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Abstract—This paper considers consensus-based distributed
Kalman filtering subject to data-falsification attack, where Byzan-
tine agents share manipulated data with their neighboring agents.
The attack is assumed to be coordinated among the Byzantine
agents and follows a linear model. The goal of the Byzantine
agents is to maximize the network-wide estimation error while
evading false-data detectors at honest agents. To that end, we
propose a joint selection of Byzantine agents and covariance
matrices of attack sequences to maximize the network-wide
estimation error subject to constraints on stealthiness and the
number of Byzantine agents. The attack strategy is then obtained
by employing block-coordinate descent method via Boolean
relaxation and backward stepwise based subset selection method.
Numerical results show the efficiency of the proposed attack
strategy in comparison with other naive and uncoordinated
attacks.

I. INTRODUCTION

The adoption of internet of things (IoT) is rapidly growing
with applications in security, environmental monitoring, and
smart infrastructure [1]. IoT employs distributed signal pro-
cessing algorithms in which an individual agent exchanges in-
formation with its neighboring agents for inference tasks such
as event detection, tracking, and parameter estimation. Limited
computational and energy resources at the IoT devices and
the distributed nature of IoT render them vulnerable to cyber-
security threats and malicious attacks from adversaries [2].
Thus, attack and defense mechanisms for secure distributed
inference in IoT has garnered significant attention recently.

In data-falsification attacks, Byzantine agents inject ma-
licious data or share manipulated information to decrease the
system performance [3]. In such scenarios, the main challenges
for distributed algorithms are trustworthiness of local informa-
tion and resilient inference during attacks. To mitigate data-
falsification attacks in distributed detection, adaptive design
of local fusion rules to detect Byzantine agents was proposed
in [4] and audit-bit based architecture where sensors transmit
their decision via local groups in addition to direct commu-
nication with fusion center was presented in [5]. The authors
in [6] proposed an attack detection procedure by employing
reliable innovation data from the neighboring sensors in the
distributed estimation process. In [7] weighted combination
of local innovations and the information shared by neighbors
is proposed for robust parameter estimation in presence of
attacks. Joint attack detection and secure estimation methods
have been proposed in [8] and [9]. The authors in [10] consider
secure estimation for a networked cyber-physical system (CPS)
under simultaneous false data injection and jamming attacks
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and propose a two-step attack detection mechanism and a
measurement output model refinement to overcome the attacks.

On the other hand, knowledge of the optimal attack strategy
and its impacts on the performance of IoT plays an important
role in secure inference. It helps to understand the system
behavior in presence of attacks, to identify critical links and
agents, and to determine the regime in which the IoT no
longer satisfies the operational goals. In this context, the
trade-off between the detection performance with no attackers
and the worst-case detection performance with an attacker
was studied in [11] for hypothesis testing. For remote state
estimation setting, optimal jamming policies for attacking the
communication channels between sensors and fusion center
to maximize the estimation error was proposed in [12] and
optimal linear deception attack, which can successfully bypass
a χ2 false data detector, was presented in [13]. In [14] the
mean square error (MSE) performance of single sensor Kalman
filter with data-falsification attacks was analyzed considering
the Kullback-Leibler (KL) divergence as a measure of attack
stealthiness. Similarly, in [15] it was shown that with KL
divergence as the stealth metric, the worst-case linear attack
strategy that maximizes the estimation error covariance is
a zero-mean Gaussian distributed attack sequence. In [16],
the authors propose algorithms to design attack sequence to
move the state of a CPS to a target state while satisfying
the probability of detection constraints. These works [12]–
[16] are limited to single sensor scenarios or centralized state
estimation problems. Further, the performance and behavior
of distributed state estimation with Byzantine agents are not
addressed in the existing literature.

In this paper, we investigate the performance of consensus-
based distributed Kalman filtering in presence of Byzantine
agents. Assuming a linear attack model, we propose joint selec-
tion of Byzantine agents and their attack sequences that max-
imize the network-wide estimation error subject to constraints
on stealthiness and the number of Byzantine agents. This
results in an NP-hard optimization problem. Hence, we obtain
suboptimal solutions by solving a sequence of semidefinite
program (SDP) through the block-coordinate descent method
and Boolean relaxation of the NP-hard optimization problem.
To benchmark the proposed method, we present a backward
stepwise subset selection based algorithm to determine the best
set of Byzantine agents that maximizes the error.

Notations: Transpose and trace are denoted by (·)T and
tr(·), the identity matrix of size n is represented by In, the
ones vector of length L is denoted by 1L, whereas ⊗ denotes
Kronecker product. Positive semidefinite matrix is represented
by A � 0 and sup denotes the supremum. Matrices diag(a)



and diag({Ai}Li=1) denote diagonal and block-diagonal ma-
trices whose respective diagonals are the elements of vector a
and matrices A1,A2, . . . ,AL.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a connected multi-agent network of L ∈ N agents
that collectively aim to estimate the state vector sequence
{x(k), k = 1, 2 . . .} from local observations {yi(k), k =
1, 2 . . . , i = 1, 2 . . . , L} at the agents. The network is
modeled as an undirected graph G(V, E), where V is the set
of all agents of the network with |V| = L, and E is the edge
set that represents the communication links between the agents.
The neighbor setNi comprises all the agents that are connected
to i within one hop and excludes the agent itself. The network
adjacency matrix is denoted by E and the graph Laplacian is
defined as L = diag({|Ni|}Li=1)−E.

A. Distributed Filtering

The state vector and observation sequences at the ith agent
are characterized by the state-space model

x(k + 1) = Ax(k) + w(k)

yi(k) = Hix(k) + vi(k),
(1)

where A ∈ Rm×m is the state-transition matrix, Hi ∈ Rn×m

is the observation matrix at agent i, whereas w(k) and vi(k)
are mutually independent zero-mean Gaussian processes with
covariance matrices Q ∈ Rm×m and Ri ∈ Rn×n, respectively.

The agents employ the consensus-based distributed Kalman
filter to estimate x(k) in a collaborative manner [17]. The state
estimate at agent i is given by

x̂i(k + 1) = Ax̂i(k) + Ki(k)
(
yi(k)−Hix̂i(k)

)
− εA

∑
j∈Ni

(
x̂i(k)− x̄j(k)

)
,

(2)

where Ki(k) ∈ Rm×n is the Kalman gain at agent i, ε
is the consensus gain chosen as 0 ≤ ε ≤ 1/maxi |Ni|,
and {x̄j(k)}j∈Ni

are estimates shared by the agents in the
neighborhood set Ni.

The optimal Kalman gain Ki(k) in (2) is found by min-
imizing the trace of the estimation error covariance Pi(k) ,
E{ei(k)eT

i (k)}, where the estimation error ei(k) at agent i
evolves as

ei(k + 1) , x̂i(k)− x(k) = (A−Ki(k)Hi)ei(k)−w(k)

+ Ki(k)vi(k)− εA
∑

j∈Ni

(
ei(k)− ej(k)

)
. (3)

After some calculations, the estimation error covariance can
be expressed as

Pi(k + 1) = Fi(k)Pi(k)FT
i (k) + Q + Ki(k)RiK

T
i (k)

− εFi(k)
∑

s∈Ni

(
Pi(k)−Pis(k)

)
AT

− εA
∑

r∈Ni

(
Pi(k)−Pri(k)

)
FT

i (k)

+ ε2
∑
r∈Ni

∑
s∈Ni

A
(
Pi(k)−Pis(k)−Pri(k) + Prs(k)

)
AT ,

(4)

where Pij(k) , E{ei(k)eT
j (k)} and Fi(k) = A−Ki(k)Hi.

Thus, the optimal Kalman gain, which is found by differenti-
ating the trace of (4) with respect to Ki(k), is given by

K∗i (k) = A
(
Pi(k)− ε

∑
j∈Ni

(
Pi(k)−Pji(k)

))
HT

i M−1
i (k),

(5)
where Mi(k) = HiPi(k)HT

i + Ri.

B. Attack Model

In the following it is assumed that a subset B ⊆ V with
|B| ≤ L are Byzantine agents. In contrast to the “honest
agents”, Byzantines share a falsified version of their state
estimate with their neighbors to deteriorate the network-wide
estimation performance [3]. Byzantine agent j ∈ B shares
a modified state estimate x̂j(k) + δj(k) instead of x̂j(k)
for k ≥ k0, where k0 is the time instant when attack is
initiated. Consequently, for k ≥ k0, the local estimates used
for consensus building in (2) can be expressed as

x̄j(k) =

{
x̂j(k) + δj(k) j ∈ B
x̂j(k) j /∈ B, (6)

where δj(k) ∼ N (0,Σj) denotes the data-falsification se-
quence. Assuming a coordinated attack by the Byzantine
agents, the augmented attack sequence across the network is
given by

δ(k) , [δT1 (k), δT2 (k), . . . δTL(k)]T (7)

and its covariance matrix is denoted by Σ = E{δ(k)δT (k)}.
It assumed that the Byzantine agents have knowledge of
the network and observation matrices. To maximize the at-
tack stealthiness, δ(k) is chosen as a zero-mean Gaussian
sequence with covariance Σ [14]–[16]. The probability of
attack-detection is proportional to the covariance of the attack
sequence [14]–[16]. Therefore, Σ is limited to tr(Σ) ≤ η,
where η captures the stealthiness of the attack.

C. Problem Statement

The main objective of the Byzantine attack is to maximize
the network-wide mean squared error (NMSE) defined as

NMSE = lim sup
K→∞

1

K

∑K
k=1

∑L
i=1 tr

(
Pi(k)

)
(8)

while still maintaining a desired level of stealthiness. Due to
limited resources only a subset of agents can be Byzantines,
which is denoted by B. We need to decide the subset of agents
that participate in the attack and determine the covariance ma-
trices Σj , j ∈ B, of the corresponding falsification sequences.
To that end, we introduce the Boolean variable zj = 1 if
j ∈ B and zero otherwise, and define the selection vector
z = [z1, z2, . . . , zL]T [18]. The optimal attack strategy can be
expressed as an optimization problem given by

max.
Σ, z

NMSE

s. t.
∑

j∈B tr(Σj) ≤ η,
Σ � 0,

z ∈ {0, 1}L, 1T z = B,

(9)

where the first constraint is related to the stealthiness, i.e.,
the ability to evade detection and the last constraint limits



the number of Byzantine agents to |B| = B. The parameter
η is employed to restrict the total power of the falsification
sequences and satisfy the detection-avoidance target.

In the next section, we compute the network-wide mean
squared error as a function of the attack sequence covariance
matrices and propose different methods for joint design of
the attack sequence and subset of Byzantines with the aim
of maximizing the error.

III. JOINT SELECTION OF BYZANTINE AGENTS AND
DESIGN OF ATTACK SEQUENCES

To solve the problem in (9), we first derive the expression
for the objective function to capture the NMSE. To that
end, define the network-wide estimation error in presence of
Byzantine attack after k ≥ k0 as

ē(k) , [ēT
1 (k), ēT

2 (k), . . . , ēT
L(k)]T , (10)

where the error at the ith agent is given by

ēi(k + 1) = (A−Ki(k)Hi)ēi(k)−w(k) + Ki(k)vi(k)

− εA
∑

j∈Ni

(
ēi(k)− ēj(k)− δj(k)

)
.

(11)
Defining Γ = E diag(z) ⊗ A, the evolution of the network
estimation error can be expressed as

ē(k + 1) = Ā(k)ē(k) + b̄(k) + εΓδ(k), (12)

where Ā(k) = (IL−εL)⊗A−diag({K̂i(k)Hi}Li=1), K̂i(k) is
the Kalman gain assuming the statistics of the attack sequence
is known, and

b̄(k) = diag({K̂i(k)vi(k)}Li=1)− 1L ⊗w(k).

From (12), the covariance matrix of the error P̂(k + 1) ,
E{e(k + 1)eT (k + 1)} is given by

P̂(k + 1) = Ā(k)P̂(k)ĀT (k) + Q̄(k) + ε2ΓΣΓT , (13)

where Q̄(k) = diag({K̂i(k)RiK̂
T
i (k)}Li=1 + 1L1T

L ⊗Q. The
optimal Kalman gain that minimizes tr(P̂(k)) in (13) can
obtained as

K̂i(k) = A
(
P̂i(k)− ε

∑
j∈Ni

(
P̂i(k)− P̂ji(k)

))
HT

i M̂−1
i (k),

(14)
where M̂i(k) = HiP̂i(k)HT

i + Ri. In contrast to (4) and
(5), (13) and (14) capture the error dynamics in presence of a
Byzantine attack.

Assuming that the network is connected, (A, Q̄1/2) is
controllable, and (A,Hi) is observable, it can be shown that
limk→∞ P̂(k) = P̂ i.e., P̂(k) converges to a bounded value.
In other words, there exists a matrix K̂i(k) such that P̂(k)
is bounded and converges to a unique positive definite matrix
for all k and any initial non-negative symmetric matrix. Since
obtaining a closed form expression for the covariance matrix
of the actual error in (11) induced by the attack is intractable,
we employ tr(P̂) as a proxy to the objective function. Here
tr(P̂) is a lower bound for the actual NMSE.

The solution to the Riccati equation in (13) can be obtained
from an SDP [19]. Motivated by this fact and substituting

NMSE = tr(P̂) in (9), we express the joint Byzantine agent
selection and attack design optimization problem as

P : max.
X,Σ,z

tr(X)

s. t. X � ĀXĀT + Q̄ + ε2ΓΣΓT ,

Γ = E diag(z)⊗A,

X � 0∑
j∈B tr(Σj) ≤ η, Σ � 0,

1T z ≤ B, zi ∈ {0, 1}, i = 1, . . . L.

(15)

The above problem is NP-hard [20], and difficult to solve due
to the non-convex quadratic terms in the first constraint. In
the subsequent sections we propose different methods to find
a suboptimal solution to the above problem.

A. Block-Coordinate Descent (BCD) based Approach

The problem in (15) is non-convex due to the Boolean
variables. To circumvent this, we relax the Boolean constraint
zi ∈ {0, 1} to a linear inequality constraint 0 ≤ zi ≤ 1. We
see that for a given z or Σ the problem (15) is an SDP,
as its first constraint is convex. Therefore, we employ the
block-coordinate descent (BCD) method where (X,Σ) and
(X, z) are alternately optimized with the other variable fixed.
Applying the trace operator on both sides of the convergence
constraint leads to a linear approximation with respect to z
and Σ. The proposed approach starts with an arbitrary z0 as
initial condition and its first step is given by

P1 : max.
X,Σ

tr(X)

s. t. tr(X) � tr(ĀXĀT + Q̄) + ε2tr(ΓΣΓT ),

X � 0,∑
j∈B tr(Σj) ≤ η, Σ � 0.

(16)

The second step of the BCD approach is to determine the
Byzantine agents by solving

P2 : max.
X,z

tr(X)

s. t. tr(X) � tr(ĀXĀT + Q̄) + ε2tr(ΓΣΓT ),

Γ = E diag(z)⊗A,

X � 0,

1T z ≤ B, 0 ≤ zi ≤ 1, i = 1, . . . L.

(17)

The subproblems (16) and (17) are convex and (16) has an
unique solution for a given z. Hence from [21, Theorem 1], we
conclude that the proposed algorithm converges to a stationary
point. The steps in (16) and (17) reduce the problem in (15) to
that of solving a sequence of SDPs, which can be efficiently
solved by interior-point methods.

The optimal z∗ ∈ [0, 1]L is not Boolean due to the
relaxation in (17). Hence, we recover a feasible solution z′

of (15) by sorting the elements of z∗ in descending order and
set z′i = 1 for the agents corresponding to the |B| = B largest
elements.



Algorithm 1 Backward Stepwise Selection based Attack
Initialize: BL = V ,

1: for j = L downto B + 1 do
2: Determine l∗j = arg maxl∈Bj

U(Bj\{l}).
3: Update Bj−1 = Bj\{l∗j}.
4: end for
5: Set attack strategy zi = 1 if i ∈ BB else zi = 0.
6: Find optimal attack sequence covariance matrix from (16).

B. Backward Stepwise Selection based Attack Strategy

For a given attack selection vector z, the problem in (15) is
an SDP. Hence, instead of relaxing the Boolean constraints, we
employ an improved greedy search based method to determine
the set of Byzantine agents and then find the corresponding
optimal covariance matrices from (16). To select the Byzantine
agents, we adopt the backward stepwise selection algorithm
[22]. In this method, the algorithm begins by considering all
agents as Byzantine i.e., B = V , and then iteratively removes
the agent that contributes least to the overall objective. The
algorithm stops when only B most effective agents are remain-
ing. At iteration index j, let Bj denote the set of Byzantine
agents with |Bj | = j and the corresponding performance of
the network is defined as

U(Bj) =
∑

i∈V\Bj

tr(P̂i) +
∑
i∈Bj

tr(P̂i), (18)

which is computed from (16). The agent l∗j that contributes
lowest to the overall objective U(Bj) is removed from Bj at
iteration j by determining l∗j from

l∗j = arg max
l∈Bj

U(Bj\{l}).

The algorithm is terminated when Bj consists of B agents and
the attack sequence covariance matrix is determined from (16)
with zi = 1 if i ∈ BB else zi = 0. The proposed backward
stepwise selection based attack strategy is summarized in
Algorithm 1.

IV. SIMULATION RESULTS

We consider a randomly generated undirected connected
network with L = 25 sensor agents, maximum degree of
∆ = 11 and consensus gain ε = 0.08. The discrete time
system and agent parameters are considered to be A =
[0.6, 0.005; 0.25, 0.6], Q = I2, Ri = I2 and Hi =
µiI2, i = 1, 2, · · · , L with µi ∼ U(0, 1). We set N = 10
iterations for the BCD method. The Byzantine agents start
falsifying data at time index k0 = 20 and the stealthiness
parameter is set to η′ = η/|B| = 15 per Byzantine agent.

The proposed attack strategies are compared with two
naive strategies, namely, random selection attack and uniform
perturbation attack. The former strategy randomly selects the
Byzantine agents, while the associate covariance matrices are
obtained from (16). The latter strategy, choose the attack
sequence covariance matrices as Σj = P

mIm for all j ∈ B
and the set of Byzantines are determined from (17). Fig. 1,
illustrates the steady-state NMSE for the considered strategies,
with |B| = 5. It shows that the proposed methods significantly
outperform the naive random and uniform attack strategies.The
BCD based approach is computationally less intensive and
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Fig. 1. NMSE for different attack strategies in a network with L = 25 agents,
B = |B| = 5 Byzantine agents, and stealthiness parameter η′ = η/B = 15.
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Fig. 2. NMSE versus number of Byzantine agents for a network with L = 25
agents and stealthiness parameter η′ = η/B = 15.

performs close to the greedy search based method. It can be
inferred that the covariance design influences the overall per-
formance more in comparison with Byzantine agent selection.

Fig. 2 shows the NMSE versus the number of Byzantine
agents for fixed stealthiness parameter η′ = η/|B| = 15 per
Byzantine agent. We observe that the joint attack strategy per-
forms close to the backward stepwise selection based method.
When compared with random and uniform attack strategies,
the proposed methods cause larger degradation in the NMSE
for a fixed number of Byzantine agents.

V. CONCLUSION

This paper considered a distributed Kalman filter in pres-
ence of a coordinated data-falsification attack with Byzantine
agents. It has been shown that the optimal set of Byzantine
agents and covariance matrices of the falsification data that
maximize the network-wide estimation error can be obtained
by solving a sequence of semidefinite programs. Further, a
greedy strategy for the Byzantine agent selection problem has
been presented as an alternative to the Boolean relaxation
based block-coordinate descent method. Simulation results
demonstrate the efficacy of the proposed attack strategies in
comparison with the naive approaches.
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