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ABSTRACT Nowadays, learning-based modeling system is adopted to establish an accurate prediction
model for renewable energy resources. Computational Intelligence (CI) methods have become significant
tools in production and optimization of renewable energies. The complexity of this type of energy lies in
its coverage of large volumes of data and variables which have to be analyzed carefully. The present study
discusses different types of Deep Learning (DL) algorithms applied in the field of solar and wind energy
resources and evaluates their performance through a novel taxonomy. It also presents a comprehensive
state-of-the-art of the literature leading to an assessment and performance evaluation of DL techniques
as well as a discussion about major challenges and opportunities for comprehensive research. Based on
results, differences on accuracy, robustness, precision values as well as the generalization ability are the
most common challenges for the employment of DL techniques. In case of big dataset, the performance
of DL techniques is significantly higher than that for other CI techniques. However, using and developing
hybrid DL techniques with other optimization techniques in order to improve and optimize the structure of
the techniques is preferably emphasized. In all cases, hybrid networks have better performance compared
with single networks, because hybrid techniques take the advantages of two or more methods for preparing
an accurate prediction. It is recommended to use hybrid methods in DL techniques.

INDEX TERMS Big dataset, deep learning, modeling, optimizing, solar energy, wind energy.

ACRONYMS USED FREQUENTLY IN THIS WORK RBF Radial basis function
GHG Greenhouse gas EC Evolutionary computation
LSTM Long short-term memory Network CNN Convolutional neural network
FL Fuzzy logic MLP Multi layered perceptron
SAE Stacked auto-encoder TDNN Time delay neural network
DL Deep learning NARNN Nonlinear auto regressive neural net-
DRL Deep reinforcement learning work
CI Computational intelligent FFNN Feed-forward neural network
WNN wavelet neural network CPRS Continuous ranking probability score (
DBN Deep belief network ANNs Artificial neural networks
DRWNN diagonal recurrent wavelet neural network SVM Support vector machine
RBM Restricted Boltzmann machine MRBM  Multilayer  Restricted ~ Boltzmann
ANFIS Adaptive neuro fuzzy inference system Machine
BPNN Back Propagation Neural Network
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SVR Support vector regression

DNN-MRT Deep Neural Network-Meta Regression
Transfer

RMSE Root mean squared error

MAE Mean absolute error

SDE Standard deviation error

RMT Random Matrix Theory

RNN Recurrent Neural Network

PR Persistence model

SML Stochastic maximum likelihood
MCMC Markov chain monte carlo

I. INTRODUCTION

Vast progress in science and technology improved the
comfort of human life tremendously. However, it generates
environmental risks and energy crisis such as increasing envi-
ronmental pollutants and reducing energy resources, which
are considered as threats to the human life [1]. Utilization
of renewable energies [2], [3] (such as biofuels, wind and
solar energies) together with energy management [4] is one
of the solutions to deal with these threats. Heavy dependence
on fossil fuel and limited refinement of nature as well as
mismanagement of waste sources have caused environmental
crisis [5], [6]. As an example, fossil fuel for economic activ-
ities leads to greenhouse gases (GHG) emissions all over the
world [7]. Increasing GHG renders an increase in the average
temperature of the earth’s surface [8].

These phenomena led governments and scientists to exploit
renewable energies. Renewable energy sources turn to be
considered as an alternative energy supplier in the future’s
energy systems, especially when the issues of greenhouse
gas emissions become important crisis to human life [9].
Renewable energies have different sources including solar,
wind, biomass, hydropower, geothermal and hydrogen ener-
gies [10]-[15]. There are various studies in the field of renew-
able energies as alternative energy sources to fossil energy.
Ashok et al. [16] studied lemon fruit rinds as a biodegrad-
able source of energy exploitation to find its suitability for
internal combustion engines. Malik and Sukhera [17] studied
future energy productions, demands and supply from natural
gas in Pakistan by considering economic and environmental
crisis with the aim of natural gas management and search
for alternative renewable energy resources. In a study by
Yusaf et al. [18], the potential of renewable sources in Aus-
tralia was investigated with the aims of regulating the use of
conventional energies and trying to use renewable energies
as alternative sources. This would reduce world-wide GHG
emissions. Cristina [19] considered the potential of renewable
energies as energy sources for electricity and heating uses in
rural areas of Romania due to lack of electricity in some urban
areas of this country. Renewable energy (green energy) could
be a sustainable solution to living quality improvement in this
area.

Up to date, many researchers employed different modeling
methods and tried to establish an accurate and recognized
model in this field by using various information [20], [21].
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However, some modeling approaches such as linear or non-
linear regression mathematical models may not be applicable
for practical complex prediction tasks due to high amount
of computational costs [22], [23]. Mathematical models are
simple and easy to use but, in some cases, (depending on data)
cannot include all aspects of the problem and only work in
certain situations. Due to the nature of clean energy data and
interrelationships of data, using mathematical models cannot
reach high accuracy, yet requires large number of coefficients
and complex computations [3], [23], [24].

Computational Intelligence (CI) methods are known as
essential tools which have been successfully applied to
improve the performance of energy systems in both pro-
duction and transfer. In this way, a wide range of energy
production systems such as renewable energy systems are
highly reliant on the advancement of CI techniques. Big data
in renewable energy systems have created a considerable
number of opportunities and challenges for decision-making,
estimation and optimization in wind and solar energy sys-
tems. Accordingly, in order to perform an effective research
in this field, there is a need for the utilization of high-
performance modeling methods with a simple application.
Therefore, CI methods have reached an important place in the
fields of production, optimization and evaluation of renew-
able energies due to the generation complexity of this type of
energy covering large volumes of data and variables, which
have to be analyzed carefully in order to extract energy in real
energy systems. ANNs, EC, FL and probabilistic methods
are four main principles of CI methods. Prediction systems
contribute to generate comprehensive system that can be used
in further studies [21], [25]. Intelligent prediction models
do not need complex mathematical relationships of systems.
In recent years, these methods were used in all fields of
science [20]. Faizollahzadeh Ardabili et al. developed a study
to manage and classify CI techniques developed in the field
of hydrogen production. Accordingly, the prediction of the
process of producing energy in renewable energy systems
helps to design energy and power control systems, choose
energy systems and utilize energy management systems.

Recently, there were several surveys on applications of CI
methods in renewable energies. Khatib et al. [26] reviewed
applied modeling techniques in the field of solar energy. The
examined models included linear, nonlinear, and artificial
intelligence models. Based on literature review, the most
correlated variables on solar energy are sunshine ratio and
ambient temperature.

Qazi et al. [27] reviewed the application of ANNs in the
prediction of solar radiation. Based on their results, artificial
neural networks had high flexibility and could perform mod-
eling tasks with many weather parameters as inputs, which
resulted in a more accurate and reliable network, compared
to other empirical models.

In another study by Voyant et al. [28], the predic-
tion of solar irradiation by using machine learning meth-
ods were studied. They found that ML methods (such as
nearest-neighbor neural network and Bootstrap aggregating)
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improved the prediction performance and accuracy. Ata
[29] applied MLP network to forecast wind energy.
Almonacid et al. [30] performed a review survey on ANNs
applying to low and high concentrator photovoltaic in pre-
dicting the main parameters which affected the performance
of concentrator photovoltaic systems that were operating
outdoors.

Based on our best knowledge and according to what
has been reported in various studies, a single CI technique
such as ANN, Fuzzy, SVM, or hybrid CI technique such
as ANFIS, in cases where the volume of data is large and
requires the modeling of the process of trends, cannot have
an admirable precision and cannot meet the demands of the
operator. In this context, novel methods have emerged to
address them. A set of them are categorized as DL techniques
DL technique is referred to a deep architecture of ANNs
with large-scale data processing capabilities [31]. These algo-
rithms can learn imagination and differentiate features in a
hierarchical method from the data [32]. DBNs, RBMs, CNNs,
RNNs or LSTMs, SAE and DRL are known methods of
DL. Recently, DL algorithms were applied to different fields
of renewable energy, providing high prediction accuracy for
solar and wind energy compared to traditional methods.
Therefore, it motivates us to investigate different architecture
of DL applied in these two renewable energy fields.

Recent studies have been developed to categorize different
DL techniques. Akbaba et al. [33] employed DL technique for
the estimation of horizontal daily solar irradiation in compar-
ison with classic prediction models. Nagem et al. [34] were
the first in employing DL techniques for the estimation of
solar storms using Geostationary Operational Environmental
Satellite data. Aakroum et al. [35] employed DL technique for
the prediction of surface solar irradiation. Muhammad [36]
employed DL technique for the prediction of hourly, daily
and yearly solar irradiation.

Tao et al. [37] employed DL technique for the prediction of
wind power in the presence of historical data. de Aquino et al.
[38] employed DL technique for the prediction of wind power
generation with high accuracy in comparison with ANN and
ANFIS techniques in the presence of power curves data of
wind farms.

However, there is no comprehensive study about DL tech-
niques in solar and wind energies. Also, the present study
categorizes DL techniques into two categories, namely, single
and hybrid methods, and focuses on advantages and disadvan-
tages of each method.

Table 1 divides possible DL techniques applied in the field
of renewable energies. It classifies DL methods in terms of
model and energy resource type and provides comprehensive
information on the use of these methods in solar and wind
energies.

The main contributions of the present survey can be sum-
marized into five bullets:

« To investigate the energy policy applied with Al tech-

niques in solar and wind sectors

o To categorize DL methods in single and hybrid methods
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FIGURE 1. The structure of the completion process of the study.

o To analyze architectures of single and hybrid DL
methods
o To compare single DL and hybrid DL with computa-
tional intelligence methods
« To highlight those robust methods applying DL
Fig. 1 shows the organization of this study. Section 2 provides
the background on key concepts including characteristics of
DL techniques and criteria for evaluations as well as data-sets.
Then, it classifies studies based on key metrics and identifies
ideas of the previous studies. Section 3 describes the-state-
of-the-art of CI and DL techniques applied in solar and wind
energy, which were frequently employed in optimizing, esti-
mating or similar applications with the aim of comparing their
weaknesses and strengths. The evaluation of each method will
be discussed in results and discussions. Fig. 1 presents the
main structure and procedure of the present work.

Il. METHODOLOGY

In this review work, 14 articles focusing on DL techniques
applied to estimate or predict wind and solar energies are
considered. The main platform is on studies performed in
the period from 2015 to 2018. Fig. 2 indicates the yearly
distribution of CI and DL articles. A large number of trend
line indicates that more papers, on CI and DL applied in wind
and solar energies with estimation and prediction purposes,
were published from 2015 to 2018.

As is clear from Fig. 2, the number of developed DL
techniques in the field of wind energy is higher than that of
solar energy. The highest number of developed DL techniques
is related to single methods in 2016. However, there is a lack
of hybrid DL techniques for both wind and solar databases,
which are prone to develop many studies in this field.

A. CHARACTERISTICS OF STUDIES DEVELOPED USING DL
TECHNIQUES

Table 1 presents the characteristics of the developed studies
in terms of methodology, type of energy resources, modeling
methods and datasets.
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FIGURE 2. The trend of the developed studies divided by month, type of

method and data-base.

Table 1 describes developed studies in details. It out-
lines DL techniques in terms of the type of energy resource
(wind or solar energies), the developed method, datasets with
their related links (if available) and the target of the study.
The last column shows the pertinent references. For example,
in study No. 2, [40] is categorized in studies developed with
DL techniques. Its modeling methods are SAE and DBN,
which are compared with MLP method as the reference
model. The dataset of the study is related to SONDA project
for Belo Jardim (BJD), Sao Jodo do Cariri (SCR) and Triunfo
(TRI), which is gleaned from http://sonda.cptec.inpe.br/, May
2005. The desired target is the hourly average speed of winds
in the Northeastern region of Brazil. It aims to compare the
performance of SAE, DBN and MLP for the prediction of the
target value

B. CRITERIA FOR EVALUATION
The effectiveness of DL techniques in the present study is
evaluated based on the capability of the developed methods
in making the most accurate techniques for prediction, detec-
tion, optimization and monitoring purposes in the presence of
the statistical metrics.

Table 2 presents the most common evaluation metrics for
comparing the efficiency of the DL techniques. The second
column presents a brief description of parameters.
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TABLE 1. Descriptions about performed studies.

S. No

Type of
energy
resource

Modeling
method

Data-set (s)

Target (s)

reference

Solar
energy

DRWNN (a
combination
of RNN and
WNN)

BP

Cloud cover, the weather
condition which affects
irradiation. Data link is not
available.

daily and hourly
solar irradiation

[39]

Wind
energy

DBN and
SAE:
Comparing
with MLP
network

Data-sets of SONDA
project for Belo Jardim
(BID), Sao Jodo do Cariri
(SCR) and Triunfo (TRI).
http://sonda.cptec.inpe.br/,
May 2005.

The hourly
average speed of
winds in the
Northeastern
region of Brazil

[40]

Wind
energy

SAE:
comparing
with the PR,
TDNN,
NARNN,
FFNN

dataset of the Western
‘Wind data created by
3TIER and National
Renewable Energy
Laboratory (NREL) which
contains the annual wind
speed in 10-min intervals.
https://www.nrel.gov/grid/
western-wind-data.html

Wind speed

[41]

IS

Wind
energy

LR, k-NN,
REP, M5P,
MLP, RBF,
SVM, and
DNN

wind power generation
information (wind speed,
wind direction and past
wind power) of seven
wind farms in Ontario,
Canada and the
meteorological data
corresponding to the Seven
wind farms including
Erieau — Erieau, Dillon -
Chatham Kent, Spence -
Ridgetown RCS,
Kingsbridge — Goderich,
Wolfe Island - Kingston A,
Port Alma - Chatham
Kent, and Part Alma 2 —
Erieau.

The historical data are
available at:
http://ets.aeso.ca/.

Wind power

[42]

Wind
power

MRBM

Using 1200 hours of data
(in four time durations 0-
300, 300-600, 600-900,
and 900-1200 h) from a
wind farm located in
Heilongjiang Province of
China. Data are available
at:

www.hpi.com.cn

Wind Power

[43]

Wind
power

WT, DBN
and spine QR

Data from the Shangchuan
Island wind farm in
Guangdong Province,
China from January 2013
to December 2013 and the
Cathedral Rocks wind
farm in Australia with 5-
min intervals for the whole
year of 2011, Data set has
been presented in [44]

Wind speed

[45]

Wind
power

Stacked de-
noising auto-
encoders

Data from wind farms
located in Ningxia, Jilin
Inner Mongolia and
Gansu, China with 10 min
intervals. Data link is not
available.

Wind speed

[46]

Solar
energy

MLP, LSTM,
DBN and
Auto LSTM

Dataset from German-
Solar-Farm containing 21
photovoltaic facilities with
three-hour resolution for
990 days. Data set [47] is
available at: http://ies-
research.de/Software

The produced
solar power

Solar
energy

DRNN

Dataset including global
horizontal irradiance for
March 24, February 8,
October 8, and August 12.
Data are available at:
http://www.nrcan.gc.ca/en
ergy/renewable-
electricity/solar-
photovoltaic/18409

solar irradiance

[49]

Wind
power

CNN

The wind power data from
milky way wind farm with
5-min intervals from Jan.
2011 to Dec. 2011 in the
Changchun island wind
farm in Shandong province
and Guangdong Province,
China. Link is not
available.

Wind Power

[50]
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TABLE 1. (Continued.) Descriptions about performed studies.

Dataset for three years
DAE as the from ﬁye diffeyent wind
farms situated in Europe
1 base, and containing the power
Wind DBN acts as g the powef Wind Power [51]
1 measurement and the
power the Meta- .
regressor meteoml(.:glcal. data.
Datasets is available
at:[51]
Dataset including solar
irradiance over 18000
hours from 4 major
1| Wind cardinal directions through .
2 | power CNN different speeds ranging Wind speed 1521
from 7 to 20 m/s cloud
movement. The link of
dataset is not available.
The numerical weather
prediction (NWP)
variables provided in the .
Wind Kaggle competition for gﬁgry aggregated
1 DNN (LeNet- solar radiation and NWP .
power and radiation and [53]
3 5 network) by the European Centre for N
solar . wind energy
energy Medium-Range Weather predictions
Forecasts for wind power.
Datasets are available at:
[53]
Dataset from a wind farm
in China including four
RNN and the sets of original wind speed
1| Wind hybrid series. The 1st-600"
4 ower EWT - samples as the training Wind speed [54]
P LSTM-Elman | dataset and 601st-700™
model samples as the testing
dataset. Datasets are
available at: [54]
TABLE 2. Model evaluation criteria.
Accuracy and Performance Index Description
» N
2
MSE =—— ZZ(T -L,)
i=1 j=1
PN
RMSE = zz
i=l j=
p N
MAE = ZZ
=1 j=1
»
MAPE:100>< 1 zz‘ V L, P as the number of patterns
S5 T, -N as the number of outputs
RMSE  — RMSE T ant! L; are respectively
IS =100x pres. the desired output value and

RMSE,,,, the value calculated
ZLI I:(pMz - ﬁM )(pp, - ﬁP )]
S (a2 Epn=0)]

RC=

> [(pui=Pu)(Pr—P5)]
ZH;Z‘,(L‘J _Li/)

MBE =

MSE = Mean square error is commonly used to mea-
sure the average square deviations to indicate the difference
between the model output and the target value.

RMSE = Root mean square error, which is commonly used
to indicate the difference between the actual and target values.

RC = Relative correlation or the Pearson correlation
expresses the linear correlation between actual and target
values.

MAE = Mean absolute error, which measures the aver-
age vertical distance between each point (target and output
values).

MAPE = Mean absolute percentage error, which defines
the relative average vertical distance between each point in
percentage.
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FIGURE 3. The process of application the Cl methods.

IS = Improvement score, which indicates the modeling
performance in case of relative error compared to the refer-
ence model in percentage.

MBE = Main bias error, which evaluates the validation of
prediction and indicates the prediction error.

Ill. COMPREHENSIVE STATE-OF-THE-ART OF THE
SUBJECTS

DL is a subset of CI techniques. To our best of knowledge,
CI approach can do complex tasks such as learning, mod-
eling or getting a pattern from an experimental approach
(such as data or observations) with the help of a computer.
Sometimes it is referred to as soft-computing method. ANN,
Fuzzy, genetic based algorithms and similar methods derived
from these methods are subsets of CI approaches [22]. CI
methods are employed in all fields of science to facilitate
organizing and studying processes of data-sets, especially
big data-sets [55]. In fact, these methods are used as sin-
gle or hybrid method. Each of them has its own advantages
and disadvantages. Fig. 3 indicates the logic and general
application process of CI methods. This process has four main
components, namely, processing part, training part, decision
part and resulting part.

In the present study, the main aim is to investigate archi-
tectures of DL applied in renewable energy field and evaluate
the performance of DL in wind and solar energy sector. This
paper also aims to study other CI methodologies, which were
applied in wind and solar energies.

Finally, both single and hybrid methods of CI and DL are
studied and are compared in term of their performance under
the same data-set. In case of single methods, a CI method (i.e.
ANN, FIS, GA, PSO or other CI approach) is employed solely
for predicting, modeling or exploring data of clean energy
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resources [56]. These methods are fast and simple, which can
be one of their main advantages. The only disadvantage of
these methods can be their low accuracy in big data-sets.

On the other hand, hybrid methods refer to combinations of
more than one CI method or the optimization of a CI method
by using other learning algorithms. This can help to eliminate
the shortcomings of using single methods in big data-sets
and to improve the system performances. Therefore, the main
advantages of hybrid methods are their high scalability, reli-
ability and adaptively in big renewable data-sets.

CI techniques contains three main sections, namely, pre-
processing, training and testing units. First, a data-set is
imported to the process. Then, the data is placed under pre-
processing for dividing into two main categories, training and
testing datasets, which are products of pre-processing part.
In the pre-processing part, the raw data is transformed into
understandable format to continue the process. Accordingly,
the training data is used for developing the network (or
model). In the second part, the training data is imported to the
training part. The CI algorithms uses training data to learn the
model or network.

The outputs of training part are imported to the deci-
sion part that decides the accuracy of the composed model
by using comparing factors such as MSE, RMSE, MAE,
MAPE or R in training phase. The next step is to use the
testing data to determine the prediction performance.

These factors compare outputs of the composed model
with target values (actual values) to find out how close they
are. If the computed error values are in permissible range,
the process comes back to the pre-processing part and takes
the testing data and imports the testing data to the selected
data and takes the results to be used in prediction, detec-
tion or diagnosis purposes. However, if the computed error
is higher than the expected range, the process comes back to
the training part again, in order to select other algorithm or
other training approach for reducing the expected error. This
process is repeated until attaining the desired range of error
between target and output values.

A. SOLAR ENERGY

This energy resource is considered as the primary energy
resource that is being widely applied in applications of heat-
ing, architecture and urban planning, agriculture and horti-
culture, transport and fuel production. References [57]-[59].
This energy resource is one of the clean resources for energy
production, which is one of fields with big dataset. It is
a popular field for researchers to apply CI techniques for
different purposes. Big data, which are employed in this field,
make different challenges for estimation, optimization and
decision making as well as policymaking systems and require
serious considerations to attain a sustainable energy system.
Therefore, there needs to be a method with high accuracy.
There are different methods in CI techniques that can be
employed for these purposes. There is a need for trial and
error to take a method with a high accuracy. Big dataset
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FIGURE 4. Application of DL techniques in solar and wind energies.

in solar energy systems are apt to the use of accurate and
sustainable methods like DL techniques.

B. WIND ENERGY
Wind energy is considered as another renewable energy
sources for supplying demands in cities and remote
areas [60]. This energy source is known as a non-exhaustible,
clean and benign environmental source of energy that is avail-
able in most countries [61]. It was approximated to have about
10 million MW of total accessible wind energy and there were
about 432 (GW) of the installed wind energy sites by the
end of 2015 [62], [63]. The main reason to develop different
methods in the field of wind energy is similar to that for
the solar energy. Furthermore, the production of laboratory
equipment and their use in wind energy are costly. Therefore,
modeling methods for the prediction, estimation or optimiza-
tion purposes can be an effective step in attaining higher
goals, with the provision that the method has high accuracy.
The development of DL techniques can be a major step in
accomplishing these purposes.

Fig. 4 presents a brief schematic diagram of DL techniques
applied in solar and wind energies.

C. DL TECHNIQUES

Deep learning technique is considered as a class of machine
learning techniques. The most typical and applied DL tech-
niques include RNN, WNN, RWNN, DBN, MRBM, CNN,
LSTM, DNN, RMT and SAE, which are briefly presented in
this section. Applications of this techniques are in language,
audio and speech processing, machine translation, computer
vision, social network filtering and board game programs,
and applications which use or produce a huge amount of
data or depend on a big data feature [64]. Recently, DL
techniques are adopted for solving traditional artificial intelli-
gence problems. In this section, the concepts of deep learning
methods, its architectures are described in general terms.

1) CONVOLUTIONAL NEURAL NETWORK
In CNNs, several layers are trained in a way for reaching
a high performance. This commonly used method is very
efficient method in various applications, especially computer
vision [65]. Fig. 5 presents an outline of the architecture of a
CNN.

Each CNN benefits by a two-stage training process, the
feed-forward, and the back-propagation stages. In the first
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FIGURE 5. The general architecture of a CNN adapted by [66].

step, the input target is fed to the network. This is a multipli-
cation of points between the input target and the parameters
of each neuron, ultimately imposing convolutional operations
on each layer. The network output is computed, which is
then used to compute the network performance. To do this,
the outputs of the network have to be compared by using a
loss function with the correct response in order to compute
the error. In the next stage, the back-propagation phase begins
based on the computed error. In this step, the gradient of
each parameter is computed according to the chain rule,
and all parameters are changed according to effects on the
error generated in the network [67]. After the parameters are
updated, the next step is the feed-forward. After completing
the correct number of these steps, the network training ends.

Lee et al. [52] developed CNN technique to estimate
4 field-based wind fields using dataset collected from 4 major
cardinal directions from cloud movement. Based on results,
this was an accurate and cost-effective method for developing
grid sensor-networks for wind field estimation. In another
study, Sun et al. [68] developed an approach for the estima-
tion of photovoltaic output energy by using CNN method in
the presence of sky images as the input value. Based on this
assumption, the images taken from the sky could determine
the cloud coverage of the position of the sun. Datasets were
categorized in three situations, namely, sunny, partly cloudy
and overcast. Photovoltaic panels were placed on the top
of two buildings (henceforth Y2E2 and Huang buildings in
California) RMSE was employed to evaluate the datasets.
RMSE values for Y2E2 were 0.064, 0.338 and 0.051 kW
for sunny, partly cloudy and overcast conditions, respectively
and for Huang were respectively 0.528, 2.483 and 2.753.
Wang et al. [50] developed a hybrid WPF-CNN approach to
predict the probabilistic wind power. The required data were
collected from a wind farm in China. The benchmark methods
were BP-QR and SVM-QR techniques. The evaluation of the
developed models were performed in four seasons. The eval-
uation factor was CPRS value. Increasing the power output
increased the CPRS in all techniques, except the proposed
technique. In general, the proposed technique had the lowest
CPRS compared with those for other techniques. This showed
a high potential of the proposed technique in predicting the
wind power. This also reduced the error and increased the
accuracy of the method.

Table 3 presents details about the studies developed by
CNN method. Table 4 arranges the studies by the type of CNN
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TABLE 3. Details about studies developed by CNN method.

Types of
8 Typeofthe the Description of the  Pros and
§ method applicati  model cons
& on
&
Two Advantages:
convolutional This method is
layers with two successfully
Fully-connected applied in the
layers and one most fields and
152] Single ~ Wind pooling with have the best
CNN speed Rectified Linear correlation  in
Unit activation the way of the
layers. The aim of study and
structure of filters have an
is four by four by acceptable
one by fourteen. accuracy
Two convolution especially in
layer with 12 image data.
filters and 24
68] Single  Solar filters as other Disadvantages:
CNN energy filters which have ~ This method
been combined needs a high
with two fully computational
connected layers cost. On the
. other hand, it
Input layer which
needs a large
converts 1D data dataset to b
to 2D image ataset 1o be an
f 8¢, efficient
future extractor —od This
ayers whic method also
contain -
convolution layer needs a - high
i . ! hical
[50] HWy]l;;‘l—d Wind and sub-sampling [gjr)]ze;:iang unit
CNN power layefs and . because of the
predictor which nature  of the
converts 2D

required  data.
Using a hybrid
CNN technique
cannot improve
its
disadvantages.

image to 1D data
and uses logistic
regression to
generate the
output values.

TABLE 4. Accuracy factors related to the studies applying CNN technique.

Evaluation criteria

RMSE CRPS
[52] CNN v -
CNN/Sunny for Y2E2
CNN/Partly cloudy for Y2E2
CNN/Overcast for Y2E2

[68] CNN/Sunny for Huang
CNN/Partly cloudy for Huang

Reference Methods/Datasets

NNIRNENENENEN

CNN/Overcast for Huang

Persistence -
[50] BP+QR -
SVM+QR _
WT+CNN -

NNANENIEN

method (single or hybrid method), the type of application
(wind or solar), structure of method and pros and cons.
Based on Table 4, most of the comparisons are performed
by RMSE values. Yet, in the case of comparing single and
hybrid methods, there are no specific factors in these three
studies, which render it difficult to compare hybrid and single
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FIGURE 6. Comparison of structures of DBN, DBM and DEM adapted
by [71].

methods. On the other hand, the dataset values are not the
same, and this is the second problem in comparing these
methods. In overall, CNN can best perform tasks in large
datasets. Reference [50] can be the evidence of this claim.
The hybrid WT-CNN method (with CPRS 3.324) has the best
performance among other hybrid techniques. Besides, based
on Table 4 it can be claimed that CNN is extremely sensitive
to the dataset.

2) RESTRICTED BOLTZMANN MACHINE

RBM is a kind of Boltzman Machine that has a limitation
by making a bipartite graph by visible and hidden units. This
limitation creates more optimal training algorithms such as
the gradient-based algorithm [69]. In this model the hidden
units (H) and the visible units (V1) are conditionally inde-
pendent because that is a bipartite graph. In Eq. 1, both H
and V1 satisfy Boltzmann’s distribution.

PHVy) =P H V1) P(HVy) ... .P(H, V1) (1)

V1 can be obtained through P(HV1). Accordingly, V2 can
be obtained through P(H2V1). The difference between
V1 and V2 can be minimized by setting the parameters and
the resulting H, as the best feature of V1. Using RBMs as
learning modules can help to develop DBNs, DBMs and
DEMs. Fig. 6 compares these three models. As is clear, DBNs
provide undirected connections in the upper two layers that
form an RBM and have directed links (directed) in the lower
layers. DBMs have unmatched connections between all net-
work layers. DEMs also have deterministic hidden units for
lower layers and stochastic hidden units for the top layer [70].

DBN is a potential generator model that provides com-
mon probability distribution over visible data. DBN first
uses an effective layer-by-layer learning technique for deep
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network initialization (parameters) and then carefully adjusts
all weights together with expected outputs (fine-tuning). The
method of greedy learning has two benefits [72]: 1) pro-
vides a proper initialization for the network, since it is dif-
ficult to select the parameter, which may cause poor local
optima selection, 2) unsupervised learning model that does
not require a class label, since it eliminates the need for tagged
data for training. By creating a DBN model, its computing
process is costly because it requires multiple RBM train-
ing, and it is not clear how to maximize the probability of
learning to optimize the model [70]. DBNs have successfully
led researchers into DL, and as a result, many species were
produced [73], [74].

Like RBM, DBM is also one of the subsets of the Boltz-
mann family. In fact, DBMs contain multiple layers with
hidden units in the layers with the individual number of the
even-numbered layers, and vice versa. In spite of visible units,
computing the posterior distribution on hidden units can no
longer be tracked, which is the result of interactions between
hidden entities. At the time of network training, DBM teaches
all the layers of a specific unsupervised model and uses a
SML algorithm to maximize the borderline in probability
[75]. In other words, this means applying only one or more
updates by using the MCMC method. In order to prevent the
local weak minima that leave many hidden units inactive,
a greedy layer-based education strategy was also applied to
layers in the pre-training DBM network, which was much like
what was done in DBN [70].

The joint training brings promising enhancements both
to the likelihood and to the proficiency of the feature-rich
learners. But the critical shortcoming of DBMs is the com-
plexity of the approximation inference, which is much higher
than DBNS. This also improves DBM parameters for massive
datasets. Some researchers have introduced an approximate
derived algorithm [76], [77] to increase the efficiency of
DBMs. This algorithm initializes the latent variables’ val-
ues by employing a recognition model in all layers. The
required improvements can occur in the pre-training phase
[771, [78] or at the beginning of the training phase [79], [80].

In this section, the LSTM technique is introduced. It is
because most developed studies are a combination or are
compared with LSTM methods. The basis of LSTM tech-
nique is RNN, which uses temporal information of the input
data. LSTM benefits memory cell as a special neuron struc-
ture, which can store the information over the desired time.
The input and output values of a neuron’s memory cell
have been controlled by the input, output, and forget gates.
Each gate gets the input neuron and processes an activation
function [48].

Peng et al. [43] presented a hybrid MRBM-WPP technique
to predict a very short term wind power and compared it
with BPNN-WPP technique. Dataset was categorized in four
durations for 1200 hr. and was collected from a wind farm
in Heilongjiang Province of China. Based on results, RMSE
of MRBM-WPP was a little lower than that for BPNN-WPP
in all durations except duration 300-600hr, in which the
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performance of BPNN-WPP was higher than that for the
MRBN-WPP. MRBM-WPP technique is a time-consuming
technique and its performance strongly depends on number
of the RBM layers and nodes. In this case, it is recommended
to switch to known and simplified methods with high or same
performance.

In a study by Zhang et al. [81], a deep Boltzman Machine
method was employed to estimate both short- and long-
term wind speed. Data were related to the local data in the
southern China coast recorded on December 15, 2012. The
performance of the proposed method was compared with
the performance of linear autoregressive, SVR and ANFIS
methods by using MSE and MAPE. In all cases, the proposed
method had the lowest value for MAPE and MSE, which
showed its highest performance. Sergio and Ludermir [40]
employed solar and wind databases for Belo Jardim, Sdo Jodo
do Cariri and Triunfo in Brazil to develop a DBN network
and to compare it with MLP technique. Based on results,
MLP had the lowest MSE for predicting the wind speed in
Belo Jardim and Sio Jodo do Cariri, but in case of Triunfo,
the MSE of DBN was lower than that for MLP. In this study
there was no specific evidence about the DBN superiority to
the MLP. It could be due to the number of data employed in
this study. Sometimes in case of using low number databases,
DL techniques cannot indicate their high capability compared
with other CI techniques.

Wang et al. [45] proposed a novel hybrid WI-DBN-QR
technique to estimate the wind speed. Validation of the pro-
posed method was performed by comparing with the out-
puts of ARMA, BPNN and MWNN. Dataset contained wind
speed data series in China and Australia in four seasons
(spring, summer, fall, winter). The performance factors were
MAE, RMSE, and MAPE. Based on results, the proposed
method had the highest performance in predicting the depen-
dent variable in both places. The proposed method was a
hybrid method. That study also showed the high ability
of a hybrid method in estimation compared with a single
method. Gensler et al. [48] employed MLP, LSTM, DBN
and Auto-LSTM techniques to estimate solar power using
dataset collected from German Solar Farm with 21 photo-
voltaic facilities. Data resolution was three-hour for 990 days.
The performance factors for comparing the methods were
RMSE, correlation coefficient and MAE. Based on results,
Auto-LSTM technique with a highest correlation coefficient
and lowest RMSE and MAE was the best technique with a
highest performance, which was followed by DBN.

Liu et al. [54] developed hybrid EWT-LSTM-Elman,
EMD-LSTM-Elman, WPD-LSTM-Elman, EWT-Elman and
EWT-BP to estimate the wind speed. Dataset contained a
four-set original wind speed data collected from a wind farm
in China in three series. The performance of the mentioned
methods was also compared with single methods including
ARIMA, BP, GRNN, LSTM and Elman by using MAPE,
MAE and RMSE. Based on results, hybrid methods had a sig-
nificantly high performance compared with those for single
methods. EWT-LSTM-Elman had the highest performance
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FIGURE 7. The general process of an AE adopted by [82].

for predicting wind speed. Among single methods, ARIMA
had the highest performance, which was followed by LSTM.
The lowest performance was related to BP technique with a
significant difference.

Cao and Lin [39] employed a ten-year data set for training
and testing models for the prediction of daily and hourly
global solar irradiations by using BP and DRWNN models.
The models had two inputs (time and daily irradiance) and
two outputs (daily and hourly global solar). DRWNN could
predict the daily global solar irradiation with 6.78% of MRE,
0.0216 MJ m-2h-1 of RMSE, which were lower than those
for BP. This showed a higher performance of DRWNN in
estimating an output under the presence of a large dataset
compared with those for BP. Therefore, DRWNN had the
best accuracy compared with BP in line with the aim of the
study. Alzahrani et al. [49] developed LSTM technique to
forecast solar irradiance based on the real data recorded by
Natural Resources from Canada. The results were compared
with SVR and FNN by using RMSE and MBE factors. Deep
learning (LSTM) technique had the highest performance
compared with other techniques.

Table 5 presents details about the studies developed by
DBM, DBN, RBM and LSTM methods. Table 6 arranges the
studies by type of DBM, DBN, RBM and LSTM methods
(single or hybrid method), type of application (wind or solar),
structure of method and pros and cons.

Table 6 indicates the evaluation metrics applied for DBM,
DBN, RBM and LSTM methods. It concludes that the most
useful performance metrics for comparing the results are
RMSE, MAE and MAPE. The numerical results differ from
an evaluation metric to another. One of the main reasons for
this finding is that the dataset characteristics such as size,
dimension and etc. Thus, the proposed methods have a high
dependence on the characteristics of dataset to obtain the
best accuracy. For example, Authors [81], developed DBN
which indicates the best performance compared with SVR
and ANFIS but the difference was not meaningful.

3) AUTOENCODER
AE is a special type of ANN to optimize the encoding of
learning [82]. Instead of teaching the network and predicting
the target value of Y in return for input X, one will learn an AE
to reconstruct one’s input X. Accordingly, the output vectors
will have the same input vector dimensions. Fig. 7 presents
the process of an AE, in which AE is optimized with mini-
mization of the reconstruction error.

In general, a single layer is not capable of receiving dis-
tinctive features of raw data. Researchers are currently using
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TABLE 5. Details about studies developed by DBM, DBN, RBM and LSTM

methods.
Type Types Description of model
of the of the
Ref Metho  applicat Pros and cons
d ion
The structure of MRBM
contained four RBM units.
This architecture has a feature
extractor. This unit identifies
Hybrid and transforms the features Advantages:
[43] MRB Wind layer by layer. The last layer Its & hi h
M- power (the predictor layer) uses a - &
WPP BPNN and feature extractor capabllny_ for
S P P computational
unit in training by using its
output value. This trend is proposes.
employed to generate the wind Disadvantages
power values. .
This sl_ufiy uses two algorithms A single
for training RBM and pre- b
P . ottom-up
training data. The trained ass limits its
RBM and data are imported by p A
P N approximation
the pre-training unit and after a s approach
81] Single Wind good initialization for all the Its pmcessiné
DBM speed model parameters, the output unit is slow.
and the data are imported by :
fine tuning unit, which uses
BP algorithm then generates
the output of the Boltzman
network
75% of data were employed to Advantages:
train and 25% to test the This method is
networks. Pre-training were suitable for
performed by the use of two image  data.
. . approaches. In the first case, Because it has
Single Wind .
[40] DBN speed auto-encoder method was used  a high
P and noise was added to the capability in
input data which is known as processing the
SADE. In the second case, similar
Restricted Boltzmann Machine  images.
was used as layers which is
known as DBN. Disadvantages
The proposed method :
combines This  method
WT, DBN and QR. Wind increases the
speed data be imported by the running  time
method then WT, decomposes and the
data are into four frequencies. complexity of
Then, based on the number of the system.
Hybrid frequencies (four frequencies),
[45] WT- Wind 4-layer DBN has been adopted
DBN- speed to estimate the signal. 50 and
QR 20 hidden neural have been
selected in two hidden layers.
For each detailed signal, a 10-
layer DBN is properly
designed. The number of
hidden neurals in each layer
were 65, 30, 45, 15, 60, 10, 20
and 15.
. There are no specific
[48] Single Solar information about DBN
DBN power N
structure.
Single Solar DRNN with LSTM with 35
[49] irradian  hidden neurons into two
LSTM .
ce hidden layers
EWT was employed to split Advantages:
the wind speed data into sub- LSTM
layers. Then in order to benefits all
[54] Hybrid ~ Wind estimate the low and high advantages of
LST™M speed frequencies’ sub-layers, they RNN. Such
were employed LSTM and that this
Elman neural network, method is for
respectively time series
Feature learning was  data and make
performed using AE then  shorter the
Hybrid LSTM was employed to the  pre-processing
Solar encoding part of the AE. The of data
[48] Auto .
LSTM power developed Aut_o-LSTM in )
order to predict the new  Disadvantages
output, employed two previous  :
time steps. Training
The nodes of RNN hidden  process is
layers adopt by WNN. This difficult. It
make more capable method for ~ cannot
Hybrid  Solar predicting the solar irradiance. ~ accumulate to
[39] RNN, irradian  The nature of this dataset is to ~ very deep
WNN ce change frequently and is models

extremely non-linear. This
architecture can do this task
successfully.

a deep AE to send the code learned from the previous AE to
the next AE to complete their work. AE is often trained with
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TABLE 6. Accuracy factors related to studies applying DBM, DBN and
RBM methods.

Evaluation criteria
Methods/D

atasets

Reference

r | RMSE | MAE | SDE | MAPE | MRE | MBE

Hybrid
MRBM- | -
WPP
AR -
ANFIS -

[81] SVR -

=
]
AN
<

AR ANEN

DBM -
MLP - - v -

[40]

<

DBN - -
Hybrid
MRBM- -
WPP
ARMA -
BPNN -
MWNN -
Hybrid
WT+DBN
[48] P-PVEFM v
MLP v
LSTM v
v
v

AN
<

[45]

DBN
Auto-
LSTM
FNN -
[49] SVR -
LSTM -
BP v
DRWNN v
ARIMA -
BP -
GRNN
LSTM -
Elman -
EWT-BP -
EWT-
Elman
WPD-
LSTM- -
Elman
[54] EMD-
LSTM- - v v - v - -
Elman
EWT-
LSTM- - v v - v - -
Elman
WDD-
WPD-
ARMAC(SS v v
)-EMD-
ELM(NS)-
OCM

ANIENENENANERNEENANEN

[39]

AN ENENANENENENEN AN RN ENENARNE ENENEN ENARNE ENENEN
ANANAN

ENIENENENANENAN
ENIENENENANENAN

<
<
<

a kind of back-propagation operation. Although most of this
model is efficient, it can be extremely inefficient in the event
of an error in the first layers. A good way to eliminate this
problem is to pre-train the network with initial weights that
approximate the final solution [83].

Khodayar and Teshnehlab [41] employed a novel hybrid
SAE+Rough Regression technique to predict the wind speed.
This structure helped to attain a robust DNN to generate the
related output values. The performance factor was RMSE.
In order to indicate the capability of the proposed method,
its performance was compared with those for PR, TDNN,
NARNN, FFNN and SAE in five-time steps, namely, 10-min,
30-min, 1-hr, 2-hr and 3-hr. Based on results, increasing the
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time-step increased the RMSE value due to the increase of
the number of dataset. In all time steps with no exceptions,
the proposed method had the lowest RMSE value compared
with those for the mentioned techniques. Therefore, efforts
to develop a new hybrid method were effective. This study
also produced additional results. In case of comparing sin-
gle methods, SAE had the lowest RMSE among other sin-
gle techniques (PR, TDNN, NARNN and FFNN). Yet, the
proposed method was a hybrid method. The results indi-
cated that hybrid methods have the ability to predict data
with a high degree of accuracy than single-mode methods.
Hu et al. [46] developed a hybrid SDAE technique to predict
wind speed. Dataset included historical wind speed data in
four-time range (10-min, 30-min, 1-hr. and 2-hr.) with seven
target domains (0.5, 1, 2, 3, 4, 5 and 6 months) from four
wind farms located in Ningxia, Jilin, Inner Mongolia and
Gansu, China. The results of the proposed method were
compared with single DNN, SVR and ELM by using MAPE
and MAE. In all cases, the proposed hybrid technique had
the lowest MAPE and MAE, which showed its high perfor-
mance compared with single techniques. Qureshi et al. [51]
employed Transfer Learning and Meta Regression based AE
to predict wind power. The performance parameters were
MAE, RMSE and SDE. Dataset contained meteorological
and power measurement data for five wind farms, which were
collected during three years in Europe. The performance of
the proposed method was compared with those for GPeANN,
SVR (linear kernel) and SVR (RBF kernel), individually for
each farm. Based on result, on average, the proposed method
(DNN-MRT) had the lowest RMSE, MAE and SDE, followed
by GPeANN. Both DNN-MRT and GPeANN were hybrid
techniques while SVR is a single method. Based on results,
the accuracy of hybrid techniques was significantly higher
than those for single methods. Therefore, their results indi-
cated two important points, namely, the importance of hybrid
techniques and a high accuracy of deep learning techniques
in large datasets compared with other CI techniques.

Table 7 presents details about studies developed by SAE
method. Table 8 arranges the studies by the type of the
developed methods (single or hybrid method), the type of
application (wind or solar), structure of method, and pros and
cons.

Based on Table 8, RMSE and MAE are the most popu-
lar performance factors for comparing results of SAE-based
studies. As is clear from numerical results presented
in Table 8, in some cases the proposed SAE method has
the best result compared with others. In some cases, the
difference is not too high, but in some cases, the difference
is meaningful. In the study developed by [41], the differ-
ence between FFNN and SAE is not meaningful. In those
cases, it is recommended to employ FFNN and, based on
Table 7, SAE needs additional training time, which renders
the process slow. In [51], the differences among the proposed
method and others are meaningful. This means that the pro-
posed model with a high difference can be the best method
for that target.
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TABLE 7. Details about studies developed by SAE method.

Type of  Types of
Ref the the
Method  application

Description of model Pros  and

cons

AEs in the first hidden layers
and a regression layer with a
linear function at the top of
the AEs.
AEs for unsupervised feature
learning and regression layer
for supervised learning.
SAE contained three AEs.
This  method uses a
knowledge transfer.  This
means that each data-set
benefits an individual
universal feature.
The hidden and the input
layers shared all datasets and
can be considered as a
common feature
transformation.
Each farm has its own output
layer  since its  data
distribution differs from that
of other farms.
This model employed 9 AEs
with different neuron number
Wind and epoch.
power Please use ref. [51] for more
details about the architecture
of the developed model

[41] SAE wind speed

Advantages

AEs use
filters to fit
the dataset
better and
improve the
performanc
[46] SDAE Wind speed e.
Disadvanta
ges:
Additional
training
time.

[51] DAE

TABLE 8. Accuracy factors related to studies applying SAE method.

Evaluation criteria

Methods/Datasets

RMSE | MAE SDE MAPE

Reference

PR
TDNN
[41] NARNN
FFNN
SAE

DNN

[46] SVR
ELM
SDAE
ARIMA
SVR (linear
kernel)
SVR (rbf kernel)
GPeANN
DAE

[51]

SEANERYARANEIAANER
NNESANIRNIANANENENEN ¥

SESANIRNIANE

IV. DISCUSSIONS
This section presents discussions and conclusions extracted
from results of studies performed in the case of using DL
techniques and other CI methods for estimation or prediction
of the performance of wind and solar energies. Fig. 11 illus-
trates the categorized form of CI techniques employed in line
with the aim of the present study. Based on Fig. 8, DL tech-
niques are a particular subset of CI techniques; therefore, one
of the procedures of this study is to compare the performance
DL techniques with those for other CI techniques to express
weaknesses and strengths of DL techniques.

Fig. 8 presents of the top 10 types of single and hybrid DL
techniques applied for solar and wind energy.

Fig. 9 presents the percentage of using DL and other CI
techniques in solar and wind energies from 2015 to 2018.
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TABLE 9. Comparison of different methods.

Method

accuracy

reliability

Sustainability

[41]

PR
(Khoday
aretal)

Very low

Very low

Very low

TDNN
(Khoday
aretal)

low

low

low

NARNN
(Khoday
aretal)

medium

medium

medium

FFNN
(Khoday
aretal)

medium

low

low

SAE
(Khoday
aretal)

Very high

high

high

DNN (Hu
etal)

low

low

low

SVR (Hu
etal)

medium

low

low

[46]

ELM (Hu
etal)

medium

medium

medium

SDAE
(Hu et
al.)

medium

medium

medium

ARIMA
(Qureshi
etal)

medium

medium

medium

SVR
(linear
kernel)
(Qureshi
etal.)

high

high

medium

[51]

SVR (rbf
kernel)
(Qureshi
etal.)

high

medium

medium

GPeANN
(Qureshi
etal.)

Very high

high

medium

DAE
(Qureshi
etal)

Very high

high

high

[43]

Hybrid
MRBM-
WPP
(Peng et
al.)

high

high

high

[81]

AR
(Zhang
etal)

low

low

low

ANFIS
(Zhang
etal)

high

high

medium

SVR
(Zhang
etal)

medium

medium

medium

DBM
(Zhang
etal)

low

low

low

(401

MLP
(Sergio
etal)

low

low

low

DBN
(Sergio
etal.)

medium

medium

medium

Hybrid
MRBM-
WPP
(Wang et
al)

high

high

high

ARMA
(Wang et
al.)

medium

medium

medium
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TABLE 9. (Continued.) Comparison of different methods.

[45]

BPNN
(Wang et
al)

low

low

low

MWNN
(Wang et
al.)

low

low

low

Hybrid
WT+DBN
(Wang et
al.)

Very high

high

high

[48]

P-PVFM
(Gensler
atal)

Very low

Very low

Very low

MLP
(Gensler
atal.)

low

low

low

LSTM
(Gensler
atal.)

high

high

high

DBN
(Gensler
atal.)

high

high

medium

Auto-
LSTM
(Gensler
atal.)

Very high

Very high

high

[49]

FNN
(Alzahra
ni et al.)

low

low

low

SVR
(Alzahra
nietal.)

high

medium

medium

LSTM
(Alzahra
ni et al.)

Very high

high

high

[39]

BP (Cao
etal.)

low

low

low

DRWNN
(Cao et
al.)

medium

medium

medium

[54]

ARIMA
(Liu et
al)

medium

medium

medium

BP (Liu
etal.)

Very low

Very low

Very low

GRNN
(Liu et
al.)

low

low

low

LSTM
(Liu et
al.)

high

high

high

Elman
(Liu et
al.)

medium

medium

medium

EWT-BP
(Liu et
al)

high

high

high

EWT-
Elman
(Liu et
al)

high

high

high

WPD-
LSTM™-
Elman
(Liu et
al)

high

high

medium

EMD-
LSTM-
Elman
(Liu et
al)

high

high

high

EWT-
LSTM-
Elman
(Liu et
al.)

Very high

high

high
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TABLE 9. (Continued.) Comparison of different methods.

WDD- high high medium
WPD-
ARMA(S
S)-EMD-
ELM(NS)
-OCM
(Liu et
al.)
CNN high high high
[52] (Lee et
al.)
CNN/Sun
ny for
Y2E2
(Sun et
al.)
CNN/Par | high high
tly cloudy
for Y2E2
(Sun et
al.)
CNN/Ov
ercast for
Y2E2
(Sun et
al.)
[68] CNN/Sun
ny for
Huang
(Sun et
al.)
CNN/Par
tly cloudy
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From Fig. 9, EMD and GRN have the most share of
application and can be considered as the most popular DL
techniques to be employed in this field. It is obvious that the
share of hybrid methods for DL techniques is lower than those
for the single techniques. Therefore, this field is prone to the
use of hybrid techniques.

Fig. 10 indicates the share of each performance factor
used by authors to compare or present the performance of
developed models.

Based on Fig. 10, RMSE is the most applied and popular
performance factor by authors (more than 40%) and RC is the
low-applied factor (lower than 1%).

Fig. 11 indicates RMSE values for studies developed by
DL techniques (studies No. 1 to 14) since most studies
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FIGURE 9. The percentage of using DL and other Cl techniques in solar
and wind energies from 2015 to 2018.
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FIGURE 10. The share of performance parameters applied in the datasets
of this study.

discussed in DL techniques (the above 14 studies) were com-
pared by RMSE.

Given the fact that the datasets are different, we have to
make comparisons within the group for each study individu-
ally by grouping based on the number of each study.

From Fig. 11, it can be claimed with certainty that DL
techniques have the best performance with the lowest value
of RMSE compared with their rival methods in each group.
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FIGURE 11. RMSE values in each study grouped by the number of studies.

On the other hand, from the results of groups that compare
single and hybrid DL techniques, it turns out that hybrid
techniques have higher performance compared with single
techniques (DRWNN in group 1, SAE in group 3, DNN in
group 4, MRBM-WPP in group 5, WT+DBN in group 6,
SHL-DNN in group 7, LSTM and auto-LSTM in group 8§,
LSTM in group 9, DNN-MRT in group 11, CNN in group
12 and EWT-LSTM-Elman in group 14). It should be noted
that other studies in DL techniques which were not mentioned
in Fig. 10, did not use RMSE as a public comparison factor.

Table 9 presents comparison regarding the accuracy, reli-
ability and sustainability of methods developed for han-
dling building energy information by using DL techniques.
Table 9 shows discussions and conclusions on the above-
mentioned articles, as extracted from our studies. This table
is considered as one of the most important parts of this study,
which can be used by authors and policy-makers in this
field.

Table 9 provides a comparison among methods devel-
oped for each study. As is clear, the scores have been
divided into five categories including very low, low, medium,
high, very high for indicating the performance of the
methods.

In this table, criteria metrics are accuracy, reliability and
sustainability. Accuracy and reliability have been exported
from the training and testing results of each method and
referred to the acceptability of method, but sustainability has
been exported from the pros and cons of methods, which
have been reported by different studies. This criteria metric
directly refers to the performance of method.

Fig. 12 presents a graph for each method based on their
robustness. Fig. 12 is categorized into four limitation ranges
including high, good, medium and low robustness score to
describe the capability and strength of each method based on
our observations and understandings from conclusions and
results of each study.

This figure has been extracted from table 9 based on
our own observations, investigations and researches. It is
clear from Fig. 12 that DL techniques are categorized in
good and robust categories, which are followed by hybrid
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FIGURE 12. Robustness score for energy load prediction methods.

methods. The most effective and accurate models are LSTM
methods.

V. CONCLUSION

Nowadays, the importance of prediction and optimization
process based on soft computing and CI techniques is unde-
niable. In the present study, the performance and potential
of DL techniques are compared with other CI techniques
developed in fields of solar and wind energy resources.
Besides, the-state-of-the-art of the methods is described in
details. The final approach is to conclude the methods and
to compare them. DL techniques have been categorized into
two categories, namely, single and hybrid methods, which can
be considered as the strength of the present survey. However,
these methods differ in precision and timing. It is clear that the
most popular factor for comparing results is RMSE and can be
considered as the most popular as the correlation coefficient
because the closeness of the data is more important than the
linearity of them. In this study we also employ different crite-
ria metrics for indicating our findings on comparing different
DL techniques and presenting the main findings around the
perspective of the study in terms of accuracy, reliability and
sustainability. Based on results, DL techniques, in cases of
using a large dataset, have the best performance compared
with those for other CI techniques, but in cases of using a
small dataset, their performance (DL techniques) decreases.
In general, the performance of hybrid methods is higher than
that for those for single methods and preferably their use is
emphasized. In cases where DL techniques are weaker than
other CI techniques, the need for using hybrid methods to
improve and optimize the structure of the method is essential.
Approximately 70% of the articles refer to the importance and
high precision of the hybrid methods. Hybrid methods have
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been developed in other CI techniques, but there are only a
few in DL techniques, which provide the context for work,
Besides, a little variety of DL techniques have been employed
in solar and wind energies despite the high potential and
diversity in DL methods. It is recommended to use hybrid
and ensemble DL techniques for modeling, optimizing and
categorizing purposes in wind and solar energies. Further-
more, these methods can be employed by policymakers for
optimizing or managing the energy use or demand strategies
in solar and wind energy sector.
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