measured from multi-
ple crystals. To analyse such data, it is important to perform
nanocrystal segmentation to isolate both the location of each
crystal and a corresponding representative diffraction signal.
This also reduces data dimensionality significantly. Here, two
approaches to nanocrystal segmentation are presented, the
first based on virtual dark-field imaging and the second on non-
negative matrix factorization. Relative merits and limitations
are compared in application to SPED data obtained from partly
overlapping nanoparticles, and particular challenges are high-
lighted associated with crystals exciting the same diffraction
conditions. It is demonstrated that both strategies can be used
for nanocrystal segmentation without prior knowledge of the
crystal structures present, but also that segmentation arte-
facts can arise and must be considered carefully. The anal-
ysis workflows associated with this work are provided open-
source.

Introduction

Scanning electron diffraction (SED) is a scanning transmission
electron microscopy technique in which a two-dimensional
electron diffraction pattern is acquired at each probe position
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as a nanometre sized electron probe is scanned across a region
of interest. Double-conical rocking of the electron probe may
also be incorporated to record a precession electron diffraction
(PED) pattern (Vincent & Midgley, 1994) at each probe posi-
tion [scanning precession electron diffraction (SPED)] (Rauch
et al., 2010). Analysis of SED and SPED data is typically sim-
ilar, enabling the assessment of local crystallography on the
nanoscale by, for instance, crystal phase (Mu et al., 2016),
orientation (Zaefferer, 2011) and strain mapping (Rouviere
et al., 2013; Cooper et al., 2016). S(P)ED data obtained from
nanocrystalline materials typically comprise a relatively large
number of (P)ED patterns, ca. 100–500 000, recorded from a
significantly smaller number of crystals, ca. 10–1000. Such
data frequently include some (P)ED patterns that contain scat-
tering from multiple crystals sampled along the beam trajec-
tory. To isolate the diffraction signals from individual crystals
that may overlap in projection, nanocrystal segmentation can
be performed.

Nanocrystal segmentation of S(P)ED data aims to isolate
the real space location of each individual crystal in the scan
region, as well as a corresponding representative diffraction
pattern for each crystal. This is a necessary step in analyzing
the diffraction from each crystal in a polycrystalline sample
and leads to substantial dimensionality reduction. Such seg-
mentation therefore provides a route to overcome limitations
associated with two-dimensional phase and orientation map-
ping in samples where crystal overlap is prominent (Kobler &
Kübel, 2017). Nanocrystal segmentation is also a crucial step
in reconstructing the morphology and diffraction pattern of
each crystal in a polycrystalline specimen in three dimensions
by scanning electron diffraction tomography (Eggeman et al.,
2015; Meng & Zuo, 2016).

Strategies for nanocrystal segmentation based on itera-
tive indexation (Valery et al., 2017), data matrix factoriza-
tion (Eggeman et al., 2015; Martineau et al., 2019), virtual
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dark-field (VDF) imaging (Meng & Zuo, 2016) and data cluster-
ing (Einsle et al., 2018; Gallagher-Jones et al., 2019; Martineau
et al., 2019) have been reported for S(P)ED data. Indexation re-
quires knowledge of crystal structures present in the specimen,
whereas clustering typically requires iterative determination
of the number of categories. In contrast, VDF imaging and
data matrix factorization approaches can be performed with-
out such a priori knowledge, which makes them well suited
to the study of unknown phases, and they are therefore the
focus of this work. It has also been demonstrated that SPED
data are typically more amenable to successful nanocrystal
segmentation than SED data (Martineau et al., 2019). This
owes primarily to the integration through crystal bending and
the reduction of dynamical oscillations in diffracted intensity
as a function of thickness afforded by precession (Martineau
et al., 2019). Hence, the analysis of SPED data is central in the
present work.

The VDF imaging approach (Meng & Zuo, 2016) is based on
forming VDF images for numerous different diffraction con-
ditions by plotting the integrated intensity of selected reflec-
tions as a function of probe position. The VDF images are
compared against each other to identify images that show
the same crystal, and such images are merged to yield one
real space diffraction contrast image of each crystal. Simulta-
neously, the information on the associated diffraction con-
ditions used to form each image in a merged set is com-
bined to yield a representative diffraction pattern for that
crystal.

The data matrix factorization approach is a form of un-
supervised machine learning where all the (P)ED patterns
are stacked as vectors in a data matrix, M, that is factor-
ized into a factor matrix C P and a loading matrix C L . Non-
negative matrix factorization (NMF) (Lee & Seung, 1999)
is one such method that has been applied to S(P)ED data
and found to yield factors that resemble (P)ED patterns, so-
called component patterns, and loading maps that resemble
diffraction contrast images highlighting the associated crystal
in the scan region (Eggeman et al., 2015; Martineau et al.,
2019).

In this work, VDF imaging and NMF are compared as meth-
ods for nanocrystal segmentation. Both approaches are ap-
plied to SPED data obtained from a model system composed
of partly overlapping magnesium oxide (MgO) nanoparticles,
where some crystals excite the same diffraction conditions.
This system highlights particular challenges that arise when
individual VDF images and individual loading maps are re-
lated to multiple crystals, which render the segmentation in-
complete. To allow for a more complete nanocrystal segmen-
tation, workflows incorporating image segmentation applied
to VDF images or loading maps are developed. Relative merits
and limitations of both strategies are discussed, and the asso-
ciated SPED data (Bergh, 2019) and demonstrated workflows
are available open-source (Johnstone et al., 2019) for further
application and development.

Methods

Specimen preparation

MgO was produced by burning a piece of Mg in air using a
gas torch to obtain a smoke containing MgO nanoparticles.
TEM grids coated by holey carbon were held in the smoke
for ca. 2 s, so that MgO nanoparticles were deposited on the
grids.

Scanning precession electron diffraction

SPED was performed using a JEOL JEM-2100F fitted with a
Nanomegas ASTAR system. PED patterns were acquired using
an externally mounted Stingray optical camera that imaged
the phosphor viewing screen of the microscope. The micro-
scope was operated at 200 kV with a convergence semi-angle
of 1.0 mrad and a precession angle of 16 mrad. The precession
frequency was 100 Hz and the exposure time at each probe
position was 10 ms.

Data processing and analysis

SPED data were analysed using pyXem (Johnstone et al.,
2019), an open-source Python library for crystallographic
electron microscopy, that builds on scientific Python pack-
ages, particularly hyperspy (de la Peña et al., 2019), scikit-
image (van der Walt et al., 2014) and scikit-learn (Pedregosa
et al., 2011). A notebook including the workflows developed
and parameters used (Johnstone et al., 2019) and a copy of the
associated SPED data (Bergh, 2019) have been made avail-
able open-source. The raw four-dimensional SPED dataset D R

had dimensions (2X, 2Y|K X, KY), where X and Y refer to
the navigation dimensions, i.e. the dimensions of the scanned
area, and K X and KY refer to the signal dimensions, i.e. the
dimensions of the PED patterns, following the notation used
in hyperspy.

VDF imaging-based segmentation. The workflow for VDF
imaging-based segmentation developed here was an adaption
of the VDF imaging-based method proposed in Meng & Zuo
(2016). The main difference was an additional step in which
watershed image segmentation (Beucher & Lantuejoul, 1979)
was applied to each of the VDF images, so that the method could
be used in cases where individual VDF images showed multi-
ple crystals. It should be noted that image segmentation could
be achieved using a wide range of established strategies, and
application of another strategy may further improve the ap-
proach. The complete data processing workflow is illustrated
in Figure 1.

Preprocessing (Fig. 1A) included binning D R in navigation
space, which gave D (X, Y|K X, KY) that was aligned by shift-
ing the centre of the direct beam to the same coordinates in all
PED patterns. The background was removed by performing a

C© 2019 The Authors. Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society, 00, 1–10



N A N O C R Y S T A L S E G M E N T A T I O N I N S C A N N I N G P R E C E S S I O N E L E C T R O N D I F F R A C T I O N D A T A 3

PU

markers

D P V

elevationmask labels segments VS

DR

mask segments
sum

VSS PD

PSS

(A) Preprocessing

(B) Watershed segmentation

(C) Correlation

PUS

DB

Fig. 1. Virtual dark-field (VDF) imaging-based segmentation workflow. (A) Preprocessing the raw data (D R) by binning and alignment (D ), before the
background is removed (D B), all peaks are found (P ), unique peaks are determined (PU ) and VDF images (V ) are formed for all unique peaks. (B)
Watershed segmentation is performed on each VDF image to yield VDF image segments (VS) with corresponding peaks (PU S). For each VDF image, a mask
is formed, markers are determined and watershed segmentation is performed on the elevation image, leading to labelled regions that are used to define
segments. (C) Correlation of the VDF image segments, where segments with a correlation exceeding a threshold are summed within a mask, leading to
summed VDF image segments (VSS) and corresponding peaks (PSS). Virtual diffraction patterns (PD ) are created to visualize the diffraction spots of each
summed segment.

difference of Gaussians background subtraction, which gave
D B (X, Y|K X, KY), before all diffraction peaks, P (X, Y), were
detected in all PED patterns, using a Laplacian of Gaussian blob
finder. A clustering routine was employed to identify groups
of peaks similar enough in positional coordinates to be con-
sidered to belong to the same unique diffraction vector. The
unique vectors were filtered by magnitude to exclude the direct
beam and diffraction peaks located at the edge of the detector,
which resulted in N unique diffraction vectors, PU (N|2). VDF
images were calculated by integrating the intensities within
a disc centred at each of the unique peak positions in all PED
patterns, which gave N VDF images V (N|X, Y).

Each VDF image was segmented by the watershed method as
depicted in Figure 1(B). For this, a mask was created by thresh-
olding the VDF image automatically, the distance transform
of the mask was calculated and its maxima were used in de-
termination of markers for watershed. Further, an elevation

image was calculated by applying the Sobel filter to the VDF
image. The elevation image was segmented by watershed,
which resulted in labelled regions. Labelled regions smaller
than a user-defined minimum size were discarded, before a seg-
ment image was created for each labelled region based on the
VDF image. Accordingly, applying the watershed segmenta-
tion routine to the VDF images yielded a stack of VDF image
segments, VS(M|X, Y), and a corresponding list of unique vec-
tors, PU S(M|2), where M ≥ N.

Cross-correlation was then performed between segments to
identify those segments that corresponded to the same crystal,
as illustrated in Figure 1(C). For the case demonstrated here,
iterative comparisons of the correlation scores of one segment
with the remaining segments were sufficient, although the full
correlation matrix may be considered for improved accuracy
in other cases. Segments with a normalized cross-correlation
exceeding a user-specified correlation threshold were
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Fig. 2. Non-negative matrix factorization (NMF)-based segmentation workflow. (A) Preprocessing where the raw dataset (D R) is binned and aligned (D ).
NMF performed on D yields component patterns (C P ) and loadings (C L ). (B) Correlation of the component patterns and loadings, where components are
summed if the correlations of both patterns and factors exceed threshold values, leading to correlated patterns (C C P ) and loadings (C C L ). (C) Watershed
segmentation is performed on each correlated loading to yield loading segments (C SL ) with corresponding patterns (C S P ). For each loading, a mask is
formed, markers are determined and watershed segmentation is performed on the elevation image, leading to labelled regions that are used to define
segments.

considered. If the number of these segments, which corre-
sponded to the number of associated diffraction vectors, was
below a user-specified vector threshold, the segments were dis-
carded. Otherwise, a segment mask, defining the region where
more segments than a user specified segment threshold had
intensities above zero, was created, and the corresponding
segments were summed within the segment mask. The seg-
ment sum was associated with its corresponding list of unique
vectors, and each vector was assigned an intensity that was
the total intensity of the corresponding single segment image
within the segment mask. The correlation step resulted in a
stack of summed segments, VSS (L |X, Y), and a list of diffrac-
tion vectors and intensities, PSS (L ), where L ≤ M. The final
step was done for visualization purposes and consisted of re-
constructing virtual diffraction patterns, PD (L |K X, KY), for
the summed segments, where Gaussians were used to model
the diffraction spots.

NMF-based segmentation. The workflow for NMF-based seg-
mentation is illustrated in Figure 2. The raw dataset, D R,
was binned and aligned to yield D , as for VDF imaging-based
segmentation. D was decomposed by NMF following Poisson
noise normalisation (Keenan & Kotula, 2004), as illustrated
in Figure 2(A). The region in the centre of each PED pattern,
including the direct beam, was masked prior to performing
NMF. This masking improved NMF results by avoiding issues
associated with the direct beam saturating the detector and
by removing the influence of high intensity variations in the
direct beam, which rank highly in the minimized error met-
rics computed during NMF without being related to the most
crystallographically significant features in the data. To esti-
mate the number of components, E , to use for NMF, a scree
plot was inspected. The scree plot showed the fraction of total
variance explained by each component obtained by singular
value decomposition (SVD), after mean-centering of the PED
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Fig. 3. (A) Annular virtual dark-field (VDF) image showing nine magnesium oxide (MgO) particles (grey), labelled P1–P9, lying on top of a holey
amorphous carbon film (dark grey) or over vacuum (black). The outlines of the MgO particles are indicated by dashed rectangles. (B) Sum of PED patterns
within the yellow areas in (A). The detected diffraction vectors of P2 are marked by black arrows. P� is the sum of P3, P4, P6 and P8.

patterns. The NMF decomposition into E components then
produced a stack of component patterns, C P (E |K X, KY), and
a corresponding stack of loadings, C L (E |X, Y).

Cross-correlation of both the component patterns and load-
ing maps was performed to merge components that originated
from the same crystal, since NMF can result in splitting of
signal from one crystal into several components. The corre-
lation step is depicted in Figure 2(B). If the normalized cross-
correlation of both the component patterns and loadings ex-
ceeded a user-specified pattern correlation threshold and a user-
specified loading correlation threshold, respectively, component
patterns and loadings were summed. This correlation step re-
sulted in component patterns, C C P (F |K X, KY), and loadings,
C C L (F |X, Y), where F ≤ E . After correlation, the loadings
were segmented by watershed, as portrayed in Figure 2(C), us-
ing the same approach as for the VDF images described above.
Segments were discarded if their maximum intensities were
below a user-defined minimum intensity threshold or their total
sizes were below a user-specified minimum size. Each result-
ing loading segment was associated with its corresponding
component pattern, which resulted in component patterns
C S P (G |K X, KY), and loading segments, C SL (E |X, Y), where
G ≥ F .

Results and discussion

SPED data inspection

An annular VDF image formed using the demonstration
SPED dataset D is shown in Figure 3(A), where the outline
of each of the nine cubic particles, labelled P1–P9, are
indicated. Figure 3(B) shows the sum of PED patterns within
a region without overlap for each particle, except for P2 that
overlapped significantly with P1. The detected diffraction
vectors of P2 are indicated in (B). P3, P4, P6 and P8 had
similar orientations, as seen by the morphological similarities

in (A) and the similar PED patterns in (B). The sum of the PED
patterns of these particles, labelled P�, is also shown in (B).

VDF imaging-based segmentation

The results of VDF imaging-based segmentation are shown in
Figure 4. Figure 4(A) shows summed VDF image segments
(VSS), and (B) shows the corresponding virtual diffraction pat-
terns (PD ). P1 and P4–P9 were segmented and labelled V1 and
V4–V9, respectively. P2 was not included in the segmentation
results, since only a few diffraction vectors were detected for
this particle (Fig. 3B), so that it was excluded by the vector
threshold criteria. This criterion was incorporated to allow ex-
clusion of segments resulting from noise or particles not being
separated correctly. P3 was not segmented and was included in
V4 together with P4 (Fig. 4A), since P3 and P4 did not display
sufficient differences in their VDF images. These two particles
shared the same orientation and had only common diffraction
vectors (Fig. 3B), which meant that they appeared exclusively
in the same VDF images where they always overlapped. Most
often, only one marker was defined for both particles (e.g.
Fig. 1B), which lead to both being included in the same seg-
ment after watershed segmentation. Thus, regions were only
segmented if they displayed a minimum number of detectable
diffraction peaks, and if they displayed sufficient distinctness
in the VDF images to allow marker detection and to give clear
edges in the elevation images for watershed segmentation.

Figure 4(C) shows preprocessed PED patterns from regions
without overlap where the diffraction vectors found in the
virtual diffraction patterns are marked. Figure 4(D) shows
the difference between normalized preprocessed PED patterns
and normalized virtual diffraction patterns. Some diffraction
vectors were missing in the reconstructed virtual diffraction
patterns, and the difference patterns, especially P4–V4, P8–
V8 and P9–V9, displayed large residuals where strong peaks
were not included fully in the virtual diffraction patterns. Some
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Fig. 4. Virtual dark-field (VDF) imaging-based segmentation results. (A) Summed VDF image segments (VSS), labelled V1 and V4–V9 according to the
particle numbering in Figure 3, and (B) corresponding virtual diffraction patterns (PD ). (C) Sum of preprocessed precession electron diffraction (PED)
patterns within the regions indicated in Figure 3(A). The diffraction vectors found in the virtual diffraction patterns (B) are encircled in green, and the
black arrows indicate positions where the virtual apertures of two vectors overlapped. (D) Difference between the preprocessed sum PED patterns (C) and
the corresponding virtual diffraction patterns (B), after normalization.

vectors were left out because of incorrect segmentation in the
corresponding VDF images. Incorrect segmentation resulted
from inhomogeneous intensity distributions or noise in the
VDF images that lead to an inappropriate choice of mark-
ers and/or elevation images that did not reflect the particle
shapes. In a worst-case scenario, an incorrectly shaped seg-
ment could give a sufficiently high correlation score with a
correctly shaped segment, giving a false positive result. Fur-
thermore, two diffraction peaks were included in the virtual
diffraction patterns at some positions where only one peak
was observed in the reference PED pattern, as marked in
Figure 4(C). For these peaks, the virtual apertures overlapped,
which meant that intensity from one peak contributed to two
VDF images. Another consequence of using a virtual aperture
was that the virtual diffraction patterns did not contain any
information on the intensity distribution associated with the
diffraction vectors. This resulted in prominent residuals in the
difference patterns near diffraction vectors, e.g. asymmetric
annuli in P9–V9.

NMF-based segmentation

The results obtained by NMF are shown in Figure 5. For NMF,
the number of components, E , was a required parameter.
By inspection, eight source signals could be identified in the
dataset, i.e. six distinct MgO crystal orientations, amorphous
carbon and vacuum (Fig. 3). However, the appropriate num-
ber of components for the decomposition could be higher, due
to thickness or background intensity variations, strain, bend-
ing or crystal defects. In general, the scree plot produced by
SVD can be used as a guide to estimate the number of com-
ponents (Martineau et al., 2019). Assuming that components
describing signals account for the largest fractions of variance
in the data, the number of components at which the amount
of variance is relatively low and starts to decay slowly is typ-
ically considered an appropriate choice, as the components
after that point should describe noise. In that case, the scree
plot would show an ‘elbow’ or ‘knee’ shape. The scree plot
associated with SVD of the SPED data is shown in Figure 5(A),
and a notable gap in fraction of variance can be discerned
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Fig. 5. Non-negative matrix factorization (NMF) results. (A) Singular value decomposition (SVD) scree plot showing the fraction of total variance that
each component accounted for. The dashed horizontal line indicates that a number of 11 components was used for NMF. (B) Component patterns (top)
and corresponding loading maps (bottom) obtained by NMF, labelled #0-#10. The component patterns and loadings after correlation are labelled C1–C9,
according to the particle labelling in Figure 3, and C� is the sum of components #2, #6 and #10.

after 11 components, which was the number of components
chosen for NMF.

The component patterns (C P ) and loadings (C L ) obtained by
NMF, labelled #0-#10, are shown in Figure 5(B). Components
#1-#3 and #5-#10 were all related to MgO particles, whereas
#0 was related to background and glare from the recording
system, and #4 was related to the carbon film. Therefore,
components #0 and #4 were discarded prior to the correlation
step, which was performed to merge components related to the
same crystals. The component patterns and loadings resulting
from correlation (C C P and C C L ) were labelled C1–C2, C5–
C9 and C� according to the particle labelling. C� resulted
from addition of components #2, #6 and #10, which were all
related to particles that shared the same orientation; P3, P4,
P6 and P8. None of the other components were merged during
the correlation step, since they represented individual particles
of different orientations and therefore gave low correlation
values to the other components. P8 was partly accounted for
both by components C8 and C�, which indicated that P8
comprised PED patterns that could be grouped mainly into
two different diffraction conditions.

After correlation, the loading maps were segmented by wa-
tershed, and the resulting loading segments (C SL ), labelled

CS1–CS7, CS8i–CS8iii and CS9, are shown in Figure 6(A). CS1,
CS5–CS7, CS8iii and CS9 corresponded to the individual par-
ticles P1, P5–P7, P8 and P9, respectively. CS2 corresponded
to P2, but also included weaker intensities from surround-
ing regions that were not sufficiently removed by automatic
thresholding, but that could have been removed by additional
manual thresholding. CS4 contained signals both related to
P3 and P4 for the same reason as explained previously for
V4. P8 was split into three segments, CS8i–CS8iii, where the
first two resulted from C8 and the last from C�, since this
particle gave rise to more than one unique PED pattern, as
mentioned earlier.

Figure 6(B) shows the difference between the PED pat-
terns (Fig. 3B) and the corresponding component patterns
(Fig. 5B), after normalization. Pseudo-subtractive intensities,
i.e. regions where intensity was apparently missing, could be
observed in some component patterns, e.g. #7-#9, similar to
observations in Martineau et al. (2019), which gave positive
residuals in the difference patterns, e.g. P2–C2, P8–C8 and
P9–C9. Also, the difference patterns showed positive back-
ground intensities, since the background was accounted for
largely by component #0. Moreover, there were notable resid-
uals related to diffraction vector intensities, even for cases
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Fig. 6. Non-negative matrix factorization (NMF)-based segmentation results. (A) Loading map segments, labelled CS1–CS7, CS8i–CS8iii and CS9
according to the particle labelling (Fig. 3), resulting from watershed segmentation of the correlated component loading maps (Fig. 5B). (B) Difference
between precession electron diffraction (PED) patterns (Fig. 3B) and the corresponding component patterns (Fig. 5B), after normalization.

where the PED pattern and the component pattern corre-
sponded to highly similar areas in real space, e.g. negative
values �0.06 could be seen in P1–C1.

Comparison of the two nanocrystal segmentation methods

Comparing the results from the VDF imaging- and the
NMF-based segmentation methods (Figs. 4–6), it is apparent
that both approaches resulted in segmentation of particles P1,
P5–P7 and P9. However, P2 was segmented in the NMF-based
method and discarded in the VDF imaging-based method
(Figs. 4A and 6A). This was because the VDF imaging-based
method required that each segment displayed a sufficient
number of detectable diffraction peaks, whereas NMF was
less restrictive in that all distinct intensities accounting for
significant variation in the data could give rise to individual
components. That could be advantageous in nanocrystal
segmentation as all crystals should be accounted for, given
a large enough number of components. On the other hand, it
could give complications in physical interpretations, since it is
not necessarily diffraction from crystals of distinct orientations
that give rise to individual components. Intensities related

to individual crystals could be split into several components,
which was countered partly in this work by inclusion of a
correlation step that enabled the summation of similar compo-
nents. The correlation step lead to summation of components
#2, #6 and #10 and subsequent segmentation of P4 and P6.
Contrarily, C8, that was related to parts of P8, did not correlate
sufficiently with other components, so that contribution from
P8 was split into several segments, C8i–C8iii (Fig. 6A).
Consequently, both segmentation approaches should be used
with caution so as to avoid disregarding or oversegmenting
crystals.

A major difference between the virtual diffraction patterns
and the component patterns (Figs. 4B and 5B) was that the
component patterns included all major diffraction vectors,
whereas the virtual diffraction patterns were missing some.
For VDF imaging-based segmentation, incorrect segmentation
happened for some vectors, as mentioned earlier. Moreover,
peak finding was done for each preprocessed PED pattern indi-
vidually, and so relatively weak peaks would either not have
been detected or could have resulted in noisy VDF images,
which could have given incorrect segmentation. NMF was
more sensitive in that data redundancy was exploited to pick
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out even weak, recurring intensities, given a large enough
number of components. Furthermore, the virtual diffraction
patterns contained no information about the intensity distri-
bution associated with individual diffraction vectors, as op-
posed to the component patterns. Thus, the need for and the
way of creating virtual diffraction patterns should be critically
evaluated. Nonetheless, the difference patterns (Figs. 4D and
6B) showed notable residuals near diffraction vector positions
for both methods, which indicated that neither the intensities
in the component patterns nor the intensities in the virtual
diffraction patterns could necessarily be used quantitatively.

The same watershed segmentation procedure was used for
both VDF imaging-based and NMF-based segmentation, and
it did not enable distinction of P3 from P4, which lead to P3
being included in the segment of P4 for both methods. One way
to resolve such issues could be to include morphological prior
knowledge as demonstrated in Hamarneh & Li (2009), here
the fact that the crystals are cubes in projection. An alternative
may be to apply contour fitting as a part of the segmentation
step, similar to the approach demonstrated in Jung & Kim
(2010). Such approaches could allow attribution of overlap
areas to more than one segment and possibly give segments
better reflecting the crystal morphologies.

Conclusions

Two methods for nanocrystal segmentation, based on VDF
imaging and NMF, respectively, were applied to SPED data
obtained from a model system of partly overlapping MgO
nanoparticles. This model system contained crystals that ex-
cited the same diffraction conditions and emphasized situa-
tions where neither of the methods distinguished all crystals.
To overcome this issue, a watershed segmentation routine
was included in both methods, which allowed segmentation of
crystals that had highly similar diffraction patterns. However,
the segmentation was incomplete for a particularly challeng-
ing case where crystals that shared the same orientation also
overlapped significantly in real space.

The VDF imaging-based segmentation required that each
crystal to be segmented exhibited several detectable diffraction
peaks, and thus neglected weak peaks and crystals yielding a
relatively small number of peaks. Incorrect segmentation hap-
pened for some VDF images, so that some diffraction vectors
were lacking in the virtual diffraction patterns. Contrary to
the virtual diffraction patterns, the component patterns in-
cluded information on the intensity distribution associated
with individual diffraction vectors. Also, the NMF-based seg-
mentation approach required minimal preprocessing and was
more sensitive in the sense that no major intensity contribu-
tion was neglected and in that subtle intensity variations could
be identified. When comparing the original PED patterns with
the corresponding component patterns and with the virtual
diffraction patterns, notable intensity differences near diffrac-

tion peaks were seen for both of the explored methods, which
indicated that neither could necessarily be used quantitatively.

Given that they are used with care and that artefacts are
considered critically, both VDF imaging- and NMF-based seg-
mentation can be valuable tools for nanocrystal segmentation
in SPED data subject to limitations. The workflows developed
are available open-source and can be used for analysis of SPED
data and as a platform for further developments.
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