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Abstract: An underwater swimming manipulator (USM) is a long and slender underwater
vehicle composed of multiple links that are connected by motorized joints and equipped with
thrusters. The USM belongs to the class of underwater vehicle-manipulator systems (UVMS),
and the main task is to carry out autonomous inspections and light intervention operations on
subsea installations. To achieve this, it is important to develop a control system that maintains
the stability of the USM, while at the same time utilizes the kinematic redundancy of this
highly flexible underwater vehicle. In this paper, we propose a combined kinematic and dynamic
control approach for the USM. The approach uses the singularity robust multiple task priority
(SRMTP) framework to generate a velocity reference and combines this with a dynamic velocity
controller based on sliding mode control (SMC). This novel approach allows us to analyze the
stability properties of the kinematic and dynamic subsystems together, in the presence of model
uncertainty, while still retaining the possibility to solve multiple tasks simultaneously. We show
that the multiple set-point regulation tasks will converge asymptotically to zero without the
strict requirement that the velocities are perfectly controlled. This novel approach then avoids
the assumption of perfect dynamic control that is common in kinematic stability analyses for
robot manipulators. We demonstrate the applicability of the proposed approach through a
simulation study of a USM carrying out three simultaneous tasks. The results show that all
the regulation tasks converge to their respective set-points. The proposed control approach is
applicable to vehicle-manipulator systems in general, and for any combination of regulation
tasks.
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1. INTRODUCTION

Inspection and intervention operations on subsea installa-
tions are typically carried out by an underwater vehicle-
manipulator system (UVMS). Remotely operated vehicles
(ROVs) and autonomous underwater vehicles (AUVs) are
the most common examples of a UVMS. A recent addi-
tion to this family of underwater vehicles is the underwa-
ter swimming manipulator (USM) presented in Sverdrup-
Thygeson et al. (2018). The USM is a long and slender
underwater vehicle composed of multiple links that are
connected by motorized joints (see Figure 1). In addition
to the actuated joints, the USM is also equipped with
thrusters, which give hovering capabilities. With its slen-
der, lightweight, and flexible design, the USM addresses
some of the limitations of conventional underwater vehi-
cles. The USM is a specialized type of underwater vehicle,
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whose main task is to carry out autonomous inspections
and light intervention operations. To fulfill this task, it is
important to develop a control system that maintains the
stability of the USM, while at the same time utilizes the
kinematic redundancy of this highly flexible underwater
vehicle.

A common way of developing a control system for a UVMS
is to design standalone control laws for the kinematic part
and the dynamic part, and to analyze the stability proper-
ties of the two subsystems separately. When analyzing the
stability properties of the kinematic subsystem, it is com-
mon to neglect the dynamics and assume that the reference
output is tracked perfectly by the dynamic controller. In
practice, this assumption is often justified by stating that
the dynamic control loop is faster than the kinematic one.
This makes sense for fixed-base manipulators or when the
mass of the vehicle is much larger than the mass of the
manipulator arm, so that the joint motion does not have
a significant impact on the overall motion of the whole
vehicle. For the USM, it is not sufficient to rely on this
assumption due to the large coupling effects. Inertia, drag
forces, and restoring forces and moments caused by the
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joint motion have a significant effect on the overall motion
of the whole mechanism. Indeed, for this type of system,
it is necessary to analyze the stability properties of the
kinematic and the dynamic subsystems together.

One possible approach is to combine second-order inverse
kinematics with feedback linearization (Schjølberg and
Egeland, 1996). This method integrates the inverse kine-
matic control with the dynamic control loop and analyzes
the stability properties of the integrated system. However,
feedback linearization requires perfect knowledge of the
model parameters, as well as perfect measurements of
both position, attitude, joint angles, and velocities. Also,
the possibility to utilize the kinematic redundancy of the
system is somewhat limited with this method, and the
method is prone to algorithmic singularities caused by non-
compatible tasks.

In this paper, we propose a novel approach for analyzing
the stability properties of the kinematic and the dynamic
subsystems together, in the presence of model uncertainty,
while still retaining the possibility to solve multiple tasks
simultaneously. The main idea is to combine the singu-
larity robust multiple task priority (SRMTP) framework
(Chiaverini, 1997) with a robust sliding mode controller,
and at the same time ensure that the task errors remain
bounded. The kinematic stability analysis of the SRMTP
method is based on the results in Antonelli (2009). The
proposed sliding mode controller is a velocity controller
which is able to track a velocity reference vector. This
reference vector is here chosen as the output from the
SRMTP inverse kinematics controller. Part of the analysis
of the sliding mode controller is based on Antonelli and
Chiaverini (1998), which considers a set-point regulation
problem for a UVMS without taking into account the
inverse kinematic problem. In this paper, we modify the
analysis in Antonelli and Chiaverini (1998) to show finite
time convergence of the velocity controller. This property
then allows us to show that the multiple set-point regu-
lation tasks will converge asymptotically to zero without
the strict requirement that the velocities are perfectly con-
trolled. This novel approach then avoids the assumption
of perfect dynamic control that is common in kinematic
stability analyses for robot manipulators. The proposed
method is illustrated with a simulation study, where the
primary task is the position and orientation of the center
link of the USM, and the secondary tasks are the orienta-
tion of the front end and the back end of the USM.

The remainder of this paper is structured as follows.
The mathematical model of the USM is presented in
Section 2, and a quick introduction to inverse kinematic
control and the SRMTP method is provided in Section
3. The main stability analysis is described in Section 4
and demonstrated with a simulation study in Section 5.
Conclusions are drawn in Section 6.

2. USM MODEL

For control purposes, the USM is considered as a floating
base manipulator operating in an underwater environ-
ment. The complete dynamic model of the USM, includ-
ing hydrodynamic forces, hydrostatic forces, and actuator
forces, can then be written with the same structure as a

typical underwater vehicle-manipulator system (Antonelli,
2014), (Schjølberg and Fossen, 1994)

M(q)ζ̇ + C(q, ζ)ζ +D(q, ζ)ζ +N(RIc, q) = τ, (1)

where M(q) = MA(q) +MRB(q) and C(q, ζ) = CA(q, ζ) +
CRB(q, ζ), MA(q) is the added inertia matrix, MRB(q)
is the rigid body inertia matrix, CA(q, ζ) is the added
Coriolis-centripetal matrix, CRB(q, ζ) is the rigid body
Coriolis-centripetal matrix, D(q, ζ) is the damping matrix,
and N(RIc, q) is the vector of gravitational and buoyancy
forces. The generalized forces and moments, τ , created by
the thrusters and the joint motors are given by

τ = τthr(q) + τq =

[
T (q) 0
Tq(q) In×n

] [
fthr
uq

]
= Bu. (2)

The dynamic model in (1) can be formulated with respect
to a coordinate frame having its origin at an arbitrary
position on the USM. In this paper, we assume that the
model is formulated with respect to the center link of the
USM, such that the velocity state vector, ζ, is defined by

ζ =

[
vcIc
ωc
Ic
q̇

]
∈ R6+n (3)

where vcIc and ωc
Ic are the body-fixed linear and angular

velocities of the center link of the USM, respectively, and
q̇ is the vector of joint velocities. A detailed derivation of
the USM model can be found in Sverdrup-Thygeson et al.
(2018).

Remark 1. The formulation in (1) preserves the following
important properties (From et al., 2014):

(1) M = MT > 0

(2) xT (Ṁ − 2C)x = 0
(3) xTDx > 0

3. INVERSE KINEMATIC CONTROL

Robot manipulators are designed to perform specific tasks
associated with either the internal configuration of the
robot (joint/configuration space) or the external configu-
ration with respect to the environment (operational/task
space). A task that specifies a desired position and/or
orientation for the end-effector of the robot is an example
of a common operational space task. A comprehensive
collection of possible tasks for underwater robotic vehicles
is presented in Antonelli (2014). An m-dimensional task
can be described by the task variable, σ(t) ∈ Rm, and
defined by

σ(t) = f(ξ(t)), (4)
where ξ(t) ∈ Rn is the n-dimensional vector of general-
ized coordinates describing the configuration of the robot
manipulator, and f(·) is a function that maps the config-
uration into the task space coordinates. The generalized
coordinates ξ(t) can be the joint angles of a fixed-base
robot, the position and orientation of a single body vehicle,
or both for a floating base manipulator such as the USM.

Let σi,d(t) ∈ Rm be the desired trajectory for the task
variable σi(t) and define the task error σ̃i ∈ Rm as

σ̃i = σi,d − σi. (5)

To determine the motion required to achieve convergence
of the task error σ̃ to zero it is common to use the closed-
loop inverse kinematic (CLIK) routine expressed by

ζr = J+(σ̇i,d + Λiσ̃i), (6)

© 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
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joint motion have a significant effect on the overall motion
of the whole mechanism. Indeed, for this type of system,
it is necessary to analyze the stability properties of the
kinematic and the dynamic subsystems together.

One possible approach is to combine second-order inverse
kinematics with feedback linearization (Schjølberg and
Egeland, 1996). This method integrates the inverse kine-
matic control with the dynamic control loop and analyzes
the stability properties of the integrated system. However,
feedback linearization requires perfect knowledge of the
model parameters, as well as perfect measurements of
both position, attitude, joint angles, and velocities. Also,
the possibility to utilize the kinematic redundancy of the
system is somewhat limited with this method, and the
method is prone to algorithmic singularities caused by non-
compatible tasks.

In this paper, we propose a novel approach for analyzing
the stability properties of the kinematic and the dynamic
subsystems together, in the presence of model uncertainty,
while still retaining the possibility to solve multiple tasks
simultaneously. The main idea is to combine the singu-
larity robust multiple task priority (SRMTP) framework
(Chiaverini, 1997) with a robust sliding mode controller,
and at the same time ensure that the task errors remain
bounded. The kinematic stability analysis of the SRMTP
method is based on the results in Antonelli (2009). The
proposed sliding mode controller is a velocity controller
which is able to track a velocity reference vector. This
reference vector is here chosen as the output from the
SRMTP inverse kinematics controller. Part of the analysis
of the sliding mode controller is based on Antonelli and
Chiaverini (1998), which considers a set-point regulation
problem for a UVMS without taking into account the
inverse kinematic problem. In this paper, we modify the
analysis in Antonelli and Chiaverini (1998) to show finite
time convergence of the velocity controller. This property
then allows us to show that the multiple set-point regu-
lation tasks will converge asymptotically to zero without
the strict requirement that the velocities are perfectly con-
trolled. This novel approach then avoids the assumption
of perfect dynamic control that is common in kinematic
stability analyses for robot manipulators. The proposed
method is illustrated with a simulation study, where the
primary task is the position and orientation of the center
link of the USM, and the secondary tasks are the orienta-
tion of the front end and the back end of the USM.

The remainder of this paper is structured as follows.
The mathematical model of the USM is presented in
Section 2, and a quick introduction to inverse kinematic
control and the SRMTP method is provided in Section
3. The main stability analysis is described in Section 4
and demonstrated with a simulation study in Section 5.
Conclusions are drawn in Section 6.

2. USM MODEL

For control purposes, the USM is considered as a floating
base manipulator operating in an underwater environ-
ment. The complete dynamic model of the USM, includ-
ing hydrodynamic forces, hydrostatic forces, and actuator
forces, can then be written with the same structure as a

typical underwater vehicle-manipulator system (Antonelli,
2014), (Schjølberg and Fossen, 1994)

M(q)ζ̇ + C(q, ζ)ζ +D(q, ζ)ζ +N(RIc, q) = τ, (1)

where M(q) = MA(q) +MRB(q) and C(q, ζ) = CA(q, ζ) +
CRB(q, ζ), MA(q) is the added inertia matrix, MRB(q)
is the rigid body inertia matrix, CA(q, ζ) is the added
Coriolis-centripetal matrix, CRB(q, ζ) is the rigid body
Coriolis-centripetal matrix, D(q, ζ) is the damping matrix,
and N(RIc, q) is the vector of gravitational and buoyancy
forces. The generalized forces and moments, τ , created by
the thrusters and the joint motors are given by

τ = τthr(q) + τq =

[
T (q) 0
Tq(q) In×n

] [
fthr
uq

]
= Bu. (2)

The dynamic model in (1) can be formulated with respect
to a coordinate frame having its origin at an arbitrary
position on the USM. In this paper, we assume that the
model is formulated with respect to the center link of the
USM, such that the velocity state vector, ζ, is defined by

ζ =

[
vcIc
ωc
Ic
q̇

]
∈ R6+n (3)

where vcIc and ωc
Ic are the body-fixed linear and angular

velocities of the center link of the USM, respectively, and
q̇ is the vector of joint velocities. A detailed derivation of
the USM model can be found in Sverdrup-Thygeson et al.
(2018).

Remark 1. The formulation in (1) preserves the following
important properties (From et al., 2014):

(1) M = MT > 0

(2) xT (Ṁ − 2C)x = 0
(3) xTDx > 0

3. INVERSE KINEMATIC CONTROL

Robot manipulators are designed to perform specific tasks
associated with either the internal configuration of the
robot (joint/configuration space) or the external configu-
ration with respect to the environment (operational/task
space). A task that specifies a desired position and/or
orientation for the end-effector of the robot is an example
of a common operational space task. A comprehensive
collection of possible tasks for underwater robotic vehicles
is presented in Antonelli (2014). An m-dimensional task
can be described by the task variable, σ(t) ∈ Rm, and
defined by

σ(t) = f(ξ(t)), (4)
where ξ(t) ∈ Rn is the n-dimensional vector of general-
ized coordinates describing the configuration of the robot
manipulator, and f(·) is a function that maps the config-
uration into the task space coordinates. The generalized
coordinates ξ(t) can be the joint angles of a fixed-base
robot, the position and orientation of a single body vehicle,
or both for a floating base manipulator such as the USM.

Let σi,d(t) ∈ Rm be the desired trajectory for the task
variable σi(t) and define the task error σ̃i ∈ Rm as

σ̃i = σi,d − σi. (5)

To determine the motion required to achieve convergence
of the task error σ̃ to zero it is common to use the closed-
loop inverse kinematic (CLIK) routine expressed by

ζr = J+(σ̇i,d + Λiσ̃i), (6)
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where J+ = JT (JJT )−1 is the right Moore-Penrose
pseudo-inverse of the task Jacobian, ζr is the reference
velocity vector and Λi > 0 is a positive-definite gain
matrix. The single task approach can be extended to
multiple simultaneous tasks using the SRMTP method
(Chiaverini, 1997)

ζr =J+
1 (σ̇1,d + Λ1σ̃1) +N1J

+
2 (σ̇2,d + Λ2σ̃2)

+ . . .+N12..(k−1)J
+
k (σ̇k,d + Λkσ̃k) ,

(7)

where the null spaces of the task Jacobians are given by

Ni=(I − J+
i Ji), and N12..(k−1)=Null(

[
JT
1 ,JT

2 ,. . . ,JT
k−1

]T
)

represents the combined null space of tasks 1 through
k − 1. The null space matrices ensure that conflicting
velocity components generated by the lower priority tasks
are filtered out. In Antonelli (2009), it is shown that
all the task errors will converge to zero, provided that
ζ = ζr (neglecting the dynamics), that the tasks are
compatible and specified as time-independent regulation
tasks (σ̇i,d = 0), and that the task gains Λi are chosen
appropriately.

In the next section, we extend the kinematic stability ana-
lysis in Antonelli (2009) by combining it with a dynamic
control law for the USM model described in Section 2.

4. COMBINED KINEMATIC AND DYNAMIC
STABILITY ANALYSIS

In this section, we propose a combined kinematic and
dynamic control law for a USM carrying out an arbitrary
number of regulation tasks. By combining the Lyapunov
analysis for time-independent regulation tasks presented
in Antonelli (2009) with a sliding mode controller, we
show that all the regulation task errors will converge
asymptotically to zero without the strict requirement that
ζ(t) = ζr(t) ∀ t ≥ 0. This novel approach then avoids the
assumption of perfect dynamic control that is common in
kinematic stability analyses for robot manipulators. The
following theorem establishes the convergence properties
of the proposed control law.

Theorem 1. Let ζr =
[
(vcIc,r)

T (ωc
Ic,r)

T q̇Tr
]T ∈ R6+n

be a reference velocity vector given as the output of
the SRMTP inverse kinematics routine in (7) for time-
independent regulation tasks:

ζr = J+
1 Λ1σ̃1+N1J

+
2 Λ2σ̃2+ . . .+N12..(k−1)J

+
k Λkσ̃k, (8)

with σ̃ =
[
σ̃T
1 , . . . , σ̃

T
k

]T
defined as a vector of all the

regulation task errors. Define the sliding variable

s � ζ − ζr (9)

and assume that the thruster configuration matrix T (q)
is full rank for all attainable joint configurations. Let the
control input of (1-2) be given by the sliding mode control
law

u = B†
[
N̂(RIc, q)−Kds−K sgn(s)

]
, (10)

where Kd > 0, N̂(RIc, q) represents the estimate of the
gravity/buoyancy forces and moments, and

sgn(si) =

{
1, for si ≥ 0

−1, for si < 0

The gain K is taken as

K ≥ κ+K0, (11)

where K0 > 0 and κ is an upper bound chosen to satisfy

κ ≥ ||C(q, ζ)ζr +D(q, ζ)ζr + Ñ(RIc, q) +M(q)ζ̇r||. (12)

The sliding variable s will converge exponentially and in
finite time to the sliding surface, s = 0, which then ensures
asymptotic convergence of the regulation task errors, that
is

lim
t→∞

σ̃(t) = 0.

Proof. Consider the Lyapunov function candidate (LFC)

Vs =
1

2
sTMs > 0, ∀s �= 0, (13)

which is positive definite as M(q) > 0. Differentiating (13)

and inserting s = ζ − ζr, ṡ = ζ̇ − ζ̇r, and (1) yields

V̇s = sTMṡ+
1

2
sT Ṁs

= sT
[
Bu− Cζ −Dζ −N −Mζ̇r

]
+

1

2
sT Ṁs

= −sTDs+ sT
[
Bu− Cζr −Dζr −N −Mζ̇r

]

+
1

2
sT

[
Ṁ − 2C

]
s.

(14)

The last term in (14) is equal to zero because Ṁ − 2C is
skew-symmetric, as shown in From et al. (2014). Inserting
(10) yields

V̇s =− sT (Kd +D)s− sT [K sgn(s)]

+ sT
[
−Cζr −Dζr − Ñ −Mζ̇r

]

≤− sT (Kd +D)s−K||s||
+ ||Cζr +Dζr + Ñ +Mζ̇r||||s||,

(15)

where we have used the Cauchy-Schwarz inequality. Insert-
ing (12), we have that

V̇s ≤ −sT (Kd +D)s−K0||s|| < 0, ∀s �= 0. (16)

The first term in (16) ensures exponential convergence
towards the sliding surface s = 0, while the second
term ensures, by use of the comparison lemma (Khalil,
2002, Lemma 3.4), that s reaches the sliding surface in
finite time. Thus, we have exponential and finite time
convergence to the sliding surface.

In Antonelli (2009), it is shown that if the generalized
velocities of the robot follow the reference velocities, then
the regulation task errors asymptotically converge to zero,
i.e. limt→∞ σ̃(t) = 0. This corresponds to the assumption
that ζ = ζr. The stability proof is carried out using
the Lyapunov function V (σ̃) = 1

2 σ̃
T σ̃. In this paper, we

also include the dynamic control part of the problem.
According to (16), the dynamic control part of the system
is finite time stable, which means that ζ = ζr after a finite
time T . This also implies that ||s|| ≤ δ ∀ t ≥ 0, where
δ is a positive constant. However, since the drag forces
and the restoring forces and moments caused by the joint
motion and the thrusters have a significant effect on the
overall motion of the USM, we must also check that the
task errors do not escape to infinity before ζ = ζr. To
prove the boundedness of the task errors we use the same
LFC V (σ̃) = 1

2 σ̃
T σ̃. Now, instead of assuming that ζ = ζr

as done in Antonelli (2009), we use ζ = ζr+s. By defining
the vector of regulation task errors as σ̃ = σd − σ we have
that

˙̃σ = −σ̇ = −J(q)ζ, (17)

where J(q) =
[
JT
1 , JT

2 , . . . , JT
k

]T
is a matrix containing the

corresponding Jacobian matrices for the tasks. The total
error dynamics can then be obtained by combining (1),
the derivative of (9) and (17), and using that ζ = ζr + s:

˙̃σ = −J(q)ζ = −J(q)(ζr + s)

ṡ = ζ̇ − ζ̇r = M(·)−1
(
− C(·)(ζr + s)−

D(·)(ζr + s)−N(·) + τ
)
− ζ̇r.

(18)

The derivative of the LFC is then as follows:

V̇ = σ̃T ˙̃σ = −σ̃TJ(q)(ζr + s) (19)

From Antonelli (2009) we have that

σ̃TJ(q)ζr = σ̃TP (q)σ̃, (20)

where P (q) is defined as

P (q)=




Λ1 Om1,m2
. . . Om1,mk

J2J
+
1 Λ1 J2N1J

+
2 Λ2 . . . J2N̄J+

k Λk

. . . . . . . . . . . .
Jk−1J

+
1 Λ1 Jk−1N1J

+
2 Λ2 . . .Jk−1N̄J+

k Λk

JkJ
+
1 Λ1 JkN1J

+
2 Λ2 . . . JkN̄J+

k Λk


 (21)

where N̄ = N12..(k−1). By using (20) we can write the LFC
derivative as

V̇ = −σ̃TP (q)σ̃ − σ̃TJ(q)s (22)

Since we have proven above that ||s(t)|| ≤ δ ∀t ≥ 0, we
can rewrite the LFC such that it becomes
V̇ ≤ −λmin(P )||σ̃||2 + δ||J(q)||||σ̃||

= −λmin(P )||σ̃||2 + θ||σ̃||2 − θ||σ̃||2 + δ||J(q)||||σ̃||

≤ −(λmin(P )− θ)||σ̃||2 ∀ ||σ̃|| ≥ δ||J(q)||
θ

(23)

where 0 < θ < λmin(P ), since P is positive definite
(Antonelli, 2009). The regulation task errors are then
bounded as long as J(q(t)) is bounded, because then the
conditions of (Khalil, 2002, Theorem 4.18) are satisfied.
Consequently, the regulation task errors will asymptoti-
cally converge to zero, i.e. limt→∞ σ̃(t) = 0, since they do
not escape to infinity while s �= 0. Note that the matrix
J(q(t)) will be bounded as long as singularities in the task
representations are avoided.

Remark 2. To determine κ we need to find an upper bound
on the expression in (12). This upper bound depends on
the size of the task errors. A reference model (Fossen,
2002) can be used to obtain sufficiently smooth desired
trajectories and avoid large jumps in the task errors
when changing set-points. Such a reference model can also
include saturating elements to limit the desired velocities.

Remark 3. The analysis presented above assumes ideal
actuators. In practice, time delays and imperfections in
the actuators will cause high-frequency chattering when
sliding mode control is applied. To eliminate the chattering
problem, the discontinuous signum function in (10) is
typically replaced by a high-slope saturation function. In
that case, we achieve ultimate boundedness of the task
errors. For set-point regulation problems, integral action
can be introduced in the control law to achieve zero steady-
state error (Khalil, 2002).

Remark 4. This proof can be extended to include trajec-
tory tracking tasks as long as the tasks are orthogonal
and the tracking error dynamics is asymptotically stable.
Orthogonal tasks is a strict requirement which in practice
means that the tasks utilize separate degrees of freedom
of the robot.

Fig. 1. Vortex simulation model

5. SIMULATION STUDY

In this section, the combined kinematic and dynamic
control of the USM is demonstrated using the following
three set-point regulation tasks:

(1) Control the position and orientation of the center link
(main task)

(2) Control the pitch and the yaw angle of the front end
of the USM

(3) Control the pitch and the yaw angle of the back end
of the USM

This combination of tasks illustrate the ability of the USM
to move to a position of interest and then perform a
double observation task by adjusting the pitch and the
yaw angles of the back end and the front end of the USM
simultaneously.

The simulation of the motion of the USM is performed
using the dynamic simulation tool Vortex by CM Labs
(CM Labs Simulations Inc., 2019). As visualized in Figure
1, the USM model consists of five links, where each link is
connected to its neighboring link by a double joint module
consisting of two 1-DOF joints. In addition, the model is
equipped with a total of seven thrusters. Passive stability
in roll and pitch is introduced by setting the center of
gravity of each link 6 cm below the volumetric center.
This passive stability is required because the thruster
configuration of the simulation model is singular in roll
when the USM is straight. A more detailed description of
the simulation model is given in Sverdrup-Thygeson et al.
(2018).

The task Jacobian for Task 1 is trivial, since it is com-
pletely described by the position and orientation of the
center link. The second task is fulfilled using the two
double joint modules in front of the center link, while the
third task utilizes the two double joint modules behind
the center link. The available degrees of freedom are split
between the tasks. Although this is not necessary, it is a
way to ensure that the tasks are compatible, so that all
tasks can be fulfilled simultaneously.

The expressions for the task errors and the task Jacobians
are:

Task 1 - Position and orientation of the center link

σ̃1 =
[
(p̃cIc)

T , sgn(η̃c)ε̃
T
c

]

J1 = [I6×6 06×8] ,

Task 2 - Orientation of the front end
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where J(q) =
[
JT
1 , JT

2 , . . . , JT
k

]T
is a matrix containing the

corresponding Jacobian matrices for the tasks. The total
error dynamics can then be obtained by combining (1),
the derivative of (9) and (17), and using that ζ = ζr + s:

˙̃σ = −J(q)ζ = −J(q)(ζr + s)

ṡ = ζ̇ − ζ̇r = M(·)−1
(
− C(·)(ζr + s)−

D(·)(ζr + s)−N(·) + τ
)
− ζ̇r.

(18)

The derivative of the LFC is then as follows:

V̇ = σ̃T ˙̃σ = −σ̃TJ(q)(ζr + s) (19)

From Antonelli (2009) we have that

σ̃TJ(q)ζr = σ̃TP (q)σ̃, (20)

where P (q) is defined as

P (q)=




Λ1 Om1,m2
. . . Om1,mk

J2J
+
1 Λ1 J2N1J

+
2 Λ2 . . . J2N̄J+

k Λk

. . . . . . . . . . . .
Jk−1J

+
1 Λ1 Jk−1N1J

+
2 Λ2 . . .Jk−1N̄J+

k Λk

JkJ
+
1 Λ1 JkN1J

+
2 Λ2 . . . JkN̄J+

k Λk


 (21)

where N̄ = N12..(k−1). By using (20) we can write the LFC
derivative as

V̇ = −σ̃TP (q)σ̃ − σ̃TJ(q)s (22)

Since we have proven above that ||s(t)|| ≤ δ ∀t ≥ 0, we
can rewrite the LFC such that it becomes
V̇ ≤ −λmin(P )||σ̃||2 + δ||J(q)||||σ̃||

= −λmin(P )||σ̃||2 + θ||σ̃||2 − θ||σ̃||2 + δ||J(q)||||σ̃||

≤ −(λmin(P )− θ)||σ̃||2 ∀ ||σ̃|| ≥ δ||J(q)||
θ

(23)

where 0 < θ < λmin(P ), since P is positive definite
(Antonelli, 2009). The regulation task errors are then
bounded as long as J(q(t)) is bounded, because then the
conditions of (Khalil, 2002, Theorem 4.18) are satisfied.
Consequently, the regulation task errors will asymptoti-
cally converge to zero, i.e. limt→∞ σ̃(t) = 0, since they do
not escape to infinity while s �= 0. Note that the matrix
J(q(t)) will be bounded as long as singularities in the task
representations are avoided.

Remark 2. To determine κ we need to find an upper bound
on the expression in (12). This upper bound depends on
the size of the task errors. A reference model (Fossen,
2002) can be used to obtain sufficiently smooth desired
trajectories and avoid large jumps in the task errors
when changing set-points. Such a reference model can also
include saturating elements to limit the desired velocities.

Remark 3. The analysis presented above assumes ideal
actuators. In practice, time delays and imperfections in
the actuators will cause high-frequency chattering when
sliding mode control is applied. To eliminate the chattering
problem, the discontinuous signum function in (10) is
typically replaced by a high-slope saturation function. In
that case, we achieve ultimate boundedness of the task
errors. For set-point regulation problems, integral action
can be introduced in the control law to achieve zero steady-
state error (Khalil, 2002).

Remark 4. This proof can be extended to include trajec-
tory tracking tasks as long as the tasks are orthogonal
and the tracking error dynamics is asymptotically stable.
Orthogonal tasks is a strict requirement which in practice
means that the tasks utilize separate degrees of freedom
of the robot.

Fig. 1. Vortex simulation model

5. SIMULATION STUDY

In this section, the combined kinematic and dynamic
control of the USM is demonstrated using the following
three set-point regulation tasks:

(1) Control the position and orientation of the center link
(main task)

(2) Control the pitch and the yaw angle of the front end
of the USM

(3) Control the pitch and the yaw angle of the back end
of the USM

This combination of tasks illustrate the ability of the USM
to move to a position of interest and then perform a
double observation task by adjusting the pitch and the
yaw angles of the back end and the front end of the USM
simultaneously.

The simulation of the motion of the USM is performed
using the dynamic simulation tool Vortex by CM Labs
(CM Labs Simulations Inc., 2019). As visualized in Figure
1, the USM model consists of five links, where each link is
connected to its neighboring link by a double joint module
consisting of two 1-DOF joints. In addition, the model is
equipped with a total of seven thrusters. Passive stability
in roll and pitch is introduced by setting the center of
gravity of each link 6 cm below the volumetric center.
This passive stability is required because the thruster
configuration of the simulation model is singular in roll
when the USM is straight. A more detailed description of
the simulation model is given in Sverdrup-Thygeson et al.
(2018).

The task Jacobian for Task 1 is trivial, since it is com-
pletely described by the position and orientation of the
center link. The second task is fulfilled using the two
double joint modules in front of the center link, while the
third task utilizes the two double joint modules behind
the center link. The available degrees of freedom are split
between the tasks. Although this is not necessary, it is a
way to ensure that the tasks are compatible, so that all
tasks can be fulfilled simultaneously.

The expressions for the task errors and the task Jacobians
are:

Task 1 - Position and orientation of the center link

σ̃1 =
[
(p̃cIc)

T , sgn(η̃c)ε̃
T
c

]

J1 = [I6×6 06×8] ,

Task 2 - Orientation of the front end
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σ̃2 = [ 0 1 0
0 0 1 ] sgn(η̃f )ε̃

T
f

J2 = Jcf (row 5-6)

Task 3 - Orientation of the back end

σ̃3 = [ 0 1 0
0 0 1 ] sgn(η̃b)ε̃

T
b

J3 = Jcb(row 5-6)

where p̃cIc is the position deviation of the center link, η̃
and ε̃ represent the components of the unit quaternion
deviations for the front end, the back end, and the center
link orientations, and Jcf and Jcb are the front end and
back end Jacobians, respectively. These Jacobians relate
the body-fixed velocities of the front end and the back end
to the body-fixed velocity of the center link and the joint
velocities.

The reference velocities, ζr, are calculated according to

ζr = J+
1 Λ1σ̃1 +N1J

+
23

[
Λ2 0
0 Λ3

] [
σ̃2

σ̃3

]
. (24)

Task 2 and task 3 are always compatible, which allows
us to augment the two task Jacobians into J23. The set-
points σi,d are manually controlled and filtered through
a third order reference filter to avoid discontinuities and
large jumps in the calculated reference velocities. The
control law gains for the roll axis is set to zero to avoid
excessive control efforts caused by the thruster roll axis
singularity. Also, to avoid chattering, the sgn function in
(10) is replaced by a high-slope saturation function with a
boundary layer.

Figures 2 and 3 show the commanded and the actual
position and orientation of the center link, corresponding
to task 1. There is a small deviation from the set-point
for the center link pitch angle, due to the boundary layer
of the saturation function, in agreement with ultimate
boundedness as described in Remark 3. The results for
tasks 2 and 3 are shown in Figure 4 and Figure 5. We
see that the combined kinematic and dynamic control law
is able to fulfill all the tasks simultaneously, as stated in
Theorem 1, but some transient deviations can be observed
for the front and the back orientation when changing
the pitch and yaw set-points for the center link. These
deviations occur because task 1 is the primary task and
tasks 2 and 3 are secondary tasks. The first term in
(24) does not consider the task errors for tasks 2 and 3.
Satisfying the desired center link orientation will therefore
introduce errors in the orientation of the front end and the
back end. The deviations disappear as soon as the second
term in (24) compensates for these task errors. We can
also see transient deviations in the front end orientation
when the back end orientation is changed, and vice versa.
These deviations appear because of coupling forces caused
by the joint motion, and not because the tasks are not
compatible, since when the front end and back end reach
their set-points the opposite end converge to its respective
set-point. At around 650s the front and back pitch errors
are especially large, this is probably because the center
link, front end and back end orientations are changed
simultaneously, which causes multiple joints to move at the
same time, and therefore results in large coupling forces.
The simulation results support the theoretical results, and
we see that all the set-point tasks are fulfilled.
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Fig. 2. Center link position
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Fig. 3. Center link orientation
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Fig. 4. Front end orientation
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Fig. 5. Back end orientation

6. CONCLUSIONS

In this paper, we have proposed a combined kinematic
and dynamic control approach for floating base manip-
ulators, such as the USM, and presented an extended
stability analysis for multiple set-point regulation tasks.
The method extends previous stability analyses, and shows
that the multiple set-point regulation tasks will converge
asymptotically to zero without the strict requirement that
the velocities are perfectly controlled. This novel approach
then avoids the assumption of perfect dynamic control
that is common in kinematic stability analyses for robot
manipulators. The applicability of the method is demon-
strated through a simulation study of a USM carrying out
three simultaneous tasks, and the results show that all the

regulation tasks converge to their respective set-points.
The proposed control approach is applicable to vehicle-
manipulator systems in general, and for any combination
of regulation tasks.
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