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Abstract—Neurological disorders such as Alzheimers and
Parkinsons diseases are associated with malfunctioning neurons,
and neuronal signaling and communication pathways. Restoring
the neuronal function is considered one of the important areas
of research to understand the brain and to develop treatment
methods. Neurons that fire above their baseline levels when the
head points in a specific direction are called head direction
(HD) cells. Knowledge about the connection between the motor
function and the HD cells can lead to a potentially efficient
method of controlling neurons with brain-machine interfaces. In
this study, we explore the possibility of using an existing neuronal
model to describe the stimuli and responses of HD cells by
comparing outputs of the computational model with recordings
available through a dataset. For this, we use the computationally
simple Izhikevich neuron model. The method used is flexible and
can easily be adapted to other models as well as other types of
spike metrics. The obtained results yield inconclusive inferences
but do not exclude the possibility of other computational neuronal
models being able to describe the behavior of the neurons with
the proposed method. Further research is needed if the proposed
method with some modifications can be applied using a complete
waveform for the Izhikevich model.

Index Terms—Head direction cells, Neurons, Computational
models, Brain-machine interfaces.

I. INTRODUCTION

Theoretical analysis and computational modeling are tools
used to get a better understanding of the nervous system an
understanding which hopefully shortens the path to helping
people with disabilities and various problems. The knowledge
of how different cells function and communicate could very
well ease the process of finding treatments, cures, and ways
to prevent the same problems from happening in the future.

Loss of normal nerve function can be a result of multiple
traumatic injuries, and the prognosis after such injuries can
be quite poor [1]. Neural Prostheses (NPs) [2] are external or
implanted devices with the goal of restoring functions such
as bladder control [3], limb movement [4], and memory [5].
A primary objective in developing NPs is to replace neurons
in the brain that no longer function appropriately. NPs thus
require artificial reconstruction of neural synaptic connections.
Brain-Machine Interfaces (BMIs) are also external or im-
planted devices with the goal of delivering physical stimuli to
the sensory organs [6], muscles [7], or disparate cortical areas
in the nervous system [8]. The success of the BMIs depends
on understanding the principles of neural signal processing,
wiring, and communication.

The aim of this study is to understand and explain how
neural cells function and communicate by exploring the pos-
sibilities of identifying a computational model describing their
discharging. In particular, we select Head Direction (HD) cells
that assist with spatial orientation due to the availability of real
datasets [9]. The ideal feasible solution is a model capable of
describing all HD cells from the dataset, taking the individual
properties of each HD cell into consideration. The unknown
and innumerable possible uses for such a model makes this
highly motivating work.

The ultimate idea presented in this paper is to exploit new
knowledge about HD cells. HD cells can be found in several
areas of the brain, including the postsubiculum [10], which
plays an integral part in several neurological diseases such as
Alzheimer’s disease and epilepsy [11]; diseases that pose a
substantial burden of disease worldwide [12]. Hence, a better
understanding of how HD cells in these areas function give
insight on how to cure associated diseases. Moreover, the
knowledge of how HD cells function may provide general
insight on how to replicate the approach presented and control
functions of other cortical cells, which in turn may be used
for applications in BMIs.

II. THEORY

A. Head Direction Cells

HD cells are neurons in the brain that discharge, or fire, with
a rate dependent on the direction of the individual’s head in
the horizontal plane. They have been identified in mice [10],
rats [13] and monkeys [14], but are thought to be present in
all mammals [10].

There are three main properties of HD cells: the peak firing
rate, the preferred firing direction (PFD), and the directional
firing range [15]. A cell’s peak firing rate is the maximum
firing rate of the cell, which occurs when the head is in the
PFD of the cell. The directional firing range is the angular
range where the firing rate is above the baseline firing rate.
In terms of the PFDs, all directions are represented equally in
the total population of HD cells [10]. Fig. 1 is an example of
a tuning curve of an HD cell. Here, the direction of the head
is represented by the x-axis, while the y-axis represents the
firing rate in spikes per time unit. The firing rate of the cell
is zero, or almost zero for angles far away from the PFD, but
increases quickly when the head direction is turning towards
the cell’s PFD. The directional firing range varies from cell
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Fig. 1: Tuning curve of HD cell.

to cell, from around 60° to 150°, but with an average around
90°. The peak firing rate also varies from cell to cell, usually
from 5 to >120 spikes per second. [10].

The response of the HD cells is constant even when the head
is not moving, which indicates that HD cells are independent
of motion input [15]. The firings of HD cells depend on
landmarks and self-motion cues like the vestibular system
and motor/proprioceptive information [10]. The HD cells are
therefore considered a part of the allocentric system together
with grid cells and place cells [16], which help with spatial
orientation [10].

B. Dataset

The dataset used consists of neural recordings of mice
searching for feed for 35-40 minutes in a closed environment,
both preceded and followed by two hours of sleep. The
complete dataset consists of 1077 neurons of different types,
obtained through 42 recordings. The dataset includes times and
waveforms of detected action potentials/spikes and the result
of spike sorting. The head coordinates and directions are also
included in the dataset, which are extracted from video files.
Detailed description is provided in [9].

III. METHODS

A. MATLAB Code Detecting HD Cells

The identification of HD cells is done with a MATLAB
code smoothing the data with a Gaussian kernel and fitting
with von Mises distribution, before calculating a concentration
parameter and the peak firing rate. The inclusion criteria for
HD cells are given as follows:

• Concentration parameter >1,
• Peak firing rate >1,
• Probability of non-uniform distribution <0.001.

B. Dividing Firings Into Sessions

Since the neurons’ responses are dependent on the direction
of the head, the recordings are divided into different “sessions”
in order to compare the responses considering the continuous
head movement. Each such session includes the firings of a
specific HD cell when the mouse held its head inside a specific
angle bin. If the mouse moved its head in a direction outside
this angle bin, before moving it back again, these two instances
are defined as two separate sessions.

C. Comparing Sessions

By comparing the different sessions for one HD cell, it
is possible to see if the sessions follow the same pattern. A
pattern emerging from this comparison enables identification
of the coding used. Intuitively, it should be possible to extract
a characteristic pattern from the sessions if the neuron follows
the firings of a “typical” HD cell since the firings are mostly
dependent on the direction of the head.

Sessions within an angle bin and between angle bins are
compared to see if there are any correlations. This is done by
using the Victor-Purpura metric with different values of the
cost, q. The Victor-Purpura distance is a cost-based metric
used to quantify the similarities, or dissimilarities between
two spike-trains [17; 18]. When using this metric, the sessions
should be of approximately the same length.

D. Model

Being able to describe the behavior of HD cells with one or
several models, makes it possible to reproduce the responses of
the HD cells for different stimuli, or find the stimulus applied
to get a specific response. This might then lead to efficient
artificial control of HD cells.

The three main properties of the HD cells must be taken
into consideration when establishing a model describing the
firings of HD cells: the PFD, the directional firing range, and
the peak firing rate. Due to the variations of these variables
between cells, it is not possible to create a generic model
describing the firings of all the cells. It should also be tested
whether or not these variables are independent. For example, if
HD cells with large peak firing rates also have large directional
firing ranges, these types of relations should be included in the
model.

Finding a Model: The Izhikevich model for modeling
large-scale networks is used [19]. The MATLAB script is
modified to return the spiking times and take the duration
of the simulation as an input parameter. The duration of the
simulation is set to the duration of the session which it is going
to be compared.

The model includes several elements of randomness to
mimic that the different cells in the network have different
dynamics, that the different synaptic connections between the
neurons have different weights, and that the input varies. The
first two factors are not relevant when it comes to the modeling
of one neuron. The randomness of the input is removed to see
if it is possible to find a model with a predefined input.
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Fig. 2: The length of the bars represent time [ms] spent
with head in direction, while the PFDs of the HD cells are
represented by.

Some possible values of the model parameters, making the
model exhibit the same properties as known cortical neurons,
are provided [19]. Different combinations of parameter values
are looped through, and the Victor-Purpura distance is found
for each combination. The parameter values that yield the
lowest distance are kept. Since different cost values yield
different models, different values are tested since there are
some uncertainties about the optimal value of this cost.

IV. RESULTS

A. Delimitations

For practical reasons, the recordings from Mouse12-120806
are selected, and from this dataset, shank 3 is preferred due
to the large number of HD cells. Out of 13 cells found, 12
are identified as HD cells. HD cell 8 is chosen for further
inspection.

B. Initial Analysis

Head Directions Represented: The PFDs are provided from
the MATLAB code. In Fig. 2, these values are plotted together
with the head directions of the mouse during the wake period
with an angle bin width of one degree. The figure indicates that
the mouse held its head more in the directions between 100°
and 240°. This, however, does not describe the continuous
duration of the head in a particular direction. As Fig. 2 also
shows, the PFDs do not always correspond to the time spent
with the head in each direction. This means that the amount
of data well suited for analysis is sub-optimal.

TABLE I: Directional firing range and peak firing rate found
by visual inspection.

Directional Peak firing rate
HD cell firing range [spikes/sec]

1 90° 3
2 100° 3.5
3 90° 55
4 120° 25
5 120° 35
6 100° 45
7 150° 15
8 110° 60
9 100° 16

10 100° 14
11 90° 5
12 90° 9

TABLE II: Number of extracted sessions.

Angle bin width #spikes/session #sessions
5° 10 168
5° 15 23
5° 20 3

10° 10 1016
10° 15 263
10° 20 74

Visual Inspection: Both the peak firing rate and directional
firing range of the twelve HD cells are found by visual
inspection, and the results are given in Table I. The peak
firing rates varies between 3 and 60 spikes/second, and the
directional firing range ranges between 90° and 150°.

C. Dividing Firings Into Sessions

The results from the extraction of sessions can be seen in
Table II. Here, the number of sessions found are given for
an angle bin width of 5° or 10°, and the minimum amount
of spikes is set to 10, 15 or 20. From these alternatives, the
5° angle bin and 10 spikes is chosen for further inspection.
This ensures a narrow angle bin and several sessions for data
retrieval.

D. Comparing Sessions

Visual Inspection: After shifting the sessions, so they all
start at time t = 0, it is possible to plot them on top of each
other in the same graph to get an indication on whether or not
they are similar. An example is shown in Fig. 3.

Mean Firing Rate: The mean firing rate is found per
session. The averages over these sessions are then calculated.
The results are given in Table III together with the standard
deviations (SDs).
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Fig. 3: Comparison of two same-length sessions from angle
bin 115°-119°.



TABLE III: Mean firing rate and SD for angle bins of 5° and
10 spikes or more.

Angle bin #sessions Mean SD
85°-89° 2 48.88 11.80
90°-94° 5 59.88 17.72
95°-99° 5 72.31 16.78

100°-104° 7 55.35 10.61
105°-109° 4 94.49 34.71
110°-114° 4 93.69 25.02
115°-119° 11 75.71 27.03
120°-124° 7 67.00 18.76
125°-129° 6 89.14 39.31
130°-134° 3 64.18 12.48
135°-139° 6 69.53 24.86
140°-144° 2 82.24 21.45

TABLE IV: Comparion of sessions.

Same/different q = 0.07 q = 0.136 q = 1
Same 2.28 9.60 20.25

Different 1.66 10.44 20
Different 1.58 11.24 18.05
Different 1.75 11.05 20.25

Same 1.54 8.16 20.50
Same 0.84 10.23 20.45

Different 2.47 10.26 19.45
Different 0.62 8.86 18.10

Same 2.62 10.22 18.84
Different 2.46 9.84 21.45
Different 2.84 12.39 20.65
Different 0.89 10.92 19.45

Victor-Purpura Distance: Some of the results are given in
Table IV. The compared sessions have a maximum differentia-
tion of 5 ms in length. Three sets of session lengths have been
chosen, separated by the horizontal lines. The first column
depicts if the compared sessions are from within the same
angle bin, and the rest are the Victor-Purpura distances for the
given costs. The boldface results contain the shortest Victor-
Purpura distance for the given cost q.

E. Finding a Model

Table V shows the optimal parameter values for the first
three sessions S1, S2 and S3 for three different values of
q. The value 0.136 is the average distance between spikes,
while the values q = 0.07 and q = 1 are used for comparison.
Table VI shows the Victor-Purpura distances for the three
sessions in Table V when using the optimal values for q =

TABLE V: Optimal model parameter values.

a b c d I Distance
q = 0.07

S1 0.08 0.24 -60 0.95 14 0.77
S2 0.07 0.21 -65 0.20 12 1.53
S3 0.06 0.20 -50 4.00 12 1.51

q = 0.136
S1 0.08 0.24 -60 0.95 14 1.50
S2 0.05 0.25 -60 1.45 13 2.86
S3 0.06 0.20 -50 4.00 12 2.93

q = 1
S1 0.09 0.25 -65 1.25 7 5.55
S2 0.10 0.21 -65 2.30 5 8.60
S3 0.04 0.20 -50 5.40 6 7.45

TABLE VI: Victor-Purpura distance for different optimal
model parameter values for q = 0.136.

Session Distancea Distanceb Distancec
S1 1.50 3.18 5.33
S2 7.22 2.86 8.48
S3 8.85 7.60 2.93

aa = 0.08, b = 0.24, c = -60, d = 0.95, I = 14.
ba = 0.05, b = 0.25, c = -60, d = 1.45, I = 13.
ca = 0.06, b = 0.20, c = -50, d = 4.00, I = 12.

0.136 given in the same table. The bold-faced numbers are
the distances for the sessions which optimized values are used.
When plotting the session and the model with parameter values
found as optimal for the given session, visual inspections
reveal that even with a low distance, the session and model
do not correspond well.

V. DISCUSSION

A. Directional Firing Range and Peak Firing Rate

The directional firing range and the peak firing rate of the
HD cells found in Table I are consistent with the literature. The
directional firing range is similar to the published literature
discussed in Section II-A, while the peak firing rate is a bit
lower for two of the HD cells, with a firing rate below 5.

The exact values given in the results should, however, be
interpreted with caution. The directional firing range and peak
firing rate are only estimated from a visual inspection of the
tuning curves. This is determined to be accurate enough for
the simple initial analysis conducted. For a more thorough
analysis, more accurate values should be used. One method
for finding these values could be to estimate a fitted curve and
then calculate the directional firing range and peak firing rate
from this.

B. Dividing Firings Into Sessions

As described in Section III-B and IV-C, sessions within
angle bins of 5° are extracted, and the sessions with less than
10 consecutive spikes are omitted.

With a lower number of minimum spikes per session, fewer
sessions are omitted, but a certain number of spikes is also
needed in order to compare the sessions accurately and be
able to find patterns. A high number of minimum spikes per
session makes it harder to analyze all of the HD cells the same
way, since some of the HD cells have a low peak firing rate,
and with narrow angle bins, the length of the sessions may
be too short for a comparable amount of spikes to occur. The
HD cells that suffer the most from this filtering are the ones
with the lowest firing rates. This is because HD cells with low
peak firing rates require the mouse to hold its head inside the
same angle bin for a more extended amount of time to obtain
a sufficient number of spikes for analysis.

While wide angle bins yield a more significant number of
sessions, there are several downsides by choosing wide angle
bins. The firing frequency changes with each angle, and by
using a wide angle bin, the firings included fire with different
rates. A possible pattern found will thus originate from several



different angles with different average firing rate. Another
problem is that it is not known how the head movements are
inside the bin. With a narrow angle bin, the main problem is
the lack of data.

C. Comparing Sessions

Visual Inspection: This method can give some indication of
whether or not two sessions are similar, but it is not feasible
for comparing larger sessions.

Mean Firing Rate: As can be seen from the SDs in Table
III, there are large variations in the firing frequency for some
of the sessions. Large angle bins yield larger values for the
SDs. While narrowing the angle bins would decrease the SD,
it would also give fewer spikes in each session. Increasing
the angle bin also increases variations in the firing rate. The
chosen part of the dataset does not provide enough data for
testing with smaller angle bins as the number of firings per
angle bin is too low. Large SDs, especially with smaller angle
bins, are a good indication that HD cells communicate with a
different coding scheme than only rate coding.

Victor-Purpura Distance: As shown in Table IV, it is not
possible to say whether or not two sessions are from the same
or different angle bins based on the Victor-Purpura distance
alone.

One reason for the lack of similarity could be the size of
the angle bins. Furthermore, the neural code used may differ
too much for the different directions inside the angle bin. The
sessions found to consist of an unknown number of codes with
different features, in an unknown order. If these features differ
too much, the task of finding a model is more complicated
especially when generalizing the model for one HD cell, not
only one session or angle bin.

D. Finding a Model

As shown in Table V and VI, the model parameter values
that yield the shortest distance for one session are not the
same as for another session from within the same angle bin,
and the model parameter values that yield the shortest distance
for one session give larger distances for other sessions in the
same angle bin. The optimal choice of parameter values for
one session are not the most optimal ones for the rest of the
sessions.

Either, the lowest possible Victor-Purpura distance does not
give the most optimal model, or, the Izhikevich model is not
a suitable model to use for these types of spike sequences.

VI. CONCLUSION AND FUTURE WORK

In order to develop a functioning NP that replaces the
function of a neuron, a model able to reproduce response
from given stimuli is needed. The results yield no definitive
conclusion but do not exclude the possibility of other methods
or metrics being able to describe the behavior of the neurons
with such a model. Alternatively, other models can be tried
with the same method to see if they yield any better results.
The main issue was achieving valid comparisons of the spike-
trains. A more extensive dataset along with other metrics
should be tested to see if they yield more definite results.

For future work, a natural place to start is looking at the
other days of recordings in the dataset. This will be to see
if some of them include a larger set of usable data for the
method explored. If the same approach is taken, sessions
are extracted before a comparison of each HD cell to find
a possible common pattern. However, a different comparison
metric should be used to take advantage of the differences in
session size, rather than being limited by it.

If no pattern is found when comparing sessions, other
approaches should be considered. This can be done by disre-
garding sessions, or by using other ways than spike-trains for
describing the sessions. The complete dataset from [9] includes
spike waveforms, which may be used.
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