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Abstract—Cloud computing is a major breakthrough in en-
abling multi-user scalable web services, process offloading and
infrastructure cost savings. However, public clouds impose high
network latency which became a bottleneck for real time appli-
cations, such as mobile augmented reality applications. A widely
accepted solution is to move latency sensitive services from the
centralized cloud to the edge of the internet, close to service
users. An important prerequisite for deploying applications at
the edge is determining initial required edge capacity. However,
little has been done to provide reliable estimates of required
computing capacity under Quality-of-Service (QoS) constraints.
Differently from previous works that focus only on applications’
CPU usage, in this paper, we propose a novel, queuing theory
based edge capacity planning solution for real-time compute-
intensive applications that takes into account usage of both
CPU and GPU. Our solution satisfies the QoS requirements
in terms of response delays, while minimizing the number of
required edge computing nodes, assuming that the nodes are with
fixed CPU/GPU capacity. We demonstrate the applicability and
accuracy of our solution through extensive evaluation, including a
case study using real-life applications. The results show that our
solution maximizes the resource utilization through intelligent
combinations of service requests, and can accurately estimate
the minimal amount of CPU and GPU capacity required for
satisfying the QoS requirements.

Index Terms—Capacity planning, queuing theory, edge com-
puting, GPU, augmented reality

I. INTRODUCTION

In recent years public cloud computing became highly
attractive to application developers by providing virtually
unlimited and highly available computing resources on de-
mand. However, the centralization of computing capacity has
certain drawbacks. For example, the round-trip time between
a centralized cloud and a mobile client is relatively high,
ranging from hundred milliseconds to seconds [13]. The high
delay makes it challenging to satisfy the QoS requirements
for real-time applications, such as mobile Augmented Reality
(AR) and autonomous driving. To satisfy the QoS require-
ments in terms of the tolerable response delays, researchers
proposed to deploy real time applications at the edge of the
internet [22]. Researchers also proved that moving latency
sensitive computation to the edge fulfills the most demanding
QoS requirements [10], [19].

A typical example of an edge node is a small computing
device located in wireless access networks. With an increasing
demand for compute-intensive multimedia data processing in
real time, in addition to central processing units (CPU) an
edge node typically contains also graphics processing units
(GPU). The diversity of processors increases the complexity
of edge capacity planning. A new type of resource (GPU in this
case) must be taken into account in both theoretical capacity
planning models and simulators used for capacity estimation.

Numerous research efforts were made for task schedul-
ing [15], and offloading and mobility management [16] for
edge clouds. However, research on edge capacity planning is
still very limited, especially considering diverse computing
resources, such as CPU and GPU. Present works on public
cloud capacity planning [2], [4], [11] considered only the
CPU utilization. Besides, regarding the methods of capacity
planning, benchmarking was commonly used in previous
works [8], [17]. While benchmarking can be applied to the
capacity planning of multiple resources, it requires extensive
simulations whenever QoS requirements change or a new
functionality is introduced to the application in question.

In this work, we propose an edge capacity planning solution
that takes into account both CPU and GPU usages for different
types of applications. Our solution aims at minimizing the
required number of edge nodes under QoS constraints, as-
suming that each edge node is with fixed CPU/GPU capacity.
We classify computing tasks (e.g. detecting objects in a photo)
generated by service requests into 3 resource utilization types
based on their levels of demand for CPU/GPU resources.
Instead of benchmarking, we apply queuing theory, more
specifically, the M/M/k model, to estimate the edge node
counts for different combinations of task categories and QoS
constraints. We evaluate the applicability and accuracy of our
solution through a case study using real-life applications.

Contributions of this work are threefold:

1) We formulate the problem of QoS-oriented capacity
planning as an estimation of minimal edge node counts
with fixed CPU/GPU capacity each, and show how to
apply the M/M/k model to minimize the node counts
while satisfying the QoS requirements.



TABLE I
RESOURCE DEMAND AND QOS REQUIREMENTS FOR SYSTEM’S TASK CATEGORIES. LOW/MEDIUM/HIGH UTILIZATION: <20% / 20∼70% / >70%;

LOW/MEDIUM/HIGH LATENCY: <500MS / 500MS∼2S / >2S;

Task category Resource demand obtained via profiling Resource
utilization Type

Mean required
response delay

/ task
execution time

Expected
requests

frequency λ
( 1
s

)
CPU utilization GPU utilization Net. latency

Localization high high high 1 5s 0.2
Object recognition low high low 2 250ms 2
Video streaming from
server to client (Streaming) low - medium 3 1s / 60s 1

300

Search medium - medium 3 1s 0.2
Browsing low - medium 3 1s 0.2

2) We propose to utilize weighted average approach for
accurately estimating edge node counts when several
tasks of different categories are executed in parallel.

3) We validate accuracy of the proposed solution by com-
paring the performance of applications between different
edge capacity plans. The results prove that our solution
can estimate the minimal edge node counts with high
accuracy.

The rest of the paper is structured as follows: we highlight
the motivation of this work and introduce the M/M/k model
in Section II. We then introduce the design of the proposed
capacity estimation model and the node count estimation al-
gorithm, followed by its implementation details in Section III.
We illustrate the evaluation of the proposed methods and tools
in Section IV. We summarize the related work in Section V
and discuss the limitations and future studies in Section VI.
Finally, Section VII concludes the paper.

II. MOTIVATION AND SYSTEM MODEL

In this paper we consider a scenario of a practical AR
based navigation and information system. Its main function-
ality includes positioning and navigation services, providing
textual and video content to a user, and detecting real world
objects in AR view. In this scenario, venue visitors use a
mobile application to navigate indoors and to get relevant real-
time information about nearby points of interest through an
AR view. Table I summarizes the core system functionality
including the following task categories:

1) Localization, where a server computes an indoors loca-
tion of a person by processing a supplied query photo.
This task involves heavy computer vision based process-
ing and requires both CPU and GPU resources [6].

2) Object recognition, where a server recongnizes objects
in the images captured and supplied by a user. Typically
object recognition is done on a video feed, meaning
that a new image for recognition is supplied in almost
real time. GPU-based Convolutional Neural Network
(CNN) implementations are used in order to achieve
required accuracy and low response delays. Thus, this
task category heavily utilizes GPU resources.

3) Video streaming from a server to a client, which is used
to e.g. show videos about the recognised objects and
typically requires substantial network resources.

4) Content search to issue queries against an information
database. Typically it shows moderate CPU usage.

5) Web browsing for serving static information to a user.

Throughout the paper we will refer to the task categories
by their names written in italics. Every task category has
different resource and QoS requirements. For example, real-
time object recognition cannot tolerate a mean response delay
longer than 250ms, localization requests must be fulfilled
within 5 seconds, and browsing and search requests should not
take longer than a second. Streaming should also start within a
second after a streaming request is received. In certain systems
same task categories may require different QoS. For example,
certain search queries must be completed faster than others or
have a different expected request frequency. In this case, each
different set of QoS requirements would result in a new task
category, e.g. Regular Search and Fast Search.

Several challenges must be solved before deploying such a
system. Firstly, the algorithms for processing localization and
object recognition tasks are highly compute-intensive, and re-
quire both CPU and GPU resources. Secondly, the system must
satisfy strict QoS requirements in terms of response delays.
Finally, it must ensure high QoS for multiple simultaneous
users. To solve the aforementioned challenges, accurate edge
capacity planning must be conducted to satisfy required QoS
requirements, and to minimize edge acquisition costs before
deploying the application.

We formulate the edge capacity planning problem as an
optimization problem that minimizes the required amount
of edge nodes with fixed CPU/GPU capacity each while
satisfying QoS requirements of the system to be deployed. We
define two types of edge computing nodes. One is equipped
with CPU only, while the other provides both CPU and GPU
resources. We assume identical CPU capacity for both types of
edge nodes. The GPU capacity is also identical for the second
type of nodes.

We propose to use queuing theory for edge node count
estimation. This prevents extensive benchmarking and helps to
implement a more general capacity planning solution. Queuing



Fig. 1. Edge layer structure. All the user requests first arrive at the load
balancer, before they are assigned to any edge node for task execution.
Transmission latency between edge nodes is negligible, and commonly a
request size is � memory size of the load balancer.

theory has been widely applied in computing and telecommu-
nications fields [9], [14]. A typical queuing model consists
of 4 parameters: 1) requests arrival process, 2) processing
times distribution (service process), 3) number of processors or
servers, and 4) queuing buffer size and type [24]. Arrival and
service processes usually follow Poisson [12] (exponential)
distribution (denoted by M), deterministic model (denoted by
D) or general distribution (denoted by G). The third parameter,
usually denoted by k, defines the number of processors. In our
case k represents the number of edge nodes. The buffer size
defined by the fourth parameter can be either finite or infinite.

In our solution, we assume that for each category of
requests, the request arrival rates and request processing times
are exponentially distributed and independent. Therefore, we
select the M/M/k model [24]. In this model, the requests arrival
rates follow a Poisson distribution with parameter λ, and the
service rates follow a Poisson distribution with parameter
µ. The model assumes that when all the nodes are busy,
the incoming requests will be queued in an infinite buffer.
In practice, we propose to implement load balancing on a
dedicated edge node, which acts as an infinite queue (see
Figure 1). The arrival rate λ can be calculated from non-
functional application requirements and historic user behavior
data, such as the number of hourly venue visitors. Table I
indicates request arrival rates (λ) that are obtained from non-
functional system requirements. However, µ is calculated from
service time st, which refers to the time needed to process
a particular request. In practice it is challenging to calculate
the value of st, thus we propose to utilize profiling of the
developed microservices that handle different task categories
to estimate the mean values of st.

As shown in Table I, real-life applications consist of multi-
ple task categories. Therefore, our capacity planning solution
must take into account cases when several users issue different
requests to a server simultaneously. In such cases multiple task
categories are handled in parallel. In our previous work [17],
we showed that executing requests that belong to different task
categories in parallel helps to better utilize edge resources, and
to minimize required node counts. However, we note that such
combinations of task categories must be carefully selected
based on their resource usage patterns.

We empirically define three levels of resource utilization,

Fig. 2. Architecture of the edge capacity planning solution

namely, low(<20%), medium(20∼70%) and high(>70%).
Based on that, we define 3 resource utilization types (or Types
in short) based on the levels of CPU and GPU usages. Every
defined task category belongs to one of the 3 Types:

Type 1 Task categories that require medium or high CPU and
medium or high GPU usage. Processing a single task be-
longing to these categories consumes at least 20% of the
total CPU and GPU capacity of an edge node. Example
task categories include image based localization [6].

Type 2 Task categories that require medium or high GPU usage
but low CPU usage. Processing such types of tasks
requires less than 20% of the total CPU capacity but
needs notably higher percentage of GPU utilization.
Examples include CNN based object recognition [18],
3D graphics rendering and image processing.

Type 3 Task categories that do not require GPU usage. Such
task categories include web browsing, video streaming,
and database search.

In Section III we indicate how such subdivision into Types
is utilized with the proposed queuing model, while in Sec-
tion IV we show the benefits of combining different Types for
minimizing required edge node counts.

III. DESIGN AND IMPLEMENTATION

In this section we present design and implementation of
the proposed edge capacity planning solution. The solution
consists of tools for obtaining resource utilization and estimat-
ing required edge node counts, given the conditions that the
CPU/GPU capacity of a single edge node is fixed and known
beforehand. More specifically, we present 1) a Profiler that is
used to obtain resource requirements for each task category,
and 2) the node count estimation tool, which applies queuing
theory to calculate the total number of edge nodes required
to fulfill the QoS requirements of a system to be deployed.
The output of the Profiler is used as input for the node count
estimation tool (see Figure 2).

A. Profiler

We developed the Profiler by following an approach de-
scribed in [17] to analyze resource usage patterns of each
task category and to determine the mean response delays for



Fig. 3. Sequence diagram of the profiling tools deployed on client and server
nodes

requests of the category. Figure 3 illustrates the working mech-
anism of the Profiler tool. It executes on both client and server
sides. Let us assume that the system must support a set of
task categories Ti, i ∈ [1, n]. Each task category has different
demands for CPU and GPU resources. First, microservices that
handle requests belonging to different task categories have to
be deployed on a server (i.e. an edge node), where the profiling
will take place. Alongside the microservices, we also deploy
the server-side profiling tool that records resource usages on
the server side. On a client (e.g. mobile device), we deploy
the client-side profiling tool that issues requests to the server
and obtains usage data after the requests are completed. In this
way, the server-side tool can accurately profile the CPU and
GPU usages with negligible interference from the client-side
tool. Differently from the previous work [17], our tool also
measures the service time spent on processing requests that
belong to different task categories sti(s), i ∈ [1, n]. Note that
the measurement of response delay includes also the network
latency. In order to obtain the most accurate results the Profiler
should run on the same types of edge nodes which will later
be used to deploy the system.

B. Node count estimation with queuing theory

The node count estimation algorithm is the key part of
the node count estimation tool and comprises two parts: (1)
estimating the number of edge nodes required for handling
different combinations of tasks that all belong to the same
Type (i.e. Type 1, 2 or 3), and (2) estimating the total number
of edge nodes required for supporting all combinations of tasks
belonging to different types of task categories, in other words
for supporting the overall application in question.

1) Node counts for task combinations: We start with dif-
ferent combinations of tasks that all belong to Type 1. We
calculate the number of required nodes, given a service time st,
mean processing delay Dl, and arrival rate λ. For the selected
M/M/k model we utilize Eq. 1 to calculate the mean response
delay E[D].

E[D] =
Ck(A)

µk − λ
+

1

µ
(1)

Here, Ck(A) is an Erlang C [5] formula where k stands
for node count, A = λ/µ refers to offered traffic, and µ =
1/st is a service rate. Variable λ represents the arrival rate
of requests and is obtained from QoS requirements multiplied
by the number of simultaneous system users. Here we assume
that the number of users using the system is known in advance,
for example from service usage history or from predicted user
flows. However, we allow each task category to define the
expected arrival rate independently. The value of k can be
updated whenever the arrival rates change.

We use the output from the Profiler to find out the mean
completion time (service time) sti for a request of a particular
task category Ti and its CPU and GPU requirements. Assum-
ing that the maximum response delay for i-th task category is
Dli, we ensure that sti < Dli. This means that the particular
edge node can process a task within its maximum tolerable
response delay. We also ensure system stability, where arrival
rate must be lower than service rate, i.e. kµ > λ. Otherwise
it would lead to infinite queues over a long period of time.
Thus, we set the initial k = bλ/µc + 1. Since we need
to take into account required response delays Dli, we must
ensure E[D] ≤ Dl. Therefore we use dimensioning where
we increase k by 1 until the response delay constraints are
satisfied, or kmax = 105 is reached. If kmax is reached, it
means that current servers cannot satisfy the required delay
constraint and the response delay constraint should be relaxed
or a different type of edge nodes must be used. The first k
with which E[D] ≤ Dl represents the required node count.

Similar computations are done with task combinations that
fall into Type 2, where k refers to the number of required
GPU enabled nodes. Task combinations of Type 3 require a
slightly different way to estimate k. For Type 3 we may have
several CPU intensive tasks that are executed simultaneously.
Thus, in order to use Eq. 1, we need to calculate new service
rates (µ) and arrival rates (λ). In this work we adopt the
weighted average approach. We assume that the service would
be running for an arbitrary long period of time T , where
different task categories have service times sti and arrival rates
λi, i ∈ [1..n]. In this case we can calculate a mean service
time E[st] with Eq. 2.

E[st] =

∑n
i=1 λiTsti∑n
i=1 λiT

=

∑n
i=1 λisti∑n
i=1 λi

(2)

We obtain mean service rate E[µ] = 1/E[st] and calculate
mean arrival rate E[λ] with the same assumptions using Eq. 3.

E[λ] =

∑n
i=1 λiT

T
=

n∑
i=1

λi (3)

Note that Eq. 2 and Eq. 3 also apply if there is only
one task category. Based on these equations we design and
implement Algorithm 1 to calculate the required node counts
for combinations of task categories that all belong to a single



Type (i.e. Type 1, 2, or 3). The algorithm takes task category
combinations, arrival rates and required QoS in terms of
response delays as input and for each combination estimates
the number of required nodes.

Algorithm 1 Calculation of the number of required nodes
Input: Combinations of task categories that belong to the same
Type T , number of combinations n, arrival rates λ, maximum
task response delays Dl
Output: resource usage and server requirements for each task
combination R. k defines the number of required edge nodes
R← [ ] . Results
for i ∈ (0..n) do

Obtain from Profiler sti(s) and usages of CPUi(%),
GPUi(%)

λ←
∑n
j=1 λi,j

st←
∑n

i=1
λi,jsti,j

λ
µ← 1/st . Service rate
A← λ/µ
k ← dλ/µe − 1
E[D]← inf
while E[D] > Dli and k ≤ kmax

k ← k + 1
E[D] = Ck(A)/(µk − λ) + 1/µ . mean response

time
Ri ← (k, st, CPUi, GPUi)

return R

2) Required node count for all tasks: In the previous step
we developed an algorithm to estimate required edge node
counts for different combinations of tasks that all belong to a
single Type. Now we move to the method for estimating the
edge node counts to cover all task categories that belong to
different Types.

A requirement of having a GPU greatly increases the price
of a server. We aim to minimize the overall acquisition costs
of edge nodes, therefore we firstly estimate the number of
GPU enabled nodes needed for the whole system. As shown
in [17], certain types of requests can be combined to improve
resource utilization. We utilize combinations of task types in
the following way: when an edge node is processing tasks that
all belong to the Type 2 task categories, the node’s CPU is
mostly idle and can be used to process tasks that belong to the
Type 3 task categories. However, Type 1 cannot be combined
with other Types, since it would highly influence the response
delays of all the tasks involved. Thus, we first need to estimate
the required node counts for Type 1 requests, followed by Type
2 and finally Type 3 (as those can be combined with Type 2).
We start by obtaining the number of nodes with GPUs for
handling Type 1 tasks, which we denote by C1. Similarly, we
denote the GPU enabled node count for Type 2 tasks by C2.
We utilize a straightforward Eq. 4 to calculate the total number
of required edge nodes that contain GPUs:

CGPU = C1 + C2 (4)

For Type 3, we denote the required node count by C3. Since
Type 3 task categories can be processed together with Type
2 ones on the same nodes, we obtain the number of required
edge nodes that only contain a CPU by Eq. 5.

CCPU = max(0, C2 − C3) (5)

It may happen that we even do not need any additional nodes
to support task categories of Type 3 if we have enough
unutilized CPU processors dedicated for task categories of
Type 2.

Finally the total number of required edge nodes to support
the whole system is obtained with Eq. 6.

Ctotal = CGPU + CCPU (6)

IV. EVALUATION

In this section we evaluate the proposed node count estima-
tion algorithm. We firstly identified how the proposed algo-
rithm estimates response delays for each single task category.
Secondly, we investigated the algorithm performance when
calculating response delays for various task combinations.
Thirdly, we examined how accurately the proposed method
estimates the maximum number of simultaneous users, given
a number of edge nodes. Such evaluations gave us a valuable
insight on the applicability of the M/M/k model and weighted
average approach for node count estimation. Finally, we eval-
uated the developed algorithm while planning the deployment
of a practical real time system.

A. Experiment setup

We evaluated our node count estimation algorithm with the
task categories presented in Table I. The implementation of
each task category is described below.

We implemented the localization functionality by following
the same approach of an image-based indoor localization
system presented in [6]. The object recognition tasks were
performed by utilizing YOLO [18], a real-time CNN based
object detection system. For video streaming we used a Big
Buck Bunny1 video, and streamed it at a rate of 2500kbps.
For search we utilized a full text search within a relational
PostgreSQL2 database filled with 25000 records. Finally, for
the browsing task category we served a 1.5MB web page.
We utilized Docker3 containers to deploy each task cate-
gory. We utilized microservices architecture where every task
category is deployed as a self contained microservice. Such
containerized microservices architecture allows easy scaling
and deployment of the services on any cloud infrastructures.

In this work we focus on edge node count estimation.
Accordingly, we simulated an edge computing environment
within a public cloud, ensuring that the network latency
between two different computing nodes agrees with edge
computing scenario. We utilized Amazon Web Services (AWS)
public cloud and used p2.xlarge instances as server edge

1https://peach.blender.org/
2https://www.postgresql.org/
3https://www.docker.com/what-docker
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Fig. 4. Calculated and measured mean response delays for localization (left)
and browsing (right) requests with different arrival rates λ
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Fig. 5. Calculated and measured mean response delays when browsing and
search requests are processed simultaneously. Fixed browsing arrival rate
(λ = 3) and variable search arrival rate (left). Fixed search arrival rate
(λ = 1.5625) and variable browsing arrival rate (right).

nodes and a c4.xlarge instance as a client. The p2.xlarge
instance contains one NVIDIA K80 GPU, 4 core Intel Xeon
CPU and is amongst the cheapest GPU enabled public cloud
instances. According to [17], multiple low capacity nodes
outperform fewer but more expensive and higher capacity
ones, therefore p2.xlarge was the most suitable instance type
for our system4. The c4.xlarge instance contains 4 core Intel
Xeon CPU but lacks GPU. All instances were in the same
region and availability zone, thus in the same subnet with a
single network hop between any two machines. The average
measured network latency between the machines was less than
a millisecond.

B. Average response delay

As discussed in Section II, we utilized an M/M/k queuing
theory model to estimate the number of edge nodes required
to serve a given number of users while satisfying the QoS
requirements. In order to check whether our assumed model
fits a real world scenario and whether an estimated delay is
within reasonable bounds, we simulated two scenarios. In the
first one, a client is sending requests belonging to a single
task category, either a resource intensive localization or a light
weight browsing request. In the second scenario, the requests
cover a combination of different task categories, such as a
combination of search and browsing requests.

In our experiments, clients continuously sent requests
to the server, waited for an exponentially distributed time
T between subsequent requests. We utilized the python

4The reason to use an instance with higher capacity would only arise, if
the current low-capacity node could not fulfill the required QoS even for a
single request.

TABLE II
NUMBERS OF SIMULTANEOUS USERS SUPPORTED BY DIFFERENT

NUMBERS OF EDGE NODES WHEN PROCESSING LOCALIZATION REQUESTS

Edge node count Estimated No. users Measured No. users
1 5 6
2 12 12
3 19 20

TABLE III
NUMBERS OF SIMULTANEOUS USERS SUPPORTED BY DIFFERENT

NUMBERS OF SERVERS WHEN PROCESSING A COMBINATION OF SEARCH
AND BROWSING REQUESTS

Edge node count Estimated No. users Measured No. users
1 30 32
2 64 65
3 97 101

random.expovariate(λ)5 function to obtain T values.
If a server is already processing a request when a new one
arrives, the newly arrived request is placed into an unbound
first-in-first-out (FIFO) queue. After a server becomes avail-
able, it takes a request from the head of the queue. We
recorded response delays on the client side for each request
until we observed at least 1000 responses. We disregard the
first and last 10% of the requests to prevent errors introduced
by system warm-up and cool-down periods, respectively. We
then calculated a mean response time and compared it with
values calculated with Eq. 1, where k = 1.

Figure 4 compares the estimated and measured response
delays for localization and browsing requests with different
arrival rates. In case of localization the figure clearly shows
that both estimated and measured values follow the same
trend and are reasonably close to each other. However, in
the browsing case we can observe that the measured values
are roughly twice lower than the estimated ones. This can be
explained by analyzing response delays of browsing requests.
During the experiment, the mean response delay was 0.0075
(s = 0.001). Therefore the service time for browsing is closer
to a deterministic distribution rather than an exponential one.
According to Tijms [21], the waiting time probabilities for a
deterministic distribution are roughly half of those of an ex-
ponential distribution. For this particular case we could utilize
an M/D/k queue, however, we note that deterministic service
times may not be common in most applications. Furthermore,
estimated values that show longer response delays provide a
“pesimistic” estimation, which is useful to make sure that our
algorithm provides node count estimates that can fulfill the
worst case scenarios.

A combination of search and browsing tasks was chosen
to evaluate how accurately our proposed algorithm estimates
the response delays when different task categories belonging
to the same type are involved. These task categories have
different service time and QoS requirements. We started a
client that sends requests and waits between subsequent ones
according to two different arrival rates: λbrowsing and λsearch.
For the first case we fixed λbrowsing = 3 and varied λsearch ∈
[0.1 ·λbrowsing, 1.1 ·λbrowsing]. For the second case, we fixed

5https://docs.python.org/2/library/random.html#random.expovariate



λsearch and varied λbrowsing ∈ [0.1 · λsearch, 1.9 · λsearch].
The response delays of both cases are show in Figure 5, which
proves that the estimated and measured response delays for
this task category combination are similar and follow the same
trend.

C. Maximum supported simultaneous users

Before evaluating the accuracy of the node count estimation
algorithm for a given number of simultaneous users, we
conducted a reverse evaluation, where we evaluated how many
simultaneous users a certain number of computing nodes can
support. This allowed us to run simulations more easily and
efficiently as we only needed to reserve a few public cloud
machines. At the same time, it provided useful insight into
the algorithm performance.

We utilized localization tasks and a combination of search
and browsing tasks to check whether the proposed algorithm
accurately estimates the maximum number of simultaneous
users supported by 1, 2 and 3 nodes, respectively. For lo-
calization requests, we fixed the mean service rate at µ =
1.5625 and utilized λ = λlocalization · users count request
arrival rates, where users count represents the number of
simultaneous localization service users. We kept increasing
users count and observed k values estimated by the node
count estimation algorithm. The user counts for different
k values are presented in Table II. In order to obtain an
actual maximum number of supported concurrent users, we
have developed a benchmarking tool by following the same
approach described in [17]. Afterwards we ran the tool to
obtain the numbers of simultaneous users that a system with 1,
2 or 3 servers supports. Table II shows the maximum number
of simultaneous users estimated by our algorithm versus the
maximum number of simultaneous users measured by the
benchmarking tool. As the table shows, there is only a slight
difference between the estimated and measured user counts,
meaning that our algorithm is suitable for estimating node
counts for a single task category. A similar experiment was
conducted with a combination of search and browsing which
are task categories belonging to Type 3. As Table III shows, the
estimation error in the number of users is also small, proving
that the same algorithm can reliably estimate the edge node
counts when multiple task categories are involved.

D. Case study

Finally, we evaluated how well the proposed edge node
count estimation algorithm handles real world use cases by
planning the required capacity for a system composed of
task categories introduced in Table I. For that we utilized
QoS based cloud capacity planning framework from [17]
and substituted node count estimation step with our proposed
algorithm. We also focused solely on edge layer, thus we
omitted a step of classifying task categories for either edge
or public cloud layers. Eventually, we executed the following
steps to plan the required system capacity:

Step 1. We utilized the Profiler to obtain resource usage
patterns of each task category (see Figure 6). We configured

TABLE IV
ESTIMATE OF THE NODE COUNTS REQUIRED BY EACH TASK CATEGORY TO

SUPPORT 13 SIMULTANEOUS USERS.

Resource utilization
type Task categories Required node count

Type 1 (CPU & GPU) Localization 2
Type 2 (GPU) Object recognition 3
Type 3 (CPU) Streaming, search,

browsing
3

the Profiler to run for 30 seconds, which is long enough to
accurately record resource usage patterns.

Step 2. We identified task categories with complementary
resource demands. According to the profiling data (see Fig-
ure 6) all of the task categories required CPU processing but
object recognition and localization additionally made use of
GPU. Regarding object recognition, utilization of processors
was quite steady with a high GPU utilization and a low CPU
utilization, while localization required both high CPU and
high GPU utilization. Therefore we listed localization as Type
1 and object recognition as Type 2 task categories. Other
task categories fell into Type 3, since they required no GPU
processing.

The results suggest, that a node which is running object
recognition can as well serve streaming and browsing requests
in parallel. In case of localization, it falls under Type 1 where
any combinations would influence the request completion
time, thus the localization-related microservices would be
deployed on separate nodes.

Step 3. At this point we determined the number of required
nodes. We executed node count estimation tool with each
combination of task categories as input that belong to the
same type (i.e. Type 1, 2 or 3). We assumed a small scale
scenario where there are at most 13 simultaneous users at a
time. We chose this number to be able to verify algorithm
accuracy with our edge environment that consisted of 6 nodes
(including load balancer). After execution, the node count
estimation tool provided the results shown in Table IV. We
utilized Eq. 4 to obtain the number of required GPU equipped
nodes CGPU = 2+3 = 5 (2 for Type 1 and 3 for Type 2) and
Eq. 5 to get the number of additionally required CPU nodes
CCPU = max(0, 3 − 3) = 0. We concluded that in order to
deploy the system we need 2 dedicated nodes for Type 1, and
3 nodes for Type 2. We also noted that for Type 3, we can
execute requests on the same 3 nodes used for Type 2. In other
words, we did not require any additional nodes to run tasks
that fall into Type 3.

Step 4. Lastly, we utilized a small scale public cloud setup
to simulate an edge cloud infrastructure and verified the results
of node count estimation. We deployed 5 server nodes, a
load balancer, and a node that generates client requests. We
configured our load balancer to forward localization requests
to nodes 1 and 2, whereas all the other requests were being
forwarded to nodes 3-5. We utilized the benchmarking tool
to check the maximum amount of supported users. Figure 7
shows response delays of each task category for different num-
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Fig. 6. Resource utilization for localization, object recognition, streaming, search and browsing task categories, respectively. X-axis represents time in seconds.
Tests were run for 30 seconds.
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Fig. 7. Response delays for each task category with different numbers of simultaneous users when the system is running on the planned edge layer deployment.
The marks on each box represent mean values, while the bottom and top edges of the boxes show 25th and 75th percentiles, respectively. Plus signs indicate
outlier measurements, that were not included in the mean calculation. Horizontal dashed lines indicate mean required response delays (not visible for streaming,
search and browsing requests as their response delays were well below the required ones).

bers of simultaneous users. It clearly indicates that localization
and object recognition cannot fulfill the required QoS once the
number of concurrent users exceeds 14 and 15, respectively.
With this setup, edge nodes that served localization requests
could support up to 14 simultaneous users (14 − 13 = 1
user difference from the estimated user count), while the other
nodes that served object recognition (and at the same time all
the remaining requests) could support up to 15 simultaneous
users (15 − 13 = 2 users difference from the estimated
count). The use case evaluation shows that our algorithm
can accurately estimate the required capacity in terms of the
number of the computing edge nodes within a small error
margin.

V. RELATED WORK

This section briefly presents the related work in the field of
cloud/edge capacity planning and points out differences from
this work.

A. Capacity planning for cloud computing

Capacity planning for cloud computing has been widely
studied. For example, Jiang et al. [11] introduced a cloud
capacity planning and virtual machine provisioning solution
based on workload predictions. Service Level Agreement
(SLA) violations and costs of under provisioned resources
were the main factors considered in the solution. Candeia et
al. [2] proposed methods for increasing SaaS providers’ profits
by utilizing business driven capacity planning heuristics. Brun-
nert et al. [1] proposed to utilize resource usage profiles that
are obtained during application development stage to estimate



the required server capacity. Carvalho et al. [4] proposed an-
alytical models to estimate the minimum capacity that fulfills
required SLAs. In addition, researchers distinguished different
classes of SLA to better utilize cloud instances and proposed a
quota-based admission control mechanism for rejecting lower
SLA requests during peek times to ensure fulfillment of
other classes’ SLAs [4]. The researchers applied two queuing
models, G/GI/c/K and M/M/c/K, for server capacity planning
in the scenario of admission control. In this work, we propose
to utilize a multi-server infinite queuing model M/M/k for edge
capacity planning.

Goncalves et al. [8] showed that benchmarking based ap-
proach is suitable for obtaining optimal IaaS public cloud
arrangements that minimize required instance counts. The
process starts by deploying a certain workload on a cloud
configuration of an initial capacity. Then, the workload is
processed and depending on whether the processing satisfied
a required SLA, the capacity is either decreased (if satisfied)
or increased (if not satisfied), until an optimal capacity is
reached. While the approach is able to estimate close to
optimal capacity, the selection of initial capacity influences
the number of different capacity deployments that have to be
tested.

Even though some of the ideas can be applied in an edge
cloud infrastructure, there are key differences and considera-
tions when deploying an application on edge or hybrid clouds
instead of centralized clouds. For example, edge clouds are
typically not as scalable as public ones, thus initial capacity
planning needs to ensure required QoS during peak usage
times. Moreover, edge clouds are mostly utilized to accommo-
date real time applications that have stricter QoS requirements
than applications deployed on public clouds.

B. Capacity planning for edge computing

Several researches focused on capacity planning for edge
clouds. Zhang et al. [23] proposed a workload management
system for video streaming services on hybrid clouds. The
service primarily runs on edge nodes and utilizes a public
cloud at peak times. The researchers showed that their solution
can process up to 95% of requests solely on edge nodes. In
our previous work [17], we proposed a benchmarking based
capacity planning framework for hierarchical edge clouds.
We have developed tools for analyzing application resource
requirements and determining required edge node counts.
However, in these works, the node count estimation was based
on benchmarking of the system and while it showed accurate
results there were a few limitations. New simulations had to be
performed whenever QoS requirements changed or new task
categories were introduced. In this work we propose a more
generic solution that eliminates such need for simulations. We
only require initial profiling of different categories of tasks
to obtain their resource usages and mean execution times
after microservices that implement the task categories are
developed.

C. Multiple types of resources

While considerable amount of research focused only on
CPU utilization, other researchers admitted that different re-
sources must be taken into account. Carvalho et.al. proposed
a capacity planning solution that takes into account both CPU
and memory requirements [3], whereas Song et.al. [20] took
into consideration CPU, network and memory resources. Brun-
nert et al. [1] proposed to distribute resource usage profiles
alongside application binaries to support different types of
resources. The application developers had to specify which
resource and how much would the developed application need.
In this work, we focus on CPU and GPU utilization as we
consider these resources as the most important ones for real
time applications. Differently from [1], we do not require prior
knowledge of system performance or implementation details,
as we infer resource usage profiles with automated profiling.

VI. DISCUSSION

In this work we focused on edge capacity planning within
Application Model [7]. We did not investigate mobility pat-
terns of service users and spatial deployment schemes of wire-
less access points and computing nodes. Instead, we assumed
that users experience similar edge network latency throughout
the area. We also assumed that there is no restriction on the
amount of nodes to be deployed. In practice, there may be
various situations where edge network shows different network
latencies. However, our proposed algorithm can still be applied
in estimating node counts for the specific edge areas separately.
Furthermore, being fast to compute, the algorithm is suitable
for dynamic edge deployment scenarios, when one has to
frequently estimate how many nodes to allocate from the edge
layer node pool to support a specific service.

Our proposed algorithm estimates edge capacity for nodes
with same capacity processors. As a future work we aim to
investigate how the algorithm should be improved to take
into account nodes of variable capacity. Furthermore, it is
worth investigating applicability of the proposed model when
other resources are involved, such as memory and network
utilization. In this work we assume an infinite size of the
buffer where incoming requests are stored when all servers
are busy. However, as a future work we plan to investigate
applicability of an M/M/k/c queue. In this queue, c represents
the maximum number of requests that can be queued at a time
(including requests in service).

VII. CONCLUSIONS

We presented a novel edge node count estimation solution
for initial edge layer capacity planning for compute-intensive
real time applications. The solution ensures required QoS in
terms of response delays and minimizes system deployment
costs by minimizing the amount of edge capacity in terms
of the number of edge nodes with fixed capacity each. Our
solution takes into account both CPU and GPU requirements
and minimizes the number of required nodes by utilizing
combinations of tasks with different resource demands. We
applied the queuing model M/M/k and weighted averaging



approach to estimate required node counts for different task
category combinations. Our experiments including case study
using real life applications showed the applicability and high
accuracy of the M/M/k model for estimating the minimal edge
node count under the QoS constraints for real-time compute-
intensive applications.
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