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Summary

The building sector is responsible for a large part of the world’s total energy

use. More than half of building energy use is needed for space heating, domestic

hot water heating, and space cooling. Thermal energy supply systems are used

to cover these thermal energy demands and are an integral part of new buildings

and neighborhoods. These systems are becoming increasingly more complex due

to the inclusion of renewable energy sources and thermal storages. Advanced

simulations are required to analyze the design and the operation of these complex

systems in detail and are thus an important part of the transition to new and

improved building energy systems.

In this work, component and system models for thermal energy supply systems

were developed in the modeling language Modelica. Numerical efficiency was an

important part of the development process because the aim was to analyze long

periods of time. In addition, the different requirements for simulation and opti-

mization had to be considered during model development. Detailed description

of all the developed Modelica models are given in this thesis. The models were

used for dynamic simulations with Dymola as well as dynamic optimizations with

JModelica.org, of which the latter proved to be more challenging. The optimiza-

tion approach is therefore also described in detail in this thesis.

The design and the operation of two case study systems were analyzed in this

work: 1) an existing integrated heating and cooling system at Vulkan, Oslo and 2) a

planned local district heating grid at Brøset, Trondheim. The main components

of the integrated heating and cooling system at Vulkan were heat pumps, plate

heat exchangers, flat plate solar collectors, water storage tanks, ice thermal energy
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storage, and borehole thermal energy storage. The system supplied a total floor

area of 38 500 m2 and is described in detail in this thesis. The main components

of the local district heating grid at Brøset were a heat central, distribution pipes,

and customer substations. The system was assumed to supply a total floor area

of 178 000 m2 and the different system design concepts that were analyzed are

described in this thesis.

The main focus of this work was the case study system at Vulkan. The sim-

ulation results showed that the current operation of this system might be un-

sustainable due to an unbalanced long-term storage. Sustainable operation was

possible in the simulations by increasing the number of solar collectors or the

amount of imported heat from the district heating grid. The optimization results

showed that variable setpoints for the heating and cooling supply temperatures

could reduce the electricity use of the system. However, this would require the

implementation of an advanced control system. The installation of larger storage

tanks combined with optimal control was also investigated. It was shown that

this combination could reduce the electricity costs of the system. However, the

savings were not large enough to make an installation seem profitable with the

current pricing scheme. Higher peak load tariffs and/or an increased variability

of the electricity price might change this conclusion in the near future.

The analyses of the different system design concepts for the local district heat-

ing grid at Brøset showed that low-temperature grids were more environmentally-

friendly than high-temperature-grids. This was mainly due to lower heat losses

in the grid and the ability to include waste heat sources. The diameters of the

district heating distribution pipes were shown to be important for the heat losses

of the pipes and the required pumping power.

Several Modelica libraries with similar component models as the ones pre-

sented in this thesis are available. However, the system model development and

the dynamic optimizations proved to be the most challenging tasks in this work.

These tasks require a rather high level of user experience, but are expected to be

increasingly important in the near future. This prediction is supported by the

coordinated efforts that are currently going on in the IBPSA Project 1, which has

a scope similar to the one of this thesis.
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1 | Introduction

1.1 Motivation

The building sector is responsible for a large part of the world’s total energy

use, with a share of around 40 % in the European Union [1] and the United

States [2]. This energy use is responsible for significant greenhouse gas (GHG)

emissions, which contribute to global warming. Emission reduction of building

energy systems is therefore a goal of many research and development initiatives.

More than half of building energy use is needed for space heating, domestic

hot water (DHW) heating, and space cooling. These thermal energy demands

“represent the single largest opportunity to reduce buildings energy consumption

in most regions of the world” according to the International Energy Agency [3].

In non-residential buildings, other thermal energy demands can also occur, e.g.

heating of water in swimming halls, cooling of food products in supermarkets,

cooling of medical products in hospitals, or cooling of IT equipment in data cen-

ters. In Norway, heating is sometimes also applied to highly frequented walking

areas or stairs to melt snow and ice to ensure a safe environment for pedestrians

during the winter.

Thermal energy supply systems are used to cover the thermal energy demands

described above and are an integral part of new buildings and neighborhoods.

Many different system solutions exist throughout the world due to the abundance

of building types and climatic conditions, which influence the heating and cooling

demands significantly. In addition, various solutions exist for different system

scales, reaching from small private installations to large city-wide systems.

1



Chapter 1

In Norway, electric heating and wood burning have long been the dominant

choices for space heating and DHW heating due to the availability of cheap elec-

tricity and firewood. However, due to higher electricity prices and stricter leg-

islation, more efficient solutions like heat pumps (HPs) [4] and district heating

(DH) [5] have become more popular in recent decades. The development of low-

temperature district heating (LTDH) grids [6], low- or zero-energy buildings [7],

and even zero emission neighborhoods [8] has gained much attention recently.

Future thermal energy supply systems are thus significantly different from tradi-

tional systems. To meet the strict targets for energy efficiency, system integration

and “smart” control are prerequisites. System integration means the coupling of

thermal systems for efficient interaction of heating and cooling demands as well

as thermal energy storage (TES) and renewable energy sources. “Smart” control

means using predictive control strategies and thermal energy storages to reduce

energy use and/or operating costs. This development is heavily driven by coming

dynamic tariff structures for electricity and district heating in Norway. Future

thermal energy supply systems are thus more complex and flexible than tradi-

tional single-purpose systems and require a holistic design and control approach

to make use of their flexibility in an optimal way.

Computer simulations are required to analyze the design and the operation

of these complex systems in detail [9]. The simulation capability has increased

significantly during the last decades due to the increase in available computational

power. Many different software solutions exist, both for dedicated applications

as well as sophisticated multi-purpose tools [10]. Using advanced computational

methods for the design and analysis of future integrated energy systems is thus an

important part of the transition to new and improved building energy systems.

1.2 Aim of study

The main aim of this work was the analysis of both the design and the op-

eration of thermal energy supply systems on neighborhood scale to make these

systems more energy- and/or cost efficient. Due to the importance of storages

for such systems, focus was on both long- and short-term thermal energy storage.

Dynamic simulations were chosen as computational method due to the inherent

dynamics of thermal energy storages and flexible systems. The high level of com-
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Chapter 1

plexity and individuality of future integrated energy systems makes it difficult to

draw general conclusions from case studies. The goal was therefore to develop

simulation models, which can be reused easily and to apply them to selected case

studies. Although closely related, building performance simulation, i.e. the cal-

culation of the energy demands of buildings, was outside the scope of this work.

To achieve the aim of this study, the following objectives were defined:

• Development of component models for dynamic simulation, which enable

the analysis of future integrated energy systems. All the component models

should have a similar level of detail and be accurate enough to include

relevant component characteristics, but also fast enough to enable long-term

simulations in reasonably short time.

• Development of system models for dynamic simulation, representing case

study systems. This includes data acquisition for the heating and cooling

demands, the coupling of component models, and the implementation of a

control system.

• Development of component and system models for dynamic optimization.

This should enable the detailed analysis of system control for one of the case

study systems.

• Recommendations for the design and the operation of the case study sys-

tems. In particular, design suggestions for the planned system and retro-

fitting options as well as operating suggestions for the existing system.

1.3 Thesis content

This thesis is structured as follows: Chapter 2 gives information about thermal

energy supply systems, modeling and simulation, as well as optimization. The

case study systems that were analyzed are introduced and explained in Chapter 3.

Afterwards, the simulation model development is described in detail in Chapter 4,

which was the main task of this work. The optimization model development is

described in Chapter 5 followed by results from the two case studies in Chapter 6

and Chapter 7. Concluding remarks and suggestions for further work are given

in Chapter 8.
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1.4 List of publications

The author of this thesis contributed to six scientific papers during his thesis

work. The relation between the content of the thesis and the papers will be

explained where necessary. Author contributions for each paper based on the
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2 | Background

The aim of this work was to study thermal energy supply systems by means

of computational system analysis. Therefore, background information on these

topics is given in the following sections.

2.1 Thermal energy supply systems for neighborhoods

2.1.1 Definition and system scale considerations

In order to cover the heating and cooling demands of large buildings, building

complexes, or neighborhoods, the required thermal energy has to be delivered

to the buildings and then be distributed to several areas and rooms within each

building. In this work, only the supply system side was analyzed, the distribution

system side was excluded. As mentioned in the introduction, different system

solutions exist for different scales. The scale can roughly be divided into detached

houses with individual systems, building complexes or neighborhoods with inte-

grated thermal energy supply systems, and small cities or districts with district

heating and cooling systems. The scale relevant for this work was the neighbor-

hood scale, i.e. building complexes or small districts with a designated thermal

energy supply system.

Such systems can show a high degree of individuality, especially when different

heating and cooling demands at various temperature levels are present and when

fluctuating renewable energy sources and storages are included. Such systems

are therefore not standardized and need to be adapted to the neighborhood at

hand. Other terms used for this kind of system are “smart thermal grid”, “ther-

6



Chapter 2

mal network”, “thermal micro-grid”, “integrated energy system”, “hybrid energy

system”, and “large-scale heating and cooling system” with definitions varying

from source to source. In this thesis, the terms “integrated heating and cooling

system” and “local district heating grid” are used for the two case study systems.

2.1.2 Key components for thermal systems

The key components for the thermal energy supply systems that were analyzed

in this work are described in this chapter. Key components means that they are

important for system performance, but not all of them are required for each

system. The component choice is part of the system design phase and depends

on the neighborhood at hand.

Heat exchanger A heat exchanger is used to transfer heat from a warmer

fluid (liquid or gas) to a colder fluid. Heat exchangers are used in many different

engineering applications and several different types have been developed. Heat

exchangers are usually customized for their designated operating conditions so

that a good trade off between heat transfer, pressure drop, and cost can be found.

A very common type for heating, ventilation, and air conditioning (HVAC) sys-

tems is the counterflow plate heat exchanger, which is compact, cost effective, and

readily available. This type of heat exchanger was the only type used for the case

study systems in this work.

Heat pump A heat pump transfers heat from a colder environment to a

warmer environment via a closed thermodynamic cycle by using work. The heat

pump process includes evaporation and condensation of the working fluid. De-

pending on the application, the heat released during condensation of the working

fluid is used for heating purposes, or the heat taken up during evaporation of

the working fluid is used for cooling purposes. The coefficient of performance

(COP) of a heat pump is an efficiency measure and depends significantly on the

heat pump’s temperature lift, i.e. the temperature difference between the evap-

oration temperature and the condensation temperature. High temperature lifts

require more compressor power and lead to lower COPs. The COP of air source

heat pumps thus depends highly on the outdoor temperature and is lowest on

cold days when the most heating energy is needed. Ground source heat pumps
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(GSHP) have therefore become increasingly popular in cold regions due to their

higher COPs during the winter. However, the installation costs for GSHPs are

high due to expensive drilling and can thus be critical for small residential ap-

plications. For larger installations, GSHPs are a promising choice and are often

combined with seasonal thermal energy storage as described in one of the case

study systems in this thesis.

Solar collectors Solar collectors are used to heat a fluid by radiation from

the sun. Different types of solar collectors for different temperature levels exist.

The most common type for building applications is the flat plate solar collector,

which was the only type used for the case study systems in this work. The number

of collectors to be installed depends on the available area and the expected heating

demands. There is often a mismatch between the availability of solar heat and

the heating demands, which is why the collectors are usually coupled to a storage

tank. Seasonal storage of solar heat is also a common solution [12].

Thermal energy storage Thermal energy storage allows, to a certain ex-

tent, to decouple thermal demand and supply. This decoupling can be used to

integrate fluctuating energy sources, e.g. solar heat, or to reduce expensive peak

demands [13]. A classification of storage types is shown in Figure 2.1. Com-

mon storage components of thermal energy supply systems are water tanks for

short-term storage and borehole thermal energy storage (BTES) for long-term

(seasonal) storage. These were the only types used for the case study systems

in this work. Phase change materials and thermochemical storage are emerging

technologies which are not widely implemented yet [14]. An important aspect for

the inclusion of thermal storages is the control strategy, i.e. when the storages

should be charged or discharged and which temperature levels should be obtained.

Different strategies are presented in Section 2.1.3.

Pipes The importance of pipes for thermal energy supply systems depends

on the distance between the location of the heat source and the heating demand,

i.e. the customer (for cooling demands, the distance between the heat sink and

the cooling demand). They are thus less relevant for dense building complexes

compared to larger neighborhoods. For district heating and cooling systems with
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Figure 2.1: Classification of TES techniques [14].

several kilometers of buried pipes, the pipe selection is a crucial aspect. Especially

the diameter of the pipes has to be chosen carefully to find a good trade-off

between heat losses, required pump power, and cost in each branch. Different

pipe materials and insulation thicknesses are available. Common for new grids are

twin pipes, where both supply and return pipe are enclosed in the same insulation

layer to reduce the grid’s heat losses [15]. Both single and twin pipes were studied

in this work.

2.1.3 The importance of system control

The operating performance of a thermal energy supply system does not only

depend on the installed components, but also on the implemented control system.

A classification of control methods is shown in Figure 2.2.

Classical control, see Figure 2.2, is the simplest and by far the most commonly

used control method. With on/off control, a component is switched on and off

depending on a measured variable that is to be kept between a lower and an
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Figure 2.2: Classification of HVAC control methods [16].

upper threshold. This approach is very simple because only the two thresholds

need to be defined. However, this control method is unsuitable for processes

with large time delays because time delays can lead to large deviations between

desired setpoint and measured variable. The aim of P, PI, or PID control is to

keep a measured variable at a certain setpoint. The output of the controller is

continuously adjusted based on the controller parameters and the control error, i.e.

the difference between the measured value and the setpoint value. The parameters

for the proportional (P), integral (I), and derivative (D) term have to be tuned

for each application to achieve good results. This can be difficult in practice,

especially when the operating conditions of the process change and thus differ

from the tuning conditions. The other control methods shown in Figure 2.2 are

more advanced. They may therefore lead to better results, but also require more

implementation effort.

Apart from the control method, a control strategy also has to be defined, i.e.
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how the thresholds and/or setpoints for the controllers are chosen and poten-

tially changed during operation. This is especially important for systems with

storages because it has to be determined when the storages should be charged

or discharged. A good control strategy is crucial for efficient storage operation

and different strategies exist. A classification of control strategies is shown in

Figure 2.3.

Load shifting using active thermal energy storage
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Storage
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Dynamic
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ming
based
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Genetic
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Particle
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Others

Figure 2.3: Classification of active TES control strategies [17] (MILP = Mixed integer
linear programming, MINLP = Mixed integer nonlinear programming).

Recently, predictive control has received much attention because the imple-

mentation of forecasts for weather, demands, and prices can lead to improved

operation. Two common approaches are predictive rule-based control (PRBC)

and model predictive control (MPC). With PRBC, the setpoints for the local

controllers are adjusted based on a set of heuristic “if-then-else” rules. PRBC is

relatively easy to implement, but the performance depends highly on the rules,

which can be difficult to define for complex systems or changing operating con-

ditions [18]. With MPC, a system model is used to repeatedly solve an optimal

control problem over a receding horizon, with the first control action of the opti-

mal solution being implemented before re-optimization. MPC is more difficult to

implement than PRBC and the performance is very dependent on the optimiza-

tion model of the system [19]. Note that both MPC and optimal control are also

listed as control methods in Figure 2.2. However, the control strategy is defined

in the objective function of the optimal control problem, which is why they are

11



Chapter 2

also treated as control strategies here. Typical objectives for optimal control are

the minimization of energy use or operating costs. Optimal control is treated in

this thesis and is explained in Section 2.2.3 and Chapter 5.

2.2 Methods for computational system analysis

Significant advances have been made in microprocessor performance during

the last decades, see Figure 2.4.
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Figure 2.4: 42 years of microprocessor trend data [20].

The performance advances shown in Figure 2.4 have enabled the development

of sophisticated computer simulation tools. However, computational performance

is still a limiting factor for these tools and can restrict their simulation capability.

Keeping computation times within reasonable limits is important and should be

kept in mind during simulation model development. As G. Augenbroe stated in

a book about building performance simulation [21]:

“The art of modeling and simulation is leaving things out

that don’t affect the answer.” – G. Augenbroe

Computation time obviously depends on the type of hardware used. Apart

from that, the level of detail, the number of components, and the simulated time

influence the computation time as shown in Figure 2.5.
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Figure 2.5: Computation times for system analysis.

Figure 2.5 is a very general representation. Other factors can also influence

the computation time, e.g. the complexity of the system, i.e. the number of

interactions between components, or the efficiency of the software used.

The number of components of a system and the simulated time for the specific

analysis are usually known beforehand. The level of detail and the simulation

software can also be predefined, but are often more free. The right choice depends

first of all on the aim of the analysis, but in practice also to a high degree on the

available resources and the experience of the user. The scope of work was to

analyze the annual performance of systems with many components. Therefore,

the level of detail of the component models was chosen to be “medium”, see

Figure 2.5. A higher level of detail could lead to unacceptably long computation

13



Chapter 2

times and would also require much more user input data. Unless these inputs are

available and can be specified at a sufficiently high level of certainty, the results

would not necessarily be more correct with more detailed component models as

shown in Figure 2.6.
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Figure 2.6: Potential error vs. model complexity [22].

2.2.1 Modeling with Modelica

Modeling is a broad term. In this thesis, modeling refers to the mathematical

description of a component or a system. This mathematical description can be

used in a computer simulation to study the behavior of the modeled component

or system.

Originally, modeling and simulation were closely linked because programming

languages were used for both modeling and simulation. Modeling was thus mainly

writing code that a computer could execute. However, this approach suffered from

several disadvantages. For one, the required explicit formulation of equations

made it cumbersome to describe the component’s or system’s behavior in an

intuitive way. In addition, small changes in the system to be modeled could lead

to large changes in the computer code. Reusing the same model for different use

cases was therefore limited.

A different approach are equation-based languages, which separate the mod-

eling from the numerical solution. This allows to write implicit model equations,
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i.e. relations between variables, and apply advanced computer algebra to cre-

ate efficient simulation code from those equations afterwards [23]. Modelica is

an equation-based, object-oriented modeling language, which has been developed

because the 1990s and is widely used today. It is open-source and is under con-

tinuous development by the non-profit organization The Modelica Association.

Modelica was chosen for this work and is therefore described below. For a full

documentation of the Modelica language, the reader is referred to [24].

Models A model is the most generic type of definition in the Modelica lan-

guage. It defines the name of the model as well as its variables, parameters,

equations, and connectors. These elements are described below. Modelica uses

the basic data types “Real” for floating point numbers, “Integer” for integer val-

ues, “Boolean” for true/false expressions, and “String” for text.

Variables Variables are usually time-varying and are calculated during a

simulation based on the model equations. They are generally continuous, but may

also contain discontinuities. Variables of type Real are used for physical variables,

e.g. the mass flow rate of a fluid or the temperature of a thermal capacity.

Attributes can be assigned to variables to define their usage. Two commonly-

used attributes for variables of type Real are “unit”, used to assign a physical

unit to that variable and enable unit checking in the equations, and “start”, used

to set initial conditions for state variables. Variables of type Integer can be used

for control purposes, e.g. the number of active parallel components. However, it

is more common to use the type Boolean for control purposes, e.g. to define the

mode of operation or to activate/deactivate components. Variables in Modelica

are scalars by default but can also be defined as vectors or matrices/arrays.

Parameters Variables can be defined as parameters when they do not change

during a simulation. Parameters need to be defined beforehand and are typically

user input data, which define a specific model instance. Parameters of type Real

can be used for component specifications, e.g. the length of a pipe or the volume

of a tank. Parameters of type Integer can be used for discretization or to define

a number of components, e.g. the number of fluid layers in a tank model or the

number of series/parallel collectors in a solar collector model. Parameters of type

Boolean can be used to activate/deactivate certain model parts, e.g. choosing
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between a constant and a variable heat transfer coefficient or deciding if an input

signal or a parameter should be used in the model.

Equations Modelica supports algebraic, differential, and discrete equations.

Partial differential equations are not supported, i.e. Modelica is not suitable for

finite element methods or computational fluid dynamics. Equations define the

actual behavior of the model and are simply written as “left hand side” = “right

hand side”. Equations can be written implicitly due to the acausal structure

and will be rearranged by the simulation tool afterwards. Therefore, the models

have no input-output structure and can be simulated as long as the number of

equations and unknown variables are equal. Special types of equations are initial

equations, used for initialization of differential equations, conditional equations,

i.e. if-then-else equations, and connect-equations, which are used to define con-

nections between models.

Connectors Models can be connected in Modelica using connectors. Con-

nectors can have a predefined input-output direction, e.g. for control signals or

input data which need to be passed to component models. However, connec-

tors can also be acausal to represent a physical connection, e.g. the junction of

two pipes or the thermal connection of two fluid streams. In such a connection,

the direction of flow is not defined beforehand, but instead calculated during the

simulation. Flow reversal during a simulation is also possible. These physical

connectors can contain “potential variables”, “flow variables”, and “stream vari-

ables”, which trigger the automatic generation of balance equations when two or

more connectors are connected. Potential variables are equal in connected connec-

tors, e.g. pressure or temperature. The sum of all the flow variables in connected

connectors is zero, e.g. the sum of all mass flow rates or heat flow rates. Stream

variables are calculated based on the flow direction and the product of the flow

variable and the stream variable, such that the sum of these products is zero. An

example is the energy balance with mass flow rate as flow variable and enthalpy

as stream variable.

The object-orientation of Modelica has several advantages. It ensures that

models can contain other models and makes models extensible, i.e. one model

can inherit the structure and behavior from another model. This is very useful
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for hierarchical library structures, where a so-called “base class” can be used as

basis for many other models. A model with four fluid ports can for example be

used for a heat pump model and a heat exchanger model via the extends-clause.

Such a base class can be a “partial model”, i.e. it can have an unbalanced number

of equations and variables and thus be unsuitable for simulation. The required

additional equations can then be added in the model derived from the base class.

This approach also allows to build models with different levels of detail from the

same base class and ensures that these models can easily be exchanged in e.g.

a system model. This inheritance structure and easy model exchange lead to a

high degree of reusability, which is especially important for the development of

comprehensible model libraries. Such libraries usually have a hierarchical model

structure organized in packages. Many Modelica libraries are available, both

commercial and open-source [25].

2.2.2 Dynamic simulation with Dymola

Simulation means using a mathematical model of a system to predict the

system’s behavior. Simulations can thus be used to compare different scenarios

and thus help both during system design and during system operation. There

are three different approaches to represent the dynamics of a system dynamics,

i.e. how the system’s state changes over time. The simplest is “steady-state”,

i.e. all variables are assumed constant over time. This approach is only suitable

for rough calculations. In “quasi-steady-state” simulations, the simulated time

(see Figure 2.5) is divided into a certain number of intervals or time steps. The

states/variables are assumed constant in each time step, but can change from

one time step to the next. The accuracy of this approach depends highly on the

chosen time step. In “dynamic” simulations, differential equations can be used to

describe how variables change over time. Thus, a numerical integration algorithm

(often called “solver”) is required to run a simulation. The scope of this work

was dynamic simulation due to the increased flexibility and inherent dynamics of

future thermal energy systems as mentioned in Section 1.2.

Different tools for dynamic simulations exist, which have individual strengths

and weaknesses. The most common tools for dynamic simulation of energy sys-

tems are TRNSYS, IDA ICE, MATLAB/Simulink, and Modelica/Dymola. These

are briefly described here. TRNSYS (Transient System Simulation Tool) is a
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graphically based software environment for the simulation of transient systems

with focus on thermal and electrical energy systems. It is widely used, but was

not chosen for this work due to its causal modeling approach, which requires that

the in- and outputs of models are predefined. IDA ICE (IDA Indoor Climate

and Energy) is a simulation tool for building performance simulation. It employs

acausal equation-based modeling of buildings and building energy systems. It

also has many preconfigured subsystems available, but focus is more on single

buildings rather than neighborhoods [26]. Since it is not open-source, the model

equations in IDA ICE cannot be edited by the user easily, which is why it was

not chosen for this work. MATLAB (MATrix LABoratory) has its origin in con-

trol engineering and strong support for optimization. Graphical energy system

modeling is possible with Simulink, but as for TRNSYS, the modeling approach

is causal, making MATLAB unsuitable for this work.

Models written in Modelica can be simulated by different simulation environ-

ments and both commercial and open-source tools are available [27]. To simulate

a model, the Modelica model descriptions have to be translated into executable

code and be linked with numerical solvers. To do so, the Modelica code is first

flattened, which means that the hierarchical structure is broken up. All the re-

quired model equations are inserted during flattening, e.g. inherited equations

from extends-clauses or equations resulting from connections. This leads to an

unstructured set of differential, algebraic, and discrete equations. This set can

then be sorted, simplified, and optimized by the application of advanced mathe-

matical techniques. Afterwards, the optimized set of equations is used to generate

executable code [23]. Dymola is a commercial Modelica-based tool developed by

Dassault Systèmes. It is widely used for modeling and simulation due to its supe-

rior performance and efficient solvers. Dymola was chosen for this work and some

aspects regarding its numerical performance are discussed in Section 4.2.

2.2.3 Dynamic optimization with JModelica.org

Simulations can be used to study system performance by comparing different

system design concepts or control strategies. However, the best possible solution

might not be among the ones that were selected for the study. To find the best

possible solution, optimization has to be applied. The general concept of opti-

mization is finding a vector of variables (x) that minimizes a defined objective
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function f(x) subject to certain constraints c(x)

minimize
x ∈ Rn

f(x)

subject to ci(x) = 0, i ∈ E

ci(x) ≥ 0, i ∈ I

with E and I being the sets of indices for equality and inequality constraints,

respectively. This concept is applied in many different fields and a variety of

optimization problem types and solution algorithms exist. A classification of

optimization problems is shown in Figure 2.7.
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Integer
programming

Mixed integer
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programming

Mixed integer
linear

programming

Stochastic searchDirect search
Nonlinear
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Quadratic

programming
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Figure 2.7: Classification of optimization problems [28].

Optimization algorithms are used to find the solution of an optimization prob-

lem. They are iterative, i.e. they need a starting point and stopping criteria.

Different methods of how to move from one iterate to the next have been devel-

oped and an algorithm is usually only suitable for a certain problem type. This

is known as the “No Free Lunch” theorem, which states that “for any algorithm,

any elevated performance over one class of problems is offset by performance over
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another class” [29]. A distinct difference can be made between algorithms that use

gradient information during the iteration (gradient-based) and those that do not

use it (derivative-free). Obtaining the first or second order derivatives of the ob-

jective function and the constraint functions can be difficult to obtain. However,

algorithms using this information are usually much more efficient. In addition,

the gradient information allows the definition of optimality conditions, which can

confirm that the optimal solution has been found.

Optimization is a vital part of optimal control and MPC, see Figure 2.2.

Optimal control is also called “trajectory optimization” and is used to find the

best possible control sequence for a process over a given time horizon. This is very

useful when different system design concepts are to be compared, i.e. different

component sizes or different component combinations, because a fair comparison

can only be made when the control strategy is equally well adapted for each of the

design concepts. The more dynamic a system behaves, the more challenging it is

to ensure equally good control with constant or rule-based setpoints for different

system design concepts. Thus, optimal control is required for a fair comparison.

The optimization of a dynamic system, i.e. a system whose state changes over

time, requires dynamic optimization techniques. Dynamic optimization problems,

e.g. optimal control, are infinite-dimensional and can therefore not be solved di-

rectly. They can be transformed into a finite-dimensional problem by means of

collocation on finite elements [30]. The continuous time horizon is then discretized

into a finite number of elements in which the state profiles, i.e. the dynamic model

variables, are approximated by polynomials. This yields a finite-dimensional non-

linear programming (NLP) problem, which can be solved. The size of this NLP

depends on the equations of the system model to be optimized, the length of the

time horizon, the number of finite elements, and the number of collocation points

in each finite element, i.e. the degree of the polynomial approximation.

JModelica.org is an open-source platform for simulation and optimization of

complex dynamic systems [31]. It is based on Modelica and the Functional Mock-

up Interface standard, enabling coupling to different software packages. Two vital

packages that are implemented are CasADi, which is used for the computation

of derivatives using algorithmic differentiation [32], and IPOPT, which is used to

solve the NLP. IPOPT stands for “Interior Point OPTimizer” and is an open-

20



Chapter 2

source state-of-the-art solver for large scale sparse optimization problems [33].

JModelica.org also uses the language extension Optimica, which enables high-level

formulation of optimization problems [34]. JModelica.org has recently been used

for several optimization studies [35–40] and is also a key part of several compound

tools [41–44]. JModelica.org was chosen for this work due to the Modelica-based

approach. The optimization procedure used in this work is described in more

detail in Section 5.1.
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3 | Description of the two case study
systems

Two case study systems from Norway were analyzed for this thesis: an exist-

ing integrated heating and cooling system in Oslo and a planned local DH grid in

Trondheim. The Oslo case study was part of the research project “Efficient inter-

action between energy demand, surplus heat/cool and thermal storage in building

complexes” (INTERACT), which was the main funding source of this work. The

Trondheim case study was part of the research project “Development of Smart

Thermal Grids” (DSTG), to which the author of this thesis contributed due to the

similar modeling and simulation requirements. However, the focus of this work

was the Oslo case study, which is therefore described in more detail.

3.1 Integrated heating and cooling system at Vulkan,

Oslo

The thermal energy supply system at Vulkan is called “integrated heating and

cooling system” (IHCS) in this thesis due to its high level of integration with the

buildings and the fact that it delivered both heating and cooling energy. The main

aim of this case study was to analyze the design and the operation of the IHCS,

especially the performance of the long- and short-term thermal energy storages.

3.1.1 Vulkan area and building stock

An area of about 100 by 200 meters in the Norwegian capital Oslo was renewed

with several buildings and the IHCS. Construction was completed in 2014 and the
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IHCS supplied a total floor area of 38 500 m2. The area and the supplied buildings

are shown in Figure 3.1. The total floor areas of the different building types are

listed in Table 3.1.

Apartments
Offices
Shops

Event location

Offices

Food courtHotels

Apartments
Offices
Shops

Picture ©2019 Google, Map data ©2019 Google 

Figure 3.1: Overview of the Vulkan area and the existing buildings (arrows show the
buildings that are connected to the IHCS).

Table 3.1: Building types and total floor areas at Vulkan.

Building type Total floor area

m2

Offices 15 000

Shops 6 650

Hotels 7 600

Apartments 3 900

Food court 3 500

Event location 1 850

Total 38 500
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3.1.2 The integrated heating and cooling system

The demands covered by the IHCS were space heating, DHW heating, snow

melting, space cooling, and product cooling. Snow melting was applied to the

walkways between the buildings and product cooling was delivered to the food

court. The IHCS had separate heat exchangers for each building and demand

type, which were connected to the heating and cooling loops of the IHCS in

parallel. These parallel heat exchangers are shown as one heat exchanger with

the corresponding total area of the parallel heat exchangers in Figure 3.2, which

shows a schematic of the IHCS.
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Figure 3.2: Schematic of the IHCS with main specifications.
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The main components of the IHCS shown in Figure 3.2 were heat pumps, plate

heat exchangers, flat plate solar collectors, storage tanks, ice thermal energy stor-

age (ITES), and borehole thermal energy storage. The heat pump specifications

are listed in Table 3.2.

Table 3.2: Heat pump specifications.

HP 1 HP 2 HP 3 HP 4 & 5

Type WSA2802X WSA1602X WSA0701X NXW0600X

Working fluid R134a R134a R134a R410a

Compressor Screw (2) Screw (2) Screw Scroll

Design data cooling (evap/cond)

Temperatures (◦C) 4.5/48 4.5/48 20/55 -8/25

Capacities (kW) 595/772 334/436 224/283 87/110

COP (-) 4.36 4.27 4.8 4.78

Design data heating (evap/cond)

Temperatures (◦C) 0/50 0/50

Capacities (kW) 473/652 264/365

COP (-) 3.64 3.61

The heat pumps were designed to deliver heat at a temperature of around

50 ◦C, see Table 3.2, so they could only cover parts of the DHW heating demand

by preheating the DHW up to around 50 ◦C. Heat from Oslo’s DH grid was then

used to lift the DHW temperature to the required 70 ◦C. The space heating loops

were also connected to the DH grid as backup system in case of very high space

heating demands or heat pump failure.

During heating season, the BTES and the surplus heat from space cooling

and product cooling were used as heat sources on the evaporator side of the heat

pumps. The condenser heat from the heat pumps was sent to space heating, DHW

preheating, and snow melting. During cooling season, a lot of surplus heat was

available from the cooling systems, which needed to be released on the condenser

side of the heat pumps, and the solar collectors. Only a part of this heat was

needed for space heating and DHW preheating. Therefore, heat was injected into

the BTES during cooling season. The ITES was used to reduce space cooling
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peak demands during the summer. The ITES was charged during the night and

discharged during the day.

3.1.3 Input data for the case study Vulkan

A simulation model of the IHCS described in the previous section was de-

veloped, see Section 4.5.1. The different heating and cooling demands as well

as outdoor temperature and solar radiation were required as input data for the

simulation model. An input file was created with hourly values of these variables,

which were retrieved as explained below.

The IHCS was equipped with a control and monitoring platform. Energy

meters were installed to measure the delivered energy for heating and cooling in

each connected building. Aggregated daily demand data for 2015 and 2017 are

shown in the figures 3.3 and 3.4, respectively. Data for 2016 were excluded from

the analyses because long periods of data are missing from that year due to a

server change.
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Figure 3.3: Measured daily heating and cooling demands in 2015 (hourly values were
used as input data, daily values are shown for better readability).

The figures 3.3 and 3.4 show typical seasonal variations of the space heating,

space cooling, and snow melting demands. The product cooling and DHW heating

demands were relatively constant throughout the year.
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Figure 3.4: Measured daily heating and cooling demands in 2017 (hourly values were
used as input data, daily values are shown for better readability).

Daily demand profiles for the different seasons are shown in the figures 3.5,

3.6, and 3.7, which show an average winter day, an average spring/fall day, and

an average summer day, respectively (the same y-axis range was chosen for all

three figures for better comparability).
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Figure 3.5: Average heating and cooling demands for a winter day.

The figures 3.5, 3.6, and 3.7 show that the product cooling and DHW heating

demand did not change significantly during the year. The DHW heating demand
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Figure 3.6: Average heating and cooling demands for a spring/fall day.
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Figure 3.7: Average heating and cooling demands for a summer day.

showed a peak in the morning due to people taking showers and was the lowest

during the night. Product cooling and snow melting did not show typical hourly

variations. On the contrary, the space heating and space cooling demands showed

large differences between the seasons. Especially the space cooling demand de-

pended highly on the outdoor temperature during the summer, see Figure 3.7.

Unfortunately, no energy meters were installed to measure the energy exchange

with the BTES or the performance of the solar collectors. In addition, only

the total electricity use of the system was measured, the electricity use of single
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components was not available. The amount of DH import was measured for each

building. Daily total values for DH import and electricity use for the two years

are shown in Figure 3.8.
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Figure 3.8: Measured daily electricity use and DH import in 2015 and 2017.

Figure 3.8 shows that the electricity use was the highest during winter and

the lowest during spring and fall. The DH import was relatively constant during

the years because it was mainly used for DHW heating. The peaks in DH import

were caused by high space heating demands. In total, there was no significant

difference between the measured energy amounts of the two years, see Figure 3.9.

The on-site temperature was only measured by one sensor and solar radiation

was not measured at all. Therefore, outdoor temperature and solar radiation data

from nearby weather stations were retrieved from [45]. The on-site temperature

measurement was found to be around 5 K higher than nearby measurements,

see Paper I. This might be due to the location of the sensor or an offset error.

Therefore, 5 K were subtracted from the on-site temperature measurement values

when they were used as input data. These corrected temperature values are shown

in Figure 3.10.
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Figure 3.9: Total measured energy amounts in 2015 and 2017.
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Figure 3.10: Input data for the case study Vulkan: Outdoor temperature.

Figure 3.11 shows the measured solar radiation from the nearest weather sta-

tion for the years 2015 and 2017.
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Figure 3.11: Input data for the case study Vulkan: Solar radiation.

3.2 Local district heating grid at Brøset, Trondheim

The main aim of this case study was to increase knowledge about the design

of local DH grids and to investigate different solutions for the given area. As

mentioned above, the author of this thesis contributed mostly to the modeling

and simulation part of this case study, see also the author contributions listed in

Section 1.4.

3.2.1 Brøset area and building stock

In 2013, Trondheim Municipality made plans to develop a new neighborhood

at Brøset, which is a part of the city of Trondheim. The size of the available area

was about 344 000 m2 and the aim was to develop a low-emission neighborhood.

The area and a development plan are shown in Figure 3.12.

Based on the existing buildings and the development plan shown in Fig-

ure 3.12, the building stock listed in Table 3.3 was assumed for this case study.

This building stock was used as basis for the calculation of the heating demand

profiles.
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Picture ©2019 Google, Map data ©2019 Google 

Figure 3.12: Overview of the Brøset area (left) and the planned buildings (right [46]).

Table 3.3: Building types and floor area at Brøset.

Building type Number of Total floor

buildings area (m2)

Apartment block (type A) 4 31 000

Apartment block (type B) 6 41 000

Apartment block (type C) 8 59 000

Kindergarten 3 4 400

Nursing home (old) 2 4 000

Nursing home (new) 1 12 600

Sports hall 1 10 000

School 1 6 000

Library 1 5 850

Office 1 4 000

Total 28 177 850

3.2.2 The local district heating grid

Trondheim Municipality wanted the CO2 footprint of the new neighborhood

to be considerably lower than the Norwegian average [47]. An efficient thermal

energy supply system for the neighborhood was therefore sought. This system is

called “local district heating grid” in this thesis due the fact that it delivered only

heating energy and that the supplied area was relatively small. The total pipe
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length was estimated to be around 7 km.

The existing DH grid in Trondheim delivers heat at supply temperatures be-

tween 75 ◦C and 115 ◦C as explained in Paper IV. LTDH with supply temperatures

below 70 ◦C has recently received much attention [5, 48]. There are a number of

benefits and some drawbacks related to LTDH. The main advantages are that the

heat losses from the grid are reduced and that more renewable and waste heat

sources can be included, leading to higher energy efficiency and lower emissions.

The main disadvantages are that measures have to be taken to avoid the risk

of Legionella bacteria in DHW systems and that existing buildings/substations

might not be suitable for heat supply at such low temperatures [49]. Therefore,

LTDH is especially relevant for new building areas.

Several design concepts for local DH grids with different temperature levels

have been compared for this case study with focus on LTDH. The main heat

supply was assumed to come from Trondheim’s existing DH grid. The inclusion

of prosumers, i.e. customers that can also deliver heat, was also analyzed. Several

other solutions for increased energy efficiency of the neighborhood were originally

discussed, e.g. heat recovery from waste water, solar collectors combined with

thermal energy storage, heat pumps, and the use of geothermal energy [47]. These

additional design concepts were not analyzed in this work due to time limitations.

3.2.3 Input data for the case study Brøset

Simulation models of the local DH grids described in the previous section

were developed, see Section 3.2.2. Hourly values for space heating and DHW

heating demand of the different building types were required as input data for

the simulation models. An input file was created for each of the building types

listed in Table 3.3. The DH demand data in each input file were based on DH

use data from existing buildings of similar type and building code. These use

data were retrieved from the local DH company and Trondheim Municipality.

The DH use data only showed the total DH demand, i.e. both space heating

and DHW heating. Therefore, generic DHW profiles were created and used to

split the total DH demand data into space heating demand and DHW heating

demand. Apartment blocks represented by far the largest share of floor area, see

Table 3.3. Therefore, three different input files, based on DH use data from three
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different buildings, were created. Daily values for the heating demands of the

entire building stock (excluding prosumers) are shown in Figure 3.13.
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Figure 3.13: Input data for the case study Brøset: Daily heat demands (hourly values
were used as input data, daily values are shown for better readability).

The total calculated heating demand shown in Figure 3.13 was 11 940 MWh,

with 6 680 MWh required for space heating and 5 260 MWh required for DHW

heating. The DH use data included the outdoor temperature for the year 2013,

which was also used as input and is shown in Figure 3.14.
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Figure 3.14: Input data for the case study Brøset: Outdoor temperature.
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Two different prosumer heat profiles were created, which represented different

types of prosumers and were used to study the effect of prosumers in the DH grid.

These types were a data center and a supermarket. Their capacities were chosen

based on values found in the literature and their heat profiles depended on the

outdoor temperature, see Paper IV. The resulting heat profiles for the prosumers,

which were based on the outdoor temperature shown in Figure 3.14, are shown in

Figure 3.15.
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Figure 3.15: Input data for the case study Brøset: Prosumer heat profiles (hourly values
were used as input data, daily values are shown for better readability).

It can be seen from the heat profile in Figure 3.15 that the supermarket was a

customer, i.e. it required heat from the DH grid, on the coldest days of the year.

However, for most part of the year it was a producer, i.e. it delivered heat to the

DH grid. The data center was actually not a prosumer because it always delivered

heat to the DH grid and could therefore be seen as decentralized renewable heat

source.
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4 | Simulation models for future in-
tegrated energy systems

The simulation model development is explained in detail in this chapter. Sim-

ple models were used as starting point and were continuously extended and im-

proved. This evolution of the simulation models over the course of this work will

be explained where appropriate.

The term “model” has various meanings and it is therefore important to clarify

the usage in this thesis. As described in Section 2.2.1, a model is the most

generic type of definition in the Modelica language. It defines the name, input

parameters, connections, variables, and equations of the specific model. In the

following chapters, the term model refers to a Modelica model. Since Modelica

is object-oriented, models can contain other models, e.g. a system model usually

contains several component models.

4.1 Choice of Modelica library for simulation model

development

To recall, sufficiently accurate but also fast models were sought as the scope

of this work was the analysis of systems with several components and long simu-

lated times. Therefore, the level of detail had to be limited to ensure reasonable

computation time. However, the important characteristics of the components had

to be represented by the models. At an early stage of this work, the use of com-

ponent models from existing Modelica libraries was evaluated. The commercial

library TIL from TLK-Thermo GmbH [50] and the open-source library Buildings
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from Lawrence Berkeley National Laboratory [51] were selected as potential can-

didates. Both libraries seemed to be targeted at a higher level of detail than

required for this work and were thus deemed unsuitable. Modifying the existing

models in the libraries or building own models from the libraries’ base classes was

considered. However, the libraries are under constant development and modifica-

tions could lead to compatibility issues when library updates are released. The

library Thermal from the Modelica Standard library (MSL) provides simple com-

ponents for one-dimensional incompressible thermo-fluid flow models. It is also

called library, but is very basic compared to TIL or Buildings and does not contain

components like heat pumps or heat exchangers. It can be seen as a base class

library and it has not been further developed since 2010. This library was chosen

as basis for model development because the level of detail was suitable and no

compatibility issues were expected to arise.

4.2 Numerical performance with the DASSL solver in

Dymola

As described in Section 2.2.1, modeling and simulation are separate tasks.

However, the numerical performance of the simulation depends highly on the

simulation models, i.e. the modeling part. Thus, simulation-friendly modeling is

desirable to achieve good numerical performance. This means that the simulation

terminates successfully, i.e. the solver does not fail, and that the computation

time is sufficiently low. Several reasons can cause the solver to fail, e.g. a division

by zero, or lead to unacceptably long computation times, e.g. algebraic loops or

chattering, which are explained below. Many different Modelica-based simulation

tools and solvers exist, making it impossible to ensure good numerical performance

for all simulation possibilities. Dymola was used for this work with the solver

DASSL. Some aspects regarding the numerical performance of this choice are

given below.

Numerical integration algorithms in Dymola Several different solvers,

i.e. algorithms for numerical integration, are included in Dymola. Most solvers

in Dymola are variable step size algorithms. These algorithms calculate the local

error at each trial step and proceed if the error is lower than the defined tolerance.
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At an early development stage, test runs were performed to compare the solvers in

Dymola. The standard solver DASSL showed by far the best performance in terms

of robustness and computation time. It was therefore chosen for all simulations

in this work. DASSL is a multi-step solver, which means that it uses information

from more than one previous step to calculate the solution of the next step. The

way this is done cannot be changed in Dymola, the only allowed user input for

the solver is the integration tolerance. The integration tolerance was set to 10−4

during model development and to 10−5 for result production. A diagnostics file

of the solver’s integration error can be obtained in Dymola. This file contains all

state variables and lists the number of times that each variable

• Limits the solvers step size

• Dominates the integration error

• Exceeds 10% of the integration error

thus providing useful information for debugging slow or unstable simulations.

Algebraic loops As briefly explained in Section 2.2.2, Dymola processes

the Modelica code to generate a differential-algebraic equation system (DAES).

This DAES is then further processed to generate an efficient executable file. The

statistics of this translation are available in Dymola’s message window and contain

important information about the size and structure of the DAES. Dymola lists

the sizes of linear systems of equations before and after manipulation as well as

the sizes of nonlinear systems of equations before and after manipulation. These

sizes have significant influence on the computation time, especially the sizes after

manipulation. If they are not zero, then Dymola could not break all algebraic

loops, which means that the equation systems are still coupled. Solving these

coupled systems of equations is more challenging, especially with nonlinear equa-

tions. It is sometimes possible to take measures in the Modelica models that

reduce these algebraic loops [52]. These measures can affect the model behavior

so an implementation should be carefully evaluated.

Time and state events Events are used to handle discontinuities in Dy-

mola and can play an important role for the numerical performance. Disconti-

nuities are defined by conditional expressions and can lead to abrupt changes in
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the behavior of a system. If the conditional expression is related to time, e.g. if

time > 10 s, then the event is called “time event”. If the expression is based on

a system variable, e.g. if temperature > 50 ◦C, then the event is called “state

event”. Due to the possibility of abrupt changes in system behavior, variable step

size solvers take an iteration step up to the time of the event and restart the inte-

gration with new starting conditions afterwards. This slows down the simulation

for several reasons: 1) events limit the step size of the solver by enforcing a step

to be taken at the time of the event, 2) finding consistent restart conditions can

be challenging, depending on the changes triggered by the event, and 3) for state

events, the time of the event must be detected. The time at which a time event

occurs is obviously known beforehand, but costly iterations can be necessary to

detect the exact time of a state event, e.g. the time at which a temperature crosses

a certain threshold. For good numerical performance, unnecessary events should

be avoided and continuous behavior at events should be ensured. This is espe-

cially relevant for control structures, where conditional expressions often are used

to activate/deactivate components or to adjust setpoints. A well-known effect

that can occur in such situations is “chattering”. Chattering describes a situation

in which the numerical performance is degraded due to the generation of many

state events. This can occur if the change introduced by a conditional expression

leads to a change in the expression itself, leading to a loop of true/false solutions

for that expression and thus the generation of many state events. The noEvent()

operator can be used to suppress state events, allowing the solver to step past

the event instead of determining its exact time of occurrence. This can avoid

chattering and lead to improved numerical performance in some cases. However,

events are also valuable for a solver because they inform about discontinuities.

Without knowing about the event, the solver might struggle to find appropriate

time steps, due to the discontinuity and its impact on system behavior. This can

lead to simulation performance issues.

4.3 Handling of input data and results

The type and the amount of required input data depends on the type of sim-

ulation and the modeled system at hand. Input parameters, e.g. for system and

component specification, are often manual user input unless automated parame-
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ter studies are run. Time-varying input variables, e.g. outdoor temperature or

energy demands, need to be specified by data containing the value of the variable

at certain simulation times. In this work, the system boundary was set at the cus-

tomer substation level, i.e. distribution systems and buildings were not modeled.

Thus, all heating and cooling demands were required input data for the system

models. The outdoor temperature and solar radiation were also required for the

solar collector model. Hourly data points for the demands and weather data were

stored in a file and read by the model CombiTimeTable from the MSL. The model

offers several interpolation methods for the data points, e.g. linear segments and

spline interpolation. Spline interpolation led to lower computation times com-

pared to linear interpolation and was therefore chosen in this work. However, at

the beginning of this work, the only spline interpolation method was Continuous-

Derivative, which led to over- and undershoots as shown in Figure 4.1.
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Figure 4.1: Different spline interpolations in Modelica.

As can be seen in Figure 4.1, negative energy demands could occur with this

interpolation method, which led to numerical instabilities. Therefore, max() op-

erators were used to avoid negative demands. In a later version of the model

CombiTimeTable, new spline interpolation methods were available which did not

overshoot. The method MonotoneContinuousDerivative1, see Figure 4.1, was

therefore used in the final system models.

Another aspect that deserves attention for dynamic simulations is the plotting

and saving of the results. Values for the variable trajectories are stored at certain
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simulation times called “result points”, which can easily be plotted in Dymola.

The user can specify the number of result points and also chose if variables should

additionally be stored at events or not. Storing result points comes at a com-

putational cost, but this is often insignificant. However, for models with many

variables, storing many result points can lead to large result files and a notice-

able increase in computation time. This can be avoided by only storing selected

variables or by decreasing the number of result points. However, large output

intervals can be misleading as shown in Figure 4.2.

Output interval = 1 s Output interval = 1200 s Output interval = 1800 s

0

2

4

6

8

10

0 600 1200 1800 2400 3000 3600

V
ar

ia
bl

e 
va

lu
e

Time (s)

0

2

4

6

8

10

0 600 1200 1800 2400 3000 3600

In
te

gr
at

ed
 v

ar
ia

bl
e 

va
lu

e 
/ 1

80
0

Time (s)

Figure 4.2: Same simulation with different output intervals.

Figure 4.2 shows that small time steps should be chosen for the investigation

of fast dynamics, e.g. when tuning the output of a controller. Figure 4.2 also

shows that the result points should not be used as average value when large

output intervals are chosen. Instead, the variable of interest should be sent to an

integrator model so that the average can be calculated precisely from the stored

result points. In this work, the output interval was set to one hour for result

production and all result variables were integrated.

4.4 Component models

The component models developed during this work are explained in this sec-

tion. Reusability and a common level of detail were important aspects to enable

the analysis of different case study systems. As explained in Section 4.1, the

library Thermal from the MSL was used as basis for component model develop-

ment. Icons of frequently used models and connectors in this work are shown in
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Figure 4.3.
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Figure 4.3: Icon legend for simulation model screenshots from Dymola.

The base class of this library is called TwoPort and contains two fluid flow

connectors, which enable the connection to other models. The energy balance

equation included in the model is shown in Equation (4.1).

ṁ · cp · (Tin − Tout) + Q̇ = V · ρ · cv ·
dTout
dt

(4.1)

The volume (V ) and the type of fluid were input parameters of the Two-

Port model. The fluid’s density (ρ) and specific heat capacities (cp and cv) were

assumed constant. Their values were calculated with Excel using the add-in Cool-

Prop [53] and were stored in the Modelica class “Record”. Since these properties

are temperature-dependent, they were calculated for different temperature levels

for each fluid. In the system models, the Record with the temperature closest

to the expected average temperature in that loop was selected. Minimum and

maximum allowed temperatures were also stored in the Records and were used to

print warning messages when the fluid temperature was outside these limits.

The TwoPort model was used as basis for the models FluidVolume and Heated-

FluidVolume, which were needed in all the component models described below.

The models FluidVolume and HeatedFluidVolume were extensions of the Two-

Port model and additionally contained equations to define the pressure drop in

the fluid volume. The heat flow rate (Q̇) in Equation (4.1) was set to zero for the

model FluidVolume. The model HeatedFluidVolume had a thermal connector

called HeatPort, which enabled heat transfer to and from the fluid.
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4.4.1 Circulation pump model

The model CirculationPump was an extensions of the TwoPort model with a

RealInput connector. This connector defined the mass flow rate in the Circula-

tionPump model and typically originated from PI-controllers in the system model.

The required power (Ppump) was calculated based on Equation (4.2) assuming a

constant wire-to-fluid efficiency (η), which was an input parameter of the Circula-

tionPump model.

Ppump =
V̇ ·∆p
η

(4.2)

Defining the mass flow rate as input signal and the power as output variable

avoided numerically expensive iterations that would otherwise be needed to find

the interdependent variables V̇ and ∆p at a given power input. This enabled

stable control of the system and kept computation times low. However, this could

also lead to nonphysical solutions such as negative pressures, especially at high

mass flow rates. The choice of a reasonable mass flow rate limit was therefore

required and resulting pressure levels had to be checked for plausibility.

4.4.2 Continuous switch model

As explained in Section 4.2, discontinuities can lead to problems for the solver

during simulation. The model Switch from the MSL switches discontinuously.

Therefore, the model ContinuousSwitch was developed, which switches continu-

ously between two inputs over a certain time interval. This interval was an input

parameter called transitionTime. Setting this parameter to zero gives a discontin-

uous signal as in the Switch model from the MSL. Example graphs for the model

output for three different cases are shown in Figure 4.4.

Different transition times can be defined for switching from Input 1 to Input 2

and vice versa for better usability. A ContinuousSwitch model with continuously

differentiable output was also tested, but did not lead to better performance and

was therefore not used.
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Figure 4.4: Switch model comparison (switch from Input 2 to Input 1 at t = 1 with
transitionTime = 8 s).

4.4.3 Controller model

The model Controller was developed and included the PID-controller model

LimPID from the MSL. However, several features for better usability and numerical

performance were added over the course of this work. The derivative part of the

LimPID model was not used in this work, i.e. all controllers were PI-controllers. A

Dymola screenshot (DS) of the Controller model’s parameter window is shown in

Figure 4.5 and the parameters “use activation input” and “delay measurement”

are described below because they were important for the simulation performance.

Parameter use activation input, see Figure 4.5: setting this parameter to false

deactivated the activation input connector. The measurement and setpoint sig-

nals were then always sent to the included LimPID model and its output was

always used as output from the model Controller. Setting this parameter to

true allowed to deactivate the use of the LimPID model via a Boolean signal.

When deactivated, the value of the parameter output inactive was used as output

from the Controller model, which was typically set to zero. In addition, the

input signals for the measurement and the setpoint value of the included LimPID

model were set to zero to avoid unnecessary calculations. The integrator of the

LimPID model thus received zero as input leading to a constant output value.

When the controller was activated, this constant value affected the response of

the Controller model. This was undesired, so the integrator input of the LimPID

model was modified to reset the output to zero when the controller was deacti-
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Figure 4.5: Parameter window of the Controller model (DS).

vated. When the activation signal became true, the LimPID model was used. A

ContinuousSwitch model was used to switch between the output of the LimPID

model and the value of the parameter output inactive to define the output of

the Controller model. This required the definition of the two input parameters

transitionTime on and transitionTime off.

Parameter delay measurement, see Figure 4.5: setting this parameter to true

could break algebraic loops resulting from feedback control by delaying the mea-

surement signal with a FirstOrder model from the MSL. This introduced an

additional state but could still lead to more stable simulations and significantly

lower computation times.

4.4.4 Heat pump model

Four heat pump models were developed in this work. Since calculating the

heat pump’s thermodynamic cycle was outside the scope of this work, all de-

veloped heat pump models consisted of two HeatedFluidVolume models, which

represented the secondary fluid in the condenser and the evaporator of the heat
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pump.

In the first heat pump model, HeatPump1, an input signal of type Real defined

the heat pump power PHP. The COP of the heat pump was an input parameter

of the model and the heat flow rates in the condenser and the evaporator were

calculated with the equations (4.3) and (4.4).

PHP · COPHP = Q̇evap (4.3)

PHP + Q̇evap = Q̇cond (4.4)

The second heat pump model, HeatPump2, was based on a variable COP.

Nominal operating conditions were required as input parameters and the COP

depended on the actual operating conditions during the simulations. An ad-

vanced circuit simulation and optimization tool was used to generate polynomial

coefficients for the COP calculation. These coefficients were included in the model

HeatPump2, details can be found in Paper II. This model required the calculation

of the polynomial coefficients for each heat pump based on detailed manufacturer

specifications, which might not always be available. It was therefore decided to

develop a more generic heat pump model with less user input requirements.

In the third heat pump model, HeatPump3, the COP of the heat pump was

calculated based on the Lorentz efficiency (ηL) of the heat pump, which was an

input parameter of the model. The Lorentz cycle is similar to the well-known

Carnot cycle, but does not assume the heat source and sink to be isothermal.

Instead, they have a finite heat capacity and thus change temperature during

heat addition/extraction [54]. Therefore, the COP of the heat pump depended on

both inlet and outlet temperatures of the HeatedFluidVolume models as shown

in the equations (4.5) to (4.7).

TL,cond/evap =
Tin,sec,cond/evap − Tout,sec,cond/evap

ln

(
Tin,sec,cond/evap

Tout,sec,cond/evap

) (4.5)

COPL =
TL,evap

TL,cond − TL,evap
(4.6)
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COPHP = COPL · ηL (4.7)

An additional change was made for the fourth and final heat pump model,

HeatPumpFinal. In the first three heat pump models, the power was used as

input signal. This signal typically came from a Controller model, which con-

trolled the outlet temperature on either condenser or evaporator side. This con-

troller was difficult to tune due to the variations in operating conditions, see

Section 2.1.3. In addition, the diagnostics file, see Section 4.2, showed that this

controller output was computationally expensive. Therefore, a desired outlet tem-

perature was used as input signal in the model HeatPumpFinal and the resulting

power was calculated by the model. A Boolean input signal was used to define

whether the condenser or evaporator outlet temperature should be set. The model

ContinuousSwitch, explained in Section 4.4.2, was used to avoid instabilities dur-

ing switching. A diagram of the model HeatPumpFinal and its parameter window

in Dymola are shown in Figure 4.6 and Figure 4.7, respectively.

Figure 4.6: Diagram of the model HeatPumpFinal (DS).

The model HeatPumpFinal was not a physical representation of a real heat

pump because of the unrealistic external definition of one of the outlet tempera-

tures explained above. However, this modeling approach only affected the short-

term response of the heat pump model. The results from one-year simulations

with the third HeatPump model were almost identical to simulations with the
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Figure 4.7: Parameter window of the model HeatPumpFinal (DS).

model HeatPumpFinal. The main difference was that the simulations with the

fourth HeatPump model were significantly faster and more stable. The only dis-

advantage of the model HeatPumpFinal was that unrealistically high values for

PHP could be obtained. In the first three HeatPump models, PHP could easily be

limited by specifying a maximum output in the Controller model, which was

used to control PHP. In the model HeatPumpFinal, this was not possible and thus

the results had to be checked for plausibility.

4.4.5 Heat exchanger models

Three heat exchanger models were developed in this work. All represented

plate heat exchangers in counterflow direction. Headers and heat transfer to the

ambient were neglected. Nominal values for mass flow rate and pressure drop for

both fluid streams were input parameters of the models. Based on these nominal
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values, the pressure drop from inlet to outlet could be chosen to be constant or a

function of the mass flow rate.

The first heat exchanger model, HeatExchanger1, consisted of an array of

HeatedFluidVolume models, which were connected via an array of Thermal-

Conductor models, see Figure 4.8.

Figure 4.8: Diagram of the model HeatExchanger1 (DS).

The heat exchange area (AHX), the overall heat transfer coefficient (Utot),

and the number of ThermalConductor models (n) were input parameters of the

model HeatExchanger1. This model was used for the simulations for Paper II

with n = 8. This discretization value was found to give good agreement with

logarithmic mean temperature (LMTD) calculations at reasonable computation

times.

The discretization approach chosen for the model HeatExchanger1 led to many

state variables in the system models, which increased the computation time. To

reduce the number of state variables, the model HeatExchanger2 was developed,

which was based on the widely-used LMTD approach shown in the equations (4.8)

and (4.9).

∆TLM =
(Thot,in − Tcold,out)− (Thot,out − Tcold,in)

ln

(
Thot,in − Tcold,out
Thot,out − Tcold,in

) (4.8)

Q̇HX = Utot ·AHX ·∆TLM (4.9)

This approach allowed using only one HeatedFluidVolume model for each
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fluid stream and led to reduced computation time. However, Equation (4.8) is

numerically challenging because the solver can easily take steps into undefined

areas of the function during iteration. This led to unstable simulations. Therefore,

the model LMTD was developed, which contained a lookup-table from which ∆TLM

could be obtained with the input signals dT1 = Thot,in − Tcold,out and dT2 =

Thot,out − Tcold,in as shown in Figure 4.9.

Figure 4.9: Diagram of the model LMTD (DS).

The parameter values for the lookup-table were calculated in Excel and spline-

interpolation was used to interpolate between these values in Dymola. The model

LMTD was included in the model HeatExchanger2 and led to increased stability

of the simulations. However, the LMTD method requires both inlet and outlet

temperatures of the fluid streams to calculate the heat flow rate in the heat

exchanger, which in turn influences the outlet temperatures of the fluid streams.

This interdependence led to long computation times.

The “effectiveness-NTU” method is based on the same theory and assump-

tions as the LMTD method. However, it only requires the inlet temperatures

of the fluid streams to calculate the heat flow rate in the heat exchanger. The

effectiveness-NTU method was therefore used in the model HeatExchangerFinal.

The NTU-relation for the effectiveness of a counterflow heat exchanger from [55]

was implemented in the model HeatExchangerFinal and is shown in the equa-

tions (4.10) to (4.15).

Chot/cold = ṁhot/cold · cp (4.10)

Cmin/max = min/max(Chot, Ccold) (4.11)

Cr =
Cmin

Cmax
(4.12)
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NTU =
Utot ·AHX

Cmin
(4.13)

ε =
1− exp[−NTU · (1− Cr)]

1− Cr · exp[−NTU · (1− Cr)]
(4.14)

Q̇HX = ε · Cmin · (Thot,in − Tcold,in) (4.15)

Measures were taken to avoid numerical instabilities for ṁhot/cold = 0 and

Cr = 1. After the implementation of these measures, the model HeatExchanger-

Final showed significant improvements in the simulation performance compared

to the model HeatExchanger2. In addition, the overall heat transfer coefficient

Utot could be chosen to be a function of the mass flow rate in the model Heat-

ExchangerFinal. Nominal conditions for the mass flow rate and the heat transfer

coefficient were then required as input parameters and Utot was calculated with

Equation (4.16) and q set to 0.63 based on [56].

Utot = Unom ·
(ṁhot,nom)−q + (ṁcold,nom)−q

(ṁhot)−q + (ṁcold)−q
(4.16)

A diagram of the model HeatExchangerFinal and its parameter window in

Dymola are shown in Figure 4.10 and Figure 4.11, respectively.

Figure 4.10: Diagram of the model HeatExchangerFinal (DS).
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Figure 4.11: Parameter window of the model HeatExchangerFinal (DS).

4.4.6 Borehole thermal energy storage model

The model BTES represented a BTES with single U-tube pipes. Although

a BTES is used as long-term storage, its short-term response can be important

for system performance [57]. Therefore, an approach was chosen which included

both long- and short-term dynamics in the model. The model BTESCrossSection

was developed and several of these BTESCrossSection models were connected in

series in the model BTES. The number of BTESCrossSection models was an input

parameter of the model BTES, which is shown in Figure 4.12.

All input values were equal in the BTESCrossSection models, e.g. the fluid

volume in the pipes or the thermal capacity of the ground. Therefore, the values

were calculated in the model BTES and defined as “inner” parameters/variables.

This way, they could be imported as “outer” parameters/variables in the BTES-

CrossSection model and did not need to be calculated in each BTESCrossSection

model. This inner/outer approach avoids duplicate code and should therefore

be used when possible. The parameter window of the model BTES is shown in

Figure 4.13.
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Figure 4.12: Diagram of the model BTES (DS).

Figure 4.13: Parameter window of the model BTES (DS).
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The three main parts of a BTES were included in the BTESCrossSection

model: a single U-tube pipe, the borehole with filling material, and the surround-

ing ground. A schematic of the model and the diagram of the simulation model

are shown in the figures 4.14 and 4.15, respectively.

Horizontal
ground
segments

U-tube pipe

Borehole Ground

Figure 4.14: Schematic of the model BTESCrossSection.

Figure 4.15: Diagram of the model BTESCrossSection (DS).
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HeatedFluidVolume models were used to represent the U-tube pipe segments

in each BTESCrossSection. The borehole filling and the surrounding ground were

modeled with HeatCapacitor models. ThermalResistor models were added to

model two-dimensional heat transfer between the fluid in the pipe and the borehole

wall according to the methodology published by Bauer et al. [58]. The only

variable thermal resistance was between fluid and filling material and depended

on the fluid mass flow rate in the pipe due to the convective resistance R fg, see

Figure 4.15. One-dimensional, radial, heat transfer was modeled in the cylindrical

ground shells. The capacities and heat transfer coefficients corresponded to the

geometry of each shell element according to [59]. The number of ground shells and

the ground diameter were input parameters of the model BTES, see the parameter

window in Figure 4.13.

Arranging boreholes in a pattern and connecting them in series can increase

the performance of a BTES, as described for example in [60]. In this work, it

was assumed that all boreholes were connected in parallel with resulting equal

mass flow rates. In addition, the thermal properties of the ground were assumed

isotropic. These assumptions led to identical temperatures for the outermost

ground shell of all boreholes. Thus, no heat was transferred between boreholes in

this model and all boreholes showed identical behavior. Thus, they were lumped

to one single borehole model with the input parameter n boreholes, which defined

the number of modeled boreholes, see Figure 4.13. All thermal capacities in

the model BTES were multiplied by n boreholes and all thermal resistances were

divided by n boreholes. This lumping reduced the computation time significantly

without introducing an additional error. Simulations were performed to validate

that the behavior of the lumped model BTES was identical to several individual

BTES models.

Beier et al. published experimental data for a 52-hour charging period of

a grouted single U-tube borehole heat exchanger surrounded by wet sand [61].

The short-term response of the model BTES developed in this work was validated

against this experimental data set. The experimental setup was imitated by set-

ting all input parameters of the model BTES to the respective values of the ex-

perimental setup and using the measured inlet temperature and mass flow rate

as simulation input. The simulated outlet temperature, the average wall tem-

perature, and three average ground temperatures at different distances from the
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borehole were compared to the measured values from [61]. The developed BTES

model showed very good agreement with the measurement data as shown in Fig-

ure 4.16.
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Figure 4.16: Validation of the model BTES with experimental data (data from [61]).

4.4.7 Solar collector models

Three solar collector models were developed in this work. All of them repre-

sented flat plate solar collectors and required the ambient temperature and solar

radiation as input signal. The outdoor temperature was used as ambient tem-

perature for all simulations. HeatedFluidVolume models were used to represent

the fluid in the collectors. The number of serial and parallel collectors, as well as

the effective collector area and the optical efficiency were input parameters of the

models.

In the model SolarCollectors1, all collectors were lumped into one Heated-

FluidVolume. An incoming heat flow was calculated based on the solar radiation,

the total area, and the optical efficiency. To account for heat transfer from the fluid

to the ambient air, a ThermalConductor model was implemented. The thermal

conductance was an input parameter of the model SolarCollectors1.
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In the model SolarCollectors2, an array of HeatedFluidVolume models

was used. The interaction of parallel collectors was still neglected and parallel

collectors were lumped to reduce computation time. However, collectors in series

were modeled individually with respective flow connections. This led to a more

realistic calculation of the collector outlet temperature compared to the model

SolarCollectors1, which was based on only one perfectly mixed HeatedFluid-

Volume model.

In the third and final solar collector model, the total heat flow rate Q̇col in

each collector was calculated based on the widely used European Standard EN

12975 1:2006

Q̇col = Acol ·
[
R · ηopt − a1 · (Tcol − Tamb)− a2 · (Tcol − Tamb)2

]
(4.17)

with R being the solar radiation and Tcol being the average fluid temperature in

the respective collector. The linear and the quadratic heat loss coefficient, a1 and

a2, respectively, were input parameters of the model SolarCollectorsFinal.

A diagram of the model SolarCollectorsFinal and its parameter window in

Dymola are shown in Figure 4.17 and Figure 4.18, respectively.

Figure 4.17: Diagram of the model SolarCollectorsFinal (DS).

T max was an input parameter, which was used to print warning messages

when a collector outlet temperature exceeded the maximum temperature. It was

also used for the control of the circulation pumps in the solar collector loop.

4.4.8 Storage tank models

Two storage tank models were developed in this work. One-dimensional flow

was assumed inside the tank and the tank’s volume was an input parameter. Heat
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Figure 4.18: Parameter window of the model SolarCollectorsFinal (DS).

transfer to the ambient was modeled with a ThermalConductor model and the

ambient temperature as input signal. Note that this ambient temperature could

be different from the ambient temperature of the solar collectors, depending on

the location of the storage tank.

In the model StorageTank1, only one HeatedFluidVolume was used to model

the fluid in the tank, i.e. the tank was assumed to be perfectly mixed. In the model

StorageTankFinal, an array of HeatedFluidVolume models was used to represent

different fluid layers in the tank. This gave a more realistic temperature profile.

However, thermal stratification and heat exchange between the different layers

was deemed too detailed and therefore not modeled. The number of Heated-

FluidVolume models was an input parameter of the model StorageTankFinal.

In the model StorageTankFinal, an internal heat exchanger could also be

added to the tank. This was required for the storage tank in the solar collector

loop. An array of HeatedFluidVolume models and ThermalConductor models
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was used to represent the internal heat exchanger, with the array size equal to

the number of fluid layers. The fluid in the internal heat exchanger was thermally

connected to the fluid in the tank with a constant conductivity in each layer.

The conductivity value was an input parameter of the model StorageTankFinal,

which is shown in Figure 4.19.

Figure 4.19: Diagram of the model StorageTankFinal with internal heat exchanger
(DS).

4.4.9 Insulated pipe models

A single pipe model and a twin pipe model were developed in this work.

Both consisted of an array of HeatedFluidVolume models to represent the fluid

inside the pipes. The number of HeatedFluidVolume models as well as the pipe

dimensions and the insulation properties were input parameters of the models.

The model SinglePipe was developed to represent insulated distribution pipes

over ground. The ambient temperature was an input signal and was connected to

the pipe fluid via an array of ThermalResistor models, see Figure 4.20.

Figure 4.20: Diagram of the model SinglePipe (DS).
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The model TwinPipe was developed to represent insulated distribution pipes

underground because twin pipes are common for new grids, see Section 2.1.2. Cor-

relations for heat losses from twin pipes were implemented in the model TwinPipe,

details can be found in Paper IV. Ground specifications were input parameters of

the model and the surface temperature of the ground was an input signal. The

model TwinPipe is shown in Figure 4.21.

Figure 4.21: Diagram of the model TwinPipe (DS).

4.4.10 Customer substation models

Different customer substation models were developed in this work based on

the substation types of the two case study systems, see Chapter 3. The customer

substation models were used to model the transfer of heat between a thermal

energy supply system and a customer, i.e. the HVAC system of one or several

buildings. To recall, these HVAC systems of the buildings were not modeled, i.e.

the customer substations were the modeled system boundary. Thus, the heating

and cooling demands of the customers were required as input data.

The highly simplified model CustomerSubstation1 was developed first. It

consisted of a CirculationPump model and a HeatedFluidVolume model and is

shown in Figure 4.22.

The heat flow rate specified in the input data was added to or removed from

the fluid and the mass flow rate was controlled by the circulation pump to yield a

fixed temperature difference between inlet and outlet of the substation. This tem-

perature difference was an input parameter of the model. The model Customer-

Substation1 was only used for testing purposes and for the very first steps of the

system model development.
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Figure 4.22: Diagram of the model CustomerSubstation1 (DS).

The model CustomerSubstationVulkan was developed for the case study

Vulkan and could be used as heating or cooling substation. The inlet temper-

ature on the secondary side, i.e. the return temperature (Tret) from the buildings,

was an input parameter of the model. The model CustomerSubstationVulkan

as used for cooling is shown in Figure 4.23.

Figure 4.23: Diagram of the model CustomerSubstationVulkan (DS).

The model CustomerSubstationVulkan contained a heat exchanger and two

circulation pumps as can be seen in Figure 4.23. The primary circulation pump,

i.e. the one on the thermal energy supply system side, was controlled to de-

liver the specified heat flow rate. The secondary circulation pump, i.e. the one

on the customer side, was controlled to deliver a certain supply temperature to

the customer. This temperature could either be constant or outdoor tempera-

ture compensated. This supply temperature control could also be deactivated so

that both circulation pumps received the same mass flow rate signal. As for the

model HeatPumpFinal, the model CustomerSubstationVulkan was not a physi-
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cal representation of a real customer substation because of the unrealistic control

approach. However, the model led to fast and stable simulations and the obtained

results were reasonable.

A customer substation and a prosumer substation model were developed for

the case study Brøset. These are explained in detail in Paper IV and are therefore

only briefly introduced here. The model CustomerSubstationBroeset had two

heat exchangers: one for space heating and one for DHW heating as shown in

Figure 4.24.

Figure 4.24: Diagram of the model CustomerSubstationBroeset (DS).

The model ProsumerSubstationBroeset was modeled as return/supply con-

nection for prosumers, i.e. customers that can also deliver heat to the grid. The

model is shown in Figure 4.25.

4.5 System models

Several system models were developed for the two case study systems described

in Chapter 3. As mentioned before, focus was on the Vulkan case study. The
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Figure 4.25: Diagram of the model ProsumerSubstationBroeset (DS).

author contributed to the Brøset system models by giving general modeling advice,

supporting component and system model development, and providing component

models for the system model used in Paper IV.

Connecting component models in Modelica is very simple. In Dymola, the

graphical user interface allows connecting ports by click and drag. This will auto-

matically create connect-equations in the model. However, implementing a control

system can be challenging due to the physical modeling approach, especially for

systems with many interconnected components. For such systems, it is advis-

able to build system models successively, i.e. modeling a part of the system first

and adding more components when the control of the modeled part is working

satisfactory. However, component models and system models were developed in

parallel in this work. Therefore, the system model development was an iterative

process and required many adjustments of the control structure.

4.5.1 Integrated heating and cooling system at Vulkan

The system model development for the Vulkan case study was one of the

main tasks of this work. The system model has undergone many small and large

modifications during the course of this work, but only the two versions that were

used for publications, namely Paper II and Paper V, are presented here.
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The first system model for Vulkan

The first system model for Vulkan was used for the analysis of heat export to

the local DH grid as described in Paper II. The model is shown in Figure 4.26.

Figure 4.26: Diagram of the first system model for Vulkan as used for Paper II (DS).

The system model shown in Figure 4.26 contained some issues, which are listed

below.

• The following non-final component models were used: StorageTank1, Heat-

Exchanger1, SolarCollectors1, and HeatPump2, see Section 4.4.

• Only one heat pump was included in the system model. This simplification

was made because the condenser heat from all heat pumps was sent to the

same secondary fluid loop of the IHCS. The product cooling demand was

therefore added to the space cooling demand.

• The snow melting demand and the ITES were neglected.

• The included model StorageTank1 did not have an internal heat exchanger,

so an own loop was modeled to transfer heat from the solar collectors to the

tank. Two loops were modeled to transfer heat from the collector tank to

the DH grid or to DHW heating.

64



Chapter 4

• A constant initial temperature of the ground was assumed in the model BTES

(instead of a linear profile) and the ground radius was set to 5 m (instead

of 8 m).

• A heat exchanger was falsely included in the BTES discharging loop on the

evaporator side of the heat pump.

• The input data for radiation were retrieved from the software Meteonorm

and thus represented a typical year (instead of data for the analyzed year

from the nearest weather station).

Due to these issues, the control of this system version is not described in detail

here. A short description can be found in Paper II.

The final system model for Vulkan

The issues listed above were fixed in the final system model, in which the final

versions of all component models were used. This system model was used for

Paper V. A Dymola screenshot of the model and a modified version with selected

specifications are shown in Figure 4.27 and Figure 4.28, respectively.

Figure 4.27: Diagram of the final system model for Vulkan as used for Paper V (DS).
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Figure 4.28: Schematic of the final system model for Vulkan with legend and selected
specifications.

The main component specifications used for system simulations can be seen

in Figure 4.28. Additional specifications are listed in the tables 4.1, 4.2, and 4.3.

The existing IHCS was equipped with a simple control system. The heat

pumps received stepwise control signals to activate/deactivate their parallel cir-

cuits and compressor stages. These step signals were based on the storage tank

temperatures. The circulation pumps were controlled based on pressure difference

setpoints or temperature setpoints. The storage tanks were only used as buffers.

In the system model, the heat pumps were controlled continuously because the in-

dividual compressor stages were not included in the heat developed pump models.

The circulation pumps were controlled with PI-controllers based on temperature

setpoints. The PI-controller outputs were limited to avoid unrealistically high

mass flow rates.

The IHCS had two operation modes: 1) “heating mode” and 2) “cooling

mode”. A free cooling mode was originally planned but was not implemented as
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Table 4.1: Heat exchanger model specifications used in the final system model.

Heat transfer Nominal heat Nominal mass

area transfer coefficient flow rate

m2 W/(m2 ·K) kg/s

Space heating 107.0 4 400 8.0

Snow melting 58.0 3 300 5.0

DHW heating 36.0 2 700 1.0

Space cooling 183.0 3 300 20.0

Product cooling 15.0 3 500 3.0

ITES loading 15.0 3 500 6.0

Solar to heating 7.6 3 500 0.8

Solar to BTES 7.6 3 500 0.8

HP to BTES 260.0 3 500 10.0

Table 4.2: Solar collector model specifications used in the final system model.

Parameter Value Unit

Number of serial collectors 5 -

Number of parallel collectors 28 -

Effective surface area 1.9 m2

Optical efficiency 0.773 -

Linear heat loss coefficient 3.676 W/(m2 ·K)

Quadratic heat loss coefficient 0.0143 W/(m2 ·K2)

Fluid filling 1.2 kg

explained in Paper I. Models from the library StateGraph, which is included in the

MSL, were used in the system model to switch between the two operation modes.

This operation mode switching was triggered based on the average temperatures

in the storage tanks for heating and space cooling as shown in Figure 4.29.

An operation mode switch triggered the activation/deactivation of the BTES

circulation pumps, a change in heating supply temperature setpoint, and different

control strategies for the solar collectors and the ITES. Details are given in the

following paragraphs. The real system required some downtime for an operation
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Table 4.3: BTES model specifications used in the final system model.

Parameter Value Unit

Number of boreholes 62 -

Vertical discretization 4 -

Horizontal discretization 30 -

Borehole depth 300 m

Borehole diameter 0.14 m

Ground diameter 9 m

Ground density 2 600 kg/m3

Ground heat capacity 850 J/(kg ·K)

Ground conductivity 2.75 W/(m ·K)

U-tube diameter 0.04 m

U-tube conductivity 0.42 W/(m ·K)

Nusselt number inside borehole 5 -

Figure 4.29: StateGraph logic applied for switching between operating modes (DS).

mode switch due to manual valve adjustments. Therefore, only one operation

mode switch was performed between heating and cooling season. In the system

model, this downtime was neglected and several operation mode switches were

allowed.

In heating mode, the outlet temperature of HP 1/2 on the condenser side was

set to equal the heating supply temperature of 55 ◦C. The outlet temperature on

the evaporator side of HP 1/2 was controlled by the BTES pump with the space

cooling supply temperature of 6 ◦C as setpoint. When the space cooling demand
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increased, less heat had to be extracted from the BTES. At some point, the BTES

was not needed as heat source and the temperature in the cooling tank increased.

When the average temperature in the cooling tank was higher than 10 ◦C, an

operation mode switch was triggered to ensure that the space cooling demand

could be covered. The ITES was not used in heating mode.

In cooling mode, the outlet temperature of HP 1/2 on the evaporator side was

set to equal the space cooling supply temperature of 6 ◦C. The outlet temperature

on the condenser side of HP 1/2 was controlled by the BTES pump with a reduced

heating supply temperature of 51 ◦C as setpoint. When the heating demands

increased, less heat was available to be injected into the BTES. At some point,

the BTES was not needed as heat sink and the temperature in the heating tank

decreased due to the increasing heating demands. When the average temperature

in the heating tank was lower than 47 ◦C, an operation mode switch was triggered

to ensure that the heating demands could be covered. The ITES was used to

reduce space cooling peak demands and was charged by HP 4 during the night.

The heat from the solar collectors was accumulated in a storage tank. The cir-

culation pump was controlled with a floating collector outlet temperature, which

was set to 10 ◦C above the temperature at the top of the solar storage tank, sim-

ilar to [62]. The accumulated heat could be sent to the heating supply line or to

the BTES loop via separate heat exchangers, see Figure 4.28. Rule-based control

was applied to decide when the heat should be sent to which heat exchanger. The

chosen strategy is described below and shown in Figure 4.30. Boolean signals and

hysteresis models were used to implement the strategy in the system model.

In cooling mode, the solar heat was used to charge the BTES because enough

condenser heat from the heat pumps was available to cover the heating demands.

In cooling mode, sending solar heat to the heating supply line was prioritized.

Therefore, the collector tank was charged until the temperature at the top was

higher than the heating supply temperature setpoint. The solar radiation peaks

around noon, so the temperature in the storage tank was not expected to rise

significantly after 1 p.m. The heat was then used to charge the BTES. Most

heat was accumulated during the summer when the system was operating in

cooling mode. Therefore, around 90% of the heat was used to charge the BTES

throughout the year.
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Figure 4.30: Rule-based controller logic for use of the solar heat.

The Dymola statistics of the final system model are shown in Figure 4.31. It

can be seen from Figure 4.31 that there were no remaining algebraic loops in the

DAES (Sizes after manipulation of the linear systems: {0, 0, 0, 0, 0, 0, 0, 0, 0}). The

computation time for a one-year simulation was about 70 seconds with an Intel c©

CoreTM i7 6700K processor (4 GHz) and 64 GB RAM. Setting the parameter

delay measurement in all Controller models to false (see Section 4.4.3) led to

remaining nonlinear loops (Sizes after manipulation of the nonlinear systems:

{9, 4, 10}). In this case, the computation time was increased by about 60%. This

shows how even small changes in a model can have a large effect on the final

DAES and the numerical performance.

The main simplifications and assumptions behind the final system model are

summarized below.

• Pipes between components were neglected because no detailed information

was available. Distribution heat losses from the IHCS were thus not cal-

culated. However, the losses from the distribution systems of the buildings

were included in the measured heating demands. The distances were short

compared to the pipe lengths of DH grids due to the small area of the

building complex.
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Figure 4.31: Dymola statistics for the final system model for Vulkan (DS).

• Each building substation contained five separate heat exchangers. These

were used for space heating from the IHCS and the DH grid, DHW heating

from the IHCS and the DH grid, and space cooling from the IHCS. Heat

exchangers for the same purpose were lumped in the system model and one

substation model for each demand type was used.

• The heat exchangers for heat import from the DH grid were not modeled.

Instead, the required heat import was calculated based on the remaining

heating demand after the heat exchanger connection to the IHCS.

• The real system required some downtime for an operation mode switch due

to manual valve adjustments. Therefore, only one operation mode switch

was performed between heating and cooling season. In the system model,

this downtime was neglected and several operation mode switches were al-

lowed.

• The return temperature from the buildings was assumed constant because

modeling of the building was outside the scope of this work.

• The ITES was not modeled physically. Instead, load profiles were created

to represent charging/discharging as explained in Paper V.
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• HP 1/2 in Figure 4.28 represented two parallel heat pumps of the same type.

These were modeled as one unit because their efficiencies were very similar.

Continuous rule-based control was used in the system model although the

heat pumps were controlled with stepwise on/off control

• Heat losses from the storage tanks were neglected due to missing tempera-

ture measurements at the tank’s locations.

4.5.2 Local district heating grid at Brøset

Several system models have also been developed for the case study Brøset,

but only the two versions that were used for publications, namely Paper III and

Paper IV, are presented here. As mentioned before, the author contributed to the

modeling part of these studies, especially Paper IV, but much modeling work has

also been done by others.

First system model for Brøset

The commercial library TIL from TLK-Thermo GmbH was initially used for

this case study. The first system model for Brøset was therefore developed using

this library and was used for the analyses in Paper III. The model is shown in

Figure 4.32.

As for the Vulkan case study, the first system model for Brøset was much

less mature than the final model. The main issues of the first system model are

summarized below.

• The customer substation models (with different building icons in Figure 4.32)

were similar to the one shown in Figure 4.22, i.e. extremely simplified.

• Single pipe models were used (similar to the one shown in Figure 4.20)

instead of twin pipe models for the DH distribution pipes.

• Only the pipes of the main grid were modeled, the supply pipes to and from

the buildings were neglected. The total pipe length was therefore only 3.5

km (compared to 6.8 km in the final system model).

Due to these issues, this system version is not described in more detail here.

A description can be found in Paper III. The computation time for a one-year
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Figure 4.32: Diagram of the first system model for Brøset (taken from Paper III).

simulation with this system model was several hours. The reasons for this were

not analyzed in detail. The implementation of a heat exchanger model in the

customer substation model was tested, but led to significantly longer computation

times and was thus deemed impracticable. It was therefore decided to build a new

system model with the simulation models described in this thesis.

Final system model for Brøset

The system model used for Paper IV is shown in Figure 4.33. In this version,

the model CustomerSubstationBroeset, see Figure 4.24, was used, which had

separate heat exchanger models for space heating and DHW heating and a supply

pipe. These supply pipes as well as all other pipes in the grid were TwinPipe mod-

els as shown in Figure 4.21. In addition, several ProsumerSubstationBroeset

models, see Figure 4.25, were added to the system model.
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Figure 4.33: The final system model for Brøset (taken from Paper IV).

As explained in Section 3.2.2, the main heat supply was assumed to come

from Trondheim’s existing DH grid. This connection was not modeled in detail.

Instead, the heat central in the system model contained a heat source, which

delivered the heat flow rate required to reach the supply temperature setpoint.

The pressure lift in the heat central was controlled to ensure a minimum pressure

difference of 70 kPa in all the customer substations. The pressure drop in the

furthest substation was therefore measured in each branch and the minimum

value of these was an input signal of the heat central model, see Paper IV for

details.

The Dymola statistics of the final system model are shown in Figure 4.34. It

can be seen from Figure 4.34 that there were no remaining algebraic loops in the
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DAES of the system model. However, the DAES was much larger compared to

the Vulkan system model, see Figure 4.31, which is why computation times were

still about two hours for a one-year simulation.

Figure 4.34: Dymola statistics for the final system model for Brøset (DS).
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5 | Approach for optimization-based
control of thermal energy systems
with storages

The importance of system control has briefly been described in Section 2.1.3.

Especially systems with storages require a suitable control strategy to operate effi-

ciently. In this chapter, which is based on Paper VI, an approach for optimization-

based control is presented. The main idea of this approach was to find optimized

setpoint trajectories for the system’s PI-controllers.

The methodology was applied to analyze the case study system at Vulkan, see

Section 3.1. The currently used setpoints described in Section 4.5.1 were called

“business as usual” (BAU). Optimizations were performed to obtain setpoints for

minimized electricity use and minimized electricity costs. Afterwards, these were

implemented into the final system model and the simulation results with optimized

setpoints were compared to the results with BAU setpoints. This workflow is

shown in Figure 5.1.

All elements of the optimization procedure (Part 2 in Figure 5.1) are explained

in detail in the next sections.

5.1 Optimization procedure

JModelica.org is an open-source platform for simulation and optimization of

complex dynamic systems and is explained in Section 2.2.3. All the optimizations

in this work were performed with JModelica.org version 2.2 via 64-bit Python
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for the BAU case
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Figure 5.1: Interaction of simulation and optimization.

scripting. It is worth noting that JModelica.org version 2.0 was used initially,

which only supported 32-bit Python. The memory usage of a 32-bit Python

process is limited to about 2 GB. This was insufficient for the optimizations in

this work and led to frequent memory allocation errors. JModelica.org version 2.2

was released in March 2018 and was the first version to support 64-bit Python.

The upgrade to version 2.2 was therefore crucial for this work. The main steps of

the optimization procedure used to obtain the optimized setpoints are shown in

Figure 5.2 and are described below.

Step 1: An initial simulation was required to obtain variable trajectory data

for initialization and scaling of the NLP variables in Step 5, see Figure 5.2. To this

end, the Modelica model for initialization was compiled into a Functional Mock-

Up Unit and simulated using the CVode solver from the SUNDIALS suite [63],

which is included in JModelica.org.

Step 2: The Modelica model for optimization and the problem formulation

(Optimica code) were compiled and transferred to the CasADi interface of JMod-

elica.org. CasADi was used for the computation of derivatives using algorithmic

differentiation [32].

Step 3: Routines for symbolic elimination based on block-triangular ordering

are included in JModelica.org and can be applied to reduce the number of algebraic

variables as explained in [64]. Symbolic elimination was implemented in this work

and was found to be crucial for successful converge as it significantly reduced the

size of the resulting NLP.
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Figure 5.2: Flowchart for main steps of the optimization with JModelica.org.

Step 4: Code for orthogonal collocation on finite elements is included in

JModelica.org and was used to transform the infinite-dimensional dynamic opti-

mization problem into a finite-dimensional NLP. The number of collocation ele-

ments and the number of collocation points in each element has a strong influence

on the size of the resulting NLP. See Paper VI for details.

Step 5: Variable trajectory data obtained during the initial simulation (Step 1)

were used for automatic initialization and scaling of the NLP variables.

Step 6: The resulting NLP was solved using version 3.12.4 of the primal-dual

interior-point solver IPOPT [33] with linear solver MA57 from HSL [65].

5.2 Adaption of simulation models for optimization

JModelica.org is Modelica-based, which means that simulation models created

in Dymola can be used as optimization models in JModelica.org. However, the
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different numerical use of the model equations during simulation and optimization

often makes it impossible to use simulation models for optimization directly. The

adaptions that were required to make the simulation models suitable for dynamic

optimization are explained in this section.

5.2.1 Reduction of the final system model

Initial testing showed that the final system model for Vulkan, see Section 4.5.1,

could not be used for dynamic optimization due to the large number of components

and their interconnections. Therefore, certain parts of the system were removed to

reduce the complexity and the size of the resulting NLP. The final system model

and the removed parts (covered with gray) are shown in Figure 5.3.
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Figure 5.3: Reduction of the final system model (gray part excluded in optimizations).

It can be seen in Figure 5.3 that the solar collector loop, the DHW heating

substation, the product cooling and ITES charging loop, and the recovery loop

were removed from the final system model. These decisions were based on simu-

lation results, which are presented in Chapter 6. These results showed that the

79



Chapter 5

solar collector loop played a minor role for system performance due to the small

total collector area. The DHW heating substation, the product cooling, and the

ITES charging loop were removed because the recovered heat from HP 3 was sim-

ilar to the delivered heat in the DHW heating substation. Removing these parts

therefore caused insignificant mismatch in the total heat balance. The simulated

electricity use of the removed parts accounted for 18 % of the total electricity use

for the BAU case, which showed that the key components of the system were kept.

For clarity, a schematic of the reduced system model is shown in Figure 5.4.
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Figure 5.4: Schematic of the reduced system model for optimization.

5.2.2 Modifications of component models

The component models described in Section 4.4 were developed for stable and

fast dynamic simulations. However, as mentioned above, some modifications were

required to make all the component models suitable for dynamic optimization.

These modifications are described below.
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The model CustomerSubstationVulkan, see Figure 4.23, received a demanded

heat flow rate as input signal, which was sent to the included Controller model.

Initial testing showed that this Controller model led to convergence issues.

Therefore, the model CustomerSubstationVulkanOpt was developed in which

the mass flow rate of the circulation pumps was used as input signal, see the

yellow boxes in Figure 5.4. The required heat flow rate in the substation was for-

mulated as a constraint in the optimization problem, see Section 5.3.2. A diagram

of the model CustomerSubstationVulkanOpt is shown in Figure 5.5.

Figure 5.5: Diagram of the model CustomerSubstationVulkanOpt (DS).

The model HeatPumpFinal, see Figure 4.6, contained Boolean signals, which

are not suitable for dynamic optimization. In addition, initial testing showed that

the calculation of the Lorentz temperature, see Equation (4.5), led to convergence

issues. Therefore, the model HeatPumpOpt was developed, which received the

heat pump power as input signal and contained an approximation of the Lorentz

temperature shown in Equation (5.1). The difference in Lorentz temperature due

to this modification was less than 0.1 K for all relevant operating conditions, which

was regarded as insignificant.

TL,cond/evap =
Tin,sec,cond/evap + Tout,sec,cond/evap

2
(5.1)

The numerical discretization of the BTES model and the StorageTank model,

see Figure 4.12 and Figure 4.19, respectively, had a strong influence on the number

of NLP variables. A one-week test optimization was performed to compare the

resulting setpoint temperatures with high and low discretization values. The

horizontal and vertical discretization of the BTES model was set to 30 and 4 for

the high discretization case (as used during simulation) and 10 and 2 for the low
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discretization case, respectively. The discretization of the StorageTank models

for the heating and cooling tanks was set to 15 and 5 for the high discretization

case (as used during simulation) and 5 and 2 for the low discretization case,

respectively. The low discretization reduced the number of NLP variables and

the solution time of IPOPT by a factor of three and ten, respectively. However,

the average absolute difference between the optimized setpoints for the high and

low discretization case was less than 0.1 K, which was regarded as insignificant.

Therefore, the low discretization values were used for all the optimizations in this

work.

5.2.3 Splitting into seasonal models

As mentioned before, the BTES was charged during the summer and dis-

charged during the winter. Thus, the heat exchanger and circulation pumps for

BTES charging were not required during the winter and the circulation pump for

BTES discharging was not required during the summer. Therefore, the reduced

system model for optimization, see Figure 5.4, was split into seasonal models, in

which the unused part of the season could be removed. This reduced the opti-

mization problem size significantly. The three seasonal models that were created

are listed in Table 5.1 together with the removed parts.

Table 5.1: Seasonal models used for optimization.

Seasonal model Parts that were removed from the reduced system model

WinterOpt BTES charging heat exchanger

BTES charging circulation pumps

SpringFallOpt Snow melting substation

SummerOpt Snow melting substation

BTES discharging circulation pump

An addition, Two versions of each seasonal model were required: one for the

initial simulation and one for the optimization, see Figure 5.2. In the initial-

ization models, the component models developed for simulation were used. The

component models adapted for optimization were used in the seasonal models for

optimization.
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5.3 Optimal control problem formulation

To recall, the seasonal models described in the previous section were used to

find optimal heating and cooling supply temperature setpoints for simulations

with the final system model, see Figure 5.1. The optimization problems for the

different seasons were formulated as continuous-time optimal control problems.

The control variables, constraints, and objective functions of the optimization

problems are explained in the following subsections.

5.3.1 Control variables

The control variables in the optimal-control problems were the heat pump

power, PHP, and the mass flow rates for the circulation pumps. These are marked

yellow in Figure 5.4 and are written as a vector:

u(t) :=
[
PHP(t), ṁi(t)

]>
, i ∈ P (5.2)

with the definition P :=
{

SH, SM, SC, BTES-cond, BTES-evap
}

. The temper-

atures Tsup,heat and Tsup,cool were not included in the vector u(t). This was due

to the fact that the optimization models did not contain Controller models, as

explained in Section 5.2.2, so setpoint temperatures were not needed. Instead, the

temperatures Tsup,heat and Tsup,cool depended on the control variables and were

calculated during the optimizations. The resulting values were then used as input

for the new simulations (see Part 3 in Figure 5.1).

5.3.2 Operating constraints

Lower and upper bounds were defined for the control variables based on their

operating limits, yielding the following linear inequality constraints:

0 ≤ PHP(t) ≤ 300 kW (5.3)

0 ≤ ṁi(t) ≤ ṁi,max , i ∈ P (5.4)

To ensure practically feasible operation, the supply temperatures for heating
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and cooling were constrained by:

Tsup,heat(t) ≤ 65 ◦C (5.5)

Tsup,cool(t) ≥ −5 ◦C (5.6)

Constraints were also added to ensure that the correct amount of energy was

delivered by the IHCS to the connected buildings. Enforcing this demand satisfac-

tion as an equality constraint led to convergence issues. Therefore, the following

upper and lower bounds were defined for the heat flow rates in the substations,

with Qi,dem being the measured values for heating and cooling demands (input

data):

Q̇i,del(t) ≥ Q̇i,dem(t), i ∈ D (5.7)

Q̇i,del(t) ≤ ε · Q̇i,dem(t), i ∈ D (5.8)

with the definition D :=
{

SH, SM, SC
}

and ε = 1.005. This formulation improved

the numerical performance significantly. A validation was performed to confirm

that the energy demand constraints were not violated during the optimizations.

This validation can be found in Paper VI.

5.3.3 Objective function for reduction of electricity use

The simulated electricity use of the IHCS consisted of three parts: the elec-

tricity use of the heat pumps, the electricity use of the circulation pumps, and

the electricity use of the auxiliary systems. This is explained in more detail in

Section 6.2.1. Reducing this total electricity use was defined as the first objective

for optimization. Therefore, the following objective function was defined in order

to minimize total electricity use

minimize
u(t)

tend∫
tstart

(
PHP(t) + Ppumps(t)

)
dt (5.9)

with PHP and Ppumps being the heat pump power and total circulation pump

power, respectively. The power of auxiliary systems was assumed constant and
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thus had no influence on the optimal solution. It was therefore removed from the

objective function.

5.3.4 Objective function for reduction of electricity costs

The reduction of electricity costs was defined as the second objective for op-

timization. Therefore, the following objective function was defined in order to

minimize total electricity costs

minimize
u(t)

tend∫
tstart

[
e(t) ·

(
PHP(t) + Ppumps(t)

)]
dt (5.10)

with e(t) being the time-varying electricity price.
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6 | Analysis of the case study system
Vulkan

The main aim of this case study was to analyze the design and the operation of

the IHCS at Vulkan, see Section 3.1. To this end, the simulation models described

in Chapter 4 and the optimization approach described in Chapter 5 were used for

several analyses. The main results from these analyses are described and discussed

in this chapter.

Focus was on the performance of the long- and short-term thermal energy

storages. The BTES of the IHCS was used as seasonal thermal energy storage,

i.e. heat was injected during the summer and extracted during the winter. The

annual heat balance of the BTES (heat injected minus heat extracted) was an

important result of the simulations because it affected the average temperature

of the surrounding ground. If the ground temperature became too high, the heat

injection rate decreased and could lead to operating difficulties during the summer.

Similarly, a too low ground temperature could lead to inefficient heat extraction

during the winter.

6.1 Heat export to district heating grid

The analysis described in this section was performed when the first system

model for Vulkan, see Section 4.5.1, had been developed. The simulation results

showed a positive heat balance of the BTES of around 200 MWh for the year 2015.

Therefore, the possibility of exporting heat to the local DH grid was analyzed.

Two heat export cases were defined and compared to the BAU case, see Table 6.1.
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Table 6.1: Defined cases for the analysis of heat export.

Case Heat export Number of Solar collector BTES

solar collectors area (m2)

BAU No export 140 290 Unbalanced

Export 1 To DH return line 140 290 Balanced

Export 2 To DH supply 500 1 036 Balanced

and return line

For the case Export 1, heat export from the heating tank to the DH return

line was simulated. For the case Export 2, heat export from the collector tank

to the DH supply line was simulated additionally, see Paper II for details. The

amount of exported heat was controlled to yield a balanced BTES at the end of

the year for both export cases.

The installed solar collectors at Vulkan are integrated into the facade of one of

the buildings. This corresponds to a small fraction of the total roof area. A map

showing the solar potential of the roof areas at Vulkan is shown in Figure 6.1,

which also shows the location of the installed collectors (blue mark).

Installing more solar collectors was therefore considered as realistic retrofitting

option and the number of collectors was increased from 140 to 500 for the case

Export 2. In addition, the volume of the collector tank was increased from 2 m3

to 10 m3.

To compare the total operating costs of the three cases, relative cost factors

were defined for electricity, DH import, DH export to the supply line, and DH

export to the return line. Electricity was assumed most expensive and was set

to 1. The chosen cost factors for DH import and export are listed in Table 6.2.

All three cases listed in Table 6.1 were simulated with input data for the year

2015. Detailed results can be found in Paper II. The resulting operating costs

relative to the BAU case are listed in Table 6.3.

The results showed that the operating costs could be reduced by 5.4 % for the

case Export 1 and 8.2 % for the case Export 2. However, these numbers should

only be taken as rough indications due to two reasons: 1) the system model used
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Figure 6.1: Solar potential of the roof area at Vulkan [66].

Table 6.2: Relative cost factors for the different energy types.

Energy type Cost factor

Electricity 1.00

DH import 0.95

DH export to supply line 0.80

DH export to return line 0.40

for the simulations had several issues, which are explained in Section 4.5.1, and

2) the prices for electricity and DH were assumed constant in this study although

they can show large variations over time.

Further development of the component models and the system model led to the

final system model for Vulkan, see Section 4.5.1. To increase the reliability of the
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Table 6.3: Total operating costs compared to the BAU case.

Case Relative operating costs (%)

BAU 100.0

Export 1 94.6

Export 2 91.8

results, a calibration of the simulated electricity use was performed. In addition,

a sensitivity analysis was performed to study the impact of input parameters on

the simulated system performance. The calibration and the sensitivity analysis

are described in the next section.

6.2 Calibration and sensitivity analysis

6.2.1 Calibration of the system’s electricity use

As explained in Section 3.1.3, only the total electricity use of the system was

measured, i.e. the electricity use of components was unknown. The total simu-

lated electricity use of the system (Esim,tot) consisted of three parts: the electricity

use of all the heat pumps (EHPs), the electricity use of all the circulation pumps

(Epumps), and the electricity use of all auxiliary systems (Eaux), see Equation (6.1).

Esim,tot =

∫ (
PHPs(t)

)
dt︸ ︷︷ ︸

EHPs

+

∫ (
Ppumps(t)

)
dt︸ ︷︷ ︸

Epumps

+

∫ (
Paux

)
dt︸ ︷︷ ︸

Eaux

(6.1)

EHPs was calculated by integrating the simulated power of all heat pump mod-

els (PHPs) as shown in Equation (6.1). The circulation pump model calculated

the required power (Ppump) of each circulation pump based on the volume flow

rate and the pressure difference, see Equation (4.2). However, the pressure dif-

ference was not calculated correctly in the final system model because connecting

pipes were neglected and the heat exchangers, solar collectors, and BTES were

lumped models. Therefore, Ppump was assumed proportional to the squared vol-

ume flow rate of the circulation pump in the final system model. This assumption

corresponds to a linear relation between pressure drop and volume flow rate in
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Equation (4.2). The squared volume flow rate was multiplied with the constant

flow-to-power coefficient FtP to calculate Ppump, see Equation (6.2).

Ppump = 10−6 · FtP · V̇ 2 (6.2)

The power of the auxiliary systems (Paux) was assumed constant and Eaux

was calculated by integrating Paux, see Equation (6.1). A system-level approach

was chosen to calibrate the values for FtP and Paux. To this end, the monthly

difference between the measured electricity use and the simulated electricity use

was minimized, see Equation (6.3).

min
12∑
i=1

(
Etot,meas − Esim,tot

)2
, i = month of the year (6.3)

The calibration was performed with input data for the year 2015 and yielded

values of 70.65 MW · s2/m6 and 30.5 kW for FtP and Paux, respectively. These

values were implemented in the final system model. Monthly values for Emeas,tot

and Esim,tot for the two simulated years are shown in Figure 6.2.
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Figure 6.2: Measured and simulated electricity use after the calibration.
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It can be seen from Figure 6.2 that the calibration led to good agreement

between the measured values and the simulated values.

6.2.2 Sensitivity analysis

A sensitivity analysis was performed to evaluate the influence of selected in-

put parameters on the simulated system performance. Two COPs were defined to

measure the system performance: COPsys and COPsys+BTES. These were evalu-

ated at the end of a simulated year. COPsys was defined as the ratio of the heating

and cooling energy delivered by the IHCS to the electricity use of the IHCS as

shown in Equation (6.4). Note that the amount of imported heat from the DH

grid was not included in Qheat,tot.

COPsys =
Qheat,tot +Qcool,tot

Esim,tot
(6.4)

COPsys+BTES was similar to COPsys but included the annual heat balance

of the BTES (QBTES,ann) in the numerator as shown in Equation (6.5). The

heat balance was included because it affected long-term operation as explained

above. COPsys+BTES thus gave a more holistic indication of system performance

by penalizing unsustainable operation.

COPsys+BTES =
Qheat,tot +Qcool,tot +QBTES,ann

Esim,tot
(6.5)

Parameters were changed one at a time during the sensitivity analysis and the

difference in COP compared to the BAU case was calculated. A 20 % change was

chosen as the default value. However, some parameters were varied by a different

percentage as can be seen in Table 6.4 and explained in the notes below:

1. According to [67].

2. ∆T of 3 K chosen instead of default percentage.

3. According to [68].

4. According to manufacturer specifications. All efficiency values were changed
at once, see Equation (4.7).

5. See Equation (4.16).
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Table 6.4: Parameter values used for the sensitivity analysis (notes on pages 91 & 93).

Parameter Unit Lower Base Upper Change Note

value value value %

Numerical discretization

Factor storage tanks - 0.8 1.0 1.2 20

Factor BTES - 0.8 1.0 1.2 20

Uncertain inputs

BTES: Nusselt number - 3.5 5.0 6.5 30 1

BTES: Initial temp. (near) ◦C 22 25 28 12 2

BTES: Initial temp. (far) ◦C 7 10 13 30 2

BTES: Ground conductivity W/(m ·K) 2.10 2.75 3.40 24 3

Lorentz efficiency HP 1/2 % 41.0 46.1 51.2 11 4

Lorentz efficiency HP 3 % 34.6 38.4 42.2 10 4

Lorentz efficiency HP 4 & 5 % 33.9 41.3 48.7 18 4

Exponent q in HX model - 0.50 0.63 0.76 20 5

Coefficient FtP MW · s2/m6 56.6 70.7 84.8 20 6

Assumed return temperatures

Space heating ◦C 37 40 43 8 7

Snow melting ◦C 13 20 27 35 7

Space cooling ◦C 13.2 15.0 16.8 12 7

Product cooling ◦C -5.2 -4.0 -2.8 30 7

Heating/cooling demands

Demand factor all - 0.8 1.0 1.2 20 8

Demand factor heating - 0.8 1.0 1.2 20 9

Demand factor cooling - 0.8 1.0 1.2 20 10

Control setpoints

Mode switch ∆T K 3.2 4.0 4.8 20 11

Heating supply ◦C 52 55 58 5 12

Space cooling supply ◦C 4.2 6.0 7.8 30 12

System design

Factor HX area - 0.8 1.0 1.2 20 13

Number of solar collectors - 110 140 170 21 14

Number of boreholes - 50 62 74 19 15
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6. See Equation (6.2).

7. Secondary side changed to give 20 % change in ∆T .

8. All demand values changed.

9. Only heating demand values changed.

10. Only cooling demand values changed.

11. Used to switch between heating and cooling mode, see Section 4.5.1.

12. Primary side changed to give 20 % change in ∆T .

13. All area values listed in Table 4.1 were changed at once.

14. The storage tank volume and the heat exchanger areas in the solar collector
loop were scaled accordingly.

15. The maximum mass flow rates of the BTES circulation pumps were scaled
accordingly.

The sensitivity analysis was performed with input data for the year 2015. The

results are shown in Figure 6.3.

Parameter value lower than base case Parameter value higher than base case

-15 -12 -9 -6 -3 0 3 6 9 12 15-9 -6 -3 0 3 6 9

Factor storage tanks

Numerical discretization

Uncertain Inputs

Return temperatures

Heating/cooling demands

Control setpoints

System design

Factor BTES

BTES: Ground conductivity

BTES: Nusselt number

BTES: Initial temp. (near)

BTES: Initial temp. (far)

Lorentz efficiency HPs

Exponent q in HX model

Coefficient FtP

Space heating

Snow melting

Space cooling

Product cooling

Demand factor all

Demand factor heating

Demand factor cooling

ΔTMode switch

Heating supply

Space cooling supply

Factor HX area

Number of solar collectors

Number of boreholes

Difference in COPsys compared to base case (%) Difference in COPsys+BTES compared to base case (%)

Figure 6.3: Results from the sensitivity analysis.
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Increasing the numerical discretization had a negligible effect on the COPs. A

reduction in discretization of the BTES led to a decrease of 0.5 %, showing that

the chosen values were reasonable.

Some of the uncertain inputs influenced the COPs significantly. The heat

pumps were the main electricity users, which is why their efficiency had a strong

influence, especially on COPsys, see Figure 6.3 (left). The initial temperature

profile and the conductivity of the ground also showed strong influence on the

COPs, while the Nusselt number for natural convection inside the borehole and

the heat exchanger exponent q used in Equation (4.16) were less important.

The return temperatures from the buildings’ heating and cooling systems (Tret)

were assumed constant in this study. The influence of these temperatures on

system performance varied. It depended on the total amount of delivered energy

for each demand type. Space heating was the largest demand, which is why Tret,SH

had the strongest influence on the COPs.

The heating and cooling demands were based on the available measurements.

The cooling demands were heat sources for the IHCS and the heating demands

were heat sinks. Therefore, the difference between the total heating demand and

the total cooling demand highly influenced the annual heat balance of the BTES.

Changing all demands simultaneously thus altered the BTES balance less than

changing only heating or cooling demands. This is why changing all demands

showed less effect than changing only heating or cooling demands, especially for

COPsys+BTES.

The control setpoint for a mode switch had insignificant influence on the sys-

tem performance due to the small number of mode switches during a year. The

supply temperature setpoints Tsup,heat and Tsup,cool changed the heat pump outlet

temperatures and thus affected both the temperature lift of the heat pumps and

the mass flow rates of the circulation pumps. Especially an increase of Tsup,cool

showed strong influence on the COPs.

The system design parameters showed little effect on the COPs. Only a change

in the number of boreholes changed the COPs by more than 1 %. This change in

COP was mainly due to the difference in required circulation pump power. The

BTES outlet temperature changed slightly when the number of boreholes was
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changed, leading to a small change in the heat pump’s COP. However, the annual

heat balance of the BTES did not change significantly because almost the same

amounts of energy had to be injected/extracted each day.

6.3 Ensuring sustainable long-term operation

The analysis described in this section was performed after the calibration of

the final system model for Vulkan, which is explained in the previous section. The

aim of this analysis was to ensure sustainable long-term operation, i.e. to avoid

deterioration of system performance over time. As explained in Section 3.1.3,

measurement data from the years 2015 and 2017 were used as input for the anal-

ysis. The simulation results with the final system model showed a negative heat

balance of the BTES of -469 MWh and -263 MWh for the years 2015 and 2017,

respectively as shown in the figures 6.4 and 6.5.
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Figure 6.4: Simulated daily heat balance for BTES and solar collectors for 2015.

This is a large difference in the simulated heat balance compared to the results

presented in Section 6.1. This difference is due to the issues of the first system

model, which are described in Section 4.5.1, especially the neglection of the snow

melting demand.

As mentioned in Section 6.1, an unbalanced BTES can lead to decreased long-
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Figure 6.5: Simulated daily heat balance for BTES and solar collectors for 2017.

term performance. The figures 6.4 and 6.5 showed that the charging of the BTES

during the summer was insufficient and that the solar collectors only accounted

for a small fraction of the charging capacity. Therefore, two solutions to avoid a

negative heat balance were analyzed: the installation of more solar collectors and

the increase of DH import for DHW heating. These cases are listed in Table 6.5

and described below.

Table 6.5: Defined cases for the analysis of long-term operation.

Case Number of Collector DH import for

collectors area (m2) DHW heating

BAU 140 290 Based on DHW demand

More solar collectors 830 1 719 Based on DHW demand

More DH import 140 290 Reduced by 55 % during cooling

mode, zero during heating mode

More solar collectors For this case, the number of solar collectors was

increased from 140 to 830 because this increase led to a balanced BTES for the year

2015 as explained in Paper V. There is a lot of roof area at Vulkan suitable for the

installation of solar collectors, see Figure 6.1. However, installation possibilities

and costs were not analyzed further.
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More DH import For this case, the mass flow rate from the IHCS to the

DHW heating substation was reduced. This mass flow rate reduction led to an

increased amount of DH import for DHW heating. The mass flow rate was reduced

by 55 % during cooling mode and by 100 % during heating mode compared to the

BAU case. Heat for DHW heating was thus only delivered by the IHCS during

cooling mode, when excess heat was available.

To analyze long-term operation, the input data for the years 2015 and 2017

were repeated three times so that a six-year simulation could be performed. The

change in total electricity use compared to the first year is shown in Figure 6.6.

98 %

100 %

102 %

104 %

106 %

108 %

110 %

112 %

1 2 3 4 5 6

To
ta

l e
le

ct
ric

ity
 u

se
 c

om
pa

re
d 

to
 Y

ea
r 

1

Year

BAU

More solar collectors

More DH import

Figure 6.6: Change in total electricity use of the IHCS (input data for 2015 and 2017
repeated).

It can be seen from Figure 6.6, that the total electricity use increased by

10 % during the six simulated years for the BAU case. For the cases “More solar

collectors” and “More DH import”, the simulated electricity use stayed almost

constant. The increase for the BAU case was due to a ground temperature de-

crease, which led to higher electricity use of the circulation pumps, especially the

BTES circulation pump during heating mode as shown in Paper V. The electricity

use of all the circulation pumps is shown in Figure 6.7 for the six simulated years.

The electricity use of HP 1/2, see Figure 4.28, also increased over the years

for the BAU case due to the lower evaporator inlet temperature. This lower inlet

temperature led to a decrease of the calculated COP during heating mode from

an average of 3.5 in Year 1 to an average of 3.4 in Year 6.
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Figure 6.7: Electricity use of circulation pumps (input data for 2015 and 2017 repeated).

The results presented in this section depended highly on the BTES model.

The short-term response of the BTES model was validated against experimental

data and the heat transfer in the ground was calculated based on established heat

transfer theory. However, the idealization of the ground in the BTES model could

lead to wrong results, e.g. in the case of groundwater flow. Unfortunately, the

simulation results could not be validated because the mass flow rate in the BTES

was not measured.

The long-term analysis clearly showed that the simulated system performance

decreased for the BAU case. Sustainable operation was achieved with the cases

“More solar collectors” and “More DH import”. However, the installation of solar

collectors would cause installation costs and the import of heat would increase the

operating costs. An economic evaluation should therefore be performed, which

was outside the scope of this work. Instead, the reduction of electricity use by im-

proving the control setpoints was analyzed. This is explained in the next section.

6.4 Reduction of electricity use

The sensitivity study in Section 6.2.2 showed that the setpoints for Tsup,heat

and Tsup,cool influenced the simulated system performance. Therefore, the aim of

this analysis was to analyze the control of the IHCS in detail with the objective to

reduce the system’s electricity use. To this end, the seasonal models for optimiza-

tion, see Section 5.2.3, were used for dynamic optimizations with JModelica.org

as explained in Chapter 5.
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To recall, the final system model for Vulkan was not suitable for dynamic

optimization. It was therefore reduced and split into seasonal models. The year

2015 was divided into seasonal periods and each period was optimized separately

with the corresponding model. The length of each season and the resulting NLP

problem size of the respective optimization are listed in Table 6.6.

Table 6.6: Optimization periods and problem sizes.

Days Seasonal Number of finite Number of NLP Number of NLP

model elements variables constraints

1 – 95 WinterOpt 4562 7.2 · 105 7.8 · 105

96 – 155 SpringFallOpt 2883 4.2 · 105 4.6 · 105

156 – 260 SummerOpt 5043 6.7 · 105 7.3 · 105

261 – 290 SpringFallOpt 1443 2.0 · 105 2.2 · 105

291 – 365 WinterOpt 3602 5.7 · 105 6.2 · 105

The initial state of the BTES and storage tank models for each season were

chosen based on the result of the previous season.

The optimized values for the control variables leading to minimized electricity

use are presented in this section. The optimal heat pump power PHP is shown in

Figure 6.8, the optimal mass flow rates for the substation circulation pumps are

shown in Figure 6.9, and the optimal mass flow rates for the BTES circulation

pumps are shown in Figure 6.10.

The optimized values for Tsup,heat and Tsup,cool are shown in Figure 6.11 and

Figure 6.12, respectively together with the simulated BAU setpoints. The opti-

mized setpoints were implemented into the final system model for simulation, see

Part 3 in Figure 5.1). The resulting energy amounts for the simulated year are

shown in Figure 6.13.

It can be seen from Figure 6.13 that the electricity use for the heat pumps and

the circulation pumps decreased by 5 % and 14 %, respectively, with the optimized

setpoints compared to the BAU case. The amount of heat taken from the long-

term storage decreased by 7 %. These reductions would decrease the operating
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Figure 6.9: Optimized mass flow rates for the substation circulation pumps.

costs significantly. However, the amount of heat imported from DH increased by

12 % for the simulated year. Therefore, the net savings depend on the prices for

electricity and DH import. An optimization of the electricity costs is described in

the next section.
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Figure 6.10: Optimized mass flow rates for the BTES circulation pumps.
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6.5 Reduction of electricity costs

The storage tanks of the IHCS were relatively small and only used as buffer to

even out the supply temperatures of the heating and cooling loop. Storage tanks
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Figure 6.13: Total simulated energy amounts for 2015.

are a relatively cheap component, so the installation of larger tanks was considered

as realistic retrofitting option. To investigate the effect of larger storage tanks and

optimal control on the cost saving potential, three different tank size combinations

were chosen: the installed 10 m3 and 2 m3 for the heating and cooling tank,

respectively, as well as 100 m3 and 500 m3 for both tanks.
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In Norway, electricity prices are typically higher during the winter than during

the summer due to the market-based electricity price and the high amount of elec-

tricity used for space heating. Therefore, the first three months of the year 2015

were chosen for this analysis to limit the number of required optimizations. This

way, all the optimizations could be performed with the seasonal model Winter-

Opt, see Section 5.2.3. The electricity spot prices for the location of the IHCS for

the first three months of the years 2015 to 2019 are shown in Figure 6.14.
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Figure 6.14: Hourly electricity spot prices for Oslo, Norway [69]. Peak values omitted
for better readability (max value = 2454).

It can be seen from Figure 6.14 that the electricity price showed relatively little

variation in 2015. Therefore, additional price signals were defined with different

fluctuations to analyze the influence of the variability of the electricity price (v)

on the cost saving potential. The price signals were based on the average price

of the first three months of 2015 (239 NOK/MWh) and the original price signal

(eOslo,2015). Values of 0, 1, 2, and 3 were chosen for v and the price signals were

calculated as follows:

ev(t) = 239 + v ·
(
eOslo,2015(t)− 239

)
(6.6)

The four resulting price signals were used for the optimizations and are shown

in Figure 6.15.
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Figure 6.15: Electricity prices used for optimization (e1 = eOslo,2015).

This approach, similar to the one presented in [70], was chosen instead of

using electricity prices from other years to maintain the correlation between the

electricity price and the climate conditions. Note that this correlation is not kept

for v = 0, which corresponds to a constant and thus unrealistic electricity price.

The four different price signals and the three different tank size combinations

led to the twelve optimization cases listed in Table 6.7.

Table 6.7: Defined cases for the analysis of electricity cost reduction.

Heating tank Cooling tank Electricity price signal

volume (m3) volume (m3) e0 e1 e2 e3

10 2 10-2 e0 10-2 e1 10-2 e2 10-2 e3

100 100 100-100 e0 100-100 e1 100-100 e2 100-100 e3

500 500 500-500 e0 500-500 e1 500-500 e2 500-500 e3

All the cases listed in Table 6.7 were optimized separately with the seasonal

model WinterOpt, see Section 5.2.3. Optimal operation over this period would

lead to emptied short-term storages at the end of the period, i.e. the average

temperature (Tavg) in the hot storage tank would be as low as possible and the

average temperature in the cold storage tank would be as high as possible. This

104



Chapter 6

would lead to an unfair comparison, especially when different tank sizes were

compared. Therefore, the constraints in Equation (6.7) and Equation (6.8) were

added for these twelve optimizations to avoid this effect and thus ensure a fair

comparison.

Ttank,heat,avg(tend) ≥ Ttank,heat,avg(tstart) (6.7)

Ttank,cool,avg(tend) ≤ Ttank,cool,avg(tstart) (6.8)

Selected result values from the optimizations leading to minimized electricity

costs are shown in this section. February 14th and February 3rd were days with

very different variations in electricity spot price. The price signals for these two

days are shown in Figure 6.16 and Figure 6.17, respectively.
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Figure 6.16: Electricity prices for February 14th (e1 = eOslo,2015).

It can be seen from Figure 6.16 that the electricity price was almost constant

on February 14th. On the contrary, the electricity price varied significantly on

February 3rd as shown in Figure 6.17 with peak hours in the morning and the

afternoon. Detailed results for the optimal heat pump power and temperature

setpoints are presented for these two days for selected cases from Table 6.7. The

results for February 14th for the cases with the original electricity price and dif-

ferent tank size combinations are shown in Figure 6.18.

It can be seen from Figure 6.18 that the different tank size combinations
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Figure 6.17: Electricity prices for February 3rd (e1 = eOslo,2015).

yielded very similar results for February 14th. This was expected due to the

relatively constant electricity price during that day. The results for February 3rd

for the same cases are shown in Figure 6.19.

It can be seen from Figure 6.19 that the optimal control trajectories for Febru-

ary 3rd depended highly on the size of the storage tanks. Larger tanks led to larger

variations, due to the possibility to shift electricity use from high-price hours to

low-price hours and thus decrease the total electricity costs.

Figure 6.19 clearly shows that the installed tanks (case 10-2 e1) were too small

to take advantage of the electricity price variations. The heat pump power only

varied between 150 kW and 270 kW for this case and the temperatures setpoints

were relatively constant as well, expect for two short peaks of Tsup,heat. For

the case 100-100 e1, the heat pump power varied across nearly the entire allowed

range from 0 to 300 kW. It was higher during low-price hours to charge the storage

tanks, corresponding to high values for Tsup,heat and low values for Tsup,cool. On

the contrary, the heat pump power was low during high-price hours and the energy

demands of the buildings were to a large extent covered by discharging the tanks.

For the case 500-500 e1, this effect was even more pronounced, leading to the

largest variations in the optimal values for Tsup,heat and Tsup,cool.

The results for February 3rd for the cases with the largest tanks and different

variability of the electricity price are shown in Figure 6.20.
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Figure 6.18: Optimization results for February 14th with different tank size combina-
tions.

It can be seen from Figure 6.20 that there were large differences between the

results with a constant electricity price (case 500-500 e0) and the cases with price

variations. Although the costs were optimized for all the cases, the constant

price led to a minimization of the total electricity use for the case 500-500 e0

(i.e. the objective functions Equation (5.9) and Equation (5.10) yielded equal
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Figure 6.19: Optimization results for February 3rd with different tank size combina-
tions.

results). The control of the heat pump and the circulation pumps were therefore

optimized depending on the energy demands of the buildings. For the other three

cases, the electricity use was significantly higher during low-price hours. The

cases with different variability showed very similar results for February 3rd. The

optimal control trajectories became slightly more pronounced for larger values
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Figure 6.20: Optimization results for February 3rd with different electricity price vari-
ability (e1 = eOslo,2015).

of variability, but only Tsup,cool showed significant differences. This showed that

even larger tanks would be required to take advantage of the variations during

that day. However, other days showed larger differences between these cases.

The optimized setpoints were implemented into the final system model and

a simulation for the first three months of 2015 was performed for all the cases
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listed in Table 6.7. The simulated total electricity costs for this period are shown

in Figure 6.21. The simulated costs with BAU control were included to show the

potential savings. All the results are shown relative to the BAU case because the

different price signals led to different costs for the BAU case.
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Figure 6.21: Simulated electricity costs for the first three months of 2015 relative to the
BAU case (e1 = eOslo,2015).

It can be seen from Figure 6.21 that all the optimized cases led to lower

electricity costs compared to the BAU case. The relative savings were in the

range of 5 to 11 %. The relative savings increased with larger variability of the

electricity price signal. Larger tanks also led to increased relative savings, except

for the cases with constant electricity price (e0). However, the difference between

the BAU case (10/2 - BAU) and the case with the currently installed tanks and

optimized setpoints (10/2 - Optimized) was larger than the difference between

the cases with different tank sizes and optimized setpoints (10/2 – Optimized

vs. 500/500 - Optimized). This means that the optimized control led to higher

relative savings than the installation of larger tanks. However, these savings only

included the electricity costs and not the costs for DH import. Since the DH

import increased for the cases with the optimized setpoints compared to the BAU

case, an economic analysis including the calculation of the total operating costs

is required to decide if larger storage tanks should be installed. The costs for the

advanced control system should be taken into account in such an analysis because

the installation of larger tanks would not lead to savings with the BAU control

strategy.
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It is also worth noting that the electricity costs shown in Figure 6.21 were

calculated by multiplying the electricity use of the system by the electricity spot

price. However, this is only a part of the actual costs that large customers have

to pay in Norway. The electricity grid in Norway is stressed significantly more

during the winter than during the rest of the year due to the high use of electricity

for space heating. Therefore, the electricity grid prices include additional costs to

consider the electricity grid stress. For business customers, this may induce peak-

load tariffs and charging for their peak electricity use of each calendar month.

This was not taken into account in this study as the measurement data showed

that the peak use of the IHCS was almost the same for all the winter months.

This cost was therefore assumed fixed and not included in the optimizations. The

25 % taxes that have to be paid were also neglected because they did not affect

the relative savings.
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7 | Analysis of the case study system
Brøset

In this chapter, the results of the case study Brøset are presented. The details

about the case study are given in Chapter 3. Different local DH grids were inves-

tigated for the given area by means of dynamic simulation. Focus was on LTDH

with the motivation to reduce the GHG emissions of the grid by reducing the

grid’s heat losses and utilizing waste heat sources. In Section 7.1, which is based

on Paper III, the effect of different temperature levels on the pumping power and

heat losses was analyzed. In Section 7.2, which is based on Paper IV, the inclu-

sion of prosumers in the local LTDH grid was analyzed. As mentioned before, the

author of this thesis contributed mostly to the modeling and simulation part of

this case study.

7.1 Comparison of different local district heating grids

For this analysis, the first system model for Brøset was used, see Figure 4.32.

This system model was built with components from the commercial Modelica

library TIL as explained in Section 4.5.2. One-year simulations were performed

and the data described in Section 3.2.3 were used as input for this analysis. The

main aim of this analysis was to calculate the pumping power and heat losses for

different DH system design concepts. The cases listed in Table 7.1 were defined

and simulated.

Three different supply temperature levels were considered: 95 ◦C, 65 ◦C and

55 ◦C. 95 ◦C was chosen because it is the expected temperature at substations of
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Table 7.1: Defined cases for the analysis of different local DH grids.

Case Supply Return Comments

temperature temperature
◦C ◦C

95 95-70 47.5-35.0 Current practice

65 65 32.5 Based on Norwegian legislation

55 55 27.5 Future scenario

55P 55 27.5 Case 55 with 50 % larger pipe diameters

LR 95-70 40.5-28.0 Case 95 with lower return temperature

PS 95-70 47.5-35.0 Case 95 with peak demands reduced by 20 %

the DH grid in Trondheim, 65 ◦C was considered as a potential future temperature

level considering the Norwegian legislation, and 55 ◦C was included as ultimate

goal for LTDH systems. For the 95 ◦C cases, the supply temperature was outdoor

temperature compensated. A constant supply temperature was assumed for the

low-temperature cases. Three additional cases were included: a low-temperature

case with larger pipe diameters (55P), a high-temperature case with lower re-

turn temperature (LR), and a high-temperature case with peak shaving (PS). See

Paper III for details.

The pipe diameter was an important input parameter of the pipe model be-

cause it affected both the pumping power and the heat losses. The diameter was

chosen so that the maximum pressure drop in the grid did not exceed 150 Pa/m

for the case 95. To this end, a one-year simulation of the case 95 with uniform

pipe diameters was performed to find the maximum mass flow rates for each pipe.

These maximum values were then used to set the diameter for each pipe based on

the calculated pressure drop as explained in Paper III. All pipe diameters were

increased by 50 % for the case 55P.

The main results from the simulations are shown in Figure 7.1 and Figure 7.2

(note that these figures are taken from Paper III and therefore do not follow the

notation used in this thesis).

Compared to the case 95, the simulated heat losses were 16 and 31 % lower for
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Figure 7.1: Ratios of total heat losses (Qloss), pump energy (W), and delivered heat
(Qtot) for all the cases (taken from Paper III).

Figure 7.2: Total pump energy and heat losses for all the cases (taken from Paper III).

the cases 65 and 55, respectively as shown in the figures 7.1 and 7.2. The required

pump energy increased significantly for the low-temperature cases compared to

the case 95, but the total pump energy was an order of magnitude lower than the

total heat losses. Therefore, a lower supply temperature had a positive overall

environmental impact. The simulation results from the case 55P showed that the

heat losses could be reduced without increasing pump energy by using pipes with
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larger diameters. The case LR showed that a lower return temperature led to

reduced heat losses and reduced pump energy. The case PS showed the same

results as the case 95 in terms of heat losses and pump energy. However, the peak

heating demand and the maximum pump power were reduced significantly.

Further results can be found in Paper III. These are not presented here due

to the issues of the system model used for this study, see Section 4.5.2.

7.2 Including prosumers in local district heating grids

As explained in Section 4.5.2, further development of the first system model led

to unacceptably long simulation times. Therefore, the final system model was built

based on the simulation models explained in this thesis. One-year simulations were

performed with the final system model and the data described in Section 3.2.3

were used as input. The main aim of this analysis was to investigate the effect

of including prosumers into the local LTDH grid to reduce GHG emissions. The

cases listed in Table 7.2 were defined and simulated.

Table 7.2: Defined cases for the analysis of prosumers in local DH grids.

Case Supply Comments

temperature
◦C

HT 115-75 Current high-temperature practice

LT 65 Low-temperature based on Norwegian legislation

LTP1 65 Case LT with low-capacity prosumers

LTP2 65 Case LT with high-capacity prosumers

The supply temperature for the case HT was outdoor temperature compen-

sated and represented the current practice of the main DH grid in Trondheim.

For the other cases, a constant supply temperature of 65 ◦C was assumed as a

potential future temperature level considering the Norwegian legislation. For the

two cases with prosumers, three distributed prosumers (one data center and two

food retail stores) were included in the system model, see Figure 4.33. The waste

heat profiles of the prosumers are shown in Figure 3.15. The pipe diameters were

different for the cases HT and LT. They were chosen to yield a maximum pressure
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drop of 150 Pa/m for each case with the same approach as in the previous section.

The diameters from the case LT were also used for the cases with prosumers.

To calculate the GHG emissions, the energy mix of the local DH provider was

used as reference. The heat production was divided between the available heat

sources, which had given operating limits. Waste incineration was the first priority

because the operator gets paid for burning the waste. The remaining heat sources

were prioritized based on their emission factors so that the least polluting sources

were used first. All heat sources as well as their operating limits and associated

emission factors in equivalent COCO2 are listed in Table 7.3.

Table 7.3: Heat sources with operating limits and emission factors.

Heat source Upper operating Emission factor

limit (kW) kg CO2e/MWh

Surplus heat from prosumers - 0

Waste incineration 1 330 11

Bio-oil 1 426 10

Biogas 1 444 11

Recycled wood 1 717 12

Wood chips 1 851 18

Electricity 3 086 110

Liquefied petroleum gas - 274

The main results from the simulations are presented below (note that the

figures are taken from Paper IV and therefore do not follow the notation used in

this thesis).

Figure 7.3 shows that the prosumers accounted for a significant share of the

total delivered heat, especially during the summer. The share was higher for the

case LTP2 due to the higher capacity of the prosumers. To recall, the capacity of

the prosumers was based on values from the literature, so the presented results

can be considered realistic. However, it should be noted that the prosumers were

assumed to be able to deliver heat to the supply line of the grid, i.e. at 65 ◦C.

Due to this relatively high temperature level, a heat pump might be required in

a real system to deliver heat to the supply line.
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Figure 7.3: Share of heat delivered by the heat central and the prosumers.
Cases: (a) LTP1, (b) LTP2 (taken from Paper IV).
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Cases: (a) HT, (b) LT, (c) LTP1, (d) LTP2 (taken from Paper IV).
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The resulting share of the heat sources for the local LTDH grid are shown in

Figure 7.4 for all simulated cases. The most polluting heat sources are colored

in red. It can be seen from Figure 7.4 that the waste heat from the prosumers

accounted for 13 % and 25 % for the cases LTP1 and LTP2, respectively. This

clearly shows the potential for waste heat utilization in the LTDH grid. The

calculated GHG emissions for all the cases are listed in Table 7.4.

Table 7.4: Calculated GHG emissions for all the cases.

Case Average emissions Reduction compared

kg CO2e/MWh to the case HT (%)

HT 23.8 0.0

LT 23.6 1.1

LTP1 19.9 16.4

LTP2 17.0 28.9

Table 7.4 shows that significant reductions in GHG emissions were obtained

when the emission-free prosumers were included in the grid (16.4 % and 28.9 %

for the cases LTP1 and LTP2, respectively). However, most of the waste heat was

available during the summer, so the peak heating demand was not reduced sig-

nificantly. In addition, the heat supply from the prosumers peaked around noon,

while the heat demand peaked in the morning due to DHW heating. Reducing

peak demands is important for emission reduction because peak heat sources are

associated with high emissions. The use of thermal storages for peak shaving

could therefore further reduce the GHG emissions of the grid.

Economic aspects were not considered in this study. The inclusion of pro-

sumers was shown to be beneficial in terms of energetic and environmental per-

formance. However, the profitability for the DH supplier depends highly on the

applied pricing scheme for waste heat delivery and the investment costs related

to prosumer substations.
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8 | Conclusions and suggestions for
further work

8.1 Main conclusions

The main aim of this work was the analysis of both the design and the op-

eration of thermal energy supply systems on neighborhood scale to make these

systems more energy- and/or cost efficient. To this end, component and sys-

tem models were developed in Modelica and used for several analyses. Dynamic

simulations with Dymola as well as dynamic optimizations with JModelica.org

were successfully performed. Several general conclusions can be drawn from this

modeling, simulation, and optimization effort:

1) Modelica-based modeling and simulation are relatively mature and many

Modelica libraries with sophisticated simulation models exist. However, an im-

portant aspect for system analysis is to ensure that the aim of the analysis and

the level of modeling detail are well aligned. No suitable library was available for

the planned tasks of this work, i.e. fast simulation of complex thermal energy

systems over long time horizons. Therefore, the component models needed to

be developed. This was a time-consuming task, but was necessary for successful

analysis and can make this work a useful reference for others.

2) Even when suitable component models are available, dynamic simulations

can still be a cumbersome task. Entering component model specifications and

assembling component models into a system model are usually straightforward

tasks. However, the modeling of the control system can be challenging, especially

for complex systems with many interconnections. Several simulation performance
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issues can arise due to control-related discontinuities, chattering, or algebraic

loops. These can make the simulation unnecessary slow or even fail. Efficient

system simulation models can therefore only be developed with a certain level of

user-experience.

3) Due to the potentially high amount of time required for dynamic system

simulation, its use should be carefully evaluated and should not be seen as “low-

hanging fruit”. However, energy systems are expected to become more complex

in the near future - due to the inclusion of fluctuating energy sources, (thermal)

energy storages, and more advanced pricing schemes for electricity and district

heating – and the operation of such systems cannot be analyzed easily. Dynamic

simulations are a suitable tool and are thus expected to be of increasing im-

portance to meet stricter efficiency targets and/or ensure economic operation of

future energy systems.

4) JModelica.org, a framework for Modelica-based dynamic optimization, has

recently been developed at Lund University and was used in this work. No Model-

ica library with optimization-ready components for this type of system is available

yet. The simulation models developed in this work were therefore used, but had

to be adapted due to different handling of the model equations during simulation

and optimization. While the required component model changes were minor, the

system model complexity had to be reduced. The models were then suitable for

dynamic optimization over long time horizons and can therefore be a useful ref-

erence for others. However, dynamic optimization is even more advanced than

dynamic simulation and can thus be seen as an expert-tool, which is not expected

to be widely used outside the research community.

The methodology chosen for this work was shown to be suitable for the analysis

of complex thermal energy supply systems with varying load profiles and prices.

Reuse of the developed component models was an important aspect and enabled

the analysis of different case study systems. Several specific conclusions can be

drawn from the analyses of the case study system at Vulkan, Oslo:

1) The annual heat balance of the long-term storage is important for system

operation. The current operation might be unsustainable and lead to system

performance degradation. Two solutions for sustainable operation were suggested:

installing more solar collectors and increasing the heat import from the district
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heating grid. These results depended heavily on the simulation model of the long-

term storage. Although the short-term response of the model has been validated,

a long-term validation could not be performed due to lacking mass flow rate

measurements. The installation of flow meters for calibration of the simulation

model should be considered to increase the reliability of the results.

2) Changing from constant heating and cooling supply temperature setpoints

to variable setpoints could reduce the electricity use of the system. However,

the setpoint optimization presented in this work cannot be implemented in a

practical manner because the optimized setpoints are adjusted twice an hour.

From a practical point of view, operation does not need to be optimal, rather good

enough and simple to implement. The optimization approach presented in this

work could therefore be used to find practical setpoint adjustments, e.g. outdoor

temperature compensated setpoints or setpoints based on daily and/or seasonal

schedules. These results depended on the part-load operation of the heat pump.

The heat pump COP was only based on the temperature lift of the heat pump

during the optimizations in this work. However, a more specific heat pump model

considering part-load operation based on advanced circuit simulations was also

developed. Using this model could be considered for practical system analyses.

3) Installing larger storage tanks is probably not profitable. Although larger

storage tanks could be used for peak shaving and electricity cost reduction, the

variability of the electricity price was too low to lead to significant savings for the

analyzed period. In addition, savings could only be obtained with a more advanced

control system than the one currently implemented. However, higher variability of

the electricity price or higher peak load tariffs might lead to a different conclusion.

The simulations of the planned case study system at Brøset, Trondheim con-

firmed that low-temperature district heating grids are beneficial, especially for new

development areas. The pipe diameters were shown to be important for the heat

losses in the grid and the required pumping power. The inclusion of prosumers in

low-temperature district heating grids was found to reduce greenhouse-gas emis-

sions significantly.
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8.2 Suggestions for further work

Recent advances in the development of computational tools for simulation and

optimization, supported by increased computational power, have enabled the work

presented in this thesis. Due to the high level of individuality of future integrated

energy systems and the broadness of the topic, much work remains and some

suggestions for further work are given below:

1) Several of the component and system models developed in this work were

called “final”. Still, many refinements and/or extensions are possible, e.g. the

inclusion of pipe models in the system model for Vulkan, a more realistic calcula-

tion of the return temperature on the secondary side of the customer substation

models, a physical model of the ice thermal energy storage, or a prosumer substa-

tion with heat exchangers for more realistic heat supply to the grid. New cases

could also be defined and investigated, e.g. charging the borehole thermal energy

storage at Vulkan with low-temperature heat from the district heating return line,

optimizing the system at Vulkan with a more advanced pricing scheme including

district heating prices, or the inclusion of storages and/or solar collectors in the

system model for Brøset.

2) The Modelica models developed in this work were tailored to the analyzed

case study systems and the aims of the analyses. Developing new models for

different types of components would allow the analysis of a wider range of systems

and should therefore be considered. Nevertheless, many new use cases for both

simulation and optimization have already been defined in the ongoing research

projects HighEFF, LTTG+, and LowEmission.

3) Comparing the models developed in this work to the models in the Modelica

library IBPSA could give valuable insights. This library is a main part of IBPSA

Project 1 (duration 2017 to 2022), which aims at developing a Modelica-based

framework for building and community energy system design and operation. This

is well within the scope of this work. Optimization with JModelica.org is also

part of Project 1 but is, to the best of the author’s knowledge, still in an early

development phase because many of the simulation models cannot be used for

optimization (as was the case in this work). Following the development of the

IBPSA library, especially the optimization efforts, is therefore recommended.

122



Chapter 8

4) All the simulation input data were also used as input for the optimizations,

i.e. perfect prediction was assumed for the optimization approach presented in

this work. Obviously, perfect prediction is not a realistic scenario because energy

demands of buildings and the electricity price in Norway both depend on ambi-

ent conditions. In practice, the uncertainty of the weather forecast thus makes

detailed optimizations over a long prediction horizon obsolete. Repeatedly opti-

mizing a shorter period over a receding horizon, as in Model Predictive Control, is

thus a more practical approach. It is therefore suggested to develop Python code

for Model Predictive Control in addition to the developed open loop optimization

code.
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