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Abstract. The underlying activity in the brain can be estimated using
methods based on discrete physiological models of the neural activity.
These models involve parameters for weighting the estimated source ac-
tivity of previous samples, however, those parameters are subject- and
task-dependent. This paper introduces a dynamical non-linear regular-
ized observer (DYNLO), through the implementation of an Extended
Kalman Filter (EKF) for estimating the model parameters of the dy-
namical source activity over the neural activity reconstruction performed
by a non-linear regularized observer (NLO). The proposed methodology
has been evaluated on real EEG signals using a realistic head model. The
results have been compared with least squares (LS) for model parameter
estimation with NLO and the multiple sparse prior (MSP) algorithm for
source estimation. The correlation coefficient and relative error between
the original EEG and the estimated EEG from the source reconstruc-
tion were inspected and the results show an improvement of the solution
in terms of the aforementioned measurements and a reduction of the
computational time.
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1 Introduction

Electroencephalography (EEG) is a non-invasive technique for recording infor-
mation of the electrical activity in the brain through the measurement of electri-
cal potentials using electrodes in the scalp. The signals contain information with
a high temporal resolution and the analysis of the data has become a useful tool
to diagnose different forms of brain disorders like Epilepsy, Parkinson, sleep or
memory disorders. In addition, the EEG information can be used to identify the
localization of the neural activity in the brain through the use of brain mapping
techniques. Nevertheless, the inverse problem technique used for estimating the
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underlying activity from EEG signals has several challenges due to the ill-posed
and the ill-conditioned characteristics of the problem. To help coping with these
problems, an infinity configuration of brain activity estimation is proposed to
explain the measured EEG signals, and hence, the regularization solutions can
be applied to overcome the aforementioned challenges.

Several brain mapping methods have been presented in the last two decades,
some of them are based on estimation theory with probabilistic frameworks like
the multiple sparse priors MSP [1] and the dynamic multi-model source local-
ization method DYNAMO [2]. Other methods are based on regularized solu-
tions like minimum norm estimation (MNE), weighted minimum norm estima-
tion (WMNE), low resolution tomography (LORETA), iterative regularization
algorithm (IRA) and non-linear regularized observer (NLO) [3–7]. The NLO
method involves a physiological model that represents the evolution of the ac-
tivity in the brain. However, this method has a high dependence on the model
parameters and these values change between subjects and sessions[7].

The Extended Kalman Filter (EKF) is a widely used estimator in non-linear
processes. Due to the non-linear properties of EEG signals, the EKF can be a
suitable estimator for identifying parameters in EEG data. Some applications
of EKF to EEG and MEG signals have been reported for tracking the dipole
source location[8], inverse problem solution and source estimation[2], and for
noise reduction and filtering in [9]. This paper considers the implementation of
an EKF for the step of model parameter estimation to create a dynamical non-
linear regularized observer -DYNLO, to improve the brain mapping solution.
The results of the implementation are evaluated comparing the EKF estimated
EEG over a dataset of P300 visual evoked potentials VEP using MSP and NLO
methods with LS parameter estimation.

2 Materials and Methods

2.1 EEG Forward model

The equation for relating the EEG signals measured in the scalp with the brain
activity is known as the EEG forward problem, and it can be represented as
shown in equation 1

yk = Mxk + εk (1)

Where yk ∈ Rd×N contains the EEG signals of d number of electrodes and
N number of samples, xk ∈ Rn×N represents the source activity inside the brain
that produces the measured electrical impulses. n is the number of distributed
sources considered in the brain. For relating the measured EEG yk and the
neural activity xk, the lead field matrix M ∈ Rd×n is introduced, this matrix
is obtained from magnetic resonance images (MRI) and numerical methods e.g.
Finite Element Method (FEM) or Boundary Element Method (BEM), which
usually involves the skin, skull, cerebrospinal fluids (CSF) and brain matter
to establish the position of sources and their relationship with electrodes. In
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addition, a white noise with zero mean and Cε covariance is considered. The
subscript k represents the time instant of the sampled data.

2.2 Non-Linear Brain Activity Model

The activity in the brain exhibits a highly non-linear behaviour and can be
viewed as a non-linear dynamical system as stated in [10] where the evolution of
the activity considers previous samples as expressed in the following equation

xk = a1xk−1 + a2xk−2 + a3xk−τ + a4x
◦2
k−2 + a5x

◦3
k−2 + ηk (2)

The terms x◦2
k and x◦3

k represent the Hadamard power of xk and ai terms
are the model parameter of the non-linear representation. Equation 2 shows that
the actual activity depends of i − th model parameters and on the previously
sampled data xk−1, xk−2 and xk−τ , where the τ − th sample is a feedback due
to the activity of nearby neurons and depends on the sampling frequency of the
EEG data. ηk is the noise in the activity, which is considered to follow a normal
distribution with zero mean and covariance Cη. To simplify the notation, the
equation 2 can be represented as a multiplication of the matrix Gk with ωk , as
shown below

xk = Gkωk + ηk (3)

Where the parameters ai are represented in a vector ωk denominated model
parameter vector as in equation 4 and the temporal activity matrix Gk can be
formed by the concatenation of the activity in previously sampled data as in
equation 5.

ωk = [a1 a2 a3 a4 a5]T (4)

Gk = [x̂k−1 x̂k−2 x̂k−τ x̂◦2
k−2 x̂◦3

k−2] (5)

2.3 Extended Kalman Filter for Model Parameter Estimation

The non-linear model parameter vector ωk that represents the dynamical be-
havior of the brain activity can be estimated using the EKF, where two stan-
dard Kalman filter steps are developed: the prediction and the correction steps.
Initially in the prediction step, the a priori information is calculated in each
instance k using the following equations

ω̂k = ω̂k−1 (6)

Pωk
= Pωk−1

+Rr
k−1 (7)
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Where the term Pωk
is the a priori predicted covariance of model parameters,

ωk is the a priori predicted model parameters, Pωk−1
is the predicted covariance

in the previous sample, and Rr
k−1 is a diagonal matrix called the innovation

covariance and is defined as shown below.

Rr
k−1 = (γ−1 − 1)Pωk−1

(8)

Being γ−1 ∈ R[0,1] a forgetting factor that represents the dependence of
previous information, e.g. when it value tends to zero, the estimation has a
strong dependence of previous estimations. The EKF gain matrix Kωk

can be
computed as it is shown in equation 9below

Kωk
= Pωk

GT
kM

T (GkMPωk
GT
kM

T +Re)−1 (9)

The correction step allows to estimate the set of parameters ω̂k and update
the covariance of the parameters Pωk

using following equations 10 and 11.

ω̂k = ωk +Kωk
(yk −MGkω̂k−1) (10)

Pωk
= (I −Kωk

MGk)Pωk
(11)

2.4 Non-Linear Regularized Observer

The non-linear regularized observer is defined by equation 12, where the inverse
problem can be addressed as an optimization problem with constrains based
on l2 norm. The cost function is formed by three terms, where the first term
represents the basic inverse solution with least squares; adding the second term,
the solution involves a spatial constraint like in brain mapping methods MNE
and LORETA presented in [5] and [6] respectively. The third term considers the
time evolution of the activity and is treated as a temporal constraint as presented
in [3] and [7]. The minimization problem involves the non-linear model, taking
into account the activity in previously sampled data as shown in equations 2 to
5.

J = ||Mxk − yk||22 + ρ2k||xk||22 + λ2k||xk −Gkωk||22 (12)

The variable ρk is the spatial regularization parameter and λk is the tempo-
ral regularization parameter. The estimation of the activity can be performed
by equation 13, where the adaptive solution depends on the model parameter
estimated with the EKF.

x̂k(ρk,λk,ω̂k) = (MTM + ρ2kI + λ2kI)−1(MTyk + λ2kGkω̂k) (13)
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The lead field matrix M can be decomposed by singular values decomposition
(SVD), where M can be represented by M = USV T . By applying SVD of M
on equation 13 it is possible to reduce the computational cost to estimate the
activity, especially when the inverse of (MTM + ρ2kI + λ2kI) in equation 13 is
computed. The estimated neural activity x̂ involving the M SVD is shown in
equation 14

x̂k(ρk,λk,ω̂k) = V (S2 + ρ2kI + λ2kI)−1V T (MTyk + λ2kGkωk) (14)

3 Experimental Framework

For evaluating the proposed method, a dataset of P300 visual evoked potentials
described in [11] was used. The protocol of the records consisted on six images
displayed in a screen, which were flashed in random sequences with a duration
of 100ms with a resting time of 300ms in between images. The subjects of this
experiment were requested to count the times that a specific image appeared.
The EEG signals from 8 subjects (four of them with neurological deficit called
dysarthria or hypophonia) were recorded from 32 channels localized according
to the 10-20 international system with a sample rate of 2048 Hz.

A head model is required for solving the inverse problem, therefore, we use
a realistic brain model with n = 8196 distributed sources in the cortical surface.
This model was computed with 70 electrodes on the scalp using the 10-10 system
layout. The used model corresponds to the first subject of the dataset presented
in [12]. The head model has 30 common electrodes with the EEG, hence, the
distributed model was reduced to 30 according to the 10-20 system used in the
EEG dataset. In addition, the EEG signals were organized to coincide with the
channels’ positions of the brain model.

Figure 1 shows the 30 electrodes and their distribution according to the 10-20
layout used in the EEG recordings. It additionally shows the 8196 distributed
sources and how the electrodes are located in the scalp around the brain. The
procedure followed for processing the data of each subject is explained by the
next steps:

– pre-processing: The average signal from the two mastoid electrodes was used
for referencing each one of the channels. In addition, the EEG channels were
organized according to the head model order for electrodes, where the two
electrodes Fp1 and Fp2 from dataset were discarded, because the used head
model does not consider them in the forward model.

– Inverse Solution: The EKF is iteratively used to estimate the model param-
eters ω̂k for the NLO method (DYNLO). NLO with LS and MSP methods
were used for estimating the neural activity x̂k, where the activity for each
one of the 8196 distributed sources were found.

– Forward Problem: The EEG signals were estimated using the following equa-
tion, similar to equation 1.

ŷk = Mx̂k (15)
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Fig. 1: Left: Head model electrodes layout according to 10-10 system and 30
electrodes (yellow) used under 10-20 layout. Right: Brain model with
n = 8196 distributed sources (blue) and the 30 electrodes position (red)

– Evaluation: The estimated EEG signals using DYNLO, NLO-LS and MSP,
were computed and compared with the original EEG signals used for the
source estimation procedure. Two performance measurements were assessed:
the relative error and the correlation coefficient shown in equations 16 and
17 respectively. These measurements were calculated for the 192 available
runs.

εr =
||ŷk − yk||22
||yk||22

(16)

In addition, the correlation coefficient was calculated for evaluating the simi-
larity between the estimated signal and the original referenced EEG. To compute
the variable, the following equation is used:

Cc =
1

N − 1

N∑
k=1

(
yk − µyk
σyk

)(
ŷk − µŷk
σŷk

)
(17)

Where the term µ and σ represent the mean and standard deviation respec-
tively, being N the number of samples of yk.

4 Results and Discussion

Figure 2 depicts the mean and the standard deviation of the relative error for
the 192 runs with each one of the three methods. The mean of the relative errors
were εr(MSP ) = 0, 4459, εr(NLO−LS) = 0, 1446 and εr(DYNLO) = 0, 01271. The
lowest value of relative error was obtained when using DYNLO. In addition, the
standard deviation was the lowest with DYNLO.



DYNLO Dynamical Non-Linear Regularized State Observer with EKF 7

Fig. 2: Performance measurements over 192 runs of EEG data. Left: Mean and
standard deviation of Relative error. Right: Mean and standard deviation
of Correlation Coefficient

Additionally, figure 2 also shows the mean and the standard deviation of the
correlation coefficient for the 192 runs with each one of the three methods. The
mean of the correlation coefficients were Cc(MSP ) = 0, 6803, Cc(LS) = 0, 8544 and
Cc(EKF ) = 0, 9459. Considering that in this case a higher value of correlation is
desired, the DYNLO has obtained the best performance correlation and standard
deviation.

The estimated EEG signal for a single channel with each one of the methods
and the original EEG signal are shown in figure 3. This figure shows that the
DYNLO has the best fitting with the original EEG signal compared to NLO-LS
and MSP. It is also evident in the lower plot that as time passes, the fitting is
improving. In addition, it is noticeable that DYNLO has a good estimation of
the signal amplitude, where NLO-LS and MSP present a higher difference.

Figure 4 shows the time evolution of the estimated model parameters us-
ing the EKF and LS for one of the runs, where the model values describe an
asymptotic behavior. However, the EKF stabilizes the parameters faster than
LS, situation that translates in a better performance in the correlation coeffi-
cient and the relative error. Furthermore, as stated in [7], the model parameters
depend of the sampling frequency and the type of activity to be analyzed. i.e
normal activity or seizure. In the case of the EEG dataset used in this study,
the activity is considered normal and the sampling frequency is 2048Hz. There-
fore, the parameters can be calculated according to [7], where their values of
the dataset frequency are presented in table 1. The table also includes the mean
parameters of the estimations with EKF and LS methods.

When evaluating and comparing the computational costs of the two the iter-
ative methods, DYNLO and NLO-LS, the computational time for estimating the
model parameter vector ω̂k using EKF in DYNLO is 0.835ms per sample, mean-
while, with LS in NLO, the required time per sample is 1.494ms. From these
results it is seen a reduction of computational time by 45% in the calculation
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Fig. 3: Top: AF3 channel in measured EEG (blue), estimated with MSP (yellow),
NLO-LS (red) and DYNLO (purple). Bottom: zoom of estimated AF3
channel with NLO EKF and original EEG

Table 1: 192 runs mean parameters estimated with EKF and LS and static NLO
model parameter values

Method / Parameters a1 a2 a3 a4 a5

Static Parameters 1.9023 -0.9100 0.0067 1.1921e-04 -2.3842e-05

EKF 1.6477 -0,6472 -0.0004717 -1.2045e-06 1.4701-07

LS 0.5994 0.5637 -0.003596 -0.004754 0.002082

of ω̂k. The time measurements where taken in a computer with the following
characteristics: RAM 16GB , processor Core i7-4790, OS windows 10, 64-bit and
executing the algorithms in Matlab R© 2016b.
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Fig. 4: Evolution of model parameter estimation by EKF in DYNLO (Top) and
LS in NLO-LS(Bottom)

5 Conclusions and future work

The estimation of EEG signal parameters using EKF improves the brain activity
estimation with NLO. A much better performance in the correlation between
signals and a lower relative error were obtained with the DYNLO. In addition
to these advantages in performance, the computational time was lower when
using the EKF, which is a desirable feature to enable faster results in clinical
analysis and essential for the use of brain mapping techniques in brain computer
interfaces (BCI).

According to the results presented in this paper, the DYNLO approach pro-
vides faster brain mapping solutions which can be useful for real-time applica-
tions to study brain disorders/diseases, emotions, and memory processing evoked
responses.

Generally, brain mapping methods require the information of high number
of channels, which will result in high computational times. Nevertheless, the
computational time and the response time towards real-time applications, could
be improved by reducing the number of electrodes and using a lower sampling
frequency. New experiments are currently being performed with the aforemen-
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tioned reduction of channels and sampling frequency, and will be reported in the
near future.
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