
Evaluation of wave-frequency motions extraction
from dynamic positioning measurements using the

empirical mode decomposition
Paula B. Garcia-Rosa

Department of Electric Power Engineering
Norwegian University of Science and Technology

Trondheim, Norway
p.b.garcia-rosa@ieee.org

Astrid H. Brodtkorb
Department of Marine Technology

Norwegian University of Science and Technology
Trondheim, Norway

astrid.h.brodtkorb@ntnu.no

Asgeir J. Sørensen
Department of Marine Technology

Norwegian University of Science and Technology
Trondheim, Norway

asgeir.sorensen@ntnu.no

Marta Molinas
Department of Engineering Cybernetics

Norwegian University of Science and Technology
Trondheim, Norway

marta.molinas@ntnu.no

Abstract—For dynamic positioning operations, high-frequency
wave induced motions cause excessive control action, and conse-
quently additional power consumption and wear of actuators in
the propulsion system. Thus, such operations require the control
of only low-frequency motions, which is achieved by proper
filtering of high-frequency motions. This study investigates the
use of the empirical mode decomposition (EMD) method for wave
filtering purposes. EMD is a data-driven method that decomposes
an oscillatory waveform into a number of modes from the
highest to the lowest frequency. The decomposition process in the
standard EMD algorithm relies on repetitive iterations through
the entire data span, which is impractical for wave filtering in
real-time applications. Thus, an online EMD algorithm is also
considered. The online decomposition process features a time
lag, and measurements of the ship motions have to be taken at
a point ahead of the center of gravity so that high-frequency
motions are estimated in advance. In this study, the performance
of both standard and online EMD algorithms, in terms of wave
filtering and control efforts, is evaluated through a comparison
with a nonlinear passive observer (NPO). Furthermore, the time
lag of the online EMD is also of interest, as it indicates the
required prediction time window. Simulation results with a simple
maneuver of a vessel in moderate, and calm seas, show that the
control action with wave filtering from the online EMD can be
up to 40% lower than with wave filtering from NPO.

Index Terms—wave filtering, dynamic positioning, empirical
mode decomposition

I. INTRODUCTION

In most ship applications, the oscillatory motion due to first-
order wave forces and moments should not enter the control
loop, as it causes unnecessary tear and wear on the machinery
and thrusters, and consequently, increases fuel consumption.
Such an oscillatory motion is caused by waves in the frequency
range [1]:

0.05 < f0 < 0.2 (Hz) . (1)

The ship is also subject to wave drift forces that are caused by
second-order wave disturbances and induce nonzero slowly-
varying motions. However, second-order wave drift forces can
be counteracted by the motion-control loop [1], [2].

In order to avoid high-frequency wave induced motions,
which cause excessive control action, proper filtering of state
variables must be performed by using wave filtering tech-
niques. In this study, the focus is on wave filtering for dynamic
positioning (DP) systems. In this framework, a number of
studies have developed wave filtering techniques based on
conventional filter design, and state estimation methods, see,
e.g., [2]–[7]. Techniques based on state estimation consist
of using a wave-induced motion model and an observer to
separate the ship position and heading into wave-frequency
(WF) motions (i.e., the high-frequency wave induced motions)
and low-frequency (LF) motions [2], [5].

A non-model based approach is considered here, where a
scheme based on the empirical mode decomposition (EMD)
method is proposed to extract the first-order oscillatory mo-
tions from the ship position and heading measurements. EMD
is a data-driven method with an adaptive basis that relies on
the local characteristic time-scale of an oscillatory waveform.
The method decomposes a waveform into a number of in-
trinsic mode functions (IMFs) from the highest to the lowest
frequency modes, and a residue, which can be either the mean
trend or a constant [8]. An IMF is defined as a symmetric
signal with respect to the local zero mean, and with numbers
of zero crossings and extrema that differ at most by one. Such
a signal satisfies the necessary conditions for a physically
meaningful interpretation of instantaneous frequency obtained
from the Hilbert transform [8].

The aim of this paper is to evaluate the performance of
the EMD method for wave filtering purposes in DP systems.



Simulation results present a comparison of both wave filtering
and control efforts for the case when wave-frequency motions
are filtered by EMD with the case when a nonlinear passive
observer (NPO) [2] is used.

Moreover, the decomposition process in the standard EMD
algorithm relies on repetitive iterations through the entire data
span, which would cause excessively long delays, impractical
for wave filtering purposes in real-time applications. Thus,
an online EMD algorithm based on a sliding window and
stitching procedure [9] is also considered in this study. Ul-
timately, the WF motions feature a time lag due to the online
decomposition process, and then, measurements of the ship
position and heading have to be taken at a point ahead of
the center of gravity (CG) so that WF motions are estimated
in advance. The time lag of the EMD online indicates the
required prediction time window.

Both standard and online EMD algorithms are adopted in
this study. Therefore, the wave-frequency motions obtained
with the online EMD can be verified through a comparison
with results obtained with the standard EMD.

II. MATHEMATICAL MODELS FOR DP SYSTEMS AND
WAVE FILTERING

DP mathematical models can be formulated by using either
a low-fidelity model, which is a simplified model with the main
physical properties of the process, or a high-fidelity model,
which represents a more comprehensive description of the
process and is used for simulating the real plant dynamics
[10]. Here, we describe the low-fidelity model used in the
NPO formulation.

A. Modeling of DP vessels

Ship operations such as station-keeping and low-speed
maneuvering rely on feedback information from position and
heading measurements. Such measurements are used in a
motion-control system operating in three planar degrees of
freedom, i.e., surge, sway and heading [5]. The models des-
cribed here consider three degrees of freedom only.

Two reference frames can be adopted to describe the motion
of a ship, i.e., the local geographical Earth-fixed frame and
the body-fixed frame. Furthermore, the total motion of the
vessel (y ∈ R3) can be calculated as the superposition of
low-frequency motions (η ∈ R3) and wave-frequency motions
(ηw ∈ R3). For control system design, the model of the vessel
can be expressed as [10]:

ξ̇ = Awξ + Ewww , (2)
ηw = Cwξ , (3)
η̇ = R(ψ)ν , (4)

Mν̇ = −Dν + RT (ψ)b + τc , (5)
ḃ = −T−1

b b + Ebwb , (6)
y = η + ηw + wy , (7)

where R(ψ) is the rotation matrix,

R(ψ) =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 , (8)

the LF position-orientation vector η = [N , E , ψ]T represents
the north, east (N , E) positions relative to the Earth-fixed
frame and the heading angle (ψ) relative to the north, whereas
the vector ηw=[Nw, Ew, ψw]T represents the WF north, east
positions and heading, and wy ∈R3 is a measurement noise
vector.

The velocity vector ν=[u, v, r]T represents the surge, sway
velocities (u, v) and the yaw rate (r), M∈R3×3 is the inertia
matrix including the rigid-body mass and hydrodynamic added
mass matrices, D∈R3×3 is the linear damping matrix, τc =
[τsurge, τsway, τyaw]T is the control vector in the body-frame
obtained from a nonlinear PID controller [11], and b∈R3 is a
bias vector term that accounts for slowly-varying disturbances
and unmodeled dynamics. In the bias model (6), Tb ∈R3×3

is a diagonal matrix of bias constants, and Eb ∈ R3×3 is a
diagonal matrix that weights the amplitudes of the white noise
vector wb∈R3.

The WF model (2)-(3) is based on linear approximations of
wave spectrum descriptions [1]. For each degree of freedom
i = {1, 2, 3}, the state-space model represents a 2nd-order
noise-driven damped oscillator with relative damping ratio ζi
and angular frequency ωoi defined as the peak frequency of
the wave spectrum. The matrices Aw, Cw, Ew are given by

Aw=

[
0

3×3
I
3×3

−Ω2 −2ΛΩ

]
, Cw=

[
03×3 I3×3

]
, Ew=

[
0

3×3

Ew

]
,

where Ω = diag{ωo1, ωo2, ωo3}, Λ = diag{ζ1, ζ2, ζ3}, Ew2 =
diag{εw1, εw2, εw3}, and εwi is a parameter related to the wave
intensity [2].

B. Model-based Observer

The nonlinear passive observer considered here is based on
the model (2)-(7), which is a simplified model of the vessel
dynamics. The observer inputs are the measurements of ship
position and heading (y) and the control input vector (τc). The
model-based observer is given by [2]

˙̂
ξ = Awξ̂ + K1ỹ , (9)
˙̂η = R(ψy) ν̂ + K2ỹ , (10)
˙̂
b = −T−1

b b̂ + K3ỹ , (11)

M ˙̂ν = −Dν̂ + RT (ψy)b̂ + τc + K4R
T (ψy)ỹ , (12)

ŷ = η̂ + Cwξ̂ , (13)

where ψy is the measured heading, ξ̂∈R6, {η̂, ν̂, b̂}∈R3 are
the state estimates, ỹ =y − ŷ is the measurement estimation
error, K1 ∈ R6×3, K2 ∈ R3×3, K3 ∈ R3×3, and K4 ∈ R3×3

are the observer gain matrices. To ensure passivity properties,



the observer gain matrices should have a diagonal structure
[2] [11, Chapter 11]:

K1 =

[
diag{K11,K12,K13}
diag{K ′11,K

′
12,K

′
13}

]
,K2 = diag{K21,K22,K23},

K3 = diag{K31,K32,K33}, K4 = diag{K41,K42,K43},

where

K1i = −2ωci(ζni − ζi)
ωci
ωoi

,

K ′1i = 2ωoi(ζni − ζi) ,
K2i = ωci ,

and 1/Tbi � K3i/K4i < ωoi < ωci for i={1, 2, 3}. ζni>ζi
determines the notch effect (wave filtering) and ωci > ωoi is
the filter cutoff frequency. For more details on global stability
properties of the observer and tuning of the gain matrices, see
[2] [11, Chapter 11].

III. WAVE FILTERING USING THE EMD

The EMD determines the oscillation modes (IMFs) in the
ship motions (surge, sway and heading) in an iterative way,
where the fastest oscillations of each motion are extracted
firstly, and the residuals of the signals are decomposed in the
next iterations. For a degree of freedom i, the decomposition
is summarized as:

yi(t) = c1,i(t) + r1,i(t)

= c1,i(t) + c2,i(t) + r2,i(t)

= c1,i(t) + c2,i(t) + c3,i(t) + r3,i(t)

=

N∑
n=1

cn,i(t) + rN,i(t) , (14)

where yi(t) is the measured motion i, cn,i(t) is the n-th IMF
component, and rN,i(t) is the final residue. The total number
of extracted IMFs (N ) can be defined, e.g., by the data length
[12]. However, in this study the IMFs are defined as the high-
frequency wave induced motions (WF motions) that have to
be filtered out prior to the control loop. Thus, the frequency
of each IMF has to be calculated in order to verify if it lies in
the frequency range (1). Here, we simply use the information
of the peak frequency of the IMF spectra. From (14), the WF
motions are defined as:

Nw(t) =

N∑
n=1

cn,1(t) , (15)

Ew(t) =

N∑
n=1

cn,2(t) , (16)

ψw(t) =

N∑
n=1

cn,3(t) , (17)

where N is defined according to the required wave filtering
characteristics for the ship motion-control.

In order to estimate the WF motions using EMD (15)-(17),
we assume that the ship is moving with low speed in opposite
direction to the incident waves, and measurements of the ship

position and heading are taken at a point ahead of the CG.
Thus, the WF motions at the CG can be estimated in advance
for wave filtering purposes.

A. Standard EMD

The EMD algorithm identifies local maxima and minima
of the ship motion yi(t), and calculates upper and lower
envelopes for such extrema using cubic splines. The mean
values of the envelopes are used to decompose the measured
signal into IMFs, in a sequence from the highest frequency
component to the lowest frequency component. The standard
EMD algorithm is summarized in Table I. The steps 1 to 5
are known as sifting process.

TABLE I
STANDARD EMD ALGORITHM.

Step 0: Set n=1; r(t)=yi(t);
Step 1: Identify the local maxima and minima in r(t);
Step 2: Calculate the upper envelope defined by the maxima, and the

lower envelope defined by the minima;
Step 3: Calculate the mean envelope m(t);
Step 4: Set h(t)=r(t)−m(t);
Step 5: If h(t) is an IMF, go to next step. Otherwise, set r(t)=h(t)

and go back to step 1;
Step 6: Set cn,i(t)=h(t); r(t)=r(t)− cn,i(t);
Step 7: If n=N , define the IMF components as c1,i(t), . . . , cN,i(t),

and the residue as rN,i(t) = r(t). Otherwise, set n=n+ 1 and
go back to step 1.

In the standard EMD algorithm, the sifting iterations are
performed in the full length of the signal. Thus, the knowledge
of the whole signal (or previous residual) is needed to extract a
mode, which would cause excessively long delays, impractical
in the estimation of WF motions for real-time applications.
Nonetheless, an online version of the method is based on
the observation that the sifting process relies on interpolations
between a finite number of extrema, and then, the extraction
of a mode is done blockwise by means of a sliding window
[13]. In such a case, the knowledge of the whole signal is not
needed, but some delay is also observed as the sifting process
requires a certain number of extrema to extract a meaningful
IMF (10 extrema in the case of cubic splines) [13]. The online
EMD algorithm considered in this study is presented next.

B. Online EMD

In the online EMD algorithm, the fastest mode is extracted
by using the sifting process in the standard EMD at each
instant in which a sliding window contains a specified number
of local extrema (l). The mode is updated (as the window shifts
by one extremum) through a stitching procedure that weights
and averages overlapping modes according to their position
in time [9]. After obtaining the first IMF, the procedure is
repeated using the residual of the signal to identify other
IMFs. The online EMD algorithm is summarized in Table II
for the extraction of an IMF cn,i(t) from the input signal x(t),
which is defined as x(t) = yi(t) for the first IMF (n= 1) or
x(t)=rn,i(t) for subsequent IMFs.

The section of the IMF that is being stitched needs subse-
quent data to be completed and will exhibit a time lag that



TABLE II
ONLINE EMD ALGORITHM [9]

Step 0: Set m=1; Φ0(t)=0; e1 =0; c̄n,i=0;
Step 1: Identify the window with l consecutive local extrema

({e1, . . . , el}) in x(t);
Step 2: Extract an IMF cmn,i(t) for the data in the window m using the

standard EMD (sifting process);
Step 3: Define warped weights as:

φk(t)=

φ̃
(
sk + (sk+1 − sk)

t−e′k
e′
k+1
−e′

k

)
, t ∈ [e′k, e

′
k+1]

0 , otherwise
and the weighted IMF as:
ĉmn,i(t)=(φ1(t)cm,1n,i (t),. . ., φl′−1(t)cm,,l

′−1
n,i (t)), where e′k is the

position of the k-th extremum in cmn,i(t), φ̃ is the window function:

φ̃(s) =

{
1√
2π

exp
(
− s

2

2

)
− 1√

2π
exp

(
− τ

2

2

)
, on [−τ, τ ] ,

0 , otherwise
sk = −τ + 2(k − 1)τ/(l′ − 1), and cm,kn,i (t) is the mode between
two extrema: cm,kn,i (t)=cmn,i(t), e′k ≤ t < e′k+1.

Store the total of weights: Φm=Φm−1(t) +
∑l′−1
k=1 φk(t);

Step 4: Stitch ĉmn,i(t) on weighted IMFs previously extracted:
c̄n,i(t)= c̄n,i(t) + ĉmn,i(t) and normalize the data that will be removed
from the sliding window in the next iteration: c̄n,i(t)= c̄n,i(t)/Φ

m(t),
for all t∈ [em, em+1];

Step 5: Update the residual: rmn,i(t)=xm(t)−c̄n,i(t) for all
t∈ [em, em+1];

Step 6: Set m=m+ 1 and go back to step 1.

depends on the distance between the extrema [9]. Then, each
IMF has a lag determined by the frequency of its waveform,
and IMFs with low frequencies have longer delays than high-
frequency IMFs.

Here, the aim is to estimate the time needed to obtain the
high-frequency induced motions by using the online EMD.
Thus, the lag of the last IMF cN,i(t) in (15)-(17) is of interest.

C. Performance Metrics

To evaluate the performance of the EMD, the following
metrics are adopted: (i) the mean square error (MSE) between
the LF motions and the desired Earth-fixed frame position
and heading ηd=[Nd, Ed, ψd]T ; (ii) the MSE of WF motions
obtained with the online EMD and standard EMD; and (iii)
control effort metrics (Jτ,uv, Jτ,r) to verify the control action
required when the EMD method is used for wave filtering:

Jτ,uv =

∫ T

0

(|τsurge|+ |τsway|) dt , (18)

Jτ,r =

∫ T

0

|τyaw| dt , (19)

where T is a time interval. Furthermore, the time lag of the
last IMF for each motion is of interest in the online EMD, as
it indicates the WF prediction time window.

IV. SIMULATION RESULTS

In order to evaluate the performance of the EMD method in
terms of wave filtering and control effort metrics, a comparison
with the NPO is performed in this section.

TABLE III
SEA STATES

Sea state ωp (rad/s) Hs (m)
Calm sea 1.11 0.2

Moderate sea 0.79 2

TABLE IV
MAIN PARAMETERS OF THE SUPPLY VESSEL

Parameter Value
Length between perpendiculars 59.13 m

Breadth 13.11 m
Design draft 4.59 m

Mass 2067 tons

TABLE V
DEFINITION OF WAVE FILTERING METHODS USED IN SIMULATIONS

Method Definiton
M0 NPO
M1 EMD with N=1
M2 EMD with N=2
M3 EMD with N=3

A. Simulation parameters

The simulations were performed using building blocks
from the Marine Systems Simulator (MSS) [14] to model
the motions of a platform supply vessel with a nonlinear
PID control. The simulation model adopts high-fidelity model
formulations, as presented in [10, Section 3], but only the
forces and moments due to waves and control are considered
here. The vessel is subject to waves from both calm and
moderate seas. Table III shows the significant wave height
(Hs) and peak frequency (ωp) for JONSWAP spectra adopted
in the simulations, and Table IV shows the main parameters
of the supply vessel. The gains of the nonlinear PID and NPO
were adjusted using the tuning rules as presented in [11]. Here,
K3i = 0.01, K4i = 0.1, Tbi = 1000, ζi = 0.05, ζni = 1.0,
ωoi=ωp, and ωci=1.22ωoi.

For the EMD method (both standard and online algorithms),
different wave filtering characteristics are considered in the
analysis, i.e., the WF motions are defined using distinct
numbers of IMFs. Table V summarizes the wave filtering
methods used in the simulations. The EMD algorithms apply
10 sifting iterations to extract the modes in all studied cases.
The online EMD from [9] is used in the simulations. The
same wave conditions and controller gains are considered for
all methods in Table V.

B. Standard EMD

Firstly, we adopt the standard EMD to estimate the WF
motions of the vessel in a station keeping scenario, where
the controller regulates the position and heading of the vessel
around zero. Figure 1.a illustrates the measured position in
East (top), and the IMFs and residue obtained from the



0 100 200 300 400 500 600 700 800 900 1000
-0.5

0

0.5

0 100 200 300 400 500 600 700 800 900 1000
-0.5

0

0.5

0 100 200 300 400 500 600 700 800 900 1000

-0.05

0

0.05

0.1

0 100 200 300 400 500 600 700 800 900 1000

-0.02

0

0.02

0 100 200 300 400 500 600 700 800 900 1000

-0.02

0

0.02

0 0.05 0.1 0.15 0.2 0.25 0.3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 1. Standard EMD (M3) applied in measured position of the vessel in
moderate sea: (a) measured signal (top) and EMD components, (b) normalized
spectra of EMD components. East in meters. Index i=2 is omitted in labels
and legend.

decomposition when N = 3 (M3) for moderate sea. The
normalized spectra of the IMFs and residue are shown in
Figure 1.b.

It can be noted the peak frequencies of the IMFs are distinct,
and the peak frequency ratio for neighbouring spectra is
roughly 2, but there is overlapping in sub-bands of the spectra.
As discussed in [15], the EMD acts as a filter bank structure,
where the filter for the first mode is essentially high-pass, and
a set of overlapping band-pass filters characterize subsequent
modes. The peak frequencies of the IMFs (Fig. 1.b) are within
the frequency range (1), and for M3, the estimated WF
component for each degree of freedom i is the superposition
of c1,i(t), c2,i(t) and c3,i(t).

Figure 2 illustrates a simple maneuver of the vessel, when
its position is commanded to move 20 m sideways in sway
while keeping the surge and heading at zero by using methods
M0 and M3 for wave filtering. The total motion (E + Ew)
and the set-point are also shown. It can be noted that M3
provides better filtering than M0. However, the drawback of
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Fig. 2. Setpoint, total motion, and LF components for methods M0 and M3
for a test maneuver in moderate sea: (a) vessel position, (b) zoom of the
position in steady-state.

M3 is that the WF motions are estimated in advance, while M0
is a model-based method that only requires the information
of the dominant frequency for estimating the current WF
components.

The sway control force, and the normalized control effort
metrics, are shown in Figure 3 for the test maneuver. The
control effort metrics are normalized to the maximum values
obtained with M0. The control effort metrics Jτ,uv, and Jτ,r,
with method M3 are about 35%, and 45%, lower than the
metrics when M0 is used for wave filtering. Such a decrease
in the control effort metrics can reduce the fuel consumption.

Tables VI and VII summarize the performance metrics, i.e,
the MSE of LF components and the control effort metrics, for
all methods in Table V in moderate sea, and calm sea, respec-
tively. The results obtained for M1 are inferior since it filters
only part of the high-frequency wave induced motions with
the first IMF (as illustrated in the IMFs spectra in Fig. 1.b).
Nevertheless, M2 covers a wider frequency bandwidth than
M1, and it results in control effort metrics lower than M0
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Fig. 3. Control performance with methods M0 and M3 (a) sway force (b)
normalized effort metric J̄τ,uv, (c) normalized effort metric J̄τ,r.

TABLE VI
NORMALIZED CONTROL EFFORT METRICS (J̄τ,uv , J̄τ,r) AND MSE [LF] IN

MODERATE SEA. METHODS M1-M3 WITH STANDARD EMD.
TIME INTERVAL: T =1000S.

Method Control effort metrics MSE [LF]
J̄τ,uv J̄τ,r North East Heading

M0 1.00 1.00 9.6×10−4 3.7×10−4 9.0×10−7

M1 3.25 2.41 2.4×10−3 1.2×10−3 4.5×10−7

M2 0.73 0.88 1.7×10−4 1.5×10−4 3.8×10−7

M3 0.65 0.55 0.6×10−4 0.6×10−4 1.2×10−7

TABLE VII
NORMALIZED CONTROL EFFORT METRICS (J̄τ,uv , J̄τ,r) AND MSE [LF] IN

CALM SEA. METHODS M1-M3 WITH STANDARD EMD.
TIME INTERVAL: T =1000S.

Method Control effort metrics MSE [LF]
J̄τ,uv J̄τ,r North East Heading

M0 1.00 1.00 2.3×10−6 4.3×10−6 2.3×10−8

M1 1.36 1.92 3.6×10−6 3.3×10−6 0.4×10−8

M2 0.99 0.87 0.3×10−6 0.5×10−6 0.3×10−8

M3 0.98 0.60 0.1×10−6 0.4×10−6 0.2×10−8

for both moderate and calm seas. For M0, a notch effect
is obtained in the peak frequency (ωp = 0.79 rad/s) and the
observer acts a low-pass filter for frequencies higher than
the cutoff frequency (ωci = 0.96 rad/s), as discussed in [11,
Chapter 11]. For the metric Jτ,uv, the reductions observed with
M2, and M3, in calm sea are less significant than in moderate
sea. The MSEs of LF components with M2, and M3, are also
lower when compared to the MSE with M0.

C. Online EMD

We consider the same wave-forms as used in the standard
EMD, in order to compare the results obtained with both
methods. Figure 4 illustrates the IMFs and WF motions
(bottom) obtained from the online decomposition with N=3
(M3) and window length l=10 in moderate sea. The red parts

TABLE VIII
NORMALIZED CONTROL EFFORT METRICS (J̄τ,uv , J̄τ,r) AND MSE [LF] IN
MODERATE SEA. METHODS M2 AND M3 WITH ONLINE EMD AND l=10.

TIME INTERVAL: T =900.7S (M2), AND T =802.4S (M3).

Method Control effort metrics MSE [LF]
J̄τ,uv J̄τ,r North East Heading

M2 0.79 0.62 1.6×10−4 1.3×10−4 9.6×10−6

M3 0.67 0.60 0.6×10−6 0.6×10−4 1.7×10−6

in each IMF highlight the sections that are not yet completed
due to the stitching procedure. Such sections indicate the
lag of each IMF, which is determined by the frequency of
the IMF. Thus, c3,i(t) has a longer lag than previous IMFs
since its frequency is lower. Here, the lag of the last IMF for
each motion is of interest. From Figure 4, the longest lag is
around 200 s and this indicates the WF prediction time for
M3. Furthermore, the lag of c2(t) for the sway motion (i=2)
is around 100 s, and this is the WF prediction time for M2.

Table VIII summarizes the performance metrics for methods
M2, and M3, when the online EMD is adopted with a window
length of l = 10 in moderate sea. The control effort metrics
are normalized to the maximum values obtained with M0. It
can be noted that the metrics are in agreement with the metrics
obtained with the standard EMD (Table VI). The advantage of
using the online algorithm is the possibility of decomposing
data flows, which is more suitable for real-time applications.

In order to illustrate the effect of the window length (i.e.,
the number of extrema) on the estimated WF motions, Figure
5 shows the MSE of WF motions, and the WF prediction time
∆T as a function of the window length. Different numbers of
extrema (from 3 to 10) are adopted in the online algorithm with
M2, and M3. As expected, the WF prediction time reduces
with the window length (∆T is around 15s for M2 with l=3).
However, due to errors introduced by the stitching procedure,
the MSE of WF motions increases as the window length
reduces. Therefore, further studies are needed to improve the
decomposition for shorter WF prediction time.

V. CONCLUSIONS

This paper evaluated the use of the empirical mode decom-
position method for wave filtering purposes in DP systems.
Simulation results with a simple maneuver of a vessel indicate
that as the wave height increases, the benefit of applying EMD
for wave filtering purposes in DP systems can be significant,
since the control action is further reduced when compared to
the nonlinear passive observer, a more conventional method in
DP systems. In contrast to NPO, which is based on simplified
models that do not accurately describe the real vessel wave-
frequency dynamics, EMD is a non-model based approach
with an adaptive basis that relies on the local characteristic
time-scale of the vessel motions. However, as it is suggested
by the name of the method, EMD is essentially an empirical
method that lacks a solid theoretical foundation. Thus, it does
not allow an analysis of its stability properties.
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Fig. 5. WF characteristics for the online EMD. (a) MSE with method M2,
(b) MSE with method M3, (c) prediction time window with methods M2 and
M3.

Furthermore, high-frequency motions obtained with the on-
line EMD feature a time lag. Therefore, measurements of the
vessel position and heading have to be taken at a point ahead of
the center of gravity to allow the estimation of high-frequency
induced motions in advance. The wave-frequency prediction
time is a function of the length of the sliding window, number
of IMFs to ensure proper wave filtering and the frequencies
of such IMFs, and number of sifting iterations (kept fixed as
10 in this study). For the studied cases, the wave-frequency
prediction time is of the order of minutes, around 100s to
200s, depending on the wave filtering properties adopted.
This time window of prediction is too long for DP real-time
applications. Further studies are needed to improve the online
EMD decomposition for smaller sliding window lengths, and
then, decrease the prediction time window for estimating high-
frequency motions in DP systems.
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