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1. Introduction

In this paper we give a control problem interpretation for the parabolic dominative p-Laplace equation
2(n + p)uy = Dyu in Or. (1.1)

Here 27 = 2 x (0,T), where {2 C R" is a bounded domain satisfying a uniform exterior sphere condition,
and

Dpu= M+ -+ A1)+ (p— DAy = Au+ (p— 2) Ay,

where 2 < p < 00, and A\; < Ay < --- < A\, are the eigenvalues of the Hessian D?u. The operator Dy
is called the dominative p-Laplacian, introduced by Brustad [3,4] and later studied by Brustad, Lindqvist
and Manfredi [5] and Hgeg [9] in the elliptic case. The dominative p-Laplacian explains the superposition
principle of the p-Laplace equation, see [7,13] for more about this property. The operator D, is sublinear,
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so it is convex, and Eq. (1.1) is uniformly parabolic. By Theorem 3.2 in [19], viscosity solutions of (1.1) are
in C2+0‘72+TQ(QT) for some o > 0.

Let u be a viscosity solution of (1.1) with a given continuous boundary data F' on 9,2 := (£2 x {0}) U
(092 x [0,T7). By [6], the solution is unique. In Section 3 we see that for € > 0 and the boundary data F,
there is a unique Borel-measurable function u. satisfying a dynamic programming principle (hereafter DPP)

n+2][ 9

ue(x,t) = ue(y,t —e”) dy

=] =)
p=2 {ug(x-ksa,t—e?)+u5(x—507t—52) in 2. (1.2)
P+ N g=1 2

Here B.(z) C R™ is a ball centered at x with the radius ¢, in the first term we have an average integral, and
in the second term the supremum is taken over all unit vectors in R™. In Theorem 4.3 we show that u. —
uniformly when ¢ — 0. The idea of the proof is to first show that the family {u.}es¢ is uniformly bounded
and asymptotically equicontinuous, and use a variant of the Arzeld—Ascoli theorem to see that solutions of
the DPP converge uniformly to some continuous function. To show that the uniform limit is the viscosity
solution of (1.1), we make use of an asymptotic mean value formula

2
s ][ v(y,t — &%) dy
D+ NJp,(z)

= o(z, 1) + m(ppv(x, £) — 2(n + p)ue(x, ) + 0(2), (1.3)
which is valid for all functions v € C?1(£2r), see Theorem 2.1.

It turns out that the solution u. of DPP (1.2) is the value of the following time-dependent control problem.
Let us denote o = I%, b= ;%721, and place a token at (zg,tg) € 7. The controller tosses a biased coin with
probabilities « and 8. If she gets tails (with probability 8), the game state moves according to the uniform
probability density to a point x1 € B.(xg). If the coin toss is heads (with probability «), the controller
chooses a unitary vector ¢ € R™. The position of the token is then moved to x1 = x¢g + €0 or x1 = g — €0
with equal probabilities. After this step, the position of the token is now at (x1,t1), where t; = to — 2. The

game continues from (z1,t1) according to the same rules yielding a sequence of game states

(wo,t0), (1,t1), (22, 12), . ..

The game is stopped when the token is moved outside of {27 for the first time and we denote this point by
(z+,t;). The controller is then paid the amount F(x,,t,). Naturally, the controller aims to maximize her
payoff, and heuristically, the rules of the game can be read from the DPP (1.2).

We remark that the scaling of the time derivative in Eq. (1.1) is just a matter of convenience. For the
equation uy = Dpu we would define a game with the same rules as before, except that we would have
tiy1=1; — 2(57117) for every step in the game, see also Remark 2.4.

This control problem has some similarities with two-player zero-sum tug-of-war games, which were
introduced by Peres, Schramm, Sheffield and Wilson [17,18] and later studied from different perspectives,
see e.g. [1,11,15]. Time-dependent tug-of-war games, having connections to parabolic equations with the
normalized p-Laplacian, were studied in [8,14,16], whereas two-player games for equations u; = A;(D?u),
j € {1,...,n}, were recently formulated in [2]. For a deterministic game-theoretic approach to parabolic
equations, we refer to [10].

This paper is organized as follows. In Section 2 we prove the asymptotic mean value formula (1.3). In
Section 3 we show that the value of the control problem satisfies the DPP (1.2). Finally, in Section 4 we
show that value functions converge uniformly to the viscosity solution of (1.1) when £ — 0.
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2. Asymptotic mean value formula
Theorem 2.1. Letv: 2 — R be in C*(2r). Then it satisfies the asymptotic mean value formula (1.3).

Proof. Averaging the Taylor expansion
1
v(y,t = &%) = v(x,1) + (Do, 1), (y = @) + 5 (D*(@, 1)y - 2), (y = 7))
— v, t) +olly — af* + %)
over the ball B.(x) and calculating

][ (Do(z,1), (y — 2)) dy = 0
Be(x)

and

82
Lo (D =) = e dy = g avi)

we obtain

€
2(n+2)

Next we take an arbitrary unit vector o and write the Taylor expansions for v(z + h,t —&?) with h = o
and h = —eo to obtain

=v(x,t) + Av(x,t) — e%vy(z,t) 4+ o(e?). (2.4)

1
v(x +eo,t —e?) = v(x,t) + (Dv(z,t),e0) + §<D2v(a:,t)sa, go)
- 52Ut(xv t) + 0(52)7

v(x —eo,t —e?) = v(x,t) — (Dv(z,t),e0) + %(DQ’U(I,t)(fé“O'), (—e0))
— &, (xz,t) + o(e?),
which yield

v(z +eo,t —e?) +v(x —eo,t —e?)
2

— v(z, 1) + %w%(x, t)o,0) — e2vy(z, t) + o(2).

Taking the supremum over all |o| = 1 gives

[v(w +e0,t —e?) +uv(x —eo,t —?)
sup
lo|=1 2
2
=uv(z,t) + 5)\“ —e%vy(x,t) + o(e?). (2.5)
By multiplying Eqs. (2.4) and (2.5) by 1’;%2 and 11;;721 respectively, we get
2
n+‘% vyt —e?)dy
P+ n)p (a)
p—2 {v(x+sa,t52)+v(xsa,t62)
sup
P+No=1 2
2
€
=v(z,t) + ———(Dyv(x,t) — 2(n + p)v(x, t)) + o(e?). O
(@08) + gy (Pl t) = 2+ P, ) + ofe?)

Next we define viscosity solutions for Eq. (1.1).
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Definition 2.2. An upper semicontinuous function u : £2r — R is a viscosity subsolution to the equation
2(n + p)uy = Dpu in O if for all (zg,ty) € 2r and ¢ € C*(£2r) such that

(i) u(zo,to) = ¢(zo, to),
(ii) o(z,t) > u(x,t) for (x,t) € 2r, (z,t) # (xo,t0),

it hOldS 2(n + p)(bt ((E(), t()) S Dp¢($0, t(]).
A lower semicontinuous function w : 2 — R is a viscosity supersolution to the equation 2(n+p)u; = Dpu
in O if for all (z9,t9) € 27 and ¢ € C?(N2r) such that

(i) w(zo, to) = ¢(z0, to),
(ii) d)(:t,t) < u(xat) for (xvt) € ‘QT, (.T,t) 7é (x07t0)7

it holds 2(71 + p)(bt(l‘o, to) > Dp¢($0, to).
A continuous function u : 2r — R is a viscosity solution to equation 2(n + p)u, = Dyu in 27 if it is both
a subsolution and a supersolution.

Because viscosity solutions of (1.1) are in C2+°"2+TQ(QT) for some o > 0 (see Section 1), we get the
following corollary.

Corollary 2.3. Let u be a viscosity solution of (1.1). Then it satisfies an asymptotic mean value formula

n+2][ 9
u(zx,t) = u(y,t —e”) dy
@o= 1] =)
p—2 u(x +eo,t —e?) +u(z — o, t —e?) 9
+ sup{ +o(e”). 2.6
] : ) (26)

Remark 2.4. Our scaling of the time variable is for convenience. The same idea would give for viscosity
solutions of

uy = Dpu

an asymptotic mean value formula

n-+2 g2
u(at) = ]{5 Lt sy

p+n 2(n+p
2 2
p—2 wp u(z +eo,t — 2(Z+p)) +u(z —eo,t — 72(Z+p)) o)
P+n|s=1 2 .

3. Control problem formulation

In this section we show that the value of the control problem described in Section 1 satisfies the DPP
(1.2). Since the game token may be placed outside of 27, we denote the compact parabolic boundary strip
of width € > 0 by

I. = (S x [-€%,0]) U (2 x [-€2,0]),

where
Se ={z e R"\ 2 : dist(x,002) <e}.

Throughout this section, we are given a continuous function

F:I. >R
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Our control problem with the payoff F' was formulated in Section 1. The process is stopped when the token
hits the boundary strip I for the first time at, say (x,,t;) € I'., and then the controller earns the amount
F(z,,t;).

Next we define the stochastic vocabulary for the control problem. A strategy is a rule which gives, at each
step of the game, a direction o,

S(to,]}o,xl,...,xk)ZUERn, |O"=1.

Here, S is a Borel measurable function. Let A C 27 U I'. be a measurable set. Given a sequence of token
positions (xo, to), (z1,t1), . .., (zk, tx) and a strategy S, the next position of the token is distributed according
to the transition probability
’A n (Bg(xk) X {tk — 62})|

| Be(@k) x {ti — €2}

e «@
+ 56(1k+607tk—82)(14) + 56(wk—60,tk—52)(14)

s ((x07t0)7 (xlvtl)v KRR (x/mtk))A) =p

where in the first term we use the n-dimensional Lebesgue measure, and in the last terms d(, 4 (B) = 1 if
(y,s) € B and 0 otherwise.
For a starting point (zg,t9), a strategy S and the corresponding transition probabilities, we can use

0)

Kolmogorov’s extension theorem to determine a unique probability measure }P’ffo’t in the space of all game

sequences denoted H°°. The expected payoff is then

]Egmo’tO)[F(xTvtT)} — . F(z,.t,) dPgO’tO),

and the value of the game for the controller is
u®(zg,to) = sup]Engo’tO)[F(xT, tr)]-
S

Since F' is bounded and T
T S o) + 17
€
the value of the game is well defined. From the definition we immediately get the following comparison

principle.

Proposition 3.1. Fize > 0. Let u® be the value of the game with the payoff F1, and v¢ the value of the
game with the payoff Fs. Assume that Fy > Fy on I'.. Then u® > v in .

Our aim is to show that the value function u® satisfies the DPP with the boundary data F.

Definition 3.2. A Borel measurable function u. satisfies the dynamic programming principle, abbreviated
DPP, in {27, with the boundary data F, if

n+2f 2
ue(x,t) = ue(y,t —e°) d
e(w,1) PET (y ) dy
+p—2 “up {ug(m—i—sa,t—g)+u5(33—50,t—52) in 0,
P+N =1 2

ue(x,t) = F(x,t) on I..

Lemma 3.3. There is a unique Borel measurable function u. satisfying the DPP. Moreover, u. is lower
Semi-continuous.
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Proof. The existence and uniqueness of such a function u. can be seen from the following argument. Given
F on I'., we can determine u.(z,t) for all z € 2 and 0 < t < £2. We want to continue this process, but we
need to make sure that the function is lower semi-continuous or at least Borel measurable. The following
argument is from personal communication with Brustad, Lindqvist, and Manfredi. In general, when u is any
bounded and lower semi-continuous function, then by using Fatou’s lemma,

2
s ][ u(y,t — %) dy
P+ NJB, (x)
p—2 {u(x%—sa,t—ez)—i—u(ﬂc—aa,t—sz)
sup
PH+ N g=1 2

is again bounded and lower semi-continuous. This gives a lower semi-continuous function wu. defined for all
x € 2 and 0 < t < €2. Continuing this process until ¢t = T gives the desired function. [

Lemma 3.4. Let u. be the unique function satisfying the DPP of Definition 3.2 with the boundary data F
on Iz, and let u® be the value of the game with the payoff F'. Then

Ue = U°.
Proof. Let (xg,t9) € 7. We aim to show that u.(zg,t9) = u(xo,to). Assume that the game starts at
(Z‘o,to) € .
First we assume that the controller uses an arbitrary strategy S. Then we have for the function wu.
satisfying the DPP,

Efgmo’t(’)[ua(ffmhtk;+1)|(to,5807961, o Tp)] =0 ue(y, ty — %) dy
Bs(-'l"k)
N aue(xk +e0,tp — €2) J2r ue(z), — €0, by, — €2)

< B][ u(y, ty — ) dy
Bs(mk)

[us(xk +eo,ty, — %) +uc(xy — oty — 52)}
2

+ « sup
lo|=1
= ug(xg, tg).
This shows that My = u.(xg, tx) is a supermartingale, so
Equo’tO)[F(xntr)Kto,$0,$1; oo xro1)] < ue(zo, to)

by the optimal stopping theorem. Hence

w (2, to) = sup ES0M0) [F(ar, )] < ue(zo, to).-

To prove the reverse inequality, we choose a strategy Sy giving a corresponding o(z,t) for the controller
that almost maximizes u.(x,t). To be more precise, for arbitrary 5 > 0, the controller chooses

ug(l‘k —|—€U($k,tk),tk — 62) + ug(l‘k — €U($k,tk),tk — 62)
2
uc(xy + €0, ty — &%) + uc (), — 0, ty, — €2) — 2 (kD)

> sup
lo|=1 2

The function Sy can be taken to be a Borel function, see Lemma 3.4 in [12].
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We obtain
EG O [ue (w1, tren) = 02”0 (ko, 20, 21, )]
>3 ue(y, te — %) dy
Bs(a’:k)
+ a sup [ue(xk + 0ty — &%) +uc(zp —co, by — £%)
lo|=1 2
— an2= (1) _ o= (k+1)
> ue(wp, ty) — 27"
Hence

My, = ue (g, tr) —n27"
is a submartingale. Using the optimal stopping theorem for this submartingale we find
u? (0, to) = sup B0 [F(ar, 1) 2 B0 [F(ar, 1)
2 E.(STJO’tO)[UE(mTatT) - 772_k]
> BGO"0 [ue (w0, o) — 127°] = ue(wo, to) — 1.

Since 1 > 0 was arbitrary, this proves the lemma. [

4. Convergence to the viscosity solution

In this section, we are given a continuous payoff function F': I'1 — R. Our goal is to show that with this
payoff, value functions of our game converge uniformly to the unique viscosity solution of

{Q(n +p)us =Dpu in 27, (47)

u=F on Opflr.
We will make use of the following Arzeld—Ascoli-type lemma, which has been previously used e.g. in

[2,14,16]. We omit the proof, which is a modification of [15, Lemma 4.2].

Lemma 4.1. Let {fs c0r = R}ae(o 1 be a uniformly bounded family of functions such that for a given

n > 0, there are constants ro and o such that for every ¢ < g9 and any (x,t), (y,s) € 21 with
|(z,t) = (y,5)] <o,
it holds
|f€($7t) - fs(y78)| <n.
Then there exists a uniformly continuous function f : 27 — R and a subsequence, still denoted by (f.), such

that f- — f uniformly in 27 ase — 0.

For the next lemma, we assume that the domain (2 satisfies a uniform exterior sphere condition. That is,
we assume that there is § > 0 such that for any y € 942, there is an open ball Bs C R™\ {2 with the radius
§ so that Bs N 2 = {y}.

Lemma 4.2. The family {uc}.c(0,1) of value functions of the game satisfies the assumptions of Lemma 4.1.
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Proof. Since |uc(z,t)] < maxp, |F| for all (z,t) € 27 and e € (0,1), the family {uc}ce(0,1) is uniformly
bounded.

Fix 7 > 0. Since the payoff function F' is uniformly continuous on I, there is v > 0 so that when
(x,t),(y,s) € I'n with [(z,t) — (y,s)] < 7, it holds [F(x,t) — F(y,s)] < %. We prove the asymptotic
equicontinuity of the family {uc}.c(o,1) in four steps. In all steps we have ¢ < gg and |(z,t) — (y, s)| < 0.
The precise choices of ¢ and 7 clarify during the proof. We will denote by Cy, Cs, ... constants larger than
1 which may depend only on n,d, and the diameter of 2.

Step 1. If (z,t), (y,s) € Op {27, then
‘UE(x7t) - uE(y7S)| = |F($7t) - F(y78)| <n

when ro < 7.

Step 2. Suppose that (z,t) € £2r and (y,0) € I.. Let us start the game from (z¢,t9) = (x,t) with an
arbitrary strategy S. We obtain

ES00) |2y — 20]? | (to, o, - - - Th_1)]
« 2 2 2
= §(|(ﬂfk—1 + o) — 20| + [(xp—1 —0g) —0|") + B ly — xo|” dy

Be(zp_1)
< of|zn_1 — zo)® 4+ €2) + B(|xr_1 — xo|* + C1?)

< agp—1 — SUO\Q + Cre2.

Hence,

Mk = \xk — x0|2 — C1k€2
is a supermartingale, and the optimal stopping theorem gives
ESO |z, — wo|’] < |20 — wof® + C1e?EEO[r] < Ci(ro + €2).

Here, we used the fact that the stopping time 7 < Z—% + 1 for a game starting at ¢y and in this case tg < ryg.
Since this is true for all strategies, it holds

sup B0 |2, — 20[?) < Cy(ro + £2),
which yields
lue (20, to) — ue (0, 0)| = |sng(Sz°’t°)[F(xT7tT)] — F(z0,0)] < g

when 79, g9 are chosen so that Cy(rg +&3) < 2.
The triangle inequality finishes the argument. Recalling that (xo,t9) = (z,t), we have

ue(z, 1) — ue(y, 0)] < |uc(z,t) = F(z,0)| + |F(2,0) = F(y,0)| <n.

Step 3. Suppose that (z,t) € 2r and (y, s) € 0,02 with y € 912. Since the domain {2 satisfies the uniform
exterior sphere condition with 4§, there is a ball Bs(z) C R \ 2 with dB;(2) N 2 = {y}.
We use a barrier argument. In an annulus of R", define a function w as

w(z) = —alz — 2> = blz — 2| *+ ¢ in Br(2)\ Bs(z),
w=0 on 0B;s(z),
‘?9—1;’ =0 on OBR(2),
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where % is the normal derivative, and R is chosen so that {2 C Bg(z). The exponent { =n+p—4 > 0,

since p > 2 and we may assume that n > 2 (1-dimensional case is essentially a random walk in an open
interval). The positive constants a, b, ¢ are specified below. The function w satisfies

Aw(z) = —2an + bén|z — 2|77 = be(E+ 2)|w — 2|2,

An(D2w(z)) = —2a + b€|z — 2|52,

hence
D,w = —2a(n+p—2) in Br(z)\ Bs(2), (4.8)

and it can be extended as a solution to the same equations in Br.(z)\ Bs_(2) so that Eq. (4.8) holds also
near the boundaries. It satisfies an estimate

w(z) < Co(R/6) dist(0Bs(z),x) + o(1)

for any x € Br(z) \ Bs(z). Here o(1) — 0 when ¢ — 0.

Let us consider for a moment an elliptic game starting at xyp = x and played by the rules of our game
without a time-dependence in the annulus Br(z) \ Bs(z), with a special rule that if we are at, say =y, a
possible random move is chosen from B.(x) N Br(z) according to the uniform probability density, and
also the controller cannot exit Br(z). The game ends when the token enters the ball Bs(z). Because of the
random moves, the game ends almost surely in a finite time. Define a stopping time for this game as 7%,

™ =inf{k : zp € Bs(2)}.

Let S be an arbitrary strategy for the controller. The Taylor expansion for w gives

%(w(iﬁk—l +eo)+w(xg_1 —eo))

— w(zp) + %52<D2w(xk_1)a, &) + o(?)

<w(xg—1) + %€2AH(D2w(a:k,1)) + o(e?),

since the first order terms vanish,
(Dw(xp—1),e0) + (Dw(xg—1), —co) = 0.

Moreover, since w is radially increasing, it holds

52

w(y)dy < w(zp_1) + ———Aw(xp_1) + o(e?).
]{?s(x“)nBR(z) v TR 1

By choosing the constant a properly,
My, == w(xy) + ke?

is a supermartingale. Indeed, we have

T «
E[My [ 2o, ..., zp-1] = §(w($k—1 +¢e0) + w(zg-1 —€0))
+ 7 w(y) dy + ke?

Be(wg,—1)NBR(2)
2

wDPUJ(Z'k_l) + kEQ + 0(52)

< w(zp—1) +
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n+p-—2

=w(rK_1)— ag® + ke? + o(e?)

<w(zp_1) + (k —1)e?,

n+p
n+p—2
constants b and ¢: The Neumann and Dirichlet boundary conditions of the barrier function w are satisfied

by choosing b = (2a/¢)R¢*2 and ¢ = ad? + b6 <.
By the optimal stopping theorem, we have

by choosing for example a = 2 and assuming that o(g?) < 2. The choice of a determines the other

ES [w(zr.) + %% < w(xo),

that is,

Ego [7_*] < w(l;)) < CQ(R/é) diSt(aB;(Z)v l‘o) + 0(1) ,
€ €
where we used [ES° [w(z,.)]| < o(1).
Now we come back to our game, starting at (xo,to) = (z,t), again with an arbitrary strategy S. Since it

holds |z — y| > dist(0Bs(2), xo), for the stopping time of our game we now have an estimate

ESOlr] < BGO L]
< Cy(R/6) dist(0Bs(2), zo) + o(1)
< =
< Co(B/8)lo —y] +o()
< =

By using the same martingale argument as in Step 2 but replacing xg by y, we have

ESOlo, - yf] < a0 — yl* + Cre2EGO (7]

Ca(R/0)|zo — y| + o(1)
62

< |zo — yI* + C3(|lzo — y| + o(1))

<+ Cylro+o(1)) < (1),

< |xo — y|* + C1&?

when g, 79 are chosen so that Cs(rg + o(1)) < (%)2 and r¢ < (%)2. This also gives

(z0,t0) _ l 2
EGOlt] —tol < (T) -

Hence, we have
(20, t0) — sy to)] = [ SupEG™ [Flar )] = Fly.to)] < 7

and recalling that (zg,t9) = (x,t) the triangle inequality gives

ue(2, 1) — uc(y, s)| < [u(z,t) = F(y, )| + [F(y,t) = F(y, )| <n.

Step 4. Finally, suppose that (x,t), (y,s) € £2p. This is an argument based on translation invariance and
comparison principle. Let rg, g satisfy the conditions of the previous steps. Define an inner e-strip I. by

I. = {(z,r) € Or : dist((z,7),0,027) < ro}.

If (z,t) € I, there is a point (2/,t') € 9,82 such that |(z,t) — (2,t")| < ro. Then from the conclusions of
the previous steps we obtain

|u€(x,t) - ua(y7s)| < |u5(a?,t) - F(x/,t/)| + |F(x/7t/) - us(y78)| <.
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The argument is identical if (y, s) € I, so it remains to study the case (z,t), (y,s) € £r\I.. We may assume
that ¢ < s. Define functions F}, F» on the strip I. as follows,

Fl(Z,T):’U/E(Z—J?—i-yﬂ"—t—f—S)—n, FQ(Z,T):u5(2—$+y,T—t+S)+T).

Then
Fi(z,r) <wuc(z,r) < Fo(z, 1)

for all (z,r) € I.. Let u! be the value function of the game in 27 \ I. with the payoff F} on I, and u? the
value function of the game in 21 \ I. with the payoff F» on I.. By the uniqueness of the value function, we
have for all (z,r) € Qr \ I.

;(Z,’I“) :UE(Z—.T-i-y,?”—t—FS) -

ug(z,’f‘):u5(2’7£€+y,7"7t+5)+17.

u,

By the comparison principle, see Proposition 3.1, we have

N
Ul
—
R

~
~—

IA

IS
m N
—
&

~
~—

I

<
™
=

V)
~—
+
=

4

From the previous lemmas it follows that if (uc,) is a sequence of value functions with e; — 0 and (uajk)
is an arbitrary subsequence, then this subsequence has a subsequence converging uniformly to v. Hence, the
sequence (usj) converges to v uniformly, and we write u. — v to simplify the notation. It remains to show
that the function v is the solution of (4.7).

Theorem 4.3. The uniform limit v = lim._,o uc is the unique viscosity solution of (4.7).

Proof. By uniqueness of viscosity solutions (see [6]), it is sufficient to show that v is a viscosity solution of
(4.7). To this end, let ¢ € C? touch v from above at (x¢,t) € £2r,

0= (v—9¢)(xo,to) > (v—&)(z,t)
for all (z,t) close to (xo,to). From the definition of supremum, given d. > 0, there are points (z.,t:) close
to (zo,to) such that
Ue<x57t5) - d)(xmte) > Ue(y, 3) - ¢(y7 5) — 0
for all (y, s) in a neighborhood of (., t.). Using the fact that u. — v uniformly and v — ¢ is a continuous

function with a maximum point at (xg,to), we see that (zc,t.) = (xg,t0) as e — 0.
Since ¢ € C%({27), Theorem 2.1 gives

B oy, t. — ) dy
Be(ze)
o sup [(b(xg +eo,t. —e?) + ¢(x. —eo,t. —€?)
lo|=1 2

= ¢(we,te) + (Dp(b(x@te) —2(n+ p)di(ze,te)) + 0(82)'

2(n+p)
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We can now estimate

ﬁ][ ua(yata _’52) dy
Be(ze)

[ue(xs +eo,t. — &) +uc(v. —eo,t. — 52)}
+ « sup
lo|=1 2
< us(xsyts) _¢(x€at€)+6€+/8 ¢(y7t6 _52) dy
Be ()
_ g2 _ 22
+a sup |:¢(xa+50'7t5 € )+¢($£ €o,te — € )]
lo|=1 2

= u(ze,te) +6 +L(D H(ze,te) — 2(n + p)oe(xe, t.)) + o(e?)
— Uel\degy le € 2(n+p)p ey le P)Pt\Te, le .

As the function u. satisfies the DPP, we are left with

62

0<6d,+———
< +2(n+p)

(Dp¢($aa te) —2(n +p)¢t(x5, te)) + 0(52)-

Choose now . = o(¢?). Dividing by €2 and letting ¢ — 0 gives

2(n + p)oi(xo,t0) < Dypp(z0, o),

which shows that v is a viscosity subsolution. To show that v is a viscosity supersolution is analogous. [J
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