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Abstract:  

Subsea oil and gas production has always involved the challenging task of determining the overall reliability of 

safeguarding systems, such as safety instrumented systems (SISs). Partial testing and delayed restoration of SISs are 

the main issues in operation and maintenance activities. This paper proposes a novel reliability-modeling 

methodology for subsea SISs subject to partial testing and delayed restoration. The proposed methodology 

incorporates an increasing failure rate in conjunction with dangerous undetected failures for the final elements. 

Approximation formulas for evaluating the average probability of failure on demand are derived for SISs in the low-

demand operating mode. In addition, the effects of degradation are modeled by following Weibull rules in different 

subsequent partial testing intervals. In contrast to previous works, the present research accounts for delayed 

restoration after detecting failures and also considers the repair time for different scenarios. The proposed formulas 

are compared with the existing ones for partial verification. A case study on the shutdown valves of a subsea high-

integrity pressure protection system is presented to illustrate the feasibility of the proposed methodology. It is also 

proven that the proposed approximation offers a robust opportunity for testing strategy optimization and performance 

improvement of SISs. 

Key words: Safety-instrumented systems, Failure probability on demand, Partial testing, Delayed restoration, 

Approximation formulas  

  

 

1．Introduction  

Safety-instrumented systems (SISs) are increasingly applied in subsea oil and gas industries to detect the onset 

of hazardous events and/or to mitigate their consequences [1, 2]. The availability of SISs plays a critical role in 

capturing key characteristics for the design of safety-instrumented systems (SISs). The international standard IEC 

61508 [3] has presented requirements for SIS availability and reliability analyses, with the aim to frame the design 

and operation of SISs. The ISO/TR 12489 standard [4] has described reliability modeling and probabilistic calculation 

methods of SIS performed in petroleum, petrochemical, and natural gas industries. Some frequently used techniques 

have also been developed for SIS reliability modeling and performance assessment, including generalized formulas 

[5], Fault Tree Analysis [6], Bayesian methods [7-9], Markov Analysis [10], Petri Nets [2, 11] and AltaRica modeling 

[12]. The average probability of failures on demand (PFDavg) which is, in fact, the average unavailability over a given 

interval, is considered as the suggested reliability measure for safety instrumented function (SIF) implemented by 

SISs when the low-demand mode is assumed [3].  

In current literature regarding availability and reliability assessment, the effects of some factors including k-out-

of-n voting structures [13, 14], common cause failures[15-17], process demand [17-19], spurious failures [20, 21], 

human and organizational factors [22], uncertainty [23], and periodical proof tests where all hidden failures are 

assumed to be discovered (so-called full proof tests)[1, 2], have been well studied. Other key parameters also need 

to be taken into account to quantify the PFDavg of SISs, including failure rates, testing strategies, and repair time 

under the assumption that a full renewal takes place at each fully proof test. 
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In many real-world SIS subsystems, the final elements may not always fail at a constant failure rate. It is well 

known that when the failures of components are time-dependent, the constant failure rate-based methods are not well 

suited for evaluating system reliability[10, 24-26]. Weibull distributions as a suitable choice have been adopted to 

model reliability for the mechanical equipment with an increasing failure rate [5]. Some case studies related to 

Weibull distributed components have been studied. One method is proposed for PFD calculation based on the ratio 

between cumulative Weibull distribution functions for MooN system in full proof testing [27] and such a method has 

been further developed by Rogova et al. [28] considering non-constant failure rates and common cause failures. Wu 

et al. have presented an approach for reliability assessment of SIS final elements with time-dependent failure rates in 

full and partial testing [29]. 

Many SISs are considered passive systems since they are only activated when a demand occurs, periodic full 

proof tests are therefore required to reveal failures for reliability assessment [3, 11]. However, for subsea exploration 

and production, frequent full proof tests will disturb the operations/production and finally result in an increase of 

production downtime and higher operational costs [30]. Taking shutdown valves of SISs for instance, such tests can 

thoroughly verify that the valves operate on demand, but they may also bring some negative impact to valves due to 

strong stresses. The overall risk level may also increase due to more abruption of normal operation. For such valves, 

partial testing has been therefore introduced as a supplement of full proof testing [30, 31]. Partial stroke testing means 

to partially operate a valve, which meets the requirement for valve movement without any extra production 

disturbances and can also detect the several types of dangerous failures related to sticking of valves or delayed 

operation. The safety may also be improved if such partial testing as an effective strategy in SISs is added with 

existing proof testing regime [30].  

Some efforts have been made in the development of PFDavg by integrating with the influence of FT and PT. The 

generalized PFDavg formulas have been established using the multi-phase Markov models in consideration of partial 

tests and repair times [32]. Jin and Rausand [15] have developed approximate generalized expressions that can 

calculate the PFDavg for general k-out-of-n systems subject to partial-testing and common-cause failures. A multi-

objective genetic algorithm has been used by [33] to develop generalized expressions, which takes into account the 

common cause failure, diagnostic coverage, lifecycle cost and spurious trip rate to optimize testing strategies. Pascual 

et al. [34] have presented a model to find optimal inspection intervals by calculating availability, and subsystems 

decomposition, dependent and independent failures, and non-negligible inspection time are considered.  

However, several issues need to be further investigated when they are applied to the subsea SIS system. The 

existing literatures [2, 15, 33, 35] focus to a large extent on the reliability assessment of SIS based on assumptions 

that are questionable in a subsea context, for example: 1) The failures of SISs are mostly assumed to be exponentially 

distributed with the constant failure rates in these studies [3, 5]. But in fact for many final elements working in a 

subsea environment, they are more likely to deteriorate with an increasing failure rate over time especially in the 

wear-out period [28, 29]. Such an assumption may be not suitable for equipment that is subject to degradation of 

time. 2) The repair time for the revealed dangerous failures has been always assumed to be negligible compared to 

proof and partial test intervals in the already existing formulas. The IEC 61508 and ISO/TR 12489 standards [3, 4] 

have presented repair time taxonomies and the effects of repair times on PFDavg calculation have been discussed in 

[5, 32]. This assumption may not be always realistic for a subsea system since it is not easy to initialize maintenance 

in a short time.  

In order to overcome these limitations as mentioned above, the objective of this paper is to develop new 

approximation formulations that take into account the effects of degradation and delayed repair under subsequent 

partial testing intervals. The potential contribution can be specified as: 

• An increasing failure rate is introduced to model the effects of degradation when failures of SIS final 

actuators follow Weibull rules. 
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• Conditional probability is introduced to develop approximation formulas under different partial testing 

intervals, which is able to predict the PFDavg given the previous partial testing period without failures. 

• Restoration action will be taken into account and contributions from delayed repair are made to handle the 

issues of difficulties in accessing subsea equipment. 

The remainder of this paper is organized as follows: Section 2 discusses the definition and assumptions. Section 

3 develops PFDavg approximation subject to partial testing and delayed repair. The time-dependent failure rate 

following Weibull rules is introduced to model the degradation behavior of the system. A case study for HIPPS valves 

is carried out to demonstrate the applications of proposed models in Section 4. In Section 5 reliability block diagram 

driven Petri net modeling is performed and compared with approximation formulas. Section 6 presents conclusions 

and research perspectives. 

 

2. Definitions and assumptions 

This section firstly presents some definition and then gives relative assumptions for developing PFDavg 

approximation subject to partial testing and delayed restoration.  

2.1 SIS definitions 

A typical subsea SIS consists of sensors (e.g. pressure transmitters), logic solver(s) (e.g. programmable logic 

controllers) and final elements (e.g. valves, breakers, and switches). The redundant sensor subsystem detects 

hazardous events by measuring physical parameters of the protected system. The logic solver subsystem makes 

appropriate decisions, by comparing the measurements with given thresholds. The final elements as vital subsystems 

of SISs are therefore designed to actually perform the intended corrective actions and maintain the process to be in a 

safe state. Specific subsystems are used to carry out specific safety instrumented functions (SIFs). In real-world SIS 

final element subsystems, taking shutdown valves for instance, such a subsystem includes one element or two parallel 

components which are defined as 1oo1 system and 1oo2 system, respectively. These elements may always suffer 

from dangerous hidden failures, dangerous undetected (DU) failures, that will be discovered by a test or a demand 

when they are only activated. This paper is limited to SISs final elements operating in low demand, and the frequency 

of such demands is assumed to be less than once per year [3]. 

2.2 Partial testing 

Partial testing (PT) of final elements, like actuated valves, has been introduced as a supplement to full proof 

testing (FT). For the shutdown valve case, a partial test means to partially operate a valve, which meets the 

requirement for valve movement and can also reveal the several types of dangerous failures, such as the failure mode 

“fail to close on demand”. These partial tests can be performed without any extra production disturbances that may 

lead to process shutdowns [30, 32]. In a subsea environment, it is of high importance to reduce the number of planned 

and unplanned stops. Only some specific failure modes are detected by PT, meaning that PT cannot fully replace FT. 

Except the benefit in avoiding production loss, because the valve movement in PT is so small that the impact on the 

process flow or pressure is negligible, partial tests could reduce wear of the valve seat area that may be caused by FT 

in a fully closed state with more stress. With PT, fewer full valve closures are expected, meaning that the number of 

potentially dangerous situations when reopening the valves is reduced. The probability of sticking seals may also be 

reduced due to more movements of valves in a FT. It is noticed that the valves should be designed to tolerate partial 

movement, and the increased wear does not result in spurious activations.  
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2.3 Delayed restoration 

Challenges from subsea context are not well handled with, for instance, the non-ignorable time to repair even for 

a revealed failure. For subsea equipment, repairs are always delayed since: Firstly, repairs imply the mobilization of 

a maintenance vessel (rig), which can last several days of weeks. In the same ways, the spare parts may need some 

time to be available. Then, it is quite difficult to access to subsea equipment, and finally, some potential risk may 

increase due to the unscheduled pulling for repair. The mean repair time (MRT) of DU-failures refers to the time 

required to repair a failure or make a replacement for a component when it has been detected by PT or FT. This part 

also includes time waiting for repairs if there are logistic delays. The safety function of the channel is regarded to be 

lost during the MRT. 

2.4 Assumptions  

PFDavg formulas have been developed in this section for the SIS final element subsystem. When a DU-failure is 

detected with a partial test, a repair action can be initiated to restore the valves to a normal state. If such action is not 

carried out immediately, repair time is considered. In this case, the SISs continue in the degraded mode of operation, 

assuming that the risk is managed by some other risk compensating measures. For the formulas, the following 

common assumptions have been made: 

• Failure rates of components (i.e. rate of occurrence of failures) are assumed to follow the Weibull 

distribution (due to degradation effects of being in the subsea environment with limited access to regular 

maintenance). 

• MRT is regarded to be non-negligible due to delayed repair. 

• All components are initially (i.e. at first start-up of the subsea facility) in a perfect/functioning state. 

• All partial tests are performed simultaneously for the final elements. 

• The time spent in a full and partial test is negligible for the final elements. 

• After restoration action involving subsea intervention work (regardless of how types of failures are revealed) 

in a test, the subsystem is assumed an as-good-as-new condition. 

• Same MRT is expected no matter how many valves that are being repaired.  

• Valves will normally have zero diagnostic coverage, which means that no effect of DD failures has been 

included. 

• Common cause failures are excluded, but they can be considered by introducing the β-factor model. 

• All DU-failures are assumed to be independent for testing. 

 

3. Proposed methodology 

This paper is limited to SISs operating in low demand modes defined by key standards, such as IEC 61508 and 

IEC 61511. PFDavg formulas are developed for SISs final elements in partial testing subject to delayed restoration. 

The effects of degradation of final elements with DU failures are modeled into the proposed formulas. Two types of 

PFDavg [5] also need to be introduced to calculate the total PFDavg: 

• PFDavg in partial testing,  

• PFDavg with delayed repairs.  
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3.1 Modeling PFDavg for partial testing  

One proof test interval is considered here to determine the PFDavg if partial testing is involved. All components 

will still be in a functioning state after minor repair actions, but the degradation exists due to the incomplete 

replacement assumed. When DU failures are detected by proof/partial testing given the repair action initiated 

immediately, two types of approximate formulas are developed in this section:  

⚫ Formulas without partial testing  

⚫ Formulas with partial testing 

3.1.1 Nonconstant failure rates 

Based on the ISO/TR 12489 standard, the average failure rate is the average value of the time-dependent failure 

rate over a given time interval. In fact, the average failure rate is the mathematical expectation of the failure rate [4]. 

If an item has a nonconstant failure rate function, we will here approximate this failure rate function z(t) by an average 

failure rate. The average value of z(t) in the proof test interval (0, τ), denoted zavg (0, τ), is: 

( )
0

1
( )0,avgz z t dt




 =  (1) 

The survivor function for the item is given as: 

( ) ( )
( ) ( )

0
0,

t

avg
z s ds z t

rR t P T t e e
−=  = = (2) 

The probability that the item will fail at t = τ is given by: 

( ) ( ) ( ) ( )
0,

1 0,1 avgz

avgF R e z


 = − = −  (3) 

The average failure rate can therefore be approximated by: 

( ) ( ) /0,avgz F   (4) 

It is worth noting that this approximation is acceptable only for rather short intervals. However, for large 

values of τ, the average failure rate ( )0,avgz  , calculated by the above method, approaches zero, which is not 

realistic.  

Compared to constant failure rates generally assumed by previous research work [3, 36], the non-constant failure 

rate can allow the components that are deteriorating with an increasing failure rate. Weibull distribution is one of the 

most widely used life distribution in reliability analysis, which may provide a wide range choice for parameters to 

model the various failure behaviors [5]. The time-dependent failure rate function [29] denoted z(t) is defined as: 

1( ) ( )
( )

( ) 1 ( )

f t f t
z t t

R t F t

  −= = =
−

 (5)

           

 

where λ is a scale parameter, α is a shape parameter, f(t) is the probability density function, R(t) and F(t) are survival 

and failure probability distributions respectively, and they may be found in e.g. [5].  

   The average failure rate in the proof test interval (0, τ) is given by: 

( ) 1 1

0 0

1 1
( )0,avgz z t dt t dt

 
     

 

− −= = = 
(6)

 

Let α = 2, λ = 4.00E-06 per hours, and the proof testing interval τ =8760 hours, the average failure rate in (0, τ) 

is from Eq.(4), ( )0,avgz  ≈1.4007E-07 per hour, and using the Eq.(6) yields ( )0,avgz  =1.4016E-07 per hour. The 
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difference between the exact value and the approximated value is approximately 0.064% of the exact value, and this 

approximation is able to generate conservative results. 

 

3.1.2 PFDavg without partial testing 

The failure probability of systems can be therefore approximately evaluated for final elements using the time-

dependent failure rate. The time-dependent PFD(t) for DU-failures occurrence in a proof testing interval [0, τ] is 

equal to the unavailability in this interval, which can be also expressed as: 

( ) ( )Pr( )DUPFD t T t U t=  =
(7)

 

where Pr(TDU≤t) is the probability that a DU-failure of a single channel is revealed in a proof test and U(t) is the 

unavailability function of this channel at time t. 

In a full proof testing interval [0,τ], the PFDavg for 1oo1 system subject to FT without PT is expressed as [29]: 

( )
0 0

( )

0

0

1 1
Pr( )

1
1

(0, )1 ( )

1

avg DU

z t
t

avg

PFD dt T t dt

e dt

zz t
td

PFD t

t

 






 



 

  

−

= = 

= −


 =

+

 





 (8) 

PFDavg refers to the average PFD(t) for the DU-failure detected in a proof test interval. Note that this 

approximation will be applied when 
𝑧(𝑡) ∙ 𝑡

𝛼⁄   takes low values. 

Similarly, we also have PFDavg without PT for 1oo2 system: 
2( )

2 2

0 0

( (0, ) )1 1 ( )
(1 ) ( )

2 1

z t
t avg

avg

zz t
PFD e dt t dt

 


 

   

− 
= −  =

+   (9) 

 

3.1.3 PFDavg with partial testing 

Two types of failures are introduced when involving PT for PFDavg evaluations: Failures detected by PT, and 

remaining failures only detected by FT, assuming that the FT can detect all DU failures. It means at full test intervals 

that both a PT and FT is carried out, so that all DU failures are identified. The assumptions that failures are either 

detected by PT or by FT is well accepted, e.g. in ISO TR 12489 [4] and IEC 61508-6 [3]. Two scenarios related to 

degradation analysis are presented as follows. 

⚫ Partial tests are performed to detect parts of failures, and so the components will not be in the as-good-as-

new state due to remaining failures. 

⚫ Effects of degradations may exist if the full replacement will not be performed after the testing. If no DU-

failure is revealed in a partial test, the component is still functioning after a test, but it is not as-good-as-

new since other properties of the components have not been changed. 

When all final elements are assumed to be independent, PFDavg of having two types of failures involving PT in 

an FT interval is expressed by the sum of PFDavg,FT and PFDavg,PT. PFDavg FT stands for the average probability for 

the remaining DU-failure detected by proof testing and PFDavg PT stands for the average probability for the DU-

failure detected by partial testing. The total PFDavg [15, 30, 37] for a general system is therefore approximated as: 

PFDavg ≈ PFDavg,FT + PFDavg,PT.  

The PFDavg FT is illustrated as: 

,
0

1
( )avg FTPFD PFD t dt




=   (10) 
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Several partial tests are normally carried out during an FT interval [0, τ], and m stands for the number of partial 

tests in [0, τ]. The occurrence of failures in the partial testing interval [0, τ/m] is regarded as a stochastic process, and 

the PFDavg FT is, therefore, an unknown unavailability since the system is protected by the SIF. Due to the effects of 

degradations, PFD(t) in the current partial testing interval is different from that in the previous partial testing interval. 

PFDavg should be calculated by introducing conditional probabilities for different periods. 

If the failure is detected in the first partial testing interval [0,τ1], the PFDavg is expressed as: 

1 1

,1
0 0

1 1

1 1
( ) Pr( )avg DUPPFD PFD t dt T t dt

 

 
= =    (11) 

where Pr(TDUP≤t) is the probability that a DU-failure of a single channel is revealed in the first partial test. 

If the channel passes the first testing interval perfectly, the PFDavg in the second testing interval [τ1,τ2] is written 

by: 

2

1

2

1

2

1

,2

2 1

1

2 1

1

2 1 1

1
( )

1
Pr( )

Pr( ) Pr( )1

Pr( )

avg

DUP DUP

DUP DUP

DUP

PFD PFD t dt

T t T dt

T t T
dt

T













 


 



  

=
−

=  
−

 − 
=

− 







 (12) 

 

If the channel passes the previous testing intervals perfectly, and in the testing interval [τi-1,τi], the PFDavg is 

given by: 

1

1

, 1

-1

1

-1 1

1
Pr( )

Pr( ) Pr( )1

Pr( )

i

i

i

i

avg i DUP DUP i

i i

DUP DUP i

i i DUP i

PFD T t T dt

T t T
dt

T










 



  

−

−

−

−

−

=  
−

 − 
=

− 





 (13) 

 

So, we have the PFDavg,PT for partial testing 

1

-1
,

1 -1

Pr( ) Pr( )1

Pr( )

i

i

m
DUP DUP i

avg PT

i DUP i

T t T
PFD dt

T







 −=

 − 
=


  (14) 

where τ0 = 0. 

It should be noted that this model is based on the assumption that if a DU-failure is discovered in a test, the 

minimal repair is carried. 

• In the partial testing interval [τi-1, τi], assuming τ/m = τi-τi-1, we have the PFDavg for 1oo1 system in a proof 

test interval [0,τ] as follows. 
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1
1

1
1 1

1

, ,

( )( )
( )

( )0
1

1
1

0
11

1

,

1 1 (1 ) (1 )
1

( )( )

( )1 1

( )
1

(0, )

PT iPT
i

FT
i

PT i
i i

i

i

avg avg FT avg PT

zz t
tz t mt

z
i

PT iPT
m i

FT

PT ii
i

avg FT

PFD PFD PFD

e e
e dt dt

e

zz t
t

z t
tdt dt

z

z




  


 


 



 




 
  






−
−

−
− −

−

− −
−

−=

−
−

−=
−

 +

− − −
= − +

−

 +

−


=

 

 

2 2

, , 1 1 1
1 1

11
1

(0, ) (0, ) ( )
( )

1 1
( )1

1

avg PT i i avg PT i i PT i
m i i i

PT ii
i

z z z

z

    
    

 




− − −
− −

−=
−

 − 
− −

++
+

−


 (15) 

where DU failure rate in this section is the sum of two rates: z𝐹𝑇(𝑡) = 𝛼 ∙ 𝜆𝐹𝑇
𝛼 ∙ 𝜏𝛼−1 is DU failure rate 

corresponding to failure modes revealed by FT, and here λFT is a parameter in a proof test with PT. z𝑃𝑇(𝑡) = 𝛼 ∙

𝜆𝑃𝑇
𝛼 ∙ 𝜏𝛼−1 is DU failure rate with regard to failure modes revealed by PT, and λPT is a parameter in a partial test. 

z𝑎𝑣𝑔,𝐹𝑇(0, 𝜏) = 𝜆𝐹𝑇
𝛼 ∙ 𝜏𝛼−1 and z𝑎𝑣𝑔,𝑃𝑇(0, 𝜏𝑖) = 𝜆𝑃𝑇

𝛼 ∙ 𝜏𝑖
𝛼−1stands for two types of average failure rates in a proof 

test and a partial test, respectively. And they agree 𝜆𝐹𝑇
𝛼 + 𝜆𝑃𝑇

𝛼 = 𝜆𝐷𝑈
𝛼  and here λDU is a parameter in a proof test 

without PT. 

• Similarly, we also have PFDavg with PT for 1oo2 system: 

1

, ,

2 21
1

2

0
211

1

2 2 2

, , 1 1 1 1
2

,

( )( )
( ) ( )

( )1 1
( )

( )
(1 )

( (0, ) ) ( (0, ) ) ( )
(( (0, ) ) 1 2 1

2 1

i

i

avg avg FT avg PT

PT iPT
m i

FT

PT ii
i

avg PT i i i avg PT i i i PT i

avg FT

PFD PFD PFD

zz t
t

z t
t dt dt

z

z z z
z

 






 
  




      
  

 

−

−
−

−=
−

− − − −

 +

−

 +

−

 − 
− += +

+

 

2

1 1

211
1

) ( )

( )
(1 )

m i i i

PT ii
i

z

  







− −

−=
−

−

−


 (16) 

 

3.2 Modeling PFDavg for delayed restoration 

The time required to restore a revealed failure is considered to be non-negligible, and this may sometimes be 

the case in subsea practice. The different MRT is assumed for FT with perfect repair and PT with minimal repair. 

PFDavgFT, MRTF refers to the average unavailability of delayed restoration for proof tests. During repairs, the system 

has no capability to perform its safety function, and this is, therefore, a known unavailability [5]. PFDavgFT, MRTF in 

the FT proof test interval [0,τ] is illustrated as 

,

Pr( )DU
avgFT MRTF

T MRTF
PFD






=  (17) 

where Pr( )DUT   is the probability of a single channel for DU failures revealed by a proof test. 

PFDavgPT, MRTP refers to the average unavailability of delayed restoration for partial tests. Similarly, in the first 

PT interval [0,τ1], we have 
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1
1 ,

1

Pr( )DUP
avg PT MRT

T MRTP
PFD






=  (18) 

 

where 
1Pr( )DUPT   is the probability of a single channel for DU failures revealed by the first partial test. 

If restoration occurs in the second testing interval [τ1,τ2], we also have 

2 1

1
2 ,

2 1

Pr( ) Pr( )

Pr( )
DUP DUP

DUP
avg PT MRTP

T T
MRTP

T
PFD

 



 

 − 


=

−
 (19) 

If the restoration occurs in the testing interval [τi-1,τi], the formula can be expressed by  

-1

-1
,

1

Pr( ) Pr( )

Pr( )
DUP i DUP i

DUP i
avgiPT MRTP

i i

T T
MRTP

T
PFD

 



  −

 − 


=

−
 (20) 

 

So, we have the PFDavgPT, MRTP for delayed repair: 

-1

1 -1
,

Pr( ) Pr( )

Pr( )

m
DUP i DUP i

i DUP i
avgPT MRTP

T T
MRTP

T
PFD

 





=

 − 


=


 (21) 

Based on the previous work, there are four scenarios for obtaining the total PFDavg related to delayed restoration. 

• Scenario 1 Consider FT only for 1oo1 system. It is assumed that the repair is delayed for a period of MRTF. 

The PFDavg then becomes: 

, ,

( )
( )

0

0

1 (1 )*
1

1 ( ) ( )*

(0, ) ( )*

1

avg avg FT avgFT MRTF

z
z t

t

avg

PFD PFD PFD

e MRTF
e dt

z t z MRTF
tdt

z z MRTF









 



  

  

 

−
−

= +

−
= − +

 +


= +

+




 (22) 

• Scenario 2 Consider effects of FT and PT for 1oo1 system. It is assumed that repair is delayed both for FT 

(with time MRTF) and PT (with MRTP). In this case, PFDavg is expressed as 
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1
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1
1 1
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1
1

1
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1

1
1

0
11

1

1
1

11
1

,

,

)
*

( )( )

( )1 1

( )
1

( ) ( )

*
( )

(1 )
( )*

(0

(0, ) 1

1

PT i
i

i

i

m

z
i

PT iPT
m i

FT

PT ii
i
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PT ii
i
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zz t
t

z t
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z

z


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
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






 
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 
 

 



 

 

− − −
− −

−=
−

−
−

−=
−

 − 
− −

+

−

−

−

+ +


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 (23) 

• Scenario 3 Consider FT only for 1oo2 system. It is assumed that the repair is delayed for a period of MRTF. 

Some additional assumptions are made: 

(1) When one DU failure of an actuated valve is discovered by PT, the other remaining component is still 

available. However, this remaining channel may get a DU failure during the repair time, and the 

associated mean downtime is introduced to calculate the PFDavg,MRT1. 

(2) If DU failures for both components are discovered by PT, the 1oo2 system is out of function until both 

components are repaired. The average probability still follows the Eq.(24).  
( )

0
, 1

(1 )

z tDU tMRTF

avg MRT

e dt
PFD





−

−
=


 (24) 

 

The PFDavg therefore becomes:  
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( )

, ,

0

0
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0

2

02
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(1 )1 (1 )
(1 )

( ) ( )
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1 ( )
( )

( (0

z t
t
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DU
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z t
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T t dt
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z t z
tdt MRTF

z t
t dt
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








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  
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
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
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




2 2, ) ) ( (0, ) 2 ) ( )

2 1 ( 1)

avgz MRTF MRTF z
MRTF

   

   

  
+ + 

+ +

 (25) 

where， ( )0,avgz MRTF  denotes the average failure rate of one DU failure occurs in remaining component given 

the repairing time interval [0, MRTF]. 

• Scenario 4 Similarly, considering effects of FT and PT for 1oo2 system, PFDavg is therefore given by 

1
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1
1 1
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 (26) 

 

Considering a proof test only given α=1, for 1oo1 system, PFDavg=λDUτ/2, and for 1oo2 system, PFDavg=(λDUτ)2 

/3, which is identical to PFDavg formulas in some work [5] for systems with constant failure rates in proof test 

interval [0, τ]. It is worth noting that the failure rate in the simplified formulas considers DU failures only, and that 
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other types of failure modes (e,g,.DD failures) are omitted. Considering the non-negligible repair time (MRT) in a 

proof test interval [0, τ] given α=1, for 1oo1 system, there is PFDavg=λDUτ/2+λDU∙MRT, and for 1oo2 system, there 

is PFDavg=(λDUτ)2 /3+MRT∙λDU
2∙τ+(λDU∙MRT)2 /2, which is identical to PFDavg formulas in the work [5] for systems 

with constant failure rates in a proof test interval [0, τ]. These proposed formulas seem complicated, however, it can 

provide a method to straightforwardly calculate the unavailability considering partial testing and delayed repair. 

 

4. Case study 

The typical subsea high integrity pressure protection system (HIPPS) is a type of SISs protecting a subsea 

production system from pressure build-up that may cause pipeline rupture by shutting off the source before exceeding 

the maximum pressure [30, 31]. Such a HIPPS consists of pressure sensors, logic solvers, and shutdown valves, 

which is shown in Fig.1. In the case study, HIPPS valves are installed as the final elements, and they as the last safety 

barriers are always operated in low demand mode [35], which actually perform the corrective action in the subsea 

system to maintain the process to be in a safe state. The safety function of valves is to stop the flow sufficiently fast 

to avoid that high pressures enter pipeline sections which are designed for low pressure.  

 

PT … PT

HIPPS HIPPS

S S

Direction of flow

valve valve

Logic 

solver

Pressure

transimiter

High 

pressure 

area

Low  

pressure 

area

 
Fig. 1 A typical HIPPS system 

Consider HIPPS valves that are tested at regular intervals. An important issue is to determine what kinds of 

dangerous failure modes of the valves have. Field experience has shown that if valves are not operated (at all or very 

seldom), they can stick in the position. In fact, sticking in open position accounts for large percentage of the failures 

recorded for shutdown valves. A delayed operation can also be related to sticking, but also other causes (e.g. capacity 

constraints from operations of multiple valves). These failure modes cannot be detected automatically unless we close 

or partially close the valves, and these failures are therefore recognized DU failures during operation. DU failure 

modes are specified as follows. DU1 failure is that can be detected by PT, e.g., the valve is not able to close on 

command. DU2 failure is that cannot normally be detected by PT but FT, e.g., the valve is able to close on command, 

but there is a leakage through the closed position that is higher than accepted levels. For such failures may also be 

possible to use other planned and unplanned stops to check if this failure is present [29]. HIPPS valves for both 1oo1 

system and 1oo2 system with two types of DU failures are shown in Fig. 2.  
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HIPPS valve

P-53DU1 failures

P-55DU2 failures

P-56P-57

HIPPS valve 

(a)

a-DU1 failures

HIPPS valve

(b)

b-DU1 failures

b-DU2 failures

a-DU2 failures

1oo1 system 1oo2 system
 

Fig. 2 HIPPS valves for 1oo1 system and 1oo2 system with two types of DU failures 

 

These two mentioned DU failures will be discussed in this section, PFDavg are analyzed for 1oo1 and 1oo2 

systems under different scenarios: 

• The effects of shape parameter on PFDavg will be modeled under different proof testing strategies.  

• The effects of partial tests on PFDavg will be modeled with different partial testing intervals. 

• The effects of delayed repairs on PFDavg will be modeled with different MRT. 

 

In order to choose the optimized testing strategies considering partial testing and delayed repair, a safety 

instrumented function (SIF) in low-demand mode is used. A SIF is a function that has been intentionally designed to 

protect an equipment under control against a specific demand. IEC61508 uses safety integrity as a performance 

measure for a SIF and divides the requirements into four safety integrity levels (SILs)[3]. The SIL requirement is 

specified for the whole SIF of SISs (including sensors, logic solver, and valves). The SIL budget is therefore 

introduced and it defines the percentage of the requirement that can be consumed by each subsystem [5]. Considering 

a SIF implemented by the HIPPS that is required to fulfill PFDavg≤1.0E-3, this study assumes that the final element 

subsystem: consumes can only consume 50% of the maximum allowed PFDavg, namely, PFDFE,avg ≤ 5.0E-4. This 

maximum allowed PFDFE,avg of 5.0E-4 is assigned to the subsystem of HIPPS valves as the basis for comparisons. 

 

4.1 Proof testing strategy analysis 

In accordance with HIPPS valves following the increasing failure rate, the shape parameter α may influence the 

contribution of PFDavg under different proof testing strategies: FT without PT and FT with PT. In order to examine 

such effects on PFDavg, different values are assigned to α that changes from 1 to 4, while keeping the λDU = 4.00E-06 

for FT without PT and λFT = 2.00E-06, λPT = 3.464E-06 for FT with PT. Comparisons of PFDavg and Log10(PFDavg) 

are made given different FT intervals of 8760h, 2*8760h, 3*8760h, 4*8760h and 5*8760h with PT interval of 2920h. 

As can be observed from Fig.3 (a) and (b), the values of PFDavg for 1oo1 or 1oo2 systems increase as FT interval 

increases. And they under FT with PT are almost less than those without PT in the different FT intervals except for 

1oo2 system with FT interval of 5*8760h in which the PT of 2920h is not suitable for improving the reliability of 

HIPPS valves. It is seen from Fig.3 (c) and (d) that the values of Log10(PFDavg) of such a valve, marked by the dot-

dash line, are less than or equal to -3.3, meaning that the particular SIF of such a valve can meet the maximum 

allowed PFDFE,avg when α is approximately more than 1.8 for 1oo1 system and 1.0 for 1oo2 system under different 

testing strategies, respectively. Taking 1oo2 system for example, if α is approximately less than 2.4 in the FT interval 
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of 5*8760h considering PT, the value of Log10(PFDavg) is more than -3.3, meaning that the particular SIF of such 

valves cannot meet the maximum allowed PFDFE,avg. Noting that the valves related to parameter α for meeting the 

maximum allowed PFDFE,avg can be found given different FT strategies. 
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(c)     

 

(d) 

Fig. 3 Effects of parameter α on (a) PFDavg of 1oo1 system, (b) PFDavg of 1oo2 system, (c) log10(PFDavg) of 1oo1 system, and 

(d) log10(PFDavg) of 1oo2 system under different testing strategies with two scenarios: FT without PT and FT with PT 

  

4.2 Contribution from partial testing strategies 

In this section, numerical results for 1oo1 and 1oo2 HIPPS valves have been obtained during a full test interval 

of 2*8760h with the constant partial testing interval of 2190h. The input data is divided into two cases based on the 

assumption in Section 3.1.3. Case 1: α = 1, λFT = 2.00E-06, λPT = 2.00E-06, and case 2: α = 2, λFT = 2.00E-06, λPT = 
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3.464E-06. For FT without PT, the data is λDU= 4.00E-06. PFDavg of 1oo1 and 1oo2 systems subject to a series of 

subsequent PT intervals is calculated by using Eqs. (15) and (16), as listed in Table 1. It can be seen that the values 

of PFDavg have a gradual increase from one partial testing phase to another partial testing phase because of the 

degradation. It is worth noting that the values of PFDavg for 1oo1 system with α = 1 keep the same due to the simple 

system without degradation. Moreover, the values of Log10(PFDavg) are more than -3.3 for 1oo1 system with case1 

and case 2 under the last PT interval, meaning that the particular SIF of such a valve cannot meet the maximum 

allowed PFDFE,avg. However, for 1oo2 system, those of Log10(PFDavg) are less than -3.3, meaning that if the PT 

interval of 2920h is determined, 1oo2 system will be as a safe choice in the early service time.  

 

Table 1 PFDavg under partial testing interval  

PT interval/ h 

1oo1 system 1oo2 system 

α=1 α=2 α=1 α=2 

PFDavg Log10(PFDavg) PFDavg Log10(PFDavg) PFDavg Log10(PFDavg) PFDavg Log10(PFDavg) 

[0, 2920] 2.91E-3 -2.54  3.41E-5 -4.47  1.13E-5 -4.95  2.09E-9 -8.68  

[2920, 5840] 2.91E-3 -2.54  1.36E-4 -3.87  4.49E-5 -4.35  5.44E-8 -7.26  

[5840, 8760] 2.91E-3 -2.54  2.39E-4 -3.62  7.80E-5 -4.11  2.74E-7 -6.56  

[8760, 11680] 2.91E-3 -2.54  3.41E-4 -3.47  1.04E-4 -3.98  7.86E-7 -6.10  

[11680, 14600] 2.91E-3 -2.54  4.43E-4 -3.35  1.42E-4 -3.85  1.71E-6 -5.77  

[14600, 2*8760] 2.91E-3 -2.54  5.45E-4 -3.26  1.73E-4 -3.76  3.18E-6 -5.50  

 

The effects in a full proof test interval of 2*8760h subject to different PT strategies have been presented in Table 

2. It is seen that the values of PFDavg of HIPPS valves are reduced by considering different PT strategies of 1460h, 

2190h, 2920h and 4380h, compared with those without PT. Taking a partial test interval of 1490h with α = 2 for 

instance, they are equal to 5.58E-04 for 1oo1 system and 8.33E-07 for 1oo2 system respectively, while being less 

than those (1.63E-03 and 4.81E-06). By comparing different PT strategies, (e.g. 4380h and 1460h), the results are 

slightly increased. It should be noted that further increased PT frequency will improve the availability on demand but 

make the costs of testing growing. The contributions of two cases for 1oo1 system indicate that the particular SIF of 

such a valve the values cannot meet the maximum allowed PFDFE,avg under different PT strategies while those for1oo2 

system can meet the maximum allowed PFDFE,avg except PT strategies of 4380h and FT without PT with α = 1. This 

contribution can also provide the basis for choosing the optimized partial testing strategies. 

 

Table 2 Comparisons with partial testing strategies 

PT strategies 

1oo1 system 1oo2 system 

α=1 α=2 α=1 α=2 

PFDavg Log10(PFDavg) PFDavg Log10(PFDavg) PFDavg Log10(PFDavg) PFDavg Log10(PFDavg) 

1460h 1.87E-02 -1.73  5.58E-04 -3.25  4.47E-04 -3.35  8.33E-07 -6.08  

2190h 1.95E-02 -1.71  6.30E-04 -3.20  4.70E-04 -3.33  1.07E-06 -5.97  

2920h 2.02E-02 -1.69  6.99E-04 -3.16  4.92E-04 -3.31  1.30E-06 -5.89  

4380h 2.17E-02 -1.66  8.31E-04 -3.08  5.34E-04 -3.27  1.71E-06 -5.77  

Without PT 3.42E-02 -1.47  1.63E-03 -2.79  1.55E-03 -2.81  4.81E-06 -5.32  
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4.3 Contribution from delayed repairs 

Due to the particulars of subsea applications, the repair cannot be initiated immediately even when the DU 

failures are detected. In order to examine effects of the non-negligible repair time, different values are assigned to 

MRT, MRTF, and MRTP (assuming MRTF = MRTP = MRT), while keeping the PT strategies from intervals of 2190h, 

2920h, 4380h to 8760h for 1oo1 and 1oo2 HIPPS valves in this study. The other input data is α = 2, λDU = 4.00E-06, 

τ = 2*8760h for FT only, and α = 2, λFT = 2.00E-06, λPT = 3.464E-06 for FT with PT. Fig. 4 presents the PFDavg from 

the contributions of PT and FT considering MRT or not. As shown in Fig. 4 (a) and (c), the values of PFDavg with 

MRT are more than those without MRT, and they increase over MRT for 1oo1 system linearly and 1oo2 system non-

linearly given the same PT interval, respectively. It should be noted that the effect of the repair time on PFDavg 

becomes larger if managers don't take any decisions for the failed channel. It is also seen from Fig. 4 (b) and (d) that 

the values of Log10(PFDavg) of such 1oo1 system, marked by the dot-dash line, are more than -3.3, while they are 

always less than -3.3 for 1oo2 system for different MRT. It means the particular SIF of such a valve cannot meet the 

maximum allowed PFDFE,avg, while it is always meet the maximum value for 1oo2 system given different testing 

strategies. Based on such unavailability analysis, the proposed formulas also provide an opportunity as an adequate 

tool to determine the MRT that satisfies the given conditions.  
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(d) 

Fig. 4 Contribution from delayed repair time under different testing strategies on (a) PFDavg of 1oo1 system, (b) log10(PFDavg) of 1oo1 

system, (c) PFDavg of 1oo2 system, and (d) log10(PFDavg) of 1oo2 system 

 

Based on the realistic parameters from the real-world system, the proposed method provides a guide to choose 

the optimized testing strategies considering partial testing and delayed repair for decision-making, which also give 

an opportunity to guarantee safety with the acceptable costs. 

 

5. Reliability block diagram driven Petri net modeling  

In this section, the reliability block diagram (RBD) driven Petri net is adopted to check SIS unavailability and 

to validate the model derived from the analytic theory. Petri net approach is suggested in the IEC61508 and ISO/TR 

12489 [3, 4] as a powerful way for safety/dependability modeling and calculations especially considering testing 

strategies of SISs [1, 11]. The stochastic Petri net with predicates and assertions [38] is applied in this study to model 

unavailability of the HIPPS valve system.  

A typical Petri net consists of places, transitions, tokens and directed arcs connecting places and transitions as 

well as all types of mathematical variables and available logic operators [4]. Among them, places are used to model 

local states or conditions, while the transition is used to model local events. Tokens are dynamic elements, illustrated 

as black bullets and assigned to places. The distribution of tokens in the places can be used to reflect the corresponding 

condition or a system state. The variables represent indicators and act on the validation of transition (predicates) and 

can also be modified when firing transition (assertions). More details about Petri nets can be found in [4, 5, 11, 39]. 

The Petri net module in the GRIF software [38] is employed to model the behavior of complex dynamic systems for 

performance evaluation with 95% confidence intervals, and they are calculated to provide a more practical 

explanation as well as to better assess the failure distribution of the system [40, 41]. 
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5.1 Petri net modeling for 1oo1 and 1oo2 systems 

RBD driven Petri net models for 1oo1 system and 1oo2 system[29] are developed under different testing 

strategies considering MRT as presented in Fig. 5 and Fig. 6, respectively. In these models, what different places and 

transition represent are explained, respectively. In addition, a bar with gradient color refers to a transition with Weibull 

firing time, meaning that the failure times are Weibull distributed. A thick bar with black color and white color of 

slash is for the transition with constant firing time, meaning that tests and repair are performed at the constant intervals, 

respectively. And a thin bar with black color is used to represent an immediate transition (zero firing time), ignoring 

the testing time, since they are much shorter than the testing interval. In such kind of models, predicates denoted as 

“?” are introduced to represent the enabling condition of a transition, and assertions denoted as “! ” represents the 

formulas to update one variable when the transition is fired [2, 11, 29].  

Fig. 5(a) shows the Petri net model for 1oo1 system under FT without PT. It is seen that a DU-failure will occur 

when the token in PW is removed by the transition TDU and deposited to PF. Proof tests are reflected by firing TFT and 

depositing a token from Ps to PT. The predicate “?fail==0” means that a necessary firing condition of TDU is the 

variable ‘fail’ with the value of 0. And the assertion “!fail = fail+1” means that the value of the variable ‘fail’ is added 

with 1 after the firing of TDU. Similarly, the assertion “!FT=1” means that a proof test is performed. Transitions TMRT 

and T0 express the two situations in a proof test. If a DU-failure in the SIS is revealed, TMRT can be fired with the 

predicate “?FT==1”. The assertion “!fail = fail-1” means that a DU failure is repaired after firing TMRT. While in case 

no DU-failure occurs, T0 is fired with the predicate “?fail==0”. After firing T0, the assertion “!FT = 0” represents that 

the test is finished. 

Partial tests are modeled by introducing two types of failures with the variables of ‘fail1’, ‘fail2’ for 1oo1 system, 

as illustrated in Fig. 5 (b). the values of ‘fail1’ and ‘fail2’ stand for whether DU failures are detected by PT or FT 

respectively. In this model, the DU1-failure or DU2-failure will occur when the token in PW1/ PW2 is removed to PF1/ 

PF2. Proof tests and partial tests are reflected by firing TFT and TPT, depositing two tokens to PTP and PTF, respectively. 

The same method is used to model the operation with a Petri net with predicates and assertions when partial tests are 

involved. In addition, the predicate “?fail1 + fail2 > 0” means that at least the system is in a complete failing state in 

FT or PT, and the predicate of “? fail1 + fail2 == 0” represents that the system is restored in both FT and PT. 

 

• • 

PW TDU PF PS PTTFT

T0TMRT

?fail==0 !fail=fail+1

!fail=fail-1 ?FT==1
?fail==0

  FT==1

!FT=1

!FT=0

Places

•   PW   Working state

•   PF   Failure state

•   PS   State of ready to start FT

•   PT   FT state

Transition

•  TDU  DU failure occurring

•  TMRT  Repair finished

•  TFT   Testing performed

•  T0   Testing finished

 

(a) 

https://www.sciencedirect.com/science/article/pii/S0950423017305430#fig1
https://www.sciencedirect.com/science/article/pii/S0950423017305430#fig1
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• 

PW PF

?fail1+fail2>0

• 

PSP PTPTPT

T0

?fail1==0 

  

!PT=1

!PT=0

• 

PW1 TDU1 PF1

TMRTP

?fail1==0 !fail1=fail1+1

!fail1=fail1-1 ?PT==1

• 

PSF PTFTFT

T0

?fail2==0 

  

!FT=1

!FT=0

?fail1+fail2=0

• 

PW2 TDU2

TMRTF

?fail2==0 !fail2=fail2+1

!fail2=fail2-1 ?FT==1

PF2

T0

T0

Places

•   PW1, PW2 Working state during PT, FT

•   PF1, PF2  Failure state detected by PT, FT

•   PW, PF   Working, Failure state

•   PSP, PSF   State of ready to start PT, FT

•   PTP, PTF   PT, FT state

Transition

•  TDU1 ,TDU2 DU1, DU2 failure occurring

•  TMRTP, TMRTP Repair finished after PT, FT

•  TPT ,TFT  PT, FT performed

•  T0   Testing finished

 

(b) 

Fig. 5 Petri net models for 1oo1 system under (a) FT without PT and (b) FT with PT 

The Petri net model for 1oo2 system under FT without PT can follow Fig. 6(a) while building a relationship 

between the component a and b. It is seen that the values of “faila” and “failb” stand for whether there are DU failures 

in the component a and b, respectively. The occurrence of DU-failures and proof testing process are modeled in the 

same way as used for 1oo1system under FT without PT. In addition, while in case no DU-failure occurs, T0 is fired 

with the predicate “?faila==0, failb==0”. The predicate of “?faila == 1 and failb == 1” means that the system is in a 

complete failing state, and the predicate of “?faila == 0 or failb == 0” represents that at least one channel of the system 

is restored. 

Partial tests for1oo2 system can also be modeled by a Petri net with predicates and assertions, as illustrated in 

Fig. 6(b). The DU1-failure, DU2-failure, FT, and PT are modeled in the same way as used for 1oo1system under FT 

with PT. In addition, while in case no DU-failure occurs during PT, T0 is fired with the predicate “?faila1+failb1==0”, 

and for FT, T0 is fired with the predicate “?faila2+failb2==0”. The predicate of “? faila1+failb1>1or faila1+failb2>1 

or faila2+failb1>1 or faila2+failb2>1” means that the system in a complete failing state in FT or PT, and the predicate 

of “?faila1+failb1<2or faila1+failb2<2 or faila2+failb1<2 or faila2+failb2<2” represents that at least one channel of 

the system is restored in FT or PT. The number of iterations for 1oo1 system and 1oo2 system in Petri net models is 

set with 1.0E+7 times and 1.0E+8 times, respectively. 
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?faila==1 
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PS PTTFT
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failb==0
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PWb TDUb PFb

TMRT
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T0

Places

•   PWa, PWb Working state of 

component a, b

•   PF   Failure state

•   PS   State of ready to start FT

•   PT   FT state

Transition

•  TDUa, TDUb DU failure occurring 

for component a, b

•  TMRT  Repair finished

•  TFT   Testing performed

•  T0   Testing finished

 

(a) 

https://www.sciencedirect.com/science/article/pii/S0950423017305430#fig1
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• 

PW PF

?faila1+failb1>1or faila1+failb2>1 or

faila2+failb1>1 or faila2+failb2>1
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PSP TPT
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•   PWa1, PWa2 Working state of component a during PT, FT

•   PWb1, PWb2 Working state of component b during PT, FT

•   PFa1, PFa2  Failure state of component a detected by PT, FT

•   PFb1, PFb2  Failure state of component b detected by PT, FT

•   PW, PF   Working, Failure state

•   PSP, PSF   State of ready to start PT, FT

•   PTP, PTF   PT, FT state

Transition

•  TDUa1 ,TDUa2 DU1, DU2 failure occurring for component a

•  TDUb1 ,TDUb2 DU1, DU2 failure occurring for component b

•  TMRTP, TMRTP Repair finished after PT, FT

•  TPT ,TFT  PT, FT performed

•  T0   Testing finished

T0

T0

 

(b) 

Fig. 6 Petri net models for 1oo2 system under (a) FT without PT and (b) FT with PT 

 

5.2 Verification for PFDavg under FT strategies 

Numerical examples are illustrated under different FT strategies for Fig. 5 and Fig. 6, based on the following 

data which is α = 2, τPT = 2920 h, and MRT = 0, while other parameters are following those used in Section 4.1. 

PFDavg results are obtained both from the proposed formulas based on Eqs. (8) and (15) and the Petri-net simulation 

for 1oo1 system, as listed in Table 3 where the 95% confidence intervals of a probability sample are calculated. 

Results for 1oo2 system are also obtained in the same way, as listed in Table 4. Take 1oo1 system with the FT interval 

of 2*8760h for instance, PFDavg under FT without PT, lies in the 95% confidence interval from 1.62E-4 to 1.66E-4, 

with the best estimate being 1.64E-4 that is nearly close to the values of 1.63E-4 obtained with formulas. 

Approximation formulas developed for FT are therefore verified by the closeness of the results from the Petri net 

simulation. Noting that when FT interval of 5*8760h is modeled for 1oo2 system considering PT, there is a big 

difference between them. It may be partly explained that such simulation models ignore the effects that the failure 

doesn't occur in the previous testing period, and such effects on 1oo2 system are larger than those on 1oo1system. 

 

Table 3 Comparisons of proposed formulas and Petri-net models under FT with PT for1oo1 system 

FT 

strategies 

Without PT With PT 

PFDavg 

from 

Eq.(8) 

PFDavge 

from  

Petri net 

σ 

(PFDavge) 

95% confidence 

interval 

PFDavg 

from 

Eq.(15) 

PFDavge 

from  

Petri net 

σ 

(PFDavge) 

95% confidence 

interval 

8760h 4.09E-4 4.12E-4 1.43E-2 [4.03E-4, 4.21E-4] 2.39E-4 2.40E-4 8.99E-3 [2.34E-4,2.46E-4] 

2*8760h 1.63E-3 1.64E-3 2.86E-2 [1.62E-3, 1.66E-3] 6.99E-4 7.03E-4 1.54E-2 [6.93E-4, 7.13E-4] 

3*8760h 3.67E-3 3.68E-3 4.28E-2 [3.65E-3, 3.71E-3] 1.36E-3 1.37E-3 2.23E-2 [1.36E-3, 1.38E-3] 

4*8760h 6.51E-3 6.53E-3 5.68E-2 [6.49E-3, 6.57E-3] 2.23E-3 2.24E-3 2.92E-2 [2.22E-3, 2.36E-3] 

5*8760h 1.01E-2 1.02E-2 7.07E-2 [1.02E-2, 1.02E-2] 3.30E-3 3.27E-3 2.60E-2 [3.25E-3, 3.29E-3] 

 

 

 

https://www.sciencedirect.com/science/article/pii/S0950423017305430#fig1
https://www.sciencedirect.com/science/article/pii/S0950423017305430#fig1
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Table 4 Comparisons of proposed formulas and Petri-net models under FT with PT for1oo2 system 

FT 

strategies 

Without PT With PT 

PFDavg 

from 

Eq.(9) 

PFDavge 

from 

Petri net 

σ 

(PFDavge) 

95% confidence 

interval 

PFDavg 

from 

Eq.(16) 

PFDavge 

from 

Petri net 

σ 

(PFDavge) 

95% confidence 

interval 

8760h 3.01E-7 2.60E-7 3.00E-4 [2.01E-7, 3.19E-7] 1.29E-7 1.23E-7 1.67E-4 [9.03E-8, 1.56E-7] 

2*8760h 4.81E-6 4.83E-6 1.27E-3 [4.58E-6, 5.08E-6] 1.30E-6 8.84E-7 4.03E-4 [8.05E-7, 9.63E-7] 

3*8760h 2.42E-5 2.44E-5 2.86E-3 [2.38E-5, 2.50E-5] 5.03E-6 3.19E-6 7.93E-4 [3.03E-6, 3.35E-6] 

4*8760h 7.61E-5 7.62E-5 5.05E-3 [7.52E-5, 7.72E-5] 1.32E-5 8.49E-6 1.35E-3 [8.23E-6, 8.75E-6] 

5*8760h 1.84E-4 1.84E-4 7.84E-3 [1.82E-4, 1.86E-4] 1.07E-3 1.84E-5 2.03E-3 [1.80E-5 1.88E-5] 

 

5.3 Verification for PFDavg under PT strategies 

In order to validate the PFDavg formulas under partial testing strategies, Petri net models for 1oo1 system and 

1oo2 system are shown as in Fig. 5 (b) and Fig. 6 (b). The input data is the same as used in Section 4.2. The different 

PT strategies for both 1oo1 and 1oo2 systems are given a proof test interval of 2*8760h with MRT = 0 as listed in 

Tables 5 and 6. PFDavg results are obtained both from the proposed formulas based on Eqs. (15) and (16) and the 

Petri-net simulation, as listed in Tables 3 and 4. Take 1oo1 system with the PT interval of 4380h for instance, PFDavg 

with α = 1, lies in the 95% confidence interval from 2.15E-2 to 2.17E-2, with the best estimate being 2.16E-2 that is 

nearly close to the value of 2.17E-2 obtained with the formulas. Approximation formulas developed for 1oo1 system 

are verified by the closeness of the results from the Petri net simulation. The results obtained by the former are seen 

to be somewhat higher than the results obtained by using the latter for 1oo2 system, but still acceptable for most 

practical purposes. 

 

Table 5 Comparisons of proposed formulas and Petri-net model under partial testing with α for 1oo1 system 

PT 

strategies 

α = 1 α = 2 

PFDavg 

from 

Eq.(15) 

PFDavge 

from 

Petri net 

σ 

(PFDavge) 

95% confidence 

interval 

PFDavg 

from 

Eq.(15) 

PFDavge 

from 

Petri net 

σ 

(PFDavge) 

95% confidence 

interval 

1460h 1.87E-2 1.88E-2 1.07E-1 [1.87E-2, 1.89E-2] 5.58E-4 5.62E-4 1.46E-2 [5.53E-4,5.71E-4] 

2190h 1.95E-2 1.95E-2 1.07E-1 [1.94E-2, 1.96E-2] 6.30E-4 6.32E-4 1.49E-2 [6.23E-4, 6.41E-4] 

2920h 2.02E-2 2.02E-2 1.07E-1 [2.01E-2, 2.03E-2] 6.99E-4 7.03E-4 1.54E-2 [6.93E-4, 7.13E-4] 

4380h 2.17E-2 2.16E-2 1.09E-1 [2.15E-2, 2.17E-2] 8.31E-4 8.36E-4 1.65E-2 [8.35E-4, 8.37E-4] 

Without 

PT 
3.42E-2 3.42E-2 1.48E-1 [3.41E-2, 3.43E-2] 1.63E-3 1.64E-3 2.86E-2 [1.62E-3, 1.66E-3] 

 

Table 6 Comparisons of proposed formulas and Petri-net model under partial testing with α for 1oo2 system 

PT 

strategies 

α = 1 α = 2 

PFDavg 

from 

Eq.(16) 

PFDavge 

from 

Petri net 

σ 

(PFDavge) 

95% confidence 

interval 

PFDavg 

from 

Eq.(15) 

PFDavge 

from  

Petri net 

σ 

(PFDavge) 

95% confidence 

interval 

1460h 4.47E-4 4.23E-4 1.41E-2 [4.20E-4, 4.26E-4] 8.33E-7 5.72E-7 3.48E-4 [5.04E-7, 6.40E-7] 

https://www.sciencedirect.com/science/article/pii/S0950423017305430#fig1
https://www.sciencedirect.com/science/article/pii/S0950423017305430#fig1
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2190h 4.70E-4 4.37E-4 1.42E-2 [4.34E-4, 4.40E-4] 1.07E-6 6.94E-7 3.66E-4 [6.22E-7, 7.66E-7] 

2920h 4.92E-4 4.51E-4 1.43E-2 [4.48E-4, 4.54E-4] 1.30E-6 8.84E-7 4.03E-4 [8.05E-7, 9.63E-7] 

4380h 5.34E-4 4.81E-4 1.46E-2 [4.78E-4, 4.84E-4] 1.71E-6 1.23E-6 4.79E-4 [1.14E-6, 1.32E-6] 

Without 

PT 
1.55E-3 1.55E-3 2.80E-2 [1.54E-3, 1.56E-3] 4.81E-6 4.83E-6 1.27E-3 [4.58E-6, 5.08E-6] 

 

5.4 Verification for PFDavg under delayed repairs 

MRT is introduced in these Petri-net models and the effects of delayed repairs on the unavailability are analyzed 

for subsea HIPPS valves. Such models for 1oo1 system and 1oo2 system with delayed repair can follow Fig. 5 and 

Fig. 6 with the value of MRT=MRTF=MRTP=168 when a DU-failure is revealed by a proof test or a partial test, 

meaning that the bar of TMRT will be fired when a value is assigned. The input data for FT and PT is following that 

used in section 4.3. We can conduct PFDavg calculation for different partial testing strategies during a full proof test 

(τ =2* 8760h), as listed in Tables 7 and 8. Take 1oo1 system with the PT interval of 4380h for instance, PFDavg with 

MRT, lies in the 95% confidence interval from 8.65E-4 to 8.85E-4, with the best estimate being 8.75E-4 that is nearly 

close to the value of 8.78E-4 obtained with the formulas. It can be also seen that the two methods give the rather 

close results under different scenarios. 

 

Table 7 Comparisons of proposed formulas and Petri-net model under testing strategy with MRT for 1oo1 system 

Testing 

strategies 

Without MRT With MRT 

PFDavg 

from 

Eqs. (8) 

and (15) 

PFDavge 

from  

Petri net 

σ 

(PFDavge) 

95% confidence 

interval 

PFDavg 

from 

Eqs. (8) 

and (15) 

PFDavge 

from  

Petri net 

σ 

(PFDavge) 

95% confidence 

interval 

FT of 

2*8760h 
1.63E-3 1.64E-3 2.86E-2 [1.62E-3, 1.66E-3] 1.68E-3 1.67E-3 2.89E-2 [1.65E-3,1.69E-3] 

PT of 2190h 6.30E-4 6.32E-4 1.49E-2 [6.23E-4, 6.41E-4] 6.68E-4 6.73E-4 1.52E-2 [6.64E-4, 6.82E-4] 

PT of 2920h 6.99E-4 7.03E-4 1.54E-2 [6.93E-4, 7.13E-4] 7.46E-4 7.43E-4 1.57E-2 [7.33E-4, 7.53E-4] 

PT of 4380h 8.31E-4 8.36E-4 1.65E-2 [8.26E-3, 8.46E-3] 8.78E-4 8.75E-4 1.68E-2 [8.65E-4, 8.85E-4] 

PT of 8760h 1.18E-3 1.18E-3 2.08E-2 [1.17E-3, 1.19E-3] 1.22E-3 1.21E-3 2.12E-2 [1.20E-3, 1.22E-3] 

 

Table 8 Comparisons of proposed formulas and Petri-net model under testing strategy with MRT for 1oo2 system 

Testing 

strategies 

Without MRT With MRT 

PFDavg 

from 

Eqs. (9) 

and (16) 

PFDavge 

from  

Petri net 

σ 

(PFDavge) 

95% confidence 

interval 

PFDavg 

from 

Eqs. (9) 

and (16) 

PFDavge 

from  

Petri net 

σ 

(PFDavge) 

95% confidence 

interval 

FT of 

2*8760h 
4.81E-6 4.83E-6 1.27E-3 [4.58E-6, 5.08E-6] 5.04E-6 4.98E-6 1.28E-3 [4.73E-6, 5.23E-6] 

PT of 2190h 1.07E-6 6.94E-7 3.66E-4 [6.22E-7, 7.66E-7] 1.22E-6 7.71E-7 3.78E-4 [6.97E-7, 8.45E-7] 

PT of 2920h 1.30E-6 8.84E-7 4.03E-4 [8.05E-7, 9.63E-7] 1.45E-6 9.70E-7 4.17E-4 [8.88E-7, 1.05E-6] 

PT of 4380h 1.71E-6 1.23E-6 4.79E-4 [1.14E-6, 1.32E-6] 1.86E-6 1.32E-6 4.94E-4 [1.22E-6, 1.42E-6] 

PT of 8760h 2.58E-6 2.65E-6 8.14E-4 [2.49E-6, 2.81E-6] 2.73E-6 2.77E-6 8.29E-4 [2.61E-6, 2.93E-6] 
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6. Concluding remarks 

A methodology for reliability modeling of SISs final elements has been presented in this study. The main benefit 

of the proposed approach can focus on different operational issues, such as partial tests and delayed repairs. 

Approximation formulas for PFDavg have been developed by introducing conditional probability in subsequent partial 

testing intervals, and Weibull rules are adopted for modeling the degradation effects. Delayed restoration is 

considered and different scenarios for calculation of mean repair time have been developed to demonstrate effects on 

the reliability.  

In the case study, a focus is given to 1oo1 and 1oo2 HIPPS valves. The most difficult challenge concerning the 

approximations is to handle the degradation effects in a series of subsequent partial testing intervals. Investigations 

of shape parameters have indicated that maintenance strategies can be made to predicate the PFDavg given different 

proof testing periods including partial testing or not, which also provide a method for determining the suitable types 

of valves under limitations of testing. The contributions of PFDavg from partial tests have been demonstrated in 

improving the performance of valves in different cases. The experiments have shown that PFDavg is increasing under 

subsequent partial testing intervals, but it is reduced compared that without PT. Decision should be made based on 

the maximum allowed PFDFE,avg, so as to choose appropriate partial testing strategies with given conditions. The 

effects on the reliability from delayed restoration have shown that the values of PFDavg are increased over MRT but 

they can also provide an adequate tool to determine the MRT under given requirements and different partial testing 

strategies.  

The current paper is restricted to SISs with simple configurations. For SISs with reasonably independent 

components, an extension of the current work is to establish a formula for the unavailability of a single component 

and combine such unavailability through Fault trees. Petri nets and Monte Carlo simulation can be also used for SISs 

with dependent components. The common cause failures and process demand could be taken into account. In addition, 

the other operational and testing issues (staggered testing) in the subsea environment need to be addressed in the 

further study. 
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