
ON THE PHILOSOPHY OF HIGHER STRUCTURES
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1. Introduction

Higher structures occur and play an important role in all sciences
and their applications. In a series of papers [2–15] we have devel-
oped a framework called Hyperstructures for describing and working
with higher structures. The purpose of this paper is to describe and
elaborate the philosophical ideas behind hyperstructures and structure
formation in general and emphasize the key ideas of the Hyperstructure
Program.
In Baas [4] we formulated a very general principal for forming higher

structures that we now call Hyperstructures and abbreviate to H -
structures. There are six basic stages in this principle of forming H -
structures.

2. The H -Principle

(I) Observation and Detection.

Given a collection of objects that we want to study and give a
structure. First we observe the objects and detect their prop-
erties, states, etc. This is the semantic part of the process.
Finally we may also select special objects.

(II) Binding.

A procedure to produce new objects from collections of old ob-
jects by “binding” them in some way. This is the syntactic part
of the process.

(III) Levels.

Iterating the described process in the following way: forming
bonds of bonds and — important! — using the detected and
observed properties at one level in forming the next level. This
is iteration in a new context and not a recursive procedure. It
combines syntax and semantics in forming a new level. Connec-
tions between levels are given by specifying how to dissolve a
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bond into lower level objects. When bonds have been formed to
constitute a new level, observation and detection is like finding
“emergent properties” of the process.

These three steps are the most important ones, but we include three
more in the general principle.

(IV) Local to global.

Describing a procedure of how to move from the bottom (local)
level through the intermediate levels to the top (global) level
with respect to general properties and states. The importance
of the level structure lies in the possibility of manipulating the
systems levelwise in order to achieve a desired global goal or
state. This can be done using “globalizers” — an extension of
sections in sheaves on Grothendieck sites (see Baas [9]).

(V) Composition.

A way to produce new bonds from old ones. This means that
we can compose and produce new bonds on a given level, by
“gluing” (suitably interpreted) at lower levels. The rules may
vary and be flexible due to the relevant context.

(VI) Installation.

Putting a level structure satisfying I–V on a set or collection of
objects in order to perform an analysis, synthesis or construc-
tion in order to achieve a given goal. The objects to be studied
may be introduced as bonds (top or bottom) in a level structure.

Synthesis: The given collection is embedded in the bottom level.

Analysis: The given collection is embedded in the top level.

Synthesis facilitates local to global processes and dually, analysis
facilitates global to local processes by defining localizers dual to glob-
alizers, see [10].
The steps I–VI are the basic ingredients of what we call the Hy-

perstructure Principle or in short the H -principle. (Corresponding to
“The General Principle” in Baas [4].) In our opinion it reflects the basic
way in which we make or construct things. This applies to mathemat-
ics, engineering, societies and organizations. In many ways it reflects
“The Structure of Everything!”



ON THE PHILOSOPHY OF HIGHER STRUCTURES 3

As a generic example we may think of a collection of individuals.

(a) We observe them and detect their qualities, properties or states.

(b) We use their “properties” to put them into groups interacting
to achieve specific goals.

(c) We observe the groups, and bind them to groups of groups for
specific reasons.

(d) We introduce mechanisms (elections, communcations,. . . ) mak-
ing it possible to pass from local states and properties to global
ones through the levels. For example in democracies.

(e) Given a collection of individuals, installation is the process of
organizing them in an H -structure including (f).

(f) Composition means that at any level overlapping groups may
be turned into new groups.

Evolution is a fundamental H -structured process. The way we think
also follows the H -principle which really represents “food for thought.”
We think that extracting and formalizing the essential parts of these
important structures and processes is very useful. How do we formalize
the H -principle?

3. Hyperstructures

We will here give the idea of how to formalize the H -principle into
a mathematical framework. Details will be given in a separate paper.
Given a collection of objects and consider them as elements of a set X.
Let P(X) be the collection of all subsets of X. We may also consider
sets with structures like spaces, groups, orderings, etc.
First, we observe the subsets in terms of an assignment

⌦ : P(X) ! Sets

(mathematically like a functor). This observation mechanism detects
properties and (or) states ⌦(S) of a subset S ✓ X. This is detection.
Then we consider subsets with properties, i.e. pairs (S,!),! 2 ⌦(S).

To each pair we want to assign another set B(S,!) — the set of bonds
— meaning “mechanisms” that can bind S into some kind of unity.
This means that we consider the collection of all these:

� = {(S,!) | S ✓ X,! 2 ⌦(S)}

We will elsewhere discuss how these assignments for S and S 0 with
S 0 ✓ S, S 0 \ S = ; or S 0 \ S 6= ; are related.
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Form bonds of these pairs in terms of an assignment:

B : � ! Sets

— in mathematical terms also possibly like a functor.
In step III we want to create a new level, proceeding as follows:

Giving everything considered so far an index 0 we form a new set or
collection of objects:

X1 = {b0 | b0 2 B(S0,!0), S0 2 P(X0),!0 2 ⌦0(S0)}

Based on X1 we proceed with a new ⌦1,�1 and B1 to form X2 in the
same way. B1 will then represent bonds of bonds. In this way we
continue the process, but notice there are new choices of assignments
at each level. Hence we end up with a hyperstructure of order N �H ,
specified by:

X = {X0, . . . , XN}
⌦ = {⌦0, . . . ,⌦N}
B = {B0, . . . , BN}
@ = {@0, . . . , @N}

where @ consists of level connections

@i : Xi+1 ! P(Xi),

such that @ibi = Si.

Definition. The system H = (X ,⌦,B, @) is called a hyperstructure
of order N .

This is a semi-formal definition. In order to make it into a formal
mathematical definition more technical conditions shall be added. This
will be done in a separate paper, [11].
Hyperstructures extend the ideas involved in the mathematical the-

ory of higher categories, see [19, 20].

4. Discussion

Once a hyperstructure has been constructed the essence lies in the
bonds: B0, B1, . . . , Bn. To each level of bonds we may assign new
properties or states (dynamic or static). In order to “glue” or put
together properties or states in a compatible way we use a Grothendieck
topology and a generalized site on H (see Baas [9]) denoted by J . Then
we consider the pair:

(H , J) (H of level n).

We consider a new type of property (or state) assignment

(H , J)
⇤�! S
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where S is a kind of n-level structure for example another hyperstruc-
ture where possibly the levels themselves can be hyperstructures:

Bn
⇤n�! S0

Bn�1 �! S1
...

...

B0
⇤0�! Sn.

As discussed in Baas [9] this gives a mechanism to pass from level
B0 (Bottom level) to Bn (Top level) of properties or states — the
local to global process IV in the H -principle. For example there may
be a preferred state s0 in S0 that we want the system to achieve by
suitable dynamical actions at the lower levels. Complex state structures
(hyperstructures) may be useful in manipulating a system in giving a
wide variety of possibilities.
For this we need a “globalizer” which is a sequence of assignments

Sn  Sn�1  · · · S0

compatible with the @i’s and the site structure J (see Baas [9]). Often
it may be easier to perturb (take dynamic actions) at lower levels. We
may here perturb at the lowest level — states in Sn — and via level
changes at the Si’s let the changes propagate through the structure to
achieve the desired state s0.
This is a formal description of what happens often in social systems

and organizations. A formal framework may help applying this to many
more situations.
Often one may want to use a collection of objects or systems (think of

a group of individuals) to achieve a goal. In order to do so one may have
to structure (organize) the collection X by putting a hyperstructure on
it — H (X) where X is embedded in e.g. the top or bottom level. Then
one can use a globalizer or its dual to act on the collection X to achieve
the desired goal.
This is Installation —we will install a hyperstructure onX. Once we

have formed a collection of various hyperstructures we may apply the
H -principle to form H -structures of such collections again and this
goes on to any order. Our point is to show that there is a lot of room
in these new higher order universes for forming new and interesting
objects both in the abstract and physical sense.
Installation may apply to physical, biological and abstract systems.

It may also be useful in Quantum Systems making local e↵ects global,
and controlling global states by local manipulations.
Evolutionary processes are examples of H -structure. Nature uses

object properties in forming new objects, whose properties again are
used to form the next level of objects.
Let us illustrate this by an example.
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An H -structure as defined in Section 3 is given by:

Level 0:
• Basic objects (X0): cells
• Properties (⌦0): receptors (selected properties)
• Bonds (B0): aggregates of cells formed by the selected re-
ceptors.

Level 1:
• Objects (X1): Organs formed by aggregates.
• Properties (⌦1): Products made by organs (selected).
• Bonds (B1): Aggregates of organs using the product prop-
erties as bonds — forming new units.

Level 2:
• Objects (X2): Individuals formed by aggregates of organs.
• Properties (⌦2): Various types of skills for selection.
• Bonds (B2): Combination of skills of individuals forming
a unity — a population.

This structure may be refined and extended both to higher and lower
levels. The objects of each level may be subject to selection, See Buss
[16] for a thorough discussion of how selection of units leads to the
formation of higher order (hierarchical) organizations. Hyperstructures
capture this in a general sense showing the potential of a plethora of
applications where mathematical structures will be needed.
Another illustrating example is as follows. Given a finite set X of

agents and the goal is to maximize interactions in X. Ideally every-
body would interact with everybody realizing the complete graph on
X, but normally there will be constraints giving a subinteraction graph.

What next?

Then subsets of X may interact and we lift the interactions to the
power set level P(X). Lots of new interactions may occur and when all
possibilites are exhausted within the given context, we may proceed to
the next level of subsets in P

2(X) using the newly created properties
to form new bonds (subsets), etc. The potential is enormous, and
H -structures lead to a lot of structural novelty.

Note. From now on we will let the assignments of properties, phases
and states just be called states with the understanding of this broad
interpretation. The new thing here is that we have levels of observables,
states, properties, etc. — not just local and global.
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5. Elaborations

5.1. H -formation. Once we have constructed a hyperstructure —
basically satisfying I–III — it may be used as a target for state (and
property) assignments in the formation and construction of new H -
structures, etc. This is a very important idea. It is similar to and
extends categorification and enrichment in forming higher categories
in mathematics.
First we use the general H -principle with state and bond assignment

in Sets or some other known mathematical structure, e.g. categories like
described in Baas [4]. We call these first level basic H -structures and
denote them by

H yp0 = {H (0)}.

In this case the ⌦0
i ’s and B0

i ’s take values in structures S
0
1 , . . . ,S

0
n ,

and we put S (0) = {S 0
i }.

Then we proceed with a new set of objects — possibly from H yp0

— and then let the ⌦’s and B’s take values in H -structures of type
H yp0: S

1
1 , . . . ,S

1
n such that even S (1) = {S 1

1 , . . . ,S
1
n } may be an

H (0)-structure. The results are H (1) structures.
This gives us H yp1 = {H (1)} and in this way we proceed to form

H yp2 = {H (2)}
...

H ypn = {H (n)}.

Similarly if we are given an H -structure H of some type, say, H ypk,
we may want to make new state (property) assignments and study local
to global relations.
As already described and discussed in Baas [9], we form a generalized

site (H , J) and give assignments

Bn  S0

Bn�1  S1
...
B0  Sn

where the Si’s are H -structures at some level, even such that S =
{Si} is an H -structure itself, for example of type H ypk. In this con-
text one may then consider globalizers (as in Baas [9]) relating local
and global states. A globalizer will permit levelwise dynamics or ac-
tions in order to get to a desired global state from given local ones, as
illustrated in Figure 1.
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B2

Bn�1
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H :

Sn

Sn�1

Sn�2

S1

S0

...

{sn}

{ŝn�1}

{sn�1}

{sn�2}

{ŝn�2}

{ŝ1}

{s1}

{s0}{ŝ0}

{ŝn}

...

Figure 1.

5.2. H -processes. In many types of systems: atomic and molecular,
biological, sociological and organizational one wants to change global
states by performing local actions. H -structures are useful in organiz-
ing such actions.
Suppose we have a system X of objects and an associated system

or structure of states S (X). Often a general situation is that one
wants to change the state of the system by finding a suitable action:
Given s0, ŝ0 2 S (X) and construct an action A : S (X) ! S (X)
changing the state. A possible way to do this is by installing H -
structures: H (X) and H (S (X)) and construct a hyperstructured
action A(H ) such that A(H )(ŝ0) = s0 where A(H ) = {Ak(H )} and
in the notation of Figure 1:

Ak(H )(ŝn�k) = sn�k.

Such a change of state could be a change of production, changing a
material property, fusion or splitting of systems, change of political
attitudes, etc. The point is that the lower level, local actions may be
easier to perform than the global ones. A higher order state structure
allows for more varied actions and propagation through the levels. Lo-
cal to global processes in H -structures are sometimes like structured
and controlled “butterfly e↵ects” as seen in non-linear chaotic systems
— amplifying small e↵ects. See Nicolis and Nicolis [21].

5.3. H -algebras. In an H -structure with bonds {B0, B1, . . . , Bn} we
may define operations or products of bonds by “gluing.” If bn and b0n
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are bonds in Bn that are “gluable” at level k, then we “glue” them to
a new bond bn⇤n

k b
0
n:

bn b0n

bk b0k

@ � · · · � @ @ � · · · � @

“gluable” (having similar parts to be identified).

(H , {⇤n
k}) gives new forms of higher algebraic structures. We have

level operations {⇤k
k} and interlevel operations {⇤n

k}.
For geometric objects X and Y one may define a “fusion” product

X ⇤H Y

by using installed H -structures on H (X),H (Y ) and H (X tY ), see
Baas [9].
If in an H -structure we are given a bond bk binding {bik�1} the state

assignments will give a levelwise assignment via a globalizer

⇤k�1({bik�1}) ⇤k(bk).

The globalizers act as generalized pairings connecting levels. In some
cases factorization algebras connect local to global observables. The
global observables may be obtained from the local ones up to isomor-
phism in perturbative field theories, see [1, 17, 18], but not in general.
Often a tensor product ⌦k may be provided in Sk we may have

⇤k�1({bik�1}) =
O

i

⇤k�1(b
i
k�1)

and sometimes when it makes sense, Sk�1 = Sk, like in topological
quantum field theory:

⇤k(bk) 2
O

i

⇤k�1(b
i
k�1).

See also Baas [8].
An H -algebra will be an H -structure H with “fusion” operations
⇤ = {⇤n

k}. One may also add a “globalizer” (see Baas [9]) and tensor-
type products as just described. The combination of a tensor product
and a globalizer is a kind of extension of a “multilevel operad.”

5.4. H -sca↵olds. In many situations we have systems with resources
that we want to release. This could be energy, products, human re-
sources, etc. Often it takes resources to get resources released. In such
situations it may be advantageous to put a suitable hyperstructure
H (X) on the system X. Often release of resources at the lowest level
may require small inputs, the outputs being then inputs of the next
level as in the following scheme.
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H (X) S (X)
Bonds Resources States Actions Mechanisms

Bn Rn S0 s0
A0�! t0 M0

...
...

...
...

...

B1 R1 Sn�1 sn�1
An�1���! tn�1 Mn�1

B0 R0 Sn sn
An�! tn Mn

Then we may imagine that a small (in a precise sense) input of
resources r0 will cause an action An by the help of a mechanism Mn to
change the state from sn to tn, which again will cause a larger release
of resources r1. This will be used as an input and proceed through the
levels upwards until a release rn is obtained.
In favourable situations with a well designed H -structure we may

have:
r0 ⌧ r1 ⌧ · · · ⌧ rn.

In this way we may think of H (X) as a “sca↵old” on X. The actions
will take place as in Figure 1. The mechanisms providing the actions
are designed levelwise. We may think of this in a metaphorical way:
We have a dam and want to release energy. Start with a mechanism
Mn drilling small holes at the top. The released water is organized
(“by bonds”) to act on another mechanism Mn�1 drilling bigger holes,
releasing more water, etc. In this picture the H -structure acts like a
sca↵old.

Dam

...

Xn

Xn�1

...

X1

X0

H :

Sn

Sn�1

...

S1

S0

Figure 2.

This is meant to illustrate how “small” local actions may cause
“large” global e↵ects on a system suitably organized into an H -structure.
We see this in biological systems, societies and organizations as well
as in systems releasing various types of energy: chemical and nuclear
(fission and fusion). Hyperstructures may improve such processes.

5.5. H -states. States of an H -structure that are levelwise connected
by a globalizer we call H -states. Desired states of bonds b0 at the
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lowest level may be thought of as being “protected” by the higher ones
from external “noise.” On the other hand we may think of desired
states bn at the top level as being supported or created by the lower
level ones, and may also be protected by an underlying geometric H -
structure of the system.
Consider H = {B0, B1, . . . , Bn}. Start with (S0,!0), !0 2 ⌦0(S0), b0 2

B0(S0,!0). Proceed to b1({(bj00 ,!
j0
0 )},!1), etc.

!j0
0 state is “protected” by b1

!j1
1 state is “protected” by b2

...
!jn�1
n�1 state is “protected” by bn.

b1

!j0
0

. . .

!j1
1

· · ·
!jn�1
n�1

bn

Figure 3.

The local states are protected by the higher bonds which may be
realized in various ways as fields, subspaces, etc.
If we have a globalizer of states

Sn  Sn�1  · · · S0

we may think of levels of states

{sn} {sn�1} · · · {s0}
as states of condensation, like a multilevel Bose–Einstein condensation
(s0). Another interpretation is as an H organized form of entangle-
ment (see Baas [5]).
Sometimes when coherence of bonds and states fail (“equations do

not hold”) higher bonds may be introduced and used in order to solve
the “frustration” of lack of equations and introduce a new form of unity
(with proper equations). This may go on for several levels.

6. The structure of everything

Suitably formulated hyperstructures cover most types of structures
in nature and science like e.g. trees, graphs, hypergraphs, networks,
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spaces, categories, etc. often considered as structures with just one
level. But in nature — in biology — we see lots of structures built up
with several natural levels — the e↵ects of evolution.
The way we think and evolution have shown us the importance of

observing “things” and detect properties that we use in binding old
“things” into new “things.” This is the key idea in forming higher
structures, and hyperstructures give us a framework in which we can
design and perform these constructions.
Our main point is that using higher structures in the sense of hy-

perstructures represents an enormous unused potential for new kinds
of design and construction. There is a lot of room in the “space” of
structures and the H -principle is a way to create new structures by
constructing H -structures on sets or collection of objects. This gives a
plethora of new structures described as hyperstructures which is useful
both for construction and handling of these new universes.
Hyperstructures represent a universal and unifying mechanism to

study both existing objects, making new objects and studying them as
well. For example, this should lead to higher structures as follows:

H -states
H -materials
H -brain states
H -gene structure
H -organization, economy
H -language
...

In science symmetries are important. So are limits of all kinds
(“More is di↵erent,” see Baas [10]). We would like to add “Higher
is di↵erent” — meaning that lots of new phenomena occur in higher
structures (hyperstructures) with several levels.
As pointed out in [2–10, 12–15] there are many important areas of

science where we think that H -structures may turn out to be very
useful and important. Let us sum up by mentioning some:

(1) Evolution, Genome structure, Cancer.
(2) The brain and AI systems.
(3) New materials in chemistry and physics (e.g. molecular H -

links, high temperature superconductors).
(4) Fusing systems (including nuclear fusion) and energy produc-

tion in general.
(5) Organizations, Societies, Economics, Production systems.
(6) Engineering and Architecture design.
(7) New higher QM-states — extending Efimov states and GHZ-

states. H -type condensates — extending Bose–Einstein con-
densates.
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(8) New universes of Abstract Matter for design and construction.
(9) Mathematics in many ways. Extending for example higher cat-

egories.

What more? Time will tell! Only our imagination limits the list.

Note. H -structures are structures that I imagined and “saw” as a
child, but it took a lifetime to describe what I saw!
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