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Abstract. We compute the homology of the groupoid associated to the Katsura al-
gebras, and show that they capture the K-theory of the C∗-algebras in the sense of the
(HK) conjecture posted by Matui. Moreover, we show that several classifiable simple
C∗-algebras are groupoid C∗-algebras of this class.

Introduction

In [10] Katsura defined a nice class of C∗-algebras that exhausts all the Kirchberg
algebras in the UCT class. The construction of these C∗-algebras has two layers: the
first is the graph skeleton, that gives to the C∗-algebra most of the desired structural
properties, and the second layer that consists of partial unitaries associated to every
vertex, which provide the necessary richness in K-theory. These two layers are given by
two equal size square matrices A and B.

Later in [5] Exel and Pardo, while studying the C∗-algebras associated to self-similar
graphs, realized that the C∗-algebras constructed by Katsura were prominent examples of
this construction. The advantage of Exel and Pardo approach is that they described these
algebras as groupoids C∗-algebras of combinatorial origin, and managed to give beautiful
characterizations of the most fundamental properties of groupoids. In particular, for
the Katsura algebras they construct an amenable groupoid GA,B such that C∗(GA,B) is
the desired C∗-algebra and give conditions, in most of the cases equivalent conditions,
in terms of the matrices A and B for Hausdorffness, effectiveness and minimality of
the groupoid. Because Katsura found the C∗-algebra, but Exel and Pardo gave the
description as a grupoid C∗-algebras, we choose to call GA,B the Katsura-Exel-Pardo
groupoid.

As mentioned above, Katsura computed the K-theory of C∗(GA,B) in terms of the
matrices A, B, that is

K0(C∗(GA,B)) ∼= coker(I−A)⊕ker(I−B) and K1(C∗(GA,B)) ∼= coker(I−B)⊕ker(I−A) ,

and showed that given any two countably generated abelian groups G0 and G1 there
exist matrices A and B such that K0(C∗(GA,B)) ∼= G0 and K1(C∗(GA,B)) ∼= G1.

In [13, 14] Matui started an exhaustive study of étale groupoids with totally dis-
connected unit space, and showed how their homology reflects dynamical properties of
their topological full groups. He later conjectured in [15] that the homology groups of
a minimal effective, étale groupoid totally captures the K-theory of their associated re-
duced groupoid C∗-algebra, and called it the (HK) conjecture. He verified that the (HK)
conjecture is true for important classes of groupoids, like the transformation groupoids
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of Cantor minimal systems, Cuntz-Krieger groupoids and products of Cuntz-Krieger
groupoids.

In the present paper, we verify the conjecture for the class of Katsura-Exel-Pardo
groupoids, that is, we compute all the homology groups of the groupoid GA,B, and show
that they sum up to the K-theory of the C∗-algebra. Furthermore, we see that homology
groups provide a refinement of the K-theory allowing us to define invariants for the
Kakutani equivalence class of the groupoid GA,B that could not be found just looking at
the K-theory of the associated C∗-algebras. It was proved by Matsumoto and Matui
[12, Corollary 3.8] that given two irreducible matrices A and A′, the Cuntz-Krieger
groupoids GA,0 and GA′,0 are equivalent if and only if coker(I − A) ∼= coker(I − A′) and
det(I − A) = det(I − A′). It then looks natural to go for a classification result for the
Katsura-Exel-Pardo groupoids. Then we obtain the following Main Theorem of the
present paper.

Theorem. Let N ∈ N ∪ {∞}, and let A and B be two N ×N row-finite matrices with
integer entries, and such that Ai,j ≥ 0 for all i and j. Then

H0(GA,B) ∼= coker(I− A) H1(GA,B) ∼= ker(I− A)⊕ coker(I− B)

H2(GA,B) ∼= ker(I− B) , Hi(GA,B) = 0 for i ≥ 3 .

Therefore, GA,B satisfies the (HK) conjecture.

In the Cuntz-Krieger case, the part of the invariant involving the determinant is
contained in the first cohomology group of the groupoid, which is isomorphic to the
Boyle-Handelman group [12, Proposition 3.4], while the cohomology of the Katsura-
Exel-Pardo groupoid is much bigger and contains parts of the Boyle-Handelman group.
So further study of this group is needed. It is then the aim of this paper to set the first
step in a future classification of the groupoids GA,B analyzing the combinatorial structure
that they possess.

Recently it has been a big interest in finding which classifiable C∗-algebras can be
realized as étale groupoid C∗-algebras (see [8, 9, 17]). In order to do that one wants to
construct groupoids whose associated C∗-algebras exhaust the possible Elliott invariants.
Here is where étale groupoids satisfying the (HK) conjecture gain importance, since in
general K-theory is an important part of this invariant.

The paper is organized as follows. In section 1 we give the preliminaries on étale
groupoids and their homology. Here is where we state Lemma 1.4, that is the analog
of the Pimsner-Voiculescu 6-terms exact sequence of K-theory, but for the homology
of étale groupoids with a Z-cocyle. This Lemma will be the crucial technical tool for
the computation of the homology of the Katsura-Exel-Pardo groupoid. In section 2 we
introduce the Katsura-Exel-Pardo groupoid, that is, a groupoid associated to a self-
similar graph introduced by Exel and Pardo in [5] that realizes the C∗-algebra defined
by Katsura [10]. After a quick overview of the basics properties of this groupoid found in
[5, Section 18], we move to the computation of the homology. This is done in two steps:
the first computes the homology of the kernel groupoid of the natural Z-cocyle of GA,B,
denoted by HA,B. The second step is to use the long exact sequence found in Lemma
1.4 to compute the homology of GA,B. This long exact sequence contains the homology
groups of HA,B with maps induced by the dual action of the Z-cocyle. Thanks to the
nice description of these maps given in Proposition 2.4 and the nature of the homology
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groups of HA,B the homology groups of GA,B fits in short exact sequences and hence
be computed. Finally in section 3 we use Theorem 2.5 to construct a variety of étale
groupoids whose associated C∗-algebra fall in a classifiable class and with a prescribed
K-theoretical invariant.

1. Basics on groupoid homology.

In this section we will recall the basic definitions and results on groupoid homology
that one can find in [13], and we will state the conjecture of study in this paper.

A groupoid is a small category of isomorphisms, that is, a set G (the morphisms, or
arrows in the category) equipped with a partially defined multiplication (g1, g2) 7→ g1 ·g2

for a distinguished subset G(2) ⊆ G × G, and everywhere defined involution g 7→ g−1

satisfying the following axioms:

(1) If g1g2 and (g1g2)g3 are defined, then g2g3 and g1(g2g3) are defined and (g1g2)g3 =
g1(g2g3),

(2) The products gg−1 and g−1g are always defined. If g1g2 is defined, then g1 =
g1g2g

−1
2 and g2 = g−1

1 g1g2.

A topological groupoid is a groupoid together with a topology on it such that the
operations of multiplication and taking inverse are continuous.

The elements of the form gg−1 are called units. We denote the set of units of a
groupoid G by G(0), and refer to this as the unit space. We always think of the unit
space as a topological space equipped with the relative topology from G. The source
and range maps are

s(g) := g−1g and r(g) := gg−1

for g ∈ G.
An étale groupoid is a topological groupoid where the range map (and necessarily the

source map) is a local homeomorphism (as a map from G to G). The unit space G(0) of
an étale groupoid is always an open subset of G.

Definition 1.1. Let G be an étale groupoid. A bisection is an open subset U ⊆ G such
that s and r are both injective when restricted to U .

Two units x, y ∈ G(0) belong to the same G-orbit if there exists g ∈ G such that
s(g) = x and r(g) = y. We denote by orbG(x) the G-orbit of x. When every G-orbit is
dense in G(0), G is called minimal. An open set A is called G-full if for every x ∈ G(0)

one has orbG(x) ∩ A 6= ∅.
For an open subsetA ⊆ G(0) we denote by GA the subgroupoid {g ∈ G | s(g), r(g) ∈ A},

called the restriction of G to A. When G is étale, the restriction GA is an open étale
subgroupoid.

The isotropy group of a unit x ∈ G(0) is the group Gxx := {g ∈ G | s(g) = r(g) = x},
and the isotropy bundle is

G ′ := {g ∈ G | s(g) = r(g)} =
⋃

x∈G(0)
Gxx .

A groupoid G is said to be principal if all isotropy groups are trivial, or equivalently,
G ′ = G(0). We say that G is effective if the interior of G ′ equals G(0).
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Definition 1.2. We say that a groupoid whose unit space is totally disconnected is
elementary if it is compact and principal. A groupoid G is an AF groupoid if there exists
an ascending chain of open elementary subgroupoids K1, K2, . . . such that G =

⋃∞
i=1Ki.

Let π : X → Y be a local homeomorphism between two locally compact Hausdorff
spaces, then given any f ∈ Cc(X,Z) we define

π∗(f)(y) :=
∑
π(x)=y

f(x) .

It is not hard to show that π∗(f) ∈ Cc(Y,Z).
Given an étale groupoid G and n ∈ N we write G(n) for the space of composable strings

of n elements in G with the product topology. For i = 0, . . . , n, we let di : G(n) → G(n−1)

be a map defined by

di(g1, g2, . . . , gn) =

 (g2, g3, . . . , gn) if i = 0 ,
(g1, . . . , gigi+1, . . . , gn) if 1 ≤ i ≤ n− 1 ,
(g1, g2, . . . , gn−1) if i = n .

Then we define the homomorphism δn : Cc(G(n),Z)→ Cc(G(n−1),Z) given by

δ1 = s∗ − r∗ and δn =
n∑
i=0

(−1)ndi∗ .

Then we define the homology H∗(G) as the homology groups of the chain complex
C•(G,Z) by

0←− Cc(G(0),Z)←−δ1 Cc(G(1),Z)←−δ2 Cc(G(2),Z)←− · · ·
The following conjecture, posted in [15], states that the homology of the groupoid

refines the K-theory of the reduced groupoid C∗-algebra.

(HK) conjecture: Let G be a minimal, effective, étale groupoid with G(0) homeo-
morphic to the Cantor space. Then

Ki(C
∗
r (G)) ∼=

∞⊕
n=0

H2n+i(G) , for i = 0, 1 .

The conjecture was confirmed for the AF -groupoids, transformation groupoids of
Cantor minimal systems, groupoids of shifts of finite type and products of groupoids of
shifts of finite type (see [13, 15]).

Now we are going to collect some results from [13] that will allow us to compute the
homology of a groupoid.

Let Γ be a countable discrete group and G an étale groupoid. When ρ : G → Γ is a
groupoid homomorphism, the skew product G ×ρ Γ is G × Γ with the following groupoid
structure: (g, γ) and (g′, γ′) are composable if and only if g and g′ are composable and
γρ(g) = γ′, and

(g, γ) · (g′, γρ(g)) = (gg′, γ) and (g, γ)−1 = (g−1, γρ(g)) .

Given n ∈ N we can define the action ρ̂ : Γ y (G ×ρ Γ)(n) by

ρ̂γ((g′1, γ
′
1), . . . , (g′n, γ

′
n)) = ((g′1, γγ

′
1), . . . , (g′n, γγ

′
n)) .
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Two étale groupoids G andH with totally disconnected unit spaces are called Kakutani
equivalent if there exist full clopen subsets A and B of G(0) and H(0) respectively, such
that GA ∼= HB ([13, Definition 4.1]). It was proved in [13, Theorem 3.6(2)] that two
Kakutani equivalent groupoids have isomorphic homology groups.

Lemma 1.3 (cf. [13, Lemma 4.13]). Let G be an étale groupoid, let ρ : G → Z be a
groupoid homomorphism, and let Y = G(0)×{0}. Then Y is a (G×ρZ)-full open subspace
of (G ×ρ Z)(0) and (G ×ρ Z)Y ∼= ker ρ. In particular G ×ρ Z is Kakutani equivalent to
ker ρ.

In order to compute the homology of groupoids G that have a groupoid homomorphism
ρ : G → Z, Matui uses the spectral sequence

E2
p,q = Hp(Z, Hq(G ×ρ Z))⇒ Hp+q(G) .

However, we are going to use a long exact sequence that relates the homology groups of
G and G ×ρ Z. This sequence might be known to experts but since I could not find any
reference we state it for completeness. I would like to thank Jamie Gabe for suggesting
me the use of this long exact sequence.

Lemma 1.4. Let G be an étale groupoid with G(0) a locally compact, Hausdorff and
totally disconnected space, and let ρ : G → Z be a group homomorphism. Then there
exists a long exact sequence

0 H0(G)oo H0(G ×ρ Z)oo H0(G ×ρ Z)
I−ρ̂1oo H1(G)oo · · ·oo

· · · Hn(G)oo Hn(G ×ρ Z)oo Hn(G ×ρ Z)
I−ρ̂1oo Hn+1(G)oo · · ·oo

,

where ρ̂ is the induced map by the action ρ̂ : Z y G ×ρ Z.

Proof. Let ρ̂1 : G ×ρ Z → G ×ρ Z given by g × {i} 7→ g × {i + 1} for g ∈ G and i ∈ Z,
then we define the short exact sequence

(1) 0 // C•(G ×ρ Z,Z)
I−ρ̂1 // C•(G ×ρ Z,Z)

π̂ // C•(G,Z) // 0 ,

where π̂ is induced by the map π : (G ×ρ Z)(n) → G(n) given by

((g1 × {i1}), . . . , (gn × {in})) 7→ (g1, . . . , gn) .

It is clear that I−ρ̂1 is an injective map, π̂ is a surjective map and that im (I−ρ̂1) ⊆ ker π̂.
So it is enough to check that im I − ρ̂1 ⊇ ker π̂. Let f ∈ Cc((G ×ρ Z)(n),Z) such that
π̂(f) = 0. Observe that we can write f =

∑m
i=−m fi where fi ∈ Cc(G(n) × {i},Z) such

that
∑m

i=−m π̂(fi) = 0. Let A be the compact support of f , and let B := π(A) a compact

subset of G(n). Let B1, . . . , Bk be a clopen partition of B such that (fi)|Bj×{i} is constant
for every −m ≤ i ≤ m, so let λi,j be the integer number such that (fi)|Bj×{i} = λi,j.
But then for every 1 ≤ j ≤ k we have that

∑m
i=−m λi,j = 0. We can write f =∑k

j=1

∑m
i=−m λi,j1Bj×{i}, where

∑m
i=−m λi,j = 0. For any clopen C of G(n) and i < j we
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define the function gi,j,C :=
∑j−1

k=i 1C×{k}. The function

h :=
k∑
j=1

(
−1∑

i=−m

λi,jgi,0,Bj
−

m−1∑
i=0

λi,jg0,i+1,Bj

)
∈ Cc((G ×ρ Z)(n),Z) ,

is such that

(I− ρ̂1)(h) =
k∑
j=1

(
−1∑

i=−m

λi,j
(
1Bj×{i} − 1Bj×{0}

)
−

m−1∑
i=0

λi,j
(
1Bj×{0} − 1Bj×{i}

))

=
k∑
j=1

((
−1∑

i=−m

λi,j1Bj×{i} +
m∑
i=1

λi,j1Bj×{i}

)
−

(
−1∑

i=−m

λi,j1Bj×{0} +
m∑
i=1

λi,j1Bj×{0}

))

=
k∑
j=1

((
−1∑

i=−m

λi,j1Bj×{i} +
m∑
i=1

λi,j1Bj×{i}

)
+ λ0,j1Bj×{0}

)

=
k∑
j=1

m∑
i=−m

λi,j1Bj×{i} = f .

Therefore, f belongs to im (I− ρ̂1), as desired.
Then, the long exact sequence of homology of the exact sequence (1), give us the

desired sequence

0 H0(G)oo H0(G ×ρ Z)oo H0(G ×ρ Z)
I−ρ̂1oo H1(G)oo · · ·oo

· · · Hn(G)oo Hn(G ×ρ Z)oo Hn(G ×ρ Z)
I−ρ̂1oo Hn+1(G)oo · · ·oo

.

�

The following Lemma is straightforward to prove (see for example [7, Proposition
4.7]).

Lemma 1.5. Let G be a locally compact, étale groupoid with G(0) a totally disconnected
Hausdorff space. Let us suppose that there exists a sequence G1,G2, . . . of open sub-
groupoids of G, such that Gi ⊆ Gi+1 with

⋃∞
i=1 Gi = G. Then H∗(G) ∼= lim−→H∗(Gi) where

the maps H∗(Gi)→ H∗(Gi+1) are induced by the natural inclusions Gi ↪→ Gi+1.

2. The Katsura groupoid.

Let N ∈ N ∪ {∞}, and let A and B be two N × N row-finite matrices with integer
entries, and such that Ai,j ≥ 0 for all i and j. We define

ΩA := {(i, j) ∈ {1, . . . , N}2 : Ai,j 6= 0} .
Throughout the paper we will assume that A has no identically zero rows. Let EA be
the graph with E0

A = {1, . . . , N}, and such that the set of edges from vertex i to vertex
j is a set of Ai,j elements, say

E1
A := {ei,j,n : 0 ≤ n < Ai,j} ,
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with source map given by s(ei,j,n) = i and range map by r(ei,j,n) = j. A path of length
n, is a concatenation of edges α1 · · ·αn with r(αi) = s(αi+1), and we denote by En

A the
set of all paths of length n. Given a path α we denote by |α| its length. Since by
assumption A has no identically zero rows, EA has no sinks. We denote by E∗A the set of
all finite length paths (including the length zero paths, which are the vertices), and let
E∞A = {(αi) ∈

∏∞
i=1 E

1
A : r(αi) = s(αi+1)} be the infinity path space with the product

and subspace topology. So given a finite path α ∈ E∗A we define the compact and open
set Z(α) := {αx : x ∈ E∞A with s(x) = r(α)}. This family of sets is a basis of clopen
and compact subsets, and hence E∞A is a totally disconnected and locally compact space.
Observe that E∞A is compact if and only if N ∈ N.

Given α ∈ E1
A we define Aα := As(α),r(α) and Bα := Bs(α),r(α). Then given y =

y1y2 · · · ∈ E∞A with yi ∈ E1
A and n ∈ N we define y|n = y1 · · · yn ∈ E∗A, Ay|n := Ay1 · · ·Ayn

and By|n := By1 · · ·Byn .

We define an action κ of Z on EA which is trivial in E0
A, and which acts on edges as

follows: given m ∈ Z, and ei,j,n ∈ E1
A, let (k, l) be the unique pair of integers such that

mBi,j + n = kAi,j + l and 0 ≤ l < Ai,j .

We then define

κm(ei,j,n) = ei,j,l .

Moreover we define the map ϕ : Z× E1
A → Z as ϕ(m, ei,j,n) = k, that satisfies

ϕ(m1 +m2, e) = ϕ(m1, κm2(e)) + ϕ(m2, e) ,

for every e ∈ E1
A and m1,m2 ∈ Z. A map satisfying the above equality is called a

one-cocyle for the action κ.
Then we can extend by induction the action κ and the one-cocycle ϕ to paths of

arbitrary length [5, Proposition 2.4]: Assume that n ≥ 1 and the action κ on En and
the one-cocycle ϕ : Z × En

A → Z for κ are defined. Given α′ ∈ E1
A, α′′ ∈ En

A with
r(α′) = s(α′′) and m ∈ Z, we define

κm(α′α′′) := κm(α′)κϕ(m,α′)(α
′′) and ϕ(m,α′α′′) = ϕ(ϕ(m,α′), α′′) .

In particular κ can be extended to an action of E∞A .
Now we denote by SA,B the set of triples (α,m, β) where β, α ∈ E∗A with r(α) = r(β)

and m ∈ Z. In [5] the set SA,B was given the structure of inverse ∗-semigroup, and the
groupoid of a certain partial action of SA,B on E∞A was constructed. Here we will avoid
to explain all the construction and defined only the resulting groupoid.

We define the equivalence relation on the set of quadruples of the form (α,m, β;x)
where (α,m, β) ∈ SA,B and x ∈ Z(β) generated by the relation:

(α,m, β;x) ∼ (ακm(γ), ϕ(m, γ), βγ;x) ,

where x = βγy for γ ∈ E1
A with s(γ) = r(β) and y ∈ E∞A with s(y) = r(γ). We denote

by [α, n, β;x] the equivalence class under the above equivalent relation.
Then we define the Katsura-Exel-Pardo groupoid

GA,B := {[α,m, β;x] : (α,m, β) ∈ SA,B and x ∈ Z(β)} ,
with product defined

[η,m′, γ; z]·[α,m, β;x] = [ακm′(γ′), ϕ(m′, γ′)+m,β;x] if x = βy , z = ακm(y) and α = γγ′
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and

[η,m′, γ; z]·[α,m, β;x] = [α, ϕ(m,α′)+m′, βκm(α′);x] if x = βy , z = ακm(y) and γ = αα′ ,

and inverse

[α,m, β;x]−1 = [β,−m,α;ακm(y)] , if x = βy .

Therefore if we identify G(0)
A,B with E∞A via the map [v, 0, v;x] 7→ x for v ∈ E0

A and
x ∈ Z(v), then the range and the source map can be defined as

s([α,m, β;x]) = x and r([α,m, β;x]) = ακm(y) , if x = βy .

With the topology given by the set of open and compact subsets

Z(α,m, β;U) := {[α,m, β;x] : x ∈ U} ,
where U is an open and compact subset of Z(β), the groupoid GA,B is étale with unit space

G(0)
A,B a locally compact, totally disconnected space. The sets of the form Z(α,m, β;Z(β))

forms a basis for the topology. Indeed, any open subset U ⊆ Z(β) can be written as a
disjoint union

⊔
i Z(βγi) where s(γi) = r(β) for every i. Whence,

Z(α,m, β;U) =
⊔
i

Z(α,m, β;Z(βγi)) =
⊔
i

Z(ακm(γi), ϕ(m, γi), βγi;Z(βγi)) .

In [5] and later in [6] it was shown that C∗(GA,B) is isomorphic to the C∗-algebra OA,B

constructed in [10].
Now we summarize the properties of the groupoid GA,B (see [5, Section 18]):

(1) GA,B is an étale, locally compact, amenable groupoid,

(2) G(0)
A,B is a locally compact, totally disconnected Hausdorff space, and it is compact

if and only if the matrices A and B are finite,
(3) GA,B is effective if

(a) every circuit in EA has an exit,

(b) for every 1 ≤ i ≤ N there exists x ∈ Z(i) such that lim
n→∞

Bx|n
Ax|n

= 0,

(4) if the matrix A is irreducible and it is not a permutation matrix, then GA,B is
minimal and purely infinite [14, Definition 4.9].

In [5, Theorem 18.6] there were given additional conditions for GA,B being a Hausdorff
groupoid. Katsura showed that

K0(C∗(GA,B)) ∼= coker(I−A)⊕ker(I−B) and K1(C∗(GA,B)) ∼= coker(I−B)⊕ker(I−A) ,

and that given two countably generated abelian groups G0 and G1 there exists an irre-
ducible matrix A and a matrix B satisfying condition

(O) Ai,i ≥ 2 and Ai,i > |Bi,i| for every i ,

such that G0
∼= coker(I−A)⊕ker(I−B) and G1

∼= coker(I−B)⊕ker(I−A) [11, Proposition
4.5], and hence GA,B is an effective, minimal and purely infinite groupoid.

We define the homomorphism ρ : GA,B → Z given by [α, n, β;x] 7→ |α| − |β|, and we
define the subgropoid HA,B := ker ρ. By Lemma 1.3 we have that GA,B×ρ Z is Kakutani
equivalent to HA,B. Now given n ∈ N we define the open subgroupoid

HA,B,n := {[α,m, β;x] ∈ HA,B : |α| = |β| = n} ,
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and then the map ηn : HA,B,n → Z given by [α,m, β;x] 7→ m is a well-defined groupoid
homomorphism. Since A has no zero rows, given β, α ∈ E∗A with r(α) = r(β), m ∈ Z we
have that

[α,m, β;x] = [ακm(γ), ϕ(m, γ), βγ;x] ,

if x = βγy for some y ∈ E∞A and γ ∈ E1
A with s(γ) = r(β) and s(y) = r(γ), then it

follows that HA,B,n ⊆ HA,B,n+1 for every n ∈ N, moreover HA,B =
⋃∞
n=0HA,B,n.

We define the groupoid RA,B,n := ker ηn, which is Kakutani equivalent to HA,B,n×ηn Z
(Lemma 1.3).

Lemma 2.1. Let N ∈ N ∪ {∞}, and let A and B be two N × N matrices with integer
entries, and such that Ai,j ≥ 0 for all i and j. For HA,B = ker ρ, we have that Hi(HA,B) =
0 for i ≥ 2.

Proof. Given n ∈ N, we claim RA,B,n is an AF groupoid. Indeed, GA,0 is the graph
groupoid of EA, and it is well-known that HA,0 is an AF -groupoid (see for example
[7, Proposition 6.1]). But RA,B,n ⊆ HA,0 is an open subgroupoid, so RA,B,n is an AF -
groupoid as well.

Since RA,B,n is an AF groupoid we have that Hi(HA,B,n ×ηn Z) ∼= Hi(RA,B,n) = 0 for
i ≥ 1 ([13, Theorem 4.11]), so using Lemma 1.4 we have the exact sequences

0 −→ H1(HA,B,n) −→ H0(HA,B,n ×ηn Z) −→ H0(HA,B,n ×ηn Z) −→ H0(HA,B,n) −→ 0 ,

and

0 −→ Hi(HA,B,n) −→ 0 ,

for i ≥ 2. Therefore by Lemma 1.5 it follows that Hi(HA,B) = lim−→Hi(HA,B,n) = 0 for
i ≥ 2. �

Now we are going to give an explicit computation of the lower degree homology groups
of HA,B.

Given groups G1, G2, G3, . . . and maps ϕi,i+1 : Gi → Gi+1, we denote by lim−→(Gi, ϕi,i+1)
its inductive limit, and the maps ϕi,∞ : Gi → lim−→(Gi, ϕi,i+1) the canonical ones.

We write by ZA the abelian group given by the inductive limit lim−→(ZE0
A , ϕA

i,i+1), where

the maps ϕA
i,i+1 : ZE0

A → ZE0
A are given by 1v 7→

∑
w∈E0

A
|vE1

Aw|1w =
∑

w∈E0
A
Av,w1w.

Proposition 2.2. Let N ∈ N∪{∞}, and let A and B be two N ×N row-finite matrices
with integer entries, and such that Ai,j ≥ 0 for all i and j. Then there exists a group
isomorphism ΦA : H0(HA,B)→ ZA given by the map

[1Z(α,0,α;Z(α))] 7→ ϕA
n,∞(1v) ,

where α ∈ En
A and r(α) = v.

Proof. Let ΦA : H0(HA,B)→ ZA be the above defined map. First recall that the boundary

map δ1 : Cc(HA,B,Z) → Cc(H(0)
A,B,Z) sends 1Z(α,m,β;Z(α)) 7→ 1Z(β,0,β;Z(β)) − 1Z(α,0,α;Z(α))

for α, β ∈ E∗A with |α| = |β| and r(α) = r(β), and m ∈ Z. Therefore [1Z(α,0,α;Z(α))] =
[1Z(β,0,β;Z(β))] ∈ H0(HA,B) whenever |α| = |β| and r(α) = r(β). But now given α ∈ En

A
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with r(α) = v we have that

ϕA
n,∞(1v) = ΦA([1Z(α,0,α;Z(α))]) = ΦA

 ∑
β∈vE1

A

[1Z(αβ,0,αβ;Z(αβ))]


=
∑
β∈vE1

A

ΦA

(
[1Z(αβ,0,αβ;Z(αβ))]

)
=
∑
β∈vE1

A

ϕA
n+1,∞(1r(β))

= ϕA
n+1,∞

∑
w∈E0

A

|vE1
Aw|1w

 = ϕA
n,∞(1v) .

This shows that ΦA is well-defined but also its inverse map Φ−1
A , so ΦA is an isomor-

phism. �

We write by ZB the abelian group given by the inductive limit lim−→(ZE0
A , ϕB

i,i+1), where

the maps ϕB
i,i+1 : ZE0

A → ZE0
A are given by 1v 7→

∑
w∈E0

A
Bv,w1w.

Proposition 2.3. Let N ∈ N∪{∞}, and let A and B be two N ×N row-finite matrices
with integer entries, and such that Ai,j ≥ 0 for all i and j. Then there exists a group
isomorphism ΦB : H1(HA,B)→ ZB given by the map

[1Z(α,1,α;Z(α))] 7→ ϕB
n,∞(1v)

where α ∈ En
A and r(α) = v.

Proof. Let ΦB : H1(HA,B)→ ZB be the above defined map. First recall that the boundary

map δ2 : Cc(H(2)
A,B,Z)→ Cc(HA,B,Z) sends

1Z(α,m,β;Z(α))×Z(β,n,γ;Z(γ)) 7→ 1Z(β,n,γ;Z(γ)) − 1Z(α,n+m,γ;Z(γ)) + 1Z(α,m,β;Z(β))

for α, β, γ ∈ E∗A with |α| = |β| = |γ| and r(α) = r(β) = r(γ), and m,n ∈ Z. In
particular we have that

[1Z(α,m,β;Z(β))] = [1Z(α,m,α;Z(α))]− [1Z(α,0,β;Z(β))] ,

[1Z(α,m,β;Z(β))] = [1Z(β,m,β;Z(α))]− [1Z(β,0,α;Z(α))] ,

[1Z(α,0,β;Z(β))] = [1Z(α,0,γ;Z(γ))] + [1Z(γ,0,β;Z(β))] ,

in Cc(HA,B,Z)/im(δ2), from where we can deduce that

[1Z(α,0,α;Z(α))] = 0

[1Z(α,0,β;Z(β))] = −[1Z(β,0,α;Z(α))] ,

[1Z(α,m,α;Z(α))] = [1Z(β,m,β;Z(β))] ,

[1Z(α,m,α;Z(α))] = m · [1Z(α,1,α;Z(α))] .

in Cc(HA,B,Z)/im(δ2). Let α, β ∈ En
A with r(α) = r(β), then we have that

Z(α, 1, β;Z(β)) =
⊔

e∈r(α)E1
A

Z(ακ1(e), ϕ(1, e), βe;Z(βe)) .
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Now let f ∈ Cc(HA,B,Z) with δ2(f) = 0, then by the above we can assume that

f =
k∑
i=1

λi · 1Z(αi,mi,βi;Z(βi)) ,

with αi, βi ∈ En
A for some n ∈ N, and mi ∈ Z. For every v ∈ E0

A we choose a αv ∈ En
A

with r(αv) = v, then by the above relations we can assume that

f =
∑
v∈E0

A

λv1Z(αv ,1,αv ;Z(αv)) +
∑
v∈E0

A

∑
γ∈En

A v\{αv}

ξγ1Z(γ,0,αv ;Z(αv)) .

But then

δ2(f) = δ2

∑
v∈E0

A

∑
γ∈En

A v\{αv}

ξγ1Z(γ,0,αv ;Z(αv))


=
∑
v∈E0

A

∑
γ∈En

A v\{αv}

ξγ
(
1Z(αv ,0,αv ;Z(αv)) − 1Z(γ,0,γ;Z(γ))

)
= 0 ,

but this implies that ξγ = 0 for every γ ∈ En
A. Thus we can assume that

f =
∑
v∈E0

A

λv1Z(αv ,1,αv ;Z(αv)) .

Then if for every w ∈ E0
A we choose βw ∈ En+1

A with r(βw) = w, and because of∑
e∈vE1

Aw
ϕ(1, e) = Bv,w, we have that

ϕB
n,∞

∑
v∈E0

A

λv1v

 = ΦB([f ]) = ΦB

∑
v∈E0

A

λv1Z(αv ,1,αv ;Z(αv))


= ΦB

∑
v∈E0

A

λv
∑
w∈E0

A

∑
e∈vE1

Aw

1Z(αvκ1(e),ϕ(1,e),αve;Z(αve))


= ΦB

∑
v∈E0

A

λv
∑
w∈E0

A

∑
e∈vE1

Aw

[
1Z(βw,ϕ(1,e),βw;Z(βw))

]
= ΦB

∑
v∈E0

A

λv
∑
w∈E0

A

∑
e∈vE1

Aw

ϕ(1, e)
[
1Z(βw,1,βw;Z(βw))

]
= ΦB

∑
v∈E0

A

λv
∑
w∈E0

A

Bv,w
[
1Z(βw,1,βw;Z(βw))

]
= ϕB

n+1,∞

∑
v∈E0

A

λv
∑
w∈E0

A

Bv,w1w

 .

Now let α ∈ En
A and let m ∈ Z. Then Z(α,m, α;Z(α)) = Z(α, 0, α;Z(α)) if and only if

for every x ∈ Z(r(α)) there exists k ∈ N such that Bx|k = 0 if and only if ϕB
n,∞(1r(α)) = 0.
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Therefore, ΦB is a well-defined map. Clearly ΦB is an surjective map, and injectivity
follows since by the above argument the inverse map Φ−1

B is also well-defined. �

Now using Lemma 1.4 we have the following long exact sequence

(2) 0 H0(GA,B)oo H0(GA,B ×ρ Z)oo H0(GA,B ×ρ Z)
I−ρ̂1oo oo

H1(GA,B)oo H1(GA,B ×ρ Z)oo H1(GA,B ×ρ Z)
I−ρ̂1oo H2(GA,B)oo 0 ,oo

and Hi(GA,B) = 0 for i ≥ 3.
It is then enough to describe the action ρ̂ : Z y Hi(GA,B ×ρ Z)) for i = 0, 1. Observe

that Y := G(0)
A,B×{0} is a full open subset, and that (GA,B×ρZ)Y ∼= HA,B. Then for every

x ∈ Hi(GA,B×ρZ) there exists f ∈ Cc(H(i)
A,B,Z) such that [f ] = x in Hi(GA,B×ρZ), so the

assignment x → [f ] gives the group isomorphism Ψ : Hi(GA ×ρ Z) → Hi(HA,B). Then
the action ρ̃ : Z y Hi(HA,B) is defined as the unique action that makes the diagram

Hi(GA,B ×ρ Z)
ρ̂1 //

Ψ
��

Hi(GA,B ×ρ Z)

Ψ
��

Hi(HA,B)
ρ̃1 // Hi(HA,B)

commutative.

Proposition 2.4. Let N ∈ N∪{∞}, and let A and B be two N ×N row-finite matrices
with integer entries, and such that Ai,j ≥ 0 for all i and j. Then ΦA ◦ ρ̃1 ◦Φ−1

A : ZA → ZA

is given by ϕA
i,∞(x)) 7→ ϕA

i+1,∞(x) for every x ∈ ZN . Moreover, ΦB ◦ ρ̃1 ◦ Φ−1
B : ZB → ZB

is given by ϕB
i,∞(x) 7→ ϕB

i+1,∞(x) for every x ∈ ZN .

Proof. First recall that the homeomorphism ρ̂1 : GA,B ×ρ Z → GA,B ×ρ Z is given by
g×{k} → g×{k+1} for g ∈ GA,B and k ∈ Z. Now let Z(α,m, β;Z(β))×{0} be a clopen
bisection of (GA,B×ρ Z)Y ∼= HA,B, then ρ̂1(Z(α,m, β;Z(β))×{0}) = Z(α,m, β;Z(β))×
{1} ⊆ GA,B ×ρ Z, so the induced map

ρ̂1 : Cc(HA,B,Z)→ Cc(GA,B×ρZ,Z) is given by 1Z(α,m,β;Z(β))×{0} 7→ 1Z(α,m,β;Z(β))×{1} .

Thus, we need to find the equivalent function of 1Z(α,m,β;Z(β))×{1} in Cc(HA,B,Z). First
observe that

ρ̂1 : Cc(H(0)
A,B,Z)→ Cc((GA,B×ρZ)(0),Z) is given by 1Z(α,0,α;Z(α))×{0} 7→ 1Z(α,0,α;Z(α))×{1} ,

and that given any β ∈ E1
A with s(α) = r(β) we have that

δ1(1Z(βα,0,α;Z(α))×{0}) = 1Z(α,0,α;Z(α))×{1} − 1Z(βα,0,βα;Z(α))×{0} ,

so
[
1Z(α,0,α;Z(α))×{1}

]
=
[
1Z(βα,0,βα;Z(α))×{0}

]
in H0(GA,B ×ρ Z). Then,

ρ̃1(Φ−1
A (ϕA

i,∞(1v))) = ρ̂
([

1Z(α,0,α;Z(α))×{0}
])

=
[
1Z(α,0,α;Z(α))×{1}

]
=
[
1Z(βα,0,βα;Z(βα))×{0}

]
= Φ−1

A

(
ϕA
i+1,∞(1v)

)
,

as desired.
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Now, on the other hand given any α ∈ En
A and any β ∈ E1

A with r(β) = s(α), we can
define the functions in Cc((GA,B ×ρ Z)(2),Z)

f1 = 1(Z(α,1,α;Z(α))×{1})×(Z(α,0,βα;Z(βα))×{1}) ,

f2 = 1(Z(βα,0,α;Z(α))×{0})×(Z(α,1,βα;Z(βα))×{1}) ,

f3 = 1(Z(βα,0,α;Z(α))×{0})×(Z(α,0,βα;Z(βα))×{1}) ,

f4 = 1(Z(βα,0,βα;Z(βα))×{0})×Z(βα,0,βα;Z(βα))×{0} ,

that satisfy

δ2(f1 − f2 + f3 + f4) = 1Z(α,1,α;Z(α))×{1} − 1Z(βα,1,βα;Z(βα))×{0} .

Then,

ρ̃1(Φ−1
B

(
ϕB
i,∞(1v)

)
) = ρ̂1

([
1Z(α,1,α;Z(α))×{0}

])
=
[
1Z(α,1,α;Z(α))×{1}

]
=
[
1Z(βα,1,βα;Z(βα))×{0}

]
= Φ−1

B

(
ϕB
i+1,∞(1v)

)
,

as desired.
�

Theorem 2.5. Let N ∈ N ∪ {∞}, and let A and B be two N × N row-finite matrices
with integer entries, and such that Ai,j ≥ 0 for all i and j. Then

H0(GA,B) ∼= coker(I− A) H1(GA,B) ∼= ker(I− A)⊕ coker(I− B)

H2(GA,B) ∼= ker(I− B) , Hi(GA,B) = 0 for i ≥ 3 .

Therefore, GA,B satisfies the (HK) conjecture.

Proof. By Lemma 1.4 we have the long exact sequence

0 H0(GA,B)oo H0(GA,B ×ρ Z)oo H0(GA,B ×ρ Z)
I−ρ̂1oo H1(GA,B)oo · · ·oo

· · · Hn(GA,B)oo Hn(GA,B ×ρ Z)oo Hn(GA,B ×ρ Z)
I−ρ̂1oo Hn+1(GA,B)oo · · ·oo

,

where ρ̂1 is the induced map by the action ρ̂ : Z y G ×ρ Z. Since by Lemma 1.3
the groupoids HA,B and GA,B ×ρ Z are Kakutani equivalent, then Lemma 2.1 says that
Hi(GA,B ×ρ Z) = 0 for i ≥ 2. Then we have the following long exact sequence

0 H0(GA,B)oo H0(GA,B ×ρ Z)oo H0(GA,B ×ρ Z)
I−ρ̂1oo oo

H1(GA,B)oo H1(GA,B ×ρ Z)oo H1(GA,B ×ρ Z)
I−ρ̂1oo H2(GA,B)oo 0oo

,

and Hi(GA,B) = 0 for i ≥ 3. But by Proposition 2.4 and [18, Lemma 7.15] we have that
that

ker(I− ρ̂1 : H0(GA,B ×ρ Z)→ H0(GA,B ×ρ Z)) ∼= ker(I− A) ,

coker(I− ρ̂1 : H0(GA,B ×ρ Z)→ H0(GA,B ×ρ Z)) ∼= coker(I− A) ,

ker(I− ρ̂1 : H1(GA,B ×ρ Z)→ H1(GA,B ×ρ Z)) ∼= ker(I− B) ,

coker(I− ρ̂1 : H1(GA,B ×ρ Z)→ H1(GA,B ×ρ Z)) ∼= coker(I− B) .
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Since ker(I−A) and ker(I−B) are free abelian groups, then the exact sequence splits
in the short exact sequences

0 −→ coker(I− A) −→ H0(GA,B) −→ 0 ,

0 −→ coker(I− B) −→ H1(GA,B) −→ ker(I− A) −→ 0 ,

0 −→ H2(GA,B) −→ ker(I− B) −→ 0 ,

as desired.
�

Remark 2.6. We would like to point out that the exact sequences at the end of the proof
of Theorem 2.5 are the same that one gets when using the spectral sequence described
in [13] as this was our initial strategy. But now our proof uses a more primitive but
intuitive method in homological algebra, without an extra cost in the computations.

Corollary 2.7. Let N,N ′ ∈ N, and let A ,B ∈ MN(Z) and A′ ,B′ ∈ MN ′(Z), such that
Ai,j,A

′
i,j ≥ 0 for all i and j. Suppose that GA,B and GA′,B′ are Kakutani equivalent. Then

ker(I− A) ∼= ker(I− A′) and ker(I− B) ∼= ker(I− B′).

Example 2.8. Let A = (2) and B = (1), and let

A′ =

(
2 1
1 2

)
and B′ =

(
0 0
0 0

)
,

then we have that GA,B and GA,B are minimal, Hausdorff, effective and purely infinite
étale groupoids with compact unit space, and

K0(C∗(GA,B)) = K0(C∗(GA′,B′)) ∼= Z and K1(C∗(GA,B)) = K1(C∗(GA′,B′)) ∼= Z ,

so OA,B and OA′,B′ are stable isomorphic. But then by Theorem 2.5 we have that

H0(GA,B) = 0 , H1(GA,B) ∼= Z and H2(GA,B) ∼= Z ,

while

H0(GA′,B′) ∼= Z , H1(GA′,B′) ∼= Z and H2(GA′,B′) = 0 ,

and therefore GA,B and GA′,B′ cannot be Kakutani equivalent. In particular, does not
exists any diagonal preserving isomorphism between the stabilizations of OA,B and OA′,B′

(see for example [7, Theorem 3.12]).
In a private correspondence, Enrique Pardo showed me how to prove using [4] that

the isotropy groups of GA,B are isomorphic either to 0 or Z. Therefore, homology is the
invariant that distinguishes the equivalence classes of these groupoids.

3. Final remarks

In this final section we will use the previous computations on the homology of the
groupoid GA,B to give examples of groupoids with prescribed homology and satisfying
the (HK) conjecture, whose associated groupoid C∗-algebra falls in a classifiable class.

Lemma 3.1. Let N ∈ N ∪ {∞}, and let A and B be two N × N row-finite matrices
with integer entries, and such that Ai,j ≥ 0 for all i and j, and |Bi,j| < Ai,j for every
(i, j) ∈ ΩA and EA is acyclic. Then the groupoid GA,B is principal,
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Proof. Let g = [α,m, β; βx] ∈ GA,B with r(g) = s(g) = βx. Since EA is acyclic we can
assume that α = β. Then r(g) = s(g) = βx if and only if κm(x) = x. Now by [5, Lemma

18.4] given x ∈ E∞A and m ∈ Z, κm(x) = x if and only if m
Bx|l
Ax|l
∈ Z for every l ∈ N. But

then by hypothesis it is clear that for every x ∈ E∞A and m ∈ Z there exists l ∈ N such

that m
Bx|l
Ax|l

/∈ Z. �

By a Bratteli diagram (V,E), we mean a vertex set V , which is the union of finite
non-empty sets V0, V1, . . ., with V0 = {v0}, and edge set E, which is the union of finite
non-empty sets E1, E2, . . ., such that the source and range maps restrict s : En → Vn−1

and r : En → Vn for n ≥ 1. In particular, a Bratteli diagram is a directed graph such
that the associated incidence matrix A is row-finite. Moreover, if A is the incidence
matrix of the Bratteli diagram we have that coker(I − A) is the K0 of the associated
AF -algebra and ker(I− A) = 0.

Remark 3.2. Given a simple, acyclic dimension group G0, and any dimension group G1

one can find Bratteli diagrams (V,E) and (W,F ) such that the associated AF -algebras
have K0 groups G0 and G1 respectively. Since G0 is a simple dimension group, we can
assume that between every vertex at some level Vn and any other vertex at Vn+1 there
exists at least one edge. Let A be the adjacency matrix of (V,E) and let B be the
adjacency matrix of (W,F ). Telescoping and out-splitting (V,E) we can assume that
|Bi,j| < Ai,j for every (i, j) ∈ ΩA (see for example [17, page 1368]).

Proposition 3.3. Let G0 be a simple, acyclic dimension group, and let G1 be any
dimension group. Then there exist N ∈ N ∪ {∞} and N ×N row-finite matrices A and
B with natural entries, such that GA,B is an amenable, Hausdorff, principal, minimal
étale groupoid with

H0(GA,B) ∼= K0(C∗(GA,B)) ∼= G0 , H1(GA,B) ∼= K1(C∗(GA,B)) ∼= G1 ,

and Hi(GA,B) = 0 for i ≥ 2. In particular, C∗(GA,B) is a simple AT-algebra.

Proof. Let us consider A and B as explained in Remark 3.2. Then GA,B is an amenable,
Hausdorff and minimal groupoid groupoid [5, Section 18], and by Lemma 3.1 it is also
principal. The homology is computed in Theorem 2.5, so we only need to see that
C∗(GA,B) is an AT-algebra. Let (V,E) be the Bratteli diagram with incidence matrix A,
and let V =

⊔
i≥0 Vi be the level decomposition of the diagram. Then given n ∈ N we

define
GA,B,n = {[α, n, β;x] ∈ GA,B : r(α) = r(β) ∈ Vn} ,

with the subspace topology. It is an open subgroupoid of GA,B and we have that GA,B =⋃∞
n=0 GA,B,n. Given v ∈ E0

A, let uv be the partial unitary 1Z(v,1,v) ∈ C∗(GA,B). Then
we have that C∗(GA,B,n) ∼=

⊕
v∈Vn Mnv(C(spec(uv))) ⊗ C(Z(v)) where nv = ]{α ∈ EA :

r(α) = v}, which is an AT-algebra. Then by [16, Proposition 1.9] we have that C∗(GA,B,n)

is a subalgebra of C∗(GA,B), and hence C∗(GA,B) =
⋃
n≥0C

∗(GA,B,n), whence C∗(GA,B) is
an AT-algebra.

�

Remark 3.4. The groupoids in Proposition 3.3 and [17] look very similar in the way
they are constructed. However, the author does not know whether K0(C∗(GA,B)) and
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G0 are isomorphic as ordered groups. The map λ : H0(GA,B) → K0(C∗(GA,B)) given by
[1Z(v)] → [pv] for every v ∈ E0

A, is a group isomorphism ([10, Proposition 2.6]), but is
unclear if it is an isomorphism of ordered groups.

For the rest of the section we will assume that A and B are the incidence matrices of
two Bratteli diagrams (V,E) and (W,F ) respectively, defined in Remark 3.2, satisfying
that |Bi,j| < Ai,j for every (i, j) ∈ ΩA.

In general, the unit space of the groupoid GA,B is not compact, and hence C∗(GA,B)

is not a unital C∗-algebra. We can define the groupoid G̃A,B := (GA,B)Z(v0) where v0 is

the initial vertex of the Bratteli diagram (V,E). Then the groupoid G̃A,B is amenable,
Hausdorff, principal, minimal and étale, and has a compact unit space homeomorphic

to Z(v0). Moreover, since Z(v0) ⊆ G(0)
A,B is GA,B-full, we have that GA,B and G̃A,B are

Kakutani equivalent, whence Hi(GA,B) ∼= Hi(G̃A,B) for i ≥ 0, and C∗(G̃A,B) is a unital
AT-algebra Morita equivalent to C∗(GA,B).

Given a groupoid G with compact unit space G(0), we denote by M(G) the set of
probability measures µ of G(0) such that given any bisection U ⊆ G we have that
µ(s(U)) = µ(r(U)).

Lemma 3.5. Let A and B be the incidence matrices of two Bratteli diagrams (V,E) and
(W,F ) respectively, satisfying that |Bi,j| < Ai,j for every (i, j) ∈ ΩA. Then M(G̃A,B) =

M(G̃A,0).

Proof. Clearly M(G̃A,B) ⊇ M(G̃A,0). On the other hand given η ∈ M(G̃A,0), α ∈ E∗A
with s(α) = v0, and m ∈ Z, we have that η(Z(α)) = η(Z(κm(α))) because the bisection
U = Z(κm(α), 0, α;Z(α)) ⊆ G̃A,0 is such s(U) = Z(α) and r(U) = Z(κm(α)). �

Every µ ∈ M(G) induces a trace µ ◦ E on C∗r (G) (viewing µ as a state of C(G(0))),
where E : C∗r (G) → C(G(0)) is the canonical conditional expectation. Moreover, if G is
a principal groupoid every trace τ of C∗r (G) satisfies τ ◦ E = τ (see [9, Lemma 4.3] for
example). Observe that given two different µ1, µ2 ∈ M(G) induce two different traces
µ1 ◦E and µ2 ◦E of C∗r (G). Therefore, we have bijection between M(G) and T (C∗r (G)),
the traces of C∗r (G).

Then given row-finite matrices A and B, there is a bijection between T (C∗(G̃A,0)) and

M(G̃A,B). But C∗(G̃A,0) is a simple unital AF -algebra, and hence by [1] and Proposition

3.3 for each metrizable Choquet simplex ∆ there exists A such that T (C∗(G̃A,0)) is
homeomorphic to ∆.

Finally, we present a last example of a minimal, purely infinite étale groupoid with
a prescribed homology. The example covers partially the result of Li and Renault [9,
Lemma 5.5].

Proposition 3.6. Let G0 be a simple, acyclic dimension group, and let G1 be any
dimension group. Then there exist an amenable, Hausdorff, effective, purely infinite,
minimal étale groupoid G with unit space homeomorphic to the Cantor space and isotropy
groups isomorphic either to 0 or to Z, that satisfies the (HK) conjecture, and with

K0(C∗(G)) ∼= H0(G) ∼= G0 and K1(C∗(G)) ∼= H1(G) ∼= G1 .

Proof. Let A and B be from Proposition 3.3, and let G̃A,B, that is a principal étale

groupoid, with G̃(0)
A,B homeomorphic to the Cantor space, and with H0(G̃A,B) ∼= G0 and
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H1(G̃A,B) ∼= G1. Now let G∞ be any graph groupoid such that C∗(G∞) ∼= O∞, that is

an amenable, Hausdorff, minimal, effective and purely infinite étale groupoid, with G(0)
∞

homeomorphic to the Cantor space and isotropy groups isomorphic to either 0 or Z. It
is computed in [3] that H0(G∞) ∼= Z and Hi(G∞) = 0 for i ≥ 1. Then the groupoid
G := G̃A,B × G∞ is an amenable, Hausdorff, minimal, effective and purely infinite, with
G(0) homeomorphic to the Cantor space and isotropy groups isomorphic to either 0 or
Z, and by [15, Theorem 2.4 & Theorem 2.8] the rest of the statement follows. �

The groupoids constructed in the above Proposition have much simple isotropy groups
than the general groupoids GA,B [4]
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