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Abstract 
 
This thesis is an investigation and shaping of a generative design methodology for product 
development, implemented in the design and construction of an energy efficient UrbanConcept 
car for participation in Shell Eco-Marathon.  
No studies was found to present general strategy for implementing generative design into 
product development. Thus, this thesis is presenting such a strategy base on similarities drawn 
between human problem-solving, design theories and methodologies and genetic algorithms – 
one of the major technologies for generative systems.  
The aim of the implementation in the development of the vehicle is both to test the 
methodology on a real product development case, as well as creating a competitive vehicle for 
the competition. This was conducted through the development of the cars monocoque. The 
implementation led to very satisfying results in the development, and good results in the 
competition. 
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Sammendrag 
 
Denne oppgaven er en undersøkelse og utforming av en generativ designmetodikk for 
produktutvikling, implementert i prosjektering og konstruksjon av en energieffektiv 
UrbanConcept bil for deltakelse i Shell Eco-Marathon. 
Ingen studier ble funnet å presentere  en generell strategi for implementering av generativ 
design i produktutvikling. Dermed presenterer denne avhandlingen en slik strategibase basert 
på likheter trukket mellom menneskelig problemløsning, designteorier og metodologier og 
genetiske algoritmer - en av de viktigste teknologiene i generative systemer. 
Målet med implementeringen i utviklingen av kjøretøyet er både å teste metodikken i et ekte  
produktutviklings scenario, samt å skape et kjøretøy som kunne nå langt i konkurransen. Dette 
ble utført for utviklingen av bilen monocoque. Implementeringen førte til svært tilfredsstillende 
resultater i utviklingen, og gode resultater i konkurransen.   
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1 Introduction 
 
The student team DNV GL Fuel Fighter (FF) from NTNU has been developing and building cars 
participating in the international engineering competition Shell Eco-Marathon Europe (SEM) 
since 2008, which is the largest of several student competitions hosted by Shell all over the 
world. Every year FF and about 2000 other students from teams around the world are gathered 
in this competition to test their cars up against each other, with the ultimate goal of creating 
the most energy-efficient vehicle.  
 

 
Figure 1: Opening ceremony of the Shell eco-Marathon 2019, with all the participants and a few of the 110 cars competing.  

 
 
The competition has two types of vehicles; Prototype, where the drivers lie horizontally in tiny 
vehicles usually constructed with three wheels, and the larger 4 wheel UrbanConcept class that 
has more resemblance with road-legal vehicles for the consumer market. In the latter class, the 
race is constructed to simulate city driving, consisting of 15 laps to be completed within 35 
minutes, each with a length of 970 meters where the car has to come to a full stop each lap 
(SEM18). The two vehicle types are also divided into three classes of energy source, ranging 
from Battery-Electric and Hydrogen to different fuels for Internal Combustion. As the classes 
are highly different in terms of energy consumption, winners are awarded within each energy 
class, while off-track awards (such as the Innovation Award and the Design Award) comprise 
either all, or each of the two vehicle types. In addition, a new competition called UrbanConcept 
Autonomous was introduced in 2018. Here, UrbanConcept vehicles can attend to prove their 
capability of autonomous driving through a range of tests, giving the competing teams points to 
determine the winner. 
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Over the years, 4 UrbanConcept cars and 1 Prototype car have been developed and built by the 
DNV GL Fuel Fighter team, with several master students being part of the project. Most of the 
cars are improved on for 2 to 3 years to bring out the best potential of the design before a new 
car is built. Some years have been highly successful in terms of results, with a first place in the 
hydrogen class in 2009 and second place in the Battery-Electric class 2018, as well as winning 
and pall positions for both Vehicle Design and Communications over the years. Other times 
however, the team has been troubled with technical issues under the competition or been 
unable to compete at all, not making it through the rigors technical inspection to be allowed 
onto the track.    
 

The author has been part of the organization for the last two years of his master study, the first 
year as the leader of a R&D team researching new technologies and planning the development 
of the 5th UrbanConcept vehicle. Last year the author has been managing the DNV GL Fuel 
Fighter team, with  40 engineering students developing and builting the DNV GL Fuel Fighter 5.  
To the author being part of the organization has been an immensely educational and exciting 
experience, solving complex engineering problems and cooperating with other passionate and 
skillful students from different countries and study directions. It is a place where the 
engineering theory acquired from courses over the years can be applied to a real-world 
problem, putting theory into practice. It is also a place where team effort is essential to 
succeed, creating friendships as well as interpersonal skills of future value.  
 
 
1.1 Background and motivation 
 

Figure 2: The cars developed by DNV GL Fuel Fighter since its beginning in 2008. 
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When radical new technologies for aiding product development emerge, it can have a huge 
effect on how humans innovate. The tools engineers utilize can greatly amplify their ability to 
transform ideas into products, and also change how this process is conducted. 
Tools that are involved in product development range from mechanical tools such as milling 
machines and assembly lines, computer-based tools such as FEM software and programming to 
more organizational directed tools such as Enterprise Resource Planning and Product Lifecycle 
Management. These have all influenced the way engineers innovate products, and the 
companies that adopt the latest technology often gain an advantage in their industry.  
Tools that are made to aid the actual product development process itself have had an even 
more direct impact on how problems are solved. CAD software was originally created to 
improve and automate paper-based and manual tasks, but has shown to be much more 
influential. The possibility of enabling quick exploration and visualization have completely 
changed the culture and process and of design (Brown 2009). The development of simulation 
software has in a similar manner enabled engineers to create increasingly advanced products. 
However, continuously advancing modeling and simulation systems do not only change our 
abilities and the manner in which we create products, but also human problem solving itself 
(Becker et al. 2005).  
  
Generative Design (GD) is an emerging technology that by many is predicted to create a new 
paradigm for engineering design and problem-solving in a wide range of fields ((Türkmenoğlu 
2015), (McCormack et al. 2004), (Janssen et al. 2002)). With the use of Generative software 
systems, solutions to problems can be generated, explored and optimized in a manner that 
resembles natural evolution. The computer becomes a design generator, gaining “creative like” 
abilities compared to its normal passive roles as a performance analyst, visualizer, data checker 
and drafts tool (Shea et al. 2005). The utility of these systems is then to automatically generate 
and optimize solutions to problems more rapidly than previous techniques, and in some cases 
creating solutions that would be impossible to come up with using former engineering tools 
and human ingenuity.  
While there is no agreed-upon definition of the term yet, as several software companies and 
disciplines disagree which technologies and methods it embodies, it seems to be a general 
consensus that it is a design method where generation of form is based on rules or algorithms 
(Agkathidis 2015). Defining the term is also difficult as it is having a transformative impact on 
such a wide specter of areas and industries, from art and architecture to a range of engineering 
disciplines.  
In essence, generative systems is just a category of optimization software, and the field of 
optimization has been part of engineering for decades. However, generative design brings a big 
shift in the common conception of optimization; form techniques for fine tuning of objects or 
systems in the final stages of development, to an approach for concept exploration and 
optimization from the very beginning and throughout the development process. This shift can 
be attributed to the algorithms ability to explore and determine one or several near optimal 
solutions in a vast solution space, rather than finding the single global optimum to a well-
defined problem.  
 



 10 

Janssen et al. (2002) describe generative and evolutionary systems as an emerging third phase 
of computer design tools. In their paper, the ability to enhance the capacity of visualization 
trough CAD is depicted as the first phase of computer tools, while simulation software enabling 
analysis to quantify performance of design are considered as the second phase. Although both 
of these technologies have changed the way problems are solved, they are considered to be 
passive in the manner they are altering the process. This means they substitute manual tasks 
and aid problem solving without changing the actual structure of development to any large 
degree. Hence, the design methodologies from the pre-computer area are still highly valuable 
for innovation with these tools implemented in the process. 
This third phase of generative and evolutionary tools however, are considered to not only aid 
and/or replace manual tasks, but also cognitive parts of human innovation. It might therefore 
change the structure of the design process, requiring a different approach to design to be 
effectively implemented.  Some, such as Janssen et al. (2002), predict it will demand a change 
from having the designer at the core of the problem solving process, to methodologies where 
the generative system is the central guiding principal . Others see the change as going from an 
approach where humans solve problems using tools, to that of constructing algorithms to which 
problems are specified (Nordin 2018), in a sense, moving from solving problems to growing 
solutions. 
 
Although much of the technology behind generative systems have been around for some time, 
such as topology optimization (TO) and genetic algorithms (GA), its use in product development 
has not been significant. 
This can be ascribed to the huge processing power needed to solve advanced problems, as well 
as the difficulty of representing complex problems in algorithmic terms. However, with the 
increasing access to computer power and more versatile software, these systems have had a 
boom over the last years. Another aspect is the advancements and affordability of 3D printing, 
which in some cases can be the only way to realize some of the designs created with generative 
systems. Several of the largest CAD and FEM software companies such as Dassault Systems, 
Siemens and Autodesk are therefore heavily invested in developing competent systems at the 
time of writing, and industries like aerospace, aviation and automotive are in the forefront of 
implementation. 
 
The sheer power that Generative Design can have in solving engineering problems, and their 
transformative potential for problem solving in general spiked the author’s first interest in the 
field while researching possible technological applications for DNV GL Fuel Fighter. In a 
competition like Shell eco-Marathon, adopting new technology in a clever way might create an 
advantage over other competitors, enabling the team to push the boundaries in areas like 
weight and aerodynamics that are essential for energy efficiency. Implementing a generative 
design approach to advance the development of the DNV GL Fuel Fighter 5 thus became the 
initial ambition for this thesis.  
 
 
However, it is a long way from an initial product idea to plotting values and constraints into a 
tailored algorithm for optimization, or using generative systems on a detailed CAD model.  
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At the very beginning of a product development process, there is often simply nothing to 
optimize yet. As a result of this gap, and the notion that these systems could demand an 
untraditional approach, the subsequent question was clear; how can Generative Systems be 
implemented successfully from the very beginning of the development, and what methodology 
can aid the process? 
Researching the literature on this field exposed that although many people predict the 
technology to have a huge impact, very few articles have been written on the actual change it 
inflicts on product development, and what methodologies are needed for successful 
implementation in general cases. The large part of articles written on generative design, 
whether about product development or other areas, are focused on its utility in specific cases 
or the development of specific algorithms.  
This gap in the research field evolved to become the second ambition of this thesis; 
approaching a generative design methodology for product development in general, which 
facilitates the implementation of generative systems when the opportunities of utilization 
arises throughout the process.  
 
With the author’s limited knowledge of the subject to begin with, and at NTNU in general, the 
ambitions of this thesis has been difficult to realize. However, the possibility of both 
contributing new ideas to such a promising field as Generative Design, and advancing the 
development of DNV GL Fuel Figher 5 was predominant in choosing the topic. Being part of FF 
has also given a rare opportunity that was critical for these goals, being able to both explore 
technology with little risk, and investigate the implementation in a real product development 
case.  
 
 
1.2 Project scope  
 
1.2.1 Problem description and objectives 
 
With the notion that GD Systems will have a huge impact on the way engineering design is 
conducted, this thesis attempts to find methodologies and tools to create a framework that can 
aid the implementation of generative design in product development, creating an optimization 
driven design process. As few studies was found to present a general strategy for implementing 
generative design into product development, the thesis is attempting to develop its own 
methodology.  
Further, this process is applied to the real product development case of creating an urban 
concept car for participation in Shell Eco-Marathon. The aim of the implementation in the 
development of the vehicle is both to test the methodology on a real case, as well as creating a 
competitive vehicle for the competition. This is to understand generative systems hands on, 
and utilize this to understand the possibilities and limitations for implementing the technology. 
This is conducted through the implementation of the methodology and generative systems in 
the development of the vehicle monocoque, witch constitutes the complete body of the car 
and its internal structures, in addition to doors, hood and and rear hatch. The implementation 
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is thus not just a case study for the methodology, as the success of the vehicle development is 
regarded to be of high importance to the author and the DNV GL Fuel Fighter Team. Thus, the 
thesis is in short a study of the interplay between strategy and development.  
 
 
1.2.2 Research questions 

  
From approaching such a methodology, and implementing the generative systems to enhance 
the development of DNV GL Fuel Fighter, three research questions are asked in this thesis; 
 

- How has generative design been implemented in product development before? 
 

- What impact does Generative Design as a methodology have on the process of 
engineering design and problem solving?  

 
- Can the implementation of generative design create a competitive advantage in the 

development of DNV GL Fuel Fighter 5? 
 

The relation to the work are of these are discussed in the final chapter. However, to the reader, 
it is important to have this questions in mind when reading the thesis, as they in large are 
answered throughout the work and not its conclusion.  
 
1.2.3 Limitations 
There are several limitations to the scope of this project. As FF is a self organized volunteer 
project, with students from different classes for the most part are part of the project for a 
single year (although some staying only a half, while others several years), the continuity is a 
huge limitation. Most of the students working with the beginning of the development of this 
car in the first year was shifted with new members the following year. This means that for every 
new year the learning curve is exceptionally large if one wants to develop a competitive vehicle.  
The complexity of the project also limits the implementation of generative systems, as the 
advanced methods needs more effort than what would be required from the average 
volunteer. The implementation is therefore concentrated at the monocoque development, that 
two other master students in the project also was focused on. 
The time is also a huge limitation. Planning the development the first year with a small sub 
group of the team, and then constructing and building a whole car from scratch in the matter 
the next year is highly difficult task, especially with the problem of continuity. This means that 
the level of advanced methodes has to be applicable to the timeframe, and implementing 
generative systems on all structural parts would be unreasonable.   
Another limitation is that of verification of the process, especially for implementation in 
product development in general. Processes are hard to verify, as a setup of two identical 
projects is needed, and even then, the knowledge of the people involved might interfere with 
results. Building two cars side by side using different approaches is obviously out of the scope, 
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thus, the verification of the models effectiveness had to be drawn from the results of the 
development.  
 
1.3 Author’s role in the development 
As the author has led the first years R&D team as well as the whole team as project manager 
the following year, it is natural that the thesis tis written from a strategic point of view. All the 
decisions and work presented is therefore influenced by a several team members over the two 
years, and defining all contributions throughout the thesis would be difficult, especially since 
much of the work and decisions are team efforts. As the thesis is written in passive form, it is 
therefor important to state the work that was done solely by the author, and the work done 
solely by others. The development of the methodology which will be presented has been the 
independent work of the author, while the development of the monocoque was a joint effort. 
The authors main contribution to the monocoque has been the development of vehicles design 
and all CAD models throughout the project, relating to all dimensional requirements by Shell 
and other parts, as well as structural and aerodynamic changes. The author was also 
responsible for the strategy of utilizing different generative design approaches and the overall 
development strategy, as well as contribution to aerodynamic solutions, and interpreting the 
results to generate new CAD models. All the optimization using the Hyperworks tool was done 
by fellow master students Kristoffer Sydnes and David Swensen, and there work was essential 
to the generative strategy implemented. All aerodynamic simulations was also done by other  
members, with Sindre Trefall as major contributor in the final year of development utilizing 
OpenFoam. Many of the figures presented is therefor showing this joint effort, with CAD 
representations created by the author, and simulations done by other team members.  
 
1.4 Method and thesis structure 
 
This thesis is approached with the following method; first a literature review is done to give the 
reader an overview of the field of generative design. This is done to explain the basic operators 
of generative design and why they are an interesting analogy for innovation, as well as the 
applications limitations and future of generative design. Further, existing theories and 
mereologies are discussed. 
Then, a comprehensive study of the similarities between genetic algorithms, human problem 
solving and design theories and methodologies are conducted to approach a methodology for 
implementing generative design into product development.  
Finally, an overview the development of the monocoque is presented with the emphasis to give 
the reader an understanding of how the methodology was implemented and changed the 
overall development process.  
Finally the results and the work done is discussed with the aim to answer the research 
questions.  
Direct citations are used more often than paraphrasing in this paper, especially when 
comparing GA to DTM and human problem solving. This is because the author wants to ensure 
the reader that opinions and similarities are not skewed. When the basis for creating the theory 
is finding similarities, using paraphrasing would make the process less valuable. Comparing one 
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statement in one theory to another in another theory trough paraphrasing, one could easily 
make it seem that things fit well together. Direct citations are then a more honest way of 
comparison. 
 

2 Theory 
 
2.1 Background on Generative Design 
 
Although the term GD have been used in the field of architecture since the 1970s, it is rather 
new term in relation to product development (Nordin 2018b). Despite being used in 
architecture for such a long time, there is no clear definition of what GD is, and different fields 
have different viewpoints. In architecture, the term is often used on par with Parametric 
Design, while in engineering it is often used on par with topology optimization. Other, like the 
major CAD software developer Autodesk, see both these technologies as prerequisites of GD, 
blurring the lines of how to define it. The Wikipedia page on GD lists two definitions, but both 
are very vague and the page itself has multiple issues and contradictions in trying to describe 
GD accurately;  
 
"Generative Design is a morphogenetic process using algorithms structured as non-linear 
systems for endless unique and unrepeatable results performed by an idea-code, as in Nature." - 
Celestino Soddu, 1992. (1) 
 
"Generative Design is the transformation of computational energy into creative exploration 
energy empowering human designers to explore greater number of design possibilities within 
modifiable constrains." - Sivam Krish, 2013. (1) 
 
Some companies that are in the forefront of developing Generative Systems (GS) such as 
Autodesk`s Dreamcatcher Project, are using the term as core in their marketing, while other 
large companies such as Dassault Systems never use the term in the description of similar 
software solutions like Isight. Autodesk define GD as the process of using systems that mimics 
nature’s evolutionary approach to design (2). They describe how the process works by 
explaining that designers or engineers input design goals into generative design software, along 
with parameters such as materials, manufacturing methods, and cost constraints. Then, using 
cloud computing, the software explores all the possible permutations of a solution, quickly 
generating design alternatives (2).  
Although this description gives insight to what GD can do, it does not define what it actually is. 
The author will use a broad definition stated by Fernandes and Margarida (2003); they describe 
a GS as a system that generates options for design problems, and that the basic system in all 
Generative Systems is Algorithmic Systems. GD is then the practice of mediating the design 
process by using GSs, where various potential design solutions can be created determined by 
algorithms. In that sense, Parametric Design is a simple type of GD, as it is based on the use of 
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hierarchical algorithmic systems controlled by one-directional relationships (Fernandes and 
Margarida 2003). 
While Topology Optimization has been around for about 20 years and used more advanced 
algorithms in the same manner as GD to optimize design problems, the focus has been, as the 
name states, that of optimizing topology. Although this is a major part of GD, the definition is 
not limited to this, but holds all qualities that could be optimized in a design. This would then 
mean generating a design solutions or mediating parts of the design process for any quality, like 
the aesthetic coloring of an object, the conductivity of an alloy or the optimization of a plastic 
molding process. GD is also not limited to optimizing problems, which is the focus of topology 
optimization, but also constitutes the ability to generate multiple design options that can be 
evaluated by the designer. In that way, GD is not the closed process within GSs, but the use of 
GSs. This means that humans can replace or participate in parts of the algorithm used in the GS, 
for instance choosing between multiple aesthetic propositions for a design created by the 
algorithm. This creates a shift in how design is conducted; instead of designing an object we 
want, we design or use an algorithm that designs the object we want.  
 
Before going into details of the utilization of GD, it is necessary to explain what sort of 
algorithms are that are commonly used. Since algorithms are simply the use of sequential 
instructions for solving a problem, all programs can be considered algorithmic. It is important 
then to state the class of algorithms that can be considered to generate options for design 
problems. Where one draws the line of which algorithms to consider as simply problem-solving 
methods and which to consider solution generating methods is not straightforward. However, 
one could say that some algorithms are created in order to solve problems exactly, while others 
are created simply to search for good solutions. It is the latter that mainly is utilized when using 
GSs, as the problems they are applied to is simply too hard to solve with precise methods. This 
does not mean that the algorithm never find optimal solutions, but that the means to solve 
problems more resembles a child’s search for solutions, rather than the procedure of a 
mathematician - although a very efficient child. For hard optimization problems, approaching 
the problem by searching for a near optimal solution can be the only way to efficiently finding a 
solution at all.  
 
The algorithms often used to solve these kind of problems is a class called metaheuristics, that 
can find solutions without being constructed directly solve the problem at hand, in contrast to 
problem-specific heuristics. Although not completely restricted to metaheuristics, GSs is then in 
large user oriented software that utilize metaheuristic algorithms to optimize or generate 
multiple solutions for design problems. Boussaïd et al. (2013) states that all metaheuristics 
share the following characteristics:  
 

- They are nature-inspired (based on some principles from physics, biology or ethology.? 
- They make use of stochastic components (involving random variables). 
- They do not use the gradient or Hessian matrix of the objective function. 
- They have several parameters that need to be fitted to the problem at hand. 
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There exist a wide range of metaheuristics that suites different kind of optimization and 
solution generating problems, and going through all is out of scope for this paper. Some of the 
popular classes are Shape Grammar, Lindenmayer Systems, Particle Swarm, Cellular Automata 
and Evolutionary Algorithms. The latter are further divided into four main types: Genetic 
Algorithms (GA) Evolutionary Programming (EP), Evolutionary Strategies (GS) and Genetic 
Programming (GP). Of these, the GA (GA) has become the most popular method for solving 
hard optimization problems as it has the widest applicability (Gábor and Ekártab 2003). It is in a 
sense the allrounder of the metaheuristics, and is particularly fit for generating form or styles 
(Singh and Gu 2012).  
In comparing GA to other types of metaheuristics, Gábor and Ekártab (2003) explains that the 
reason for GA being especially suited for optimization problems is that while other methods 
always process single points in the search space, genetic algorithms maintain a population of 
potential solutions. They also point out the flexibility of GA is also due to its ability to solve 
complex problems by handling multiple parameters simultaneously. GA can therefore be said to 
be the most flexible and practical algorithm of for GD. Although the different metaheuristics 
have very different ways of generating solutions, explaining how GA works will give the reader a 
better understanding of how GD generates solutions, and will thus be elaborated in the next 
section. However, the motive for describing how GA works is ultimately to clarify how the 
intuitions of GA may help in the implementation of GD in product development. The section will 
therefore only explain the basic of an ordinary GA to give the reader a ground for 
understanding, as more specific details will be elaborated in conjunction with the development 
of the generative design methodology in section 4.  
 
 
2.1.1 The basics of Genetic Algorithms  
 
Generative Algorithms was introduced by John Holland in the 1970s with the idea of mimicking 
the natural selection in evolution. It consists of operators that imitate genetics and Darwin’s 
principles of how life evolve, and although the algorithmic interpretation of these principals is 
highly simplified compared to nature itself creating an almost rudimental algorithm, the GA 
often generates unexpectedly complex solutions to difficult problems (Gábor and Ekártab 
2003). Even with these simple operators, the algorithm can mimic evolution like abilities, such 
as making a physics based 3D model of a human run completely life like without any knowledge 
of what running is.  
The encoding of problems into GA use much of the same terminology as the DNA; decision 
variables are encoded as finite-length strings consisting of certain alphabets with a defined 
cardinality that outline the constraints of a population of potential solutions to a problem. The 
distinct strings within this cardinality is called chromosomes, which are the representations of 
each individual solutions to the problem. The shorter alphabets that the chromosome consists 
of are called genes, which are distinct parts that are describing certain areas of a solution. 
Alleles are the smallest descriptions of the problem, which describe the values of each gene.  

Figure 3: Representation of a problem, here as a simple bit-string 
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The representation of a problem and potential solutions is often described by bit-strings, but as 
problems grow more complex, many other representations can be applied, like parameter lists, 
tree structures or even complex programs (Sastry et al. 2014). For instance, the chromosome 
could be the representation of a microwave oven consisting of several parts; each gene could 
represent each part of the assembly, while the allele describes the measurements of each part. 
The cardinality or constraints of the problem representation creates the framework for how the 
product can be assembled and the region of values allowed, defining the solution space of the 
problem and thereby the possible microwave ovens that can exist in the population. 
The GA differentiates between the genotype space; which is where all representations of 
solution are described, and the phenotype space; where the actual solutions are located. 
Different combinations of genes and alleles map onto the phenotype space to create actual 
solutions. Relating to the microwave oven, the genotype space would describe all the values 
and interactions of parts of a solution, and is thus the knowledge that describes the product. 
The phenotype space is the solution itself, and could for instance be represented as a CAD 
model. Further, to measure the fitness of a solution to apply the artificial natural selection of 
different solutions, the algorithm needs a means of evaluating solutions with some fitness 
criteria, determining a fitness space. This is often done with an objective function such 
mathematical models or the use of FEM analysis or other simulation tools, but could also be the 
subjective opinion of humans. Potential solutions in the phenotype space then maps onto the 
fitness space to test how good the proposed solutions are, producing information of how to 
evolve the next generation of the population of solutions.  
 

 

Figure 4: The GA mapping between each space. 
https://www.researchgate.net/figure/Genotype-phenotype-mapping-and-
fitness-function-in-evolutionary-design_fig3_226912968 
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The GA files through an iteration process, where new generations of candidate solutions are 
produced continuously and added to the population, creating better solutions without any 
specific strategy other than measuring its own evolutionary progress towards the goal (Sastry et 
al. 2014): 
 

1. Initialization: An initial population of solutions is created randomly or with some 
knowledge of the domain.  
2. Evaluation: The initial population or offspring population is evaluated against the 
fitness criteria, such as objective functions, simulations or with human interaction. 
3. Selection: Copies of solutions of higher fitness are reproduced to enforce a survival-
of-the-fittest mechanism to the population. This can be done with several types of 
techniques, such as roulette-wheel selection, ranking selection, stochastic universal 
selection and tournament selection, giving preference to which solutions are considered 
good. 
4. Recombination: Two or more solutions are selected as parents and combined with 
some type of crossover operator, to create new offspring of solutions with different 
traits from each parent solution.  
5. Mutation: Single solutions are selected and small changes are made, adjusting the 
solution in its vicinity with small random changes in the solution.   
6. Replacement: The offspring solutions created by step 3-5 are put back into the 
population, and different methods such as elitist-, steady-state- or generation-wise 
replacement are applied to decrease the size of the population.  
7. Repeat: the steps from 2–6 are iterated until a defined termination criterion is met. 

 
These steps explain the very basic of how the GA operates, but there exists numerous variants 
and advanced versions of the algorithm, like Multi objective-, Steady-State-, Distributed-, 
Parallel-, Messy-, Hybrid-, Structured- and injection island GA just to name a few. A search of 
GA in Google Scholar gives over 2 million results, which gives a clue to how huge this field is, 
not to mention the field of metaheuristics in general.  
Further, advanced GSs often not only use a single algorithm, but can be utilizing combinations 
of algorithms. The term Hyper-Heuristics is used as the ability of selecting, combining, 
generating or adapting several simpler heuristics (3), making the system adaptive to different 
problems. In the table underneath, the basic operators of natural selection and GA is put side 
by side, clearly showing the inspiration in GA from nature’s way of solving problems. 
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Figure 3: Similarity of GA an natural evolution.  

 
2.1.2 Applications of Generative Design 
 
 
There almost seem to be no boundary to the application of metaheuristics for difficult 
problems. A Wikipedia page on the applications of GAs alone lists almost 80 different topics (4), 
ranging from airlines revenue management and mechanical engineering to computational 
chemistry and the training of artificial neural networks. Gábor and Ekártab (2003) states that 
the branches of mechanical engineering where GA is most predominantly used are conceptual 
design, shape optimization, data fitting, reverse engineering, mechanism design and robot path 
design. 
 
However, making GD useful is about utilizing these metaheuristics trough Generative systems 
that can solve a range of problems, instead of building specific algorithms for specific problems. 
These systems therefore often contain multiple readymade algorithms that can be applied on a 
higher level, making them easier to employ on a range of problems. They are increasingly used 
tools in architecture for applications such as floor facility layouts and beam structure 
optimization, with programs like Rhino and Grasshopper. In the domain of mechanical 
engineering, topology optimization based on load has been the widest use of GSs (also 
employing other methods than metaheuristics such as Solid Isotropic Material with Penalization 
(SIMP)), but also other types like sizing, shape, topography, and mesh structure optimization 
are common. There exist multiple programs for these specific applications, and larger software 
companies increasingly have them built into their CAD software as modules, such as Fusion 360, 
Tosca Structure and Siemens NX. Increasingly advanced applications have emerged recently and 
are under development, such as fluid optimization tools like Tosca Fluid and design 
optimization for manufacturability and assembly such as Frustum’s software Generate. Isight, a 
workbench program from Dassault Systems allows users to build customized iterations 
between optimization algorithms and programs such as Ansys Fluid, Catia, Abacus and a range 
of other programs. Even graphic design tools have emerged, such as Processing, making it 
possible to create art, typography and advanced infographics with the aid of algorithms. 
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Although there has been much hype around this type of systems, there is no doubt that they 
will influence the future of product development. The reason that these systems have become 
increasingly popular in recent time (even though optimization with metaheuristics and other 
algorithms have been around for decades) is without doubt related to the huge advancements 
in additive manufacturing and cloud computing. While additive manufacturing makes it possible 
to create the advanced shapes that often emerge from GD, the increasing power of cloud 
computing makes it possible to run processor expensive algorithms with more ease. This huge 
advancement in technology makes GD very interesting for the process of developing the next 
Fuel Fighter car. Gulanova and Vereš (2014), professors from the Institute of Transport 
Technology and Design at the Slovak University of Technology, states that generative design as 
a new method of product development and innovation has become very important in the 
automotive industry at present. The reason for the introduction of this method into the process 
of development tasks solution is simple. This approach to car innovation leads to a reduction in 
the time spent developing prototypes.  
 

 
Figure 4: some of the applications presented by Autodesk.  

 
 
2.1.3 Future of Generative Design  
 
Another interesting area of computer-aided technologies to aid innovation of product 
development is a rather new type of tools known as CAI (computer-aided innovation). While 
the initial ideas in the beginnings of these programs was focused on aiding designers in early 
stages of product development, more integrated visions have emerged, with the goal of aiding 
the complete process from the fussy front end of innovation to successful products in the 
market (Leon 2009). There exist several tools that guide product development, but they are 
often separated, and used by different departments of an organization. The idea behind these 
CAI tools is to integrate commonly used tools throughout the process into a single platform that 
can better guide the innovation of a whole company. These could be organizational tools such 
as Product Life Cycle Management, Enterprise resource planning, Knowledge Management, CAx 
systems etc, but also problem-solving methods and product development strategies such as 
decision-making tools, system-engineering tools, TRIZ and Set-Based Concurrent Engineering 
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Systems. Hence, it is not only a question of IT solutions, but also one of the in-depth focalization 
on the development of methodologies and concepts for supporting innovation teams more 
effectively and efficiently, thus improving the advantages of adopting new integrated CAI 
systems (Leon 2009). Dassault System’s 3Dexperience platform is an example of a step in the 
direction of these systems, with a single platform for social and collaborative apps (3DSWYM 
and Enovia), 3D modelling apps (Solidworks, Catia and Geovia), information intelligence apps 
(EXALEAD, NETWIBES) and content, simulation and GS apps (3DVIR, DELMIA and Simula).  
 
With the wide applications of metaheuristics such as GAs, it is clear that these techniques can 
becom an essential part of CAI systems in the future, making it possible to optimize the product 
development process as a whole as well as its parts. Metaheuristics have already been proven 
useful to aid or optimize all kinds of tools and development methods that CAI systems consist 
of.  
Leon (2009) claims that it is expected that changes in innovation paradigms will occur through 
the use of computer-aided innovation methods and tools, and that new information 
technologies, such as Semantic Web, Text and Data Mining, chaos theory and Evolutionary 
Algorithms, will play an important role in the future of computer-aided innovation. If this 
prediction is right, one could ask the question of what impact such tools will have on the way 
humans solve problems in the future? As the tools in many ways shape the way we innovate, 
adapting our product development processes to the tools would be necessary to utilize the its 
full potential.  
Since GAs has shown to be the most flexible and applicable algorithm of the metaheuristics in 
several fields of product development as well as other areas, it might become central in 
optimization and generation of solutions in future CAI systems, which would be synonymous 
with advanced GSs. These systems would aid innovation and solve problems in a manner more 
like natural evolution. Hence, to utilize its potential, it is sensible that humans should adapt a 
problem-solving strategy that more resembles the tool, and consequentially natural evolution. 
 
 
2.1.4 Why genetic algorithms is an interesting analogy for innovation 
 
Humans have always been in pursuit of finding better ways of generating ideas and translating 
them into the real world to solve problems. The generation and translation that in novel ways 
creates value could be regarded as the innovative part of engineering. Even though engineers 
have become increasingly better at solving problems trough out the centuries, with a growing 
body of knowledge, more advanced tools and innovative methods - there is still an actor that in 
many ways is a far superior problem solver and innovator, namely nature itself. The question 
then is obvious; can we utilize nature’s ingenuity in problem solving to benefit our own?  
GAs was developed from this intuition, and as of now it is the best approximation of nature’s 
way of solving problems that we have translated into computational methods. As described 
earlier, using GAs and other optimization techniques has led to novel solutions, so the answer 
to the question stated above would be yes. However, the broad view is that these ways of 
mimicking nature can be used as tools to help us solve problems, rather than ways in which to 
solve problems, or stated in another way; using nature’s abilities rather than adopting them. 
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Another question then arises; can we become better innovators by solving problems in a 
manner that is more in line with nature?  
There are numerous design theories and methodologies that try to describe and create ways to 
innovate and solve problems, but few draws an analogy to natural evolution. This could be 
because a connection between human and nature’s way of innovating cannot be drawn, or that 
if it is possible, doing so does not create a better framework for solving problems than the 
existing methodologies based directly on human and organizational innovation. However, if 
there exist a resemblance between human and natural innovation, it should also be possible to 
draw analogy between human innovation and GAs, as GA mimic nature’s most essential 
building blocks for solving problems.  
This analogy between human innovation and GA was made by Goldberg in 1991, one of the 
most cited authors in the Evolutionary Algorithm community. From having used the metaphor 
of human innovation in his writing about GA from the 1980s, he made this connection explicit 
in his book Genetic Algorithms as a Computational Theory of Conceptual Design. In the book, he 
states that few studies have examined the eureka moment and the mental computations that 
get us them; yet, surely it is the shroud of mystery surrounding the processes of discovery, 
innovation, and invention that most urgently needs to be lifted if we are to get beyond the 
current witches brew. An exception to this state of affairs may be found in the literature of 
genetic algorithms (GAs) [1,2], although the connection of this body of work to design theory 
has been poorly understood, if recognized at all. (D. E. Goldberg 1991).  
Goldberg later saw this connection as the interplay between thinking of innovation as a model 
of what GAs do and thinking of GAs as a model of what innovation is (David E Goldberg 2000). 
He stated that the latter is the most important intuition, arguing that if this connection holds, 
what we really are doing when constructing better GAs is creating a computational model of 
the innovative processes of humans. Several authors have followed this intuition with the 
development of better GAs directly, but also in connection with computer aided innovation and 
design theory as well as many other topics.  
In the area of using GA in computer aided innovation, Gábor and Ekártab (2003) states that 
although the basic aim is to provide a solid basis for building computer programs to 
automatize—or at least assist—the design process, modeling has contributed to a better 
understanding of what design is. Similar claims have been made regarding the development of 
design methodologies; there is no doubt that much resemblance exists between evolutionary 
design [D. E. Goldberg, 2003; P. Bentley, 1999] and the design methodologies described in 
engineering literature [Wood, K.L. and Otto, K.N., 1999], so why not thrive on it more 
extensively in the modern product development processes? (Stanković, et al. 2006). Though 
Goldberg’s intuition exemplifies maybe the earliest and strongest connection between GA and 
innovation, he only makes this link to certain parts of the innovation process. However, other 
authors have also made the jump from human problem solving and design theories and 
methodologies to natural evolution and GA in additional areas of innovation. The actual 
similarities will be elaborated in section section 3. 
 
 
Searching for a design theory that draws on the similarities of innovative processes of human 
thinking and GAs is therefore interesting for two reasons. First, as suggested earlier, the 
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implementation of new tools drastically change the ways in which human processes of 
innovation are conducted. Understanding similarities between the building blocks of GD and 
human problem solving is therefore essential to be able to utilize these tools to the fullest. This 
especially applies because GD seems to have such a broad usage that in the future may 
permeate the whole product development process, as well as its highly different nature from 
existing tools and systems. Secondly, as claimed in this section, there exist similarities between 
human innovation and GA. Understanding and adopting the mechanisms of GA that relates to 
human innovation - and in that sense the ingenuity of nature - into our design theories and 
methodologies could in it-self create more innovative product development processes.  
 
 
2.1.5 Limitations of Genetic Algorithms and Generative Design 
 
Although GD as presented seems to solve all problems, there is obviously limitations that hold 
this technology back. Already, the huge amount of data power required to run advanced 
optimizations is mentioned. Another huge difficulty is that of describing problems in order to 
create good problem representations for the algorithm, leading to good solutions. Rothlauf 
(2006) has done an extensive work for creating guidelines for creating good problem 
representations for Genetic and Evolutionary Algorithms, but still stress that since no theory of 
representations exists, the current design of proper representations is not based on theory, but 
more a result of black art. He goes on to explain that the lack of existing theory not only hinders 
a theory-guided design of new representations, but also results in problems when deciding 
which of the different representations should be used for a specific optimization problem. If 
constraints of a problem can be described as well-defined ranges and connections, the process 
of constructing the representations may be simpler, but this is often not the case in real-world 
problems. Further, all the operators of the GA have to be fine-tuned to create good results. The 
rate at which they are applied and the choice of different type of operators highly affect the 
performance of the algorithm for different problems (Gábor and Ekártab 2003). 
The complexity and computation power requirements also grows extensively when moving 
form optimizing single problems to several aspects of a design simultaneously. Although multi-
model optimization methods have been commercialized (such as multi model optimization in 
Altair Hyperworks and Dassault System Isight), it is still in a crude state when it comes to 
optimizing the totality of several parts of a design and all its interfaces.  
 
 
 
2.2 Existing Generative Design methodologies for Product development 
 
Few studies are conducted on the implementation of GD in product development in a broad 
sense. The most comprehensive study, although not heavily cited, is to the author’s knowledge 
by Nordin (2018). Nordin’s study of challenges in the industrial implementation of GD Systems, 
is a case study on two different firms, one developing aesthetic products, and the other 
technical products. The difficulty of finding articles describing the general implementation of 
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generative design is something Nordin also explaines; Though many studies have been aimed at 
validating either the technical feasibility or the usefulness of generative design systems, there is, 
however, a lack of research on the practical implementation and adaptation in industry.  
Nevertheless, he describes six points that seem to create issues for implementation ito 
problem-solving  of both artistic and technical nature:  
 

1: Moving from automation to generation  
2: Moving from designing a product to designing an algorithm  
3: Knowing what to automate  
4: Replacing rules-of-thumb with measurable constraints and objectives  
5: Avoiding loopholes in the constraint and objective formulations  
6: Parameterizing and simplifying geometry 
 

He explains that the main difficulty lies in the new systemization of parts in the design process 
that GD demands, and that companies have a hard time adapting. Knowledge is also seen as an 
important factor in Nordin’s research. In cases where commercial systems are not applicable, 
the designer or engineer also have to understand programming to be able to optimize a 
problem. Going from creating a design to describing the design in algorithmic terms is a huge 
barrier for the design process. Nordin quotes the renowned computer scientists Donald Knuth 
to explain this problem: “Meta-design is much more difficult than design; it’s easier to draw 
something than to explain how to draw it”.  
 
Some articles have been written on the importance of the interplay between CAD and the 
generative systems methods, putting this in the core of the generative design approach. Krish 
(2011) describes the the Generative Design Approach (GSM) as a theoretical framework for 
based on the interplay between parametric modeling and evolutionary systems such as GA. He 
states that the genotypes are CAD models and the phenotypes are instances of it, thus the 
mapping between the two is direct, developing the model to implement generative design 
directly onto CAD systems. Further he states 5 stages to implement the model:  
 

1. Creating the genetic model. 
2. Setting the initial envelope. 
3. Generating designs. 
4. Filtering phenotypes. 
5. Selection & fine tuning. 

 
Although the method has value, it is designed for a specific case; that of implementing 
generative systems into parametric modelling. In a way, it therefor only creates generality for 
this specific use.  
The generative modelling technique called Knowledge based Integrated Design and evaluation 
System (KIDS) developed by Volvo Aero (Isaksson 2003) also puts modeling in the center of 
development, stating that the product model is the carrier of all product information, which the 
design process is continuously improving. The model ascribes the generative ability of the 
process to that of reusing past knowledge existing in the models in an in a way that can 
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generate new products, reducing the level of abstraction in the early stages of design. However, 
the methode is developed to reuse pas knowledge, it is more of a framework of storeing CAD 
knowledge in a generative manner, so that the company can reuse parts and combination of 
parts in creating similar products. The method also does not link this generating ability to 
generative design or any optimization method, and is purely a model framework.  A simple 
example could be that of creating a connector between two different drain pipes; by 
parametric representation dimensions and number of bolts, or reuse of old models from a 
library, the connector can be generated rather than modelled.  Similar frameworks can be 
found in the field Knowledge Based Engineering (KBE), however the general focus of this 
discipline is building knowledge based systems that can generate product options based on 
previous work, and does not to a large degree use optimization in these process.      
 
 

 
Figure 5: A graphic representation of the KBE system of Volvo Aero, utilized in the development different variants of jet engines. 
Left: the three levels of KIDS. Right; the first level of this framework describing the modular representation of problems. 

 
A more general view focused on the human part of the implementation is the constraint-based 
human-machine cooperative interactive product design system proposed by Guoyan et al. 
(2009). The model attempts to describe the interaction between human and computer 
decision-making and operations, creating a human-machine cooperative system. In order to 
create a this interface, Guoyan et al. describes three important factors:   
    

- Developing visual interactive tool of optimization process.  
- Saving variables, objective functions, constraint network and search strategy in model 

library.  
- Developing an interface between interactive tool of optimization process and model 

library, so that the designer can modify model through the interactive interface. 
 
Guoyan et al. also weight the importance of creating a flexible model so that variables, 
constraints, objective functions and search strategies can be modified by the designer directly 
by modifying the model, instead of numeric interaction. This allows the designer to respond to 
feedback information of the system in the interface between human and computer, so that the 
optimization process can be guided.  
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Figure 6: constraint-based human-machine cooperative interactive product design system proposed by Guoyan et al. (2009) 

 

3 Development of a Generativ Design Methodology 
 
3.1 Angle of approach 
 
There are numerous design theories and methodologies that conceptualize and categorize 
design activities in different ways, as the activities depends on the viewpoint and level of 
abstraction (Sim and Duffy 2003). A ground is therefore needed to set the level of abstraction 
and angle in a meaningful way.  
With the notion that both human problem solving and GD can both benefit and supplement 
each other, the strategy is to approach a methodical framework that fits both human 
innovation processes and the requirements and operators of GD. The starting point is therefore  
to compare the workings of GA to psychological theories of mental activities in human problem 
solving. While using innovation for explaining working mechanisms of GAs is very useful, as a 
design metaphor it poses difficulty as the processes of innovation are themselves not well 
understood (Sastry, Goldberg, and Kendall 2014). Starting with comparing GA to the psychology 
of human problem solving to create an angel of approach might therefore be a better than 
comparing GA directly to existing design theories or methodologies (DTM). Even though the 
mechanisms of human problem solving also is of somewhat mystic nature, it is more defined in 
simple terms in literature. One could also say that innovation simply is problem solving done in 
“novel ways” that creates value, and that a “good” design theory for product development is a 
mindset for solving problems in a way that fosters innovation. Thus, the comparison of the 
steps and activities in GA and human problem solving will be used as a ground for determining 
the level of abstraction and angle of approach.  
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After a general framework and level of abstraction is created in this manner, the next step will 
be to compare GA to acknowledged DTM in literature within the purposed framework to find 
concepts in product development that show some coherence for both GA and the psychology 
of human problem-solving. DTM can be defined as methodologies and theories created to 
include one or more areas to manage design, such as design knowledge, design information, 
design process, resources, and design complexity ( Tomiyama et al. 2009). Many of these 
theories overlap in several areas, as they all try to create models and tools that can aid the 
design process. However, they often differ in what is regarded as the central focus, and some 
only describe a certain area of the process. Comparing GA to DTM through the proposed 
framework is consequently done to find areas and different points of focus of DTM in general 
that should be emphasized in a design theory for implementing GD in new product 
development. 
Covering all parts of all acknowledged theories and methodologies to find coherence in this way 
is out of scope of this paper, but parts of some theories and methodologies have been selected 
as they seem to bear resemblance with the workings of GA. It is important to state that the 
comparison of DTM to GA in this manner is not done to reinforce the notion of GA as a theory 
of human innovation, as one could always find similarities when comparing two such broad 
fields. The reason for finding coherence is simply done to find ideas from DTM that can aid the 
implementation of GD in new product development, based on the two notions explained; that 
GA as a theory of human innovation might be useful, and that the implementation new tools in 
product development will impact the human problem-slowing process in a manner that 
resembles the workings of the tool itself. 
Finally, in formulating a methodology, it is important to bear in mind that there is no point in 
creating a theory without the intention to use it. Tomiyama et al. (2009) highlights two 
important problems that was in focus when Hans Grabowski established the Universal Design 
Theory in 1990s; the problem of universality and the problem of applicability in industrial 
practices. These aspects need to be considered carefully throughout the development for of the 
methodology to be helpful in any way. 
 
3.2 Creating a framework; comparing GA and human problem-solving 
 
As stated in the previous section, the effort of finding common ground between GA and human 
innovation starts with the comparison of the sequential steps and activities of GA to the mental 
steps of and activities human problem solving. Steinberg and Davidson (2003) states that 
several psychologists have described the problem-solving process in terms of a cycle [Bransford 
& Stein, 1993; Hayes, 1989; Sternberg, 1986], and that humans goes through mental stages in 
an iterative cycle to solve problems:  

 
1. Recognize or identify the problem.  
2. Define and represent the problem mentally.  
3. Develop a solution strategy.  
4. Organize his or her knowledge about the problem.  
5. Allocate mental and physical resources for solving the problem.  
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6. Monitor his or her progress toward the goal.  
7. Evaluate the solution for accuracy. 

 
They point out that the cycle is descriptive, and that these stages are not necessarily sequential 
for all problem-solving processes. The iteration are necessary because the solution to one 
problem gives rise to another problem, which then again needs to be solved through the 
problem-solving cycle (Steinberg and Davidson 2003). Hayes (2013), one of the authors referred 
to by Steinberg and Davidson describes the problem-solving process more in terms of the 
activities a person goes through rather his or her mental processes:   

 
1. Finding the problem; recognizing that there is a problem to be solved,  
2. Representing the problem; understanding the nature of the gap to be crossed,  
3. Planning the solution; choosing a method for crossing the gap,  
4. Carrying out the plan,  
5. Evaluating the solution; asking “how good is the result?” once the plan is carried out, 
and  
6. Consolidating gains; learning from the experience of solving 

 
Even though the steps of these two explanations of human problem solving differ in some 
points, they share a similar understanding. How can these ways of breaking down the problem-
solving process relate to the way GA works? As described in section 7.1.2, the GA goes through 
a series of steps that are iterated to generate a solution. To give the reader a way to compare, 
the steps described by Sastry, Goldberg, and Kendall (2014) are briefly summarized again: 

 
1. Initialization: An initial population of solutions is created randomly or with some 
knowledge of the domain.  
2. Evaluation: The initial population or offspring population is evaluated against fitness 
criteria.  
3. Selection: Copies of solutions of higher fitness are reproduced to enforce a survival-of-
the-fittest mechanism to the population. 
4. Recombination: Two or more solutions are selected as parents and combined with 
crossover to create new offspring of solutions  
5. Mutation: Single solutions are selected and small changes are made, adjusting the 
solution in its vicinity.   
6. Replacement: The offspring solutions created by step 3-5 are put back into the 
population, and different methods to decrease the old generation are implemented.  
7. Repeat: the steps from 2–6 are iterated until the defined termination criteria are met. 

 
These steps are the very basic of the conventional GA. Variants of GA may exclude or have 
additional steps in the sequence as well as other configurations of ordering the steps.  
Seeing a connection between the two ways of solving problems is difficult with these 
simplifications on a high level, but the author would argue that similarities can be drawn. In the 
following paragraphs, the basic ideas creating the ground for these similarities will be explained 
briefly, and will be elaborated in the following sections by relating design theories and 
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methodologies to GA. The similarities drawn are based on four notions with the aim to cover 
both the human and GA problem-solving process; that of Representation, Thinking, Evaluation 
and Influence: 
 
First, in solving a problem, both humans and GA needs to understand the problem itself. Before 
the initialization of the first population of the GA, the problem needs to be described in 
algorithmic terms in such a way that makes it possible for the algorithm to represent the first 
population, making recombination and mutation is possible. As Gábor and Ekártab (2003) 
states; when designing a genetic algorithm for a given problem, choosing the representation 
(i.e. constructing the chromosome) is the first step. Without representations, no use of GEAs is 
possible (Rothlauf 2006). In one sense, this is true for human thinking as well; to solve a 
problem a mental representation is required to understand it, as well as a way of organizing 
knowledge about the problem to create clarity, such as visualizing its parts. On the basis of this 
view, one could say that there must exist some form of representation of the problem and 
solutions, as well as knowledge and its relations to be able to approach it.  
Secondly, in order solve a problem there must be some form of thinking that generates new 
solutions or ideas for solving the problem. The “thinking” that generates solutions in GA is the 
process of selecting solutions and applying recombination or mutation. In the same manner 
humans must develop a strategy, and allocate mental and physical resources for solving the 
problem (Steinberg and Davidson 2003). As will be elaborated later it is the connection 
between these “thinking” operators of GA and human thinking that created the basis for 
Goldberg’s intuition of GA as a model for human innovation.  
 
Third, both human and GA problem solving needs a way of evaluating the fitness of a proposed 
solution to the problem. Without evaluation, there is simply no means of measuring progress or 
how good a solution is. GA ensures this by using a fitness function, or functions, that evaluates 
how well the solution solves the problem, as well as evaluating by comparing it to the 
population of existing solutions. A person must in the same manner find a way to monitor his or 
her progress toward the goal (Steinberg and Davidson 2003), by evaluating the fitness of the a 
solution to the problem. In addition, measuring the solution against the population of similar 
existing solutions is in the same way central to measure progress.  
 
Fourth, after a solution is evaluated, new knowledge is created in relation to the problem. The 
recognition of new knowledge, as well as the new solution itself creates a ground for 
determining an influence on the old representation. This influence is then what regulates how 
one should change the former representation, allowing the process of solving the problem to 
begin a new iteration, and create new solutions with an updated body of knowledge and 
potential solutions to the problem. GA determines this influence by manipulating the 
population with a certain rate reproduction and replacement, creating more of the fit solutions 
and less of the weak. The next generation will then develop with a better ground for creating 
good solutions. Similarly, a human must consolidate the gains by learning from the experience 
of solving (Hayes 2013), and use this to update the body of knowledge and solutions creating a 
ground for a new.  
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The basic ground for the methodology is then the iteration of these four steps;  
 

1. Create a representation of the problem; the solutions, knowledge, objectives and its 
relations.  

2. Utilize the representation to guide the thinking required to generate new solutions. 
3. Evaluate the new solutions to determine fitness and gain new knowledge. 
4. Recognize and determine what influence the new solutions and knowledge should have 

on the old representation, leading to an iteration by creating a new representation in 
the first point.  
 

 
3.3 Comparing GA to DTM within the framework 
 
3.3.1 Representation  
In creating a representation of a problem, two aspects seem to be similar for GA and human 
problem solving. The first is the means of decomposing the problem into smaller sub problems 
in order to create a representation. The second is the link between knowledge and solution 
relationship in human problem solving, and genotype and phenotype relationship in GA. First, 
the similarities of decomposition will be discussed. 
 
3.3.1.1 Decomposition similarities 
When using Genetic and Evolutionary Algorithms for optimization purposes, representations are 
required for encoding potential solutions (Rothlauf 2006). In a way, representing the problem is 
the same as representing a solution, or at least the possibility of a solution. The goal of 
representation is then to create a problem-solution abstraction. Decomposing a problem in into 
smaller sub-problems and understanding the relations is therefore crucial for the construction 
of a working GA, as these sub-problems are the basis for writing the different genes of the 
algorithm. The relationships between these sub-problems are of equal importance, as they 
determine the laws of how the algorithm can combine the genes to create solutions. It is then 
only by this problem decomposition into smaller sub-problems, solving them separately and 
combining them to form different solutions, that the algorithm can evolve better solutions 
(Rothlauf 2006).  
The analogy to human intuition is apparent, as humans tend to decompose problems into 
smaller more manageable parts that are easier to solve. This intuition has created a whole field 
of study in engineering, namely Systems Engineering, as well as several design theories and 
methodologies for breaking down a problem-solution abstraction into sub-problems and its 
relations.  
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One of the widely used methodologies is the Design Structure Matrix (DSM) where elements 
denote individual components of a product and off-diagonal numbers (or marks) represent 
interactions between the components ( Tomiyama et al. 2009). This guides the product 
development to decompose and understand the elements of the proposed solution to a 
problem and the interactions between the elements in a similar manner to that of GA. The 
Contact and Channel Model (C&CM) is another methodology that decompose a solution into 
building blocks to create an integrated model; that of Working Surface Pairs (WPS) and Channel 
and Support Structures (CSS). The method is created to guide the designer in representing the 
system coherently by understanding the functions, shapes and its relations to the environment, 
with an emphasis on the interfaces between parts  (T. Tomiyama et al. 2009). The 
decomposition into smaller sub-problems is also imperative in organizational environments, as 
different backgrounds and competences are needed in different areas of a larger problem. 
Decomposition could really be seen as the cornerstone of human’s ability to solve large 
problems.  
 
Nevertheless, in representing a problem to be solved by a GA, simply describing the sub-
problems and relations is often not sufficient. It could be enough if the problem for example is 
to optimize an assembly choosing from a range of fixed parts for fixed positions, but often the 
sub-problems are more complicated, such as finding an optimal topology. The algorithm need a 
defined space in witch to operate, hence the representation must be described in such a 
manner that a range can be defined. Understanding the constraints of the problem is then 
essential for this problem decomposition in GA, as the constraints set the frames in which the 
algorithms can work within (Gábor and Ekártab 2003). An example could be that of optimizing a 
bridge; one part of the representation could determine the length and number of cables used, 
while another part determines the thickness of the cables. Thus, the constraints of the problem 
is needed in order to find valuable solutions, as one probably does not want a million cables of 
1mm diameter, or one cable of 10m diameter to be part of the solution space. Setting the 
constraints right is then important to determine the solution space to explore and the allowed 
combination of sub-parts; if the representation is very general, the space could be too large, 
resulting in too many impossible, spiky or unusual shapes being generated, and the probability 
of finding valid shapes can be quite low. …On the other hand, limiting the size of the search 
space or access to some of its regions by the genetic representation may hinder innovation in 
the GA process (Gábor and Ekártab 2003). It is important here to differentiate between the 
representations of the problem itself, defined by the constraints, and the representations 
created within the constraints as genotypic solutions, defined by points within the constraints.  

Figure 9: Representation of problem, here as 
problem-tree where each part or problem consist 
of independent sub-parts or problems. For both 
GA and human problem-solving, creating a 
problem representation and understanding its 
relations to knowledge and information is 
crucial. This creates the Genotype Space for GA 
which corresponds to Knowledge space in human 
problem-solving. For humans, this space could 
also contain information and resting knowledge 
that are not used in the current representation. 



 32 

 
In a similar manner for human problem-solving, the design process can be viewed as a 
constraint satisfaction problem: given constraints on functionality, structure, and 
manufacturability, produce a detailed structural description of an artifact (Sapossnek and 
Center 1991). Often, the constraints handling of problems is embedded only as a sub part of 
many design theories and methodologies, but there are also ones that put this notion in the 
center of the reasoning, such as Parametric Design Thinking (Bhooshan 2017) and Constraint-
Based Systems Design like DOC (Design Objectives and Constraint). A constraint-based design 
system is defined by Sapossnek and Center (1991) as a system capable of explicitly representing 
and operating upon the relationships (explicit and implicit, given, derived and assumed) 
between the aspects (abstract and concrete) of an artifact relating to its life-cycle concerns 
(including functionality, structure, manufacturability and serviceability) for the purpose of 
maintaining the truth values of the relationships. They also highlight the difference between 
parametric design systems and constraint systems, stating that the latter separate the problem 
statement from the solution while the first do not. Another theory where constraints is a major 
part of the reasoning is Set-Based Design. This connection of this theory and GA will be 
described further with the notion of influence. Consequentially, understanding and defining the 
problem constraints, and utilizing tools for decomposing the problem into smaller sub-
problems and their relations to create a representation is an essential part of both the human 
and GA problem solving process.  
 
These, and many other similar methodologies in the field of systems engineering are developed 
to aid the decomposition, but often do not explain what kind of decomposition will yield the 
best solution. An exception of this is the theory of Axiomatic Design, where this problem is a 
central idea. An important part of the theory is its two axioms that states that a good design is 
one that have (Tomiyama et al. 2009):  
 

- Maximum independence of the functional elements.  
- Minimum information content.  

 
In this way, it can guide the designer to decompose the problem in such a way that the 
elements of the design is easy to change in order to create new solutions, as well as guiding the 
creation of a solution that is simple but effective. Here another interesting analogy to the 
decomposition of GA can be drawn. John Holland, an early pioneer in the field of evolutionary 
computation, called effective groups of sub-solutions the building blocks of GA. He stated in the 
1970s that the basic idea of GAs is that they: (1) implicitly identify building blocks or 
subassemblies of good solutions and (2) recombine different subassemblies to form very high 
performance solutions (David E Goldberg 2000). Holland used the term “building blocks” to 
describe highly fit schemata. A schema basically is a way of creating a group or subset of 
solutions or sub-solutions with similar genes; two sub-solutions of a problem could be 
described with the binary alphabet as the bit-strings (111) and (110), a schema containing these 
solutions would be the bit-string (11*), where * denotes a “don’t care” symbol. In the same way 
that GA creates good solutions by combining highly fit sub-solutions, good solution strategies 
are created by combining highly fit schemata of low order. The alphabet itself relates to the 
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information content of the representation, as a long alphabet would give more possibilities to 
each of the positions in the string and thus adding complexity. Goldberg used the notion of 
building blocks and alphabet to propose two principles for constructing good representations 
for GAs (Rothlauf 2006): 
 

- Principle of meaningful building blocks: The schemata should be short, of low order, and 
relatively unrelated to schemata over other fixed positions. 

- Principle of minimal alphabets: The alphabet of the encoding should be as small as 
possible while still allowing a natural representation of solutions.  

 
To the authors knowledge, the similarities between Goldbergs principles and Axiomatic Design 
Theory have not been drawn before, but it is clear that there exist some sort of resemblance. 
One could therefore argue that these ideas from Axiomatic Design could be a guiding principle 
of problem decomposition that benefits both the human and algorithm.  
 
3.3.1.2 Solution-knowledge and genotype-phenotype similarities 
The second similarity between the representation in GA and human problem solving is that of 
dividing actual solutions from the knowledge it exists of. These could be viewed as different 
spaces, and for GA these spaces are called search space and solution space. The search space is 
the space of coded solutions, i.e. genotypes or chromosomes consisting of genes. The solution 
space is the space of actual solutions, i.e. phenotypes. Any genotype must be transformed into 
the corresponding phenotype before its fitness is evaluated (Gábor and Ekártab 2003). The 
search space of GA contains all the genetic material that builds up the solutions and possible 
solutions, and could therefore be viewed as a space of knowledge or information that every 
solution is constructed from. With direct analogy between GA and nature, the DNA of a person 
contains knowledge and information regarding the person, but is not the actual person. To 
evaluate how well the person can run, the DNA is therefore of little use. In the same manner, to 
evaluate a solution generated from GA, the phenotype must be used. An example of the 
genotype could be the numerical values of positions for all the nodes in a 3D representation of 
a car, while the phenotype is the 3D representation itself. It is impossible to see the aesthetics 
of the car by looking at the numerical positions. 
 

 

Figure 10: A distinction is made between 
the Knowledge/Genotype Space (Figure 1), 
and the Solution/Phenotype space, 
containing the solutions created by the 
representations in knowledge/Genotype 
Space. For humans, this space could also 
contain ideas and concepts. 
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Figure 11: Different solutions in the 
Solution/Phenotype Space are created by 
using different combinations of building 
blocks in the Knowledge/Genotype space. 
Here the representation is shown as a tree 
structure with the possibility to map two 
different solutions marked green and blue. 
It is important to note that only actual 
solutions can be assembled in GA, while for 
humans, information or knowledge can 
map to ideas or concepts. 

There are several design theories and methodologies that also stress the importance of this 
division. General Design Theory (GDT) defines an entity as a concrete existing object, and entity 
concept as its abstract, mental impression conceived by a human being. (Tomiyama et al. 2009). 
GDT states tree axioms to define the notion of entity, entity concept and their relation: 
 

- Axiom 1 (Axiom of recognition): Any entity can be recognized or described by attributes 
and/or other abstract concepts.  

- Axiom 2 (Axiom of correspondence): The entity set S0 and the set of entity concept S 
have one-to-one correspondence.  

- Axiom 3 (Axiom of operation): The set of abstract concept is a topology of the set of 
entity concept. 
  

Although GA have the possibility to map in different ways than one-to-one (Gen and Cheng 
2000 p. 6), the idea of separating the actual from the abstract is still the same as for GA. In 
another design theory, the Characteristics-Properties Modeling of Weber, the distinction 
between characteristics and properties is put into the center of reasoning about product 
development/design (Tomiyama et al. 2009). The characteristics are the things that describe the 
product and that can be determined or influenced directly, such as shape, materials, 
dimensions and surfaces. Properties on the other hand cannot be influenced directly, as they 
relate to the behavior of the product, qualities such as function, safety, weight, reliability, 
aesthetic properties, assimilability, environmental friendliness, manufacturability, cost, etc, 
(Tomiyama et al. 2009). Both of these theories then highlight the importance of separating 
knowledge and information that defines a product or solution from the product or solution 
itself, a distinction that is a core of how GA works; when comparing the abilities of different 
individuals we must judge them on the level of the phenotype. However, when it comes to 
reproduction we must view individuals on the level of the genotype (Rothlauf 2006). Based on 
these similarities, making a clear distinction between the solution space and knowledge space 
of the product development is seen as central.  
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3.3.2 Thinking  
Fundamental to Goldbergs view of GA as a theory for human innovation is the comparison 
between the “thinking” operators of GA (selection in combination with mutation and 
recombination), to humans mental process of continuous improvement and cross-fertilizing 
types innovation (David E Goldberg 2000). Goldberg describes mutation as a form of genetic 
hill-climbing mechanism, which does a random walk in the neighborhood of a solution by 
creating a similar solution where one or a few parts of the genes are changed. He argues that 
humans do this naturally, linking it to the continuous improvement in total quality management 
and the Japanese method kaizen, meaning “change for better”. To explain this way of 
innovating, Goldberg quotes the British author and politician Bulwer-Lytton: “Invention is 
nothing more than a fine deviation from, or enlargement on a fine model. Imitation, if noble and 
general, insures the best hope of originality.” (David E Goldberg 2000). Mutation can then be 
described as the mapping between the solution and knowledge space exploring the periphery 
of a solution, relating to the mental ability of remapping primitives. 
Though mutation is a powerful tool for improving solutions, without the ability to do an 
intelligent jump to test another strategy, the solution will often be stuck in a local optima. This 
problem is solved by the recombination operator that are able to combine solutions that are far 
away from each other in the solution space to create originality. For humans, this is the creative 
ability of seeing sets of attributes or features in one context, and combining them with 
attributes or features from another to create a new way of solving a problem. Goldberg quotes 
the French mathematician J. Hadamard to explain this type off innovative thinking: “We shall 
see a little later that the possibility of imputing discovery to pure chance is already excluded… 
Indeed, it is obvious that the invention or discovery, be it in mathematics or anywhere else, 
takes place by combining ideas.”(David E Goldberg 2000). Recombination can then be described 
as the combination of solutions or knowledge by moving in the widths of the solution or 
knowledge space, relating to the mental ability of doing a metaphorical transfer. In classifying 
DTM that guides the generation of new design solutions, Tomiyama (2006) explains tree 
strategies to be employed, emphasizing that theories can be denoted several strategies:  
 

- Creativity-based design: Emergent synthesis (GA, simulated annealing, ANN, and 
learning) and Intuitive approaches (association, analogy, stimulation methods, 
brainstorming, bio-inspired design)  

- Combination-based design: Systematic approaches (Pahl & Beitz) 
- Modification-based design: Parametric design, Case-based reasoning, shape grammar, 

modification rules TRIZ Emergent synthesis 
 

Combination and modification based design here directly relates to the notions of metaphorical 
transfer and remapping primitives described, and are in the same way strategies for moving in 
the widths and between the solution and knowledge space. However, creativity-based design is 
seen as a strategy on its own, referred to as a new design solution generated as a new element 
of the entity set. For this to happen, new knowledge must be created, and few theories can 
rationally explain it in a general framework (Tomiyama 2006). Tomiyama relates GA to the 
creativity based design strategy, but even though the solutions created by GA in some cases 
seem brilliantly creative and far superior to what a human could develop, the algorithm is still 
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working within constraints determined by the knowledge and solution space, and as of yet it 
cannot performer magic. Seeing that GA creates novelty by using the two simple strategies of 
recombination and mutation, is the category of Creativity-based design then just the use of 
combination and/or modification in creative ways? One could also argue that GA does not 
belong to this category, as radical innovation requires an expansion of the knowledge and 
solution space by giving the algorithm completely new information to work, and this act still 
rest highly on human creativity taking a leap out of the current representation and body of 
knowledge. An example could be that of creating a tire for snowy conditions; the GA may find 
brilliant solutions for the grooves in the tire surface, but will newer create caterpillar tracks if 
this possibility does not exist within the constraints of the chromosomal representation. Still, 
the notion that good product development needs to employ a balance of combination and 
modification based strategies holds weather or not one classifies the combination of these used 
in novel ways as creativity-based design. 
 

  

Figure 12: Mutation or Modification-based 
design can be seen as mapping between the 
knowledge/Genotype Space and the 
Solution/Phenotype Space, modifying parts of a 
solution. Crossover/Combination-based design 
can be seen as movement in the widths of the 
Knowledge/Genotype Space or the 
Solution/Phenotype Space, combining solutions 
or knowledge. 
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3.3.3 Evaluation  
For both humans and GA, it is strictly necessary to have a means of evaluating the fitness of a 
proposed solution to a problem in order to know what to actually solve. In that sense, the 
fitness criteria are what make a problem solvable, as it points out what direction to go in the 
process. In some cases, the fitness is easily determined and singular, or is even the basis for the 
problem in the first place. A predetermined fitness criteria could for instance be given by using 
the goal oriented Design for X methodology, where X denotes a quality one wants to optimize, 
for example weight. The fitness could then easily be evaluated by measuring the weight of 
solutions. However, a single fitness criteria is often not sufficient for evaluating a solution in 
new product development, and even the Design for X strategy may lead to multiple fitness 
criteria originating the first (for instance Design for Aesthetics). In evaluating these types of 
multi-objective problems, various design decision-making methods are developed to aid in this 
process such as Multi-Attribute Decision Making (MADM). Other methodologies aid the 
designer in the creation of the fitness criteria themselves and its relations to the product, such 
as the initial step in Quality Function Deployment, Voice of Costumers, witch maps the 
costumer’s requirements into the structure and components of the product. (Tomiyama et al. 
2009). The variety of decision-making tools is then developed not only for evaluating the fitness 
of solutions and concepts for some criteria, but also aid in representing the problem-solution 
abstraction itself.  
 
Both these aspects are important for the construction of GA as well. The fitness function or 
functions of a GA have two parts that relate to the phenotype space and genotype space. The 
first part maps the genotypic space Φg to the phenotypic space Φp, and the second maps Φp to 
the fitness space R (Rothlauf 2006). In constructing a representation, one therefore 
simultaneously construct the fitness space in order to evaluate solutions. The fitness space is 
thus a part of the representation of the problem although it constitutes as an evaluation 
process of the solutions when the algorithm is running. The initial step of problem-solution 
abstraction is therefore the creation of a problem representation in genotype space that maps 
solutions well onto the phenotype space, and a fitness function or functions that map solutions 
in phenotype space well onto the fitness space. 
However, knowledge about the fitness of sub-solutions in the genotype space is gained through 
this phenotype evaluation as well, and actually serves as a strategy for evolving better solutions 
by combining highly fit, low order schemata: Instead of building high-performance strings by 
trying every conceivable combination, we construct better and better strings from the best 
partial solutions of past samplings (David Edward Goldberg 1989).  
Evaluating both solutions and sub-solutions throughout the process, as well as utilizing the 
evaluation criteria to guide how the problem is represented is thus seen as an important factors 
in the methodology.  
As mentioned, product development often involves multi objective problems, and frequently 
these objectives are also conflicting. One might create a terrific vacuum cleaner that cleans the 
floor like no other on the market, but if four people are needed to lift it up the stairs, the 
solution might not be the ideal household product. These kinds of problems are in the GA field 
handled with the special class called Multi Objective Genetic Algorithms (MOGA). The 
conflicting objectives are in GA often calculated and visualized as a surface called the Pareto 
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optimal frontier, a theory originally created for economics, but later used in other fields such as 
engineering and decision making. This front could for instance be explained by the acceleration 
of a car: the frictional grip at the wheels are proportional with the weight of the car, and thus 
with higher weight the car can apply more torque before the wheels slip. Having a huge engine 
would with this knowledge be a smart strategy, but since force required to create momentum 
forward is also proportional to the weight the problem is not so simple. The possible 
combinations of weight vs. motor power would then trace out a curve where the best 
accelerating cars would be the ones closest to the curve. The Pareto front could be a curve, a 
plane or multidimensional planes that describe the frontier of various solutions to a problem 
with different combination of attributes. The goal of a Pareto is to find and maintain a 
representative sampling of solutions on the Pareto front. Hence, the term “optimize” is the 
reference for finding a solution which would give the values of all the objective functions an 
“acceptable trade off” to the designer (Leon 2009). The goal of the MOGA is then to close in on 
the Pareto front to find the best solutions while keeping trade-off open. This is an important 
factor in product development, as the goal is often not completely clear since costumer 
requirements can depend on the outcome of solutions, as well as change throughout the 
process. Allowing this is then a way of holding an openness to the goals within a structured 
fitness space. However, some new or modified objectives requires a reconstruction of the 
fitness criteria of the GA, and this is more difficult to implement into the iteration, although 
dynamic fitness landscapes are possible (Richter 2010). Nevertheless, having a way of 
evaluating not only the solutions and knowledge, but also the goals and fitness criteria 
throughout the problem-solving process is central to both the flexibility of product 
development and GA.   
 

 
Further, central to the way GA close in on more pareto optimal solutions is the highly iterative 
approach of evaluating each generation. Still, most decision-making tools are designed to 
evaluate a single step in the development. The tool could of course be used in an iterative way, 
but this is often not embedded in the methodology. The Total Design of Pugh was introduced as 
an iterative approach to the decision-making process of product development, where concepts 
are continuously evaluated through a Concept Selection Matrix or Pugh Matrix based on 
different criteria. This was a unique contribution to the field, as it not only supports creation of 
conceptual solutions, but also concept selection of the total system architecture, subsystems 

Figure 13: are mapped onto the Fitness 
Space, here shown as a pareto front. 
Solutions that are closer to the pareto front 
are regarded as better, while the other side 
of the pareto front is infeasible. Solutions 
with a high x-value would be better in one 
objective (such as weight), while those with 
a high y-value would be better in another 
(such as motor power). The pareto front 
could for instance describe the theoretical 
limit of car acceleration . 



 39 

and individual components. (Tomiyama et al. 2009). Hence, iterative decision models like this 
better resembles the evaluation and fitness of GA. 
 
Altogether, three iterative notions of evaluation is then seen as significant regarding both GA 
and human problem solving, the means of iteratively evaluating; the evaluation criteria itself, 
solutions in the phenotype/solution space, and sub-solutions and knowledge in 
genotype/knowledge space. Finally, the interrelationship between representation and fitness 
criteria that allows well-organized mapping from knowledge/genotype space to 
solution/phenotype space and on to the fitness space is regarded as important in constructing 
the representation of the problem. 
 
 
3.3.4 Influence  
After thinking has led to new solutions and sub solutions, and the evaluation process has been 
applied to determine their fitness (as well as the fitness criteria themselves), new knowledge 
has come to the table. This brings up the question of what to do with the new knowledge and 
solutions gained this way, and to determine what influence this should have on the former 
understanding of the problem, potential solutions and the body of knowledge. A GA determines 
this influence by altering the population of solutions with the Selection and Replacement 
operators. The rate at which these operators are applied determines how the algorithms 
evolve. Gábor and Ekártab (2003) states that this evolution is an emergent property of artificial 
evolutionary systems. The computer is only told to (1) maintain a population of solutions, (2) 
allow the fitter individuals to reproduce, and (3) let the less fit individuals die off. Selection 
makes copies of the favorable solutions to enforce the survivor-of-the-fittest strategy of 
evolution. The selection pressure determines how many new copies are made, and is a highly 
important parameter for evolving good solutions. In a similar manner that the mutation and 
recombination rate adjust the convergence and exploration of finding new solutions, the 
selection pressure adjusts the overall base for convergence and exploration for the population 
evolution as a whole. There are several types of selection methods, but in general the rate at 
which they are applied controls the convergence. A strong selection pressure may cause the 
algorithm to converge to a local optimum, while a low selection pressure may cause the GA to 
random results that differ from one run to another (Jebari 2013). The replacement operator 
works in similar ways on the old population by determining the faith of the parent solutions. It 
controls the population diversity by deciding the lifetime and distribution of former 
generations, so in that sense it is the Grim Reaper of the algorithm. There are several types of 
replacement strategies, like generational; that removes the solutions in terms of their 
generational age, or incremental/steady state; that removes the worst solutions in general 
(Vavak and Fogarty 1996). Overall, replacement is then needed to keep the algorithm form 
overflowing of solutions, as the selection, mutation and recombination operators work with the 
population as basis. The selection and replacement then controls the evolution of the process, 
and creates the emergent quality of the growing population.  Goldberg (2000) refers to this 
emergent quality by saying that the wisdom is in the population, and states that the population 
is not only the original source of good notions, but it is also the testing ground for being sure 
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that the best notions are indeed the best. Moreover, the population is where we “break some 
eggs to make an omelette,” the place where we fail so that we may ultimately succeed.  
Regarding GA on the notion of influence, it is important here to note the difference between 
changing the representations of solutions i.e. the genotype population, and changing the 
problem representation itself i.e. the constraints and objective functions that describe the 
possible genotypes. The latter is usually held constant in the process of solving a problem 
(although there exist exceptions, like Constrain Self-Adaptive Genetic Algorithms (T. K. Singh 
2016)). Nevertheless, iterating on the problem representation itself outside the actual runs of 
the algorithm would normally be needed if one wants to construct an effective algorithm. The 
idea of having the reconstruction of the problem representation and fitness criteria within the 
act of influence therefore makes sense. 
 
Determining what influence new solutions and knowledge should have on the former 
representation of the problem to move forward in product development is also highly 
important for directing the human problem-solving process. The basic idea drawn from GA is 
then to let the problem representation, and the solutions and knowledge within to evolve as a 
complex system through iterations, continuously creating new ground to grow from for every 
new generation. The idea of thinking of product development as an emergent process of 
“growing solutions” rather than “solving problems” is more unconventional when comparing to 
existing design theories and methodologies, but some appear to regard this view as central. 
Complex Systems Thinking is a theory that directly refers to this emergent quality, it stresses 
that in the development of radical innovations, a system cannot be described deterministically, 
but only as a complex, evolutionary system where new structures can be created. The points of 
qualitative change are regarded as instabilities, or bifurcations in the solution space, created 
when new aspects or elements appear and grow in the system, re-structuring it, invading new 
dimensions and leading to emergent properties and attributes (Rose-Anderssen et al. 2005). 
Although not referring to emergence or evolution in its origins, the Set-Based Design theory is 
another approach that bears resemblance with how GA evolves generations. A known paradox 
in product development is that it is often necessary to explore the low levels of solutions to 
create knowledge that will result in good decisions in the preliminary phases of development, 
but the lower levels can only be explored when the preliminary decisions are already made. 
This circular dependency can be broken by allowing the preliminary decisions to be stated as 
sets, or constraints, so that lower levels in the development can create knowledge. Iterating 
this approach will give more information to the higher levels of the problem, giving a better 
understanding of the low-level solutions, which again create more accurate knowledge at 
higher levels, further defining possible solutions. This is the basis for a Set-Based approach, 
which shrinks the possibility for premature decisions, reducing rework as well as the possibility 
of project termination. The nature of exploring by holding a larger solution space throughout 
the process also creates a more flexible approach that better can meet changes in late process 
(Singer, Doerry, and Buckley 2009). In this way, Set-Based design is focused on how the solution 
space evolves throughout the process in a similar manner to that of selection and replacement 
of GA by determining the influence of new knowledge and solutions of each generation and 
level of detail; if the process is to divergent, one may not be able to create more detailed 
solutions, while if the process is to convergent, it might lead to premature solutions. It is in 
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many ways this way of balancing the influence of new solutions and knowledge in the existing 
pool of solutions and knowledge and their representations that allows the circular dependency 
between higher and lower levels of solutions to be broken in GA as well. Hence, the 
determining the influence of each generation then controls the pace of the evolution of 
solutions, and balancing this right is a major factor for the product development process 

Consequentially, for both humans and GA, the evaluation of new knowledge, new solutions and 
potential new fitness criteria and structuring of the problem, leads to the necessity of 
determining what influence the evaluation should have on the former representation of the 
problem, both its content and the constraints and relations describing the representation itself, 
ultimately leading to creating a new ground for the emergence of new solutions.  
 
3.4 Proposed methodology   
 
Throughout this paper, different theories and methodologies have been compared to GA and 
the steps of human problem solving. It is not an attempt to create something completely new, 
but to find the factors that are of importance for utilizing GA, and use this as basis for 
highlighting areas of known theories that might be emphasized in implementing GD. The 
methodology is thus more of a guiding principal for understanding the strategies and mindset 
that could be important for a successful GD process. An central notion behind the methodology 
is that of moving the human problem-solving strategy towards the more emergent quality of 
natural evolution, with the idea of “growing solutions” rather than “solving problems”. 
Although this is a somewhat vague statement, it is still creating a different angle of approach. 
The following figure explains the processes in relation to each other as they go through 
iterations, starting with the step of representation: 
 

Figure 14: Left: Balancing the influence is important for the product development process. For 
human problem-solving, a Set-based approach can help to balance the influence of new and 
old solutions in the solution space. For GA, the balance of selection preassure and 
replacement rate is imortant.  Right: In the same manner as the solution space, an influence 
must be determined from new knowledge and potential new objectives to evolve the former 
knowledge and fitness space. 
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Figure 15: Starting with the initial representation, the steps of problem-solving goes through the circle in iterations, creating 
changes in the Knowledge-, Solution-, and Fitness Space for each iteration. The blue arrows describe knowledge that are 
transferred from each step to another. The red arrows represent the act in each step: Representation exerts change in the 
spaces, and is thus directed upward starting with the knowledge space. New knowledge creates new solutions and can result in 
change in objectives. Thinking utilizes information in the representation as a whole to create new solutions and knowledge, and 
the arrows are therefore directed outwards. Evaluation exerts change in the structure by sorting different solutions in relation to 
the fitness space, and is thus directed downward. Influence is determined by comparing evaluated solutions to the existing 
solutions and representation, and the arrows are therefore directed outwards. For each rotation, a changes are made to the 
representation creating a new level in each space.  
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3.4.1 Summary of important factors for each step: 
 
Representation 

- Utilize decomposition strategies such as systems engineering for dividing the problem 
into smaller more manageable sub-problems and their relations. This applies to all 
spaces, such as parts, objective and functional requirement structures.   

- Describing problem as constraints and boundaries rather than points, creating a 
framework for solution generation.  

- Creating a division of knowledge space, solution space and fitness space of the 
representation to create a clear problem decomposition.  

- Have a high degree of flexibility in the solution space, allowing for rapid adaptation of 
new knowledge to be implemented. 

- Creating a structured fitness space where objective and requirements and their 
relations easily can be mapped onto solutions and sub solutions for rapid evaluation  

- Using Axiomatic Design as guiding principle of the quality of the representation. 
 

 
Thinking 

- Utilizing the representation as a base for generating solutions. 
- Determine strategies of solving the problem, balancing Combination-based design and 

Modification-based design to generate solutions. 
- Understanding where GD can substitute or aid the generation process, and when it is 

strategical to employ this method over normal approaches. 
- Determine if a leap completely out of the current body of knowledge is necessary to 

move on, demanding a restructuring of the problem representation. 
 

Evaluation 
- Utilizing appropriate tools to determine fitness criteria, such as simulation or decision-

making tools, and visualization such as pareto for multi-objective problems. 
- Evaluating new solutions, sub-solutions and knowledge in relation to the fitness space 

as well as in relation to former solutions sub-solutions and knowledge. 
- Evaluating the fitness criteria itself, allowing new or more defined objectives to come 

into the process if needed.  
- Understanding the interrelationship between representation and fitness criteria that 

allows well-organized mapping between spaces and thus an effective representation. 
 

Influence  
- Utilize a Set-Based approach to balance the overall process. 
- Continuously monitor the divergence/convergence of the overall process to determine 

the actions to take before each iteration.  
- Considering all aspects of updating the representation before a new iteration. 
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4 Development of Monocoque 
 
In this chapter, the development of the DNV GL Fuel Fighter 5 monocoque will be presented in 
a broad sense. Many details such as calculations and dimensions are left out, as describing 
every aspect of the development would both be highly comprehensive and outside the scope of 
this thesis, as well as overshadow the goal of creating a clear view of the process for the reader. 
As the purpose is to create an understanding of how the Generative Design methodology 
process supported the development, the chapter is constructed in a similar manner to that of 
the process. However, simplifications of the actual process are done to make it more reader-
friendly  (such as describing several iterations within each iteration).  
Before the initial representation and the iterations of the process are depicted, the objectives 
of the monocoque are explained in relation to the overall project. A big effort was taken to 
implement the hierarchical approach of both fitness, solution and knowledge space into the 
organization, so that all parts could benefit from this process. It was also to ensure that the 
parts connected to the monocoque would developed with the same understanding of 
constraints and objectives. The system was implemented in Trello as a system design hierarchy 
of all parts and their connections. In addition, all members where responsible for clearly stating 
the objectives constraints and requirements of their parts and interfaces in relation to the 
overall goal of the project.  
The major objectives of the monocoque was in relation to the project goal can be divided into 
structural, aerodynamic and design objectives, which will be further elaborated. Underneath 
the considerations made prior to the development in terms of tools and generative systems, as 
well as an overview of the process for each objective is described.  
 
 
4.1.1 Design tools and process overview 
As the design at all times “holds” the current solution constraining aerodynamic and structural 
developments, choosing a good platform and methods to develop the design has a huge impact 
on the process.  
Considering the aesthetics, the use of generative software is very limited as “the feel” of an 
object is very hard to state in mathematical terms. Even though there exist studies where 
generative systems have been used in aesthetics and car design (such as the work of Tan et al. 
(2013) using interactive genetic algorithms to generate car silhouette styles), it is was not 
considered to be of use, especially since the interplay between design and aerodynamics is so 
important in this case.  
Finding the most optimal monocoque dimensions as a result of driver position and different 
parts in relation to each other is also a problem that could be tackled by algorithms, as it is a 
version of the classical packaging problems, a whole class of optimization algorithms in itself. 
But also here, employing generative systems was considered to not be valuable. The reason for 
this is that the major driving force determining positioning is also in this case aerodynamics. 
Hence, finding dimensions such as the distance between front and back wheels depends on the 
knowledge gained from the aerodynamic simulations throughout the process. This implies that 
constructing an optimization process for determining dimensions in this case would be the 
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same as implementing aerodynamic shape optimization, as will be explained later on have 
some hurdles to overcome.   
The key was then to use tools where new knowledge from different domains could be tested 
and implemented iteratively, without these tools impairing the flexibility of the process itself. 
Two important tools where used in this manner throughout the process; plasticine prototyping 
and freeform 3D modelling, which will be explained further.  
 
In the concept stage, the use of prototyping is of huge value for exploring and testing 
strategies, and can also be valuable in later stages of development. This could for instance have 
been done by carving shapes out of hard foam, as many previous teams have done, but this 
approach would only hold a single solution for each prototype. Instead, by using plasticine, 
each prototype could be adjusted iteratively as knowledge from aerodynamic simulations or 
design features emerged. The prototyping could then be conducted in a set-based manner 
where the flexibility of each concept created a potential for an infinite number of other variants 
to be explored.  
 
The same reasoning was used to find a suitable CAD approach to represent the design. The 
parts connected to, or in other way interfering with the monocoque demands precise modeling, 
which is typical for most engineering CAD software, using techniques such as solid body or hard 
surface modeling. By defining the dimensions and relations of a model as parameters, known as 
a parametric modeling workflow, changes can be made during the development without the 
need to completely reconstruct the model. Parametric modeling was therefore considered to 
be important to create flexibility of creating and positioning parts.  
However, when modeling advanced surfaces like the exterior of a car, this workflow can reach 
its limits. Parameterization of hard surface modeling is very efficient for simple surfaces (using 
functions such as railed lofting for B-Rep Solids), but as the complexity of a surface increases, 
there comes a point where the parameterization no longer is possible without creating complex 
relations that are not native to most CAD software, or by severely limiting the range of the 
parameters i.e. reducing the flexibility.  
Another class of modeling software that handles complex surfaces with more ease, is organic or 
freeform modeling. The direct interaction workflow of this modeling type is more like sculpting 
with clay by direct modification of nodes on the surface rather than the construction of 
pathways, and are the tool of choice for creating animated movies, CGI effects and games. A 
type of ths called T-spline modelling, also inhabit G2 continuity (a measure of the surface 
quality), which is important when dealing with smooth surface for aerodynamics. However, 
almost all programs created for this use lack the parameterization and precision required in 
engineering, and to create the most flexible workflow, the ability to utilize both parametric and 
direct modeling was considered to be ideal.  
Autodesk Fusion 360 and its “cousin” Autodesk Inventor is to the authors knowledge the only 
programs that have direct T-spline modelling and parametric modelling of solids and hard 
surfaces. Of the two, Fusion 360 was picked as it has an inbuilt computer aided manufacturing 
(CAM) and simple simulation and topology optimization that team members could learn more 
easily than other softwares. The idea was then to utilize this modelling approach in 
combination with clay modelling, and translate between these two approaches. This translation 
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was done with the use of a 3D scanner from prototype to CAD, and 3D printing from CAD to 
prototype.  
 

 
Figure 16: Several clay concepts was create innitially (1-2), and was transformed into a 3D representation (3). The constraints 
and body was iterated multiple times for different T-spline representations (4-5), and design features was shaped using both 3D 
modelling and clay modelling (6) 

 
4.1.2 Structural tools and process overview 
The use of generative design in the structural development of the monocoque was early in the 
research understood to be possible, as there exists a wide variety of software solutions in this 
discipline. The hunch was that if the right software was implemented wisely, the final product 
would be lighter than what would be possible to achieve trough a normal engineering 
approach. As learning software demands time, choosing the right one for our application was 
important for success, and several software was researched and tested on initial concepts 
before choosing. Isight, Tosca Structure, Siemens NX, and SolidThinking Inspire were considered 
before choosing Fusion 360 topology optimisation and Altair Hyperworks. Although not highly 
advanced, he Fusion 360 topology optimization tool was chosen for early concepts on the basis 
that the car was modeled in the same software, which allowed for quick exploration without 
conversion issues. Altair Hyperworks using the Optistruct solver was chosen for the major part 
of the development, as it is the only commercial optimization software with advanced 
composite laminate optimization, which also supports more common structural optimization 
techniques such as topology, topography, shape, buckling, size and free size optimization. The 
Optistruct solver also has the possibility of Multi Model Optimization, which would allow 
multiple different models to be optimized in the same run for multi-disciplinary studies. It is by 
far the most comprehensive optimization software for structural applications to date. 
Before the development had begun, it was difficult to know which of these generative 
techniques would be useful, and exactly how the process would unfold. However, the wide 
range of techniques in the software setup gave the possibility to respond to implementation 
opportunities down the line. Creating a complete strategy beforehand would also be 
challenging, as there was no way of knowing how difficult and time consuming the different 
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techniques would be to implement. Further, such a strategy could also potentially be restrictive 
to the development by narrowing the solution space to early. One strategy was however used 
as support; the C 123 approach developed by Altair. Even though this approach came from the 
development of cars, it does not completely overlap the case of making a carbon fibre 
monocoque. However, it gave an idea of the optimization techniques that typically would be 
useful in the different stages of the development; topology optimization in the early stages of 
concept development to understand critical load paths, sizing, shape and/or detailed topology 
optimization as the concept gets more defined, and lastly, composite and ply optimization for 
the final design. 
As will be elaborated in the following chapters, the implementation of structural optimization 
was highly successful, and yielded as much as 45% reduction in weight from the previous 
monocoque even though the same manufacturing techniques were used. A short overview of 
the developments throughout the process is laid out in the figure below.  
  

 
Figure 17: In the conceptual phase, several iterations of topology optimization was done to find critical load paths and structural 
elements in Fusion 360 (1). This was further iterated in more detailed models trough Hyperworks, creating a basis for support 
structures within the monocoque (2). Using the Hyperworks ply optimization module, iterations was done to find optimal core 
placement and carbon fibre layup taking production into account (3 and 4). Structural analysis was done to verify the 
optimization and decrease the number of layers to a minimum (5). Finally, 2D Topology optimization was done to remove excess 
material from support structures within the monocoque (6).   

 
4.1.3 Aerodynamic tools and process overview 
Aerodynamic simulation (CFD) is in general a highly data intensive task, especially for complex 
cases like the airflow around a car body. Even though the increase in computational power 
available has advanced the field extensively, there are still research being done to improve the 
accuracy of simple cases like the airflow around a 2D circle. When it comes to aerodynamic 
optimization, the problem of available computational power becomes even more prominent, as 
a large number intensive simulation runs are required.  
Generative design in CFD is therefore in its infancy compared to structural applications, and has 
only recently been introduced in the car industry, mostly with the use of tailor made genetic 
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algorithms and evolutionary strategies for specific cases (Othmer and Grahs, 2014). The design 
process of developing low drag vehicles is therefore still mostly dependent on iterations done 
manually by engineers supported by simulation software (Karpouzas et al. 2016). Nevertheless, 
the three most promising aerodynamic optimization techniques for this case were researched 
for implementation in the development of the monocoque.  
The first idea was to utilize so called black box shape optimization, where the 3D model of the 
exterior is parameterized in such a way that the nodes describing the surface can be modified 
automatically. Coupling this with aerodynamic simulation that responds to evaluations of each 
run by iteratively changing geometry variables (the node position and curvature), can optimize 
the shape for a given objective function, i.g. minimizing drag. This could for instance be 
implemented through Isight, coupling Ansys for simulations, Catia for 3D model 
parameterization and a suitable optimization algorithm from the Isight library. The drawback is 
that creating parameterized nodes for describing a surface can be highly complex. The cost of 
running the optimization is also proportional with the number of variables, and for advanced 
surfaces such as the car exterior consisting of hundreds or thousands of nodes, each describing 
several directions and curvatures, this becomes quite problematic when the limit at this point is 
closer to ten variables (Carsten Othmer 2014). No example of large scale implementation for 
car bodies is therefore found in literature, and hence the technique was not considered to be 
viable.  
 
Another approach that held some promise for the early concept phase was to utilize a new type 
of fluid optimization based on mesh elements rather than surface modification. The technique, 
developed as late as 2003, works in similar ways as structural topology optimization; a meshed 
design space uses local criteria to iteratively remove counterproductive areas with respect to 
the objective function (Carsten Othmer 2014). The idea was to have the program find the 
optimal shape around parts that where strictly necessary; wheels and the minimum cockpit of 
the car and run several setups with different distances between the parts. Although not 
creating perfect surfaces due to the pixilated shape of meshed bodies, it does not rely on the 
control of nodes, and can in the concept phase find viable solutions on a single optimization 
run. However, the technology has mainly been used to optimize internal flows to find optimal 
shapes of air-ducts, and no commercial software of this type is at this point designed for outer 
flow on cars. A license of Dassault Systems Tosca Fluid (one of the leading commercial 
programs of this type) was nevertheless acquired with the hope of adjusting it to the case, but 
after several attempts it was concluded to not be applicable.  
It was later understood by the author that aerodynamic topology optimization on external flow 
has not matured yet. One of the few studies found is the 2D optimization of the Ahmed body (a 
simplified body resembling a car) done by Othmer et al. (2017), showing promising results. 
Othmer also stated that only a one other paper was found on external flows, so weather or not 
more have been done recently, the technique is definitely in its early days. It is however the 
author’s opinion that this would be the ideal starting point for generating low drag shapes in 
the early concept phase of the project when the technology is more available.    
 
Lastly, the adjoint sensitivity type optimization method was considered. In many ways this is 
similar to the shape optimization, but leaves out the automatic adjustment of the surface. 
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Instead, it creates a sensitivity map on the 3D model that describes strategies that can be 
implemented for a given objective function. In the case of optimizing for minimum drag, the 
optimization generates colors on the 3D model describing the areas that should be moved in or 
out normal to the surface to lower the total drag coefficient. In a way, this creates an 
optimization process where the engineer substitutes one of the elements of a complete 
generative system, responding to each iteration by adjusting the cad model.  
Of the described optimization methods, it is definitely the most applicable at this point in time, 
and has several commercial available softwares specifically designed to handle external 
aerodynamics of cars such as Engys Helyx and Ansys Fluent Adjoint Solver. The latter was tested 
by one of the team members, but was never fully implemented due to convergence issues that 
were not resolved before the semester ran out.  
As car aerodynamics is a fairly advanced simulation process that requires a lot of experience, it 
seemed that the implementation of even more advanced aerodynamic optimization techniques 
might be too complicated for a student project like DNV GL Fuel Fighter, especially when none 
of the team members working with aerodynamic simulations where writing master thesis on 
the project. However, we came close to implementing adjoint based optimization starting fairly 
late in the process. An attempt of utilizing this technique for the next generation car could 
therefore be very promising.  
Even though the use of generative systems was not realized in the aerodynamic development, 
the methodology of optimization was still employed. A rigorous process of simulations, 
evaluations and CAD modifications in an iterative manner yielded very successful results, with a 
total reduction in drag force of almost 25% compared to the previous model. In the figure 
below, some of the important phases of the aero dynamical process is presented.  
 

 
Figure 18: Initial aerodynamic simulations in Ansys Fluent was done on several 3D scanned concept clay models to test 
aerodynamic strategies (1). The most promising strategy was further developed in clay to reduce drag (2). An initial T-spline 3D 
model was developed on the basis of the 3D scanned model, and dimensions was iterated further to reduce drag and lift (3). A 
final T-spline model was established, and several iterations of development was done of using Open Foam (4-6) 
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4.2 Initial representation 
 
4.2.1 Fitness space 
 
Although constituting many other goals the fitness space of the monocoque can be devided 
into the three major objectives that can be brought back to the vision of GNV GL Fuel Fighter, 
to Inspire a sustainable future - through learning and creating innovative solutions that 
challenge today's perception of transportation. This vision points to two major goals; winning 
the Urban Concept Battery electric class, and winning the Vehicle Design Award. The Structural 
and Aerodynamic objectives are the major drivers for the first goal, while design is enhibits the 
last. 
 
4.2.1.1 Structural Objectives 
When considering the structural aspects of the monocoque, the main objective is simple; 
minimizing weight within the constraints and requirements of the competition and the forces 
acting on the car.  Although this objective is simple, it requires advanced engineering to achieve 
good results, and it becomes increasingly complex as one moves closer to the theoretical limit. 
As the Shell eco-Marathon Minimizing weight is all about using materials and geometries with 
the largest strength to weight ratio, which - with a certain degree of safety - barely can 
withstand the forces applied. However, before materials completely fail, bending can become 
an issue and might be the limiting factor. This especially applies to flexible materials like carbon 
fiber in a case where displacement can negatively affect mechanical systems such as steering 
geometry. The second structural objective is therefore to minimize compliance (or maximize 
stiffness) of the monocoque to a tolerable point of displacement.  
 
4.2.1.2 Design Objectives 
The design objectives can be directed towards the goal of winning the Vehicle Design Award, 
which by Shell is stated to be a vehicle that is aesthetic, ergonomic, eco-friendly, technically 
feasible and utilize smart materials. The process of the design and overall engineering design is 
also weighted in the totality of the award. Although these qualities are difficult to quantify, they 
are seemed as highly important in the development, and is an equal part in optimizing the 
vehicle comparing with the other objectives. 
  
4.2.1.3 Aerodynamic Objectives 
The aerodynamic objectives can be divided into that of minimizing both the drag coefficient and 
frontal area, as well as approaching 0 lift. The drag coefficient is the number that describes how 
well a certain shape glides through a fluid, and is unaffected by the shapes volume. The frontal 
area of the shape (seen parallel to the flow), accounts for the size, and it is the product of these 
two that determines the aerodynamic losses of the car. The lift creates either downforce 
(negative lift making the car heavier), or lift force (such as an airfoil). Both of these scenarios 
are drawbacks in the energy consumption of the vehicle, and should thus be as close as zero as 
possible. 
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4.2.2 Solution space 
The initial solution space was not empty to begin with, as the previous car both served as a real 
concept that was helpful in conceptualizing ideas and understanding the problem. In addition 
 
4.2.3 Knowledge space 
In the initial knowledge space, all the requirements from Shell that could effect the 
development of the monocoque had to be clearly understood. There is a large number of rules 
describing the dimensions of the vehicle such as total length, height and width, minimum 
internal dimensions of the cockpit, driver position and door sizes and visibility. These are either 
described as a range or a min or maximum. Further, there are several requirements for safety, 
stating lodes that the vehicle must  be able to withstand to be allowed on the track. As the 
monocoque is connected to so many other parts, SEM rules of other systems might also 
interfere with the monocoque directly, such as turning radius requirement.  
All the parts connected to the mono also had to be considered in terms of space and 
connections, as well as interrelationships.  
When came to the knowledge of how actually build the car, the master thesis from previous FF 
teams was resourceful, but knowledge was also gathered from comprehensive research by the 
team.   
  
 
4.3 Iterations 
 
4.3.1 Iteration set 1 
 
Representation 
To create initial concept representations of what the car, it was important to first establish a 
real representation of the boundaries and constraints set by the rules of Shell Eco marathon. As 
the internal dimensions of the driver environment would be the strongest factor of the outer 
shape of the vehicle, a real size cockpit model was developed. With a flexible wire netting 
prototype of the cockpit, the driver position could be adjusted with the aim to minimize frontal 
area and overall volume of the driver environment, without conflicting with the driver 
ergonomics. The minimum volume was then 3D modelled together with other space consuming 
parts like wheels, drive chain and luggage space requirements. Further, these minimal required 
volumes was 3D printed in down scaled sizes to create a prototype platform where all volumes 
could be moved independently. 
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Figure 7: Left; the wire netting prototype, right; the minimum volumes determined by the prototype in CAD 

 
Thinking 
From the prototype representation, several clay concepts was built around the 3D printed 
volumes with different aerodynamic strategies. There were common strategies for these 
concepts such as minimal frontal area, streamlined and wing profile like shapes, and minimal 
area of the cars endpoint (like a teardrop). However, as there is no “ideal” car shape for low 
drag, strategies was drawn from other aerodynamic vehicles such as Aston Martin Valkyrie, 
Volkswagen XL1 (the production car with the lowest drag coefficient of 0.19) and Googles 
speed record-holding bicycle. Ideas was also taken from other aerodynamic competitors in Shell 
eco-Marathon, as the very best of them have the lowest drag of vehicles developed in general 
(almost half the drag coefficient of the best production cars built). This was however done with 
care, not to jump to conclusions and limiting the possibility of finding new strategies. 
 

 
Figure 19: Left, some of the different clay concepts, right; some of the vehicles for inspiration of aerodynamic strategies. 

 
 
Evaluation 
To evaluate each of the concepts, the clay models was 3D scanned to create a digital mesh to 
create computable models. Although the surfaces of these prototypes did not have a perfect 
finish, the mesh was good enough to give indicative results from aerodynamic simulation 
trough Ansys Fluent. Computing the respective drag coefficient of the different scanned clay 
concepts created a rapid and flexible prototyping and evaluation system. The most promising 
concepts was studied more closely by looking at velocity profiles and areas of slip and 



 53 

turbulence to give information for further modification of the clay model, leading to new 
simulations for evaluation and improvements.  
 

 
Figure 20: Left; turbulence simulation of one of the concepts. Right; the best performing caly concept. 

 
 
 
Influence 
After several iterations and simulations, the concept with the lowest product of drag coefficient 
and frontal area was chosen for further development, while the rest of the concepts was left 
behind. This decision was based on the chosen concept having a Cd of about 0.24, 
approximately 50% lower than any of the other concepts, as well as the lowest frontal area. 
This concept was by no means a well-defined shape, but served as a starting point that held 
promising aerodynamic abilities, as well a good potential for aesthetic development. Further, it 
was clear that to gain more knowledge from the simulation to adjust the model, a better 
surface representation was needed. A T-spline model could solve this problem and still hold the 
flexibility of the concept. In addition, the idea to utilize GD in form of topology optimization in 
the early concept stage came to the table, as this could generate knowledge that potentially 
could alter the outer shape of the vehicle or the driver position. 
Although the concept representation at this point was singular and not a set of solutions, the 
concept could be said to contain an infinite set of solutions as the clay and T-spline share the 
same ability of rapid change. The Set-Based thinking was therefor still employed, by not 
defining the shape and keeping options open to gain knowledge from sets of versions.  
 
 

 
 
4.3.2 Iteration set 2 
 
Representation 
The initial T-spline model of the concept was created by automatic generation, which is a rather 
new method, and therefor had to be done via another program. By using Autodesk Recap, the 
3D scanned tri-mesh model could be transformed into quad-mesh and from this into a T-spline 
in Fusion 360. Surface smoothing functions ensured that the representation could create more 
accurate aerodynamic results, while the T-Spline setup could allow direct modifications. 
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The initial setup to perform the first structural optimization was made by creating a solid body 
representation of the scanned mesh and subtracting the minimal volumes created in the first 
representation. An exception was the drive chain and back suspension, as seeing how the 
optimization would solve the problem of connecting the rear wheels to the body could be a 
decision basis for choosing whether or not to keep the rear suspension from the previous 
vehicle. Additionally, the doors was cut out in accordance with the requirements from Shell, 
with the objective of minimizing the opening size. All other areas where kept filled, not 
constraining the optimization more than necessary so it could utilize as much area as possible. 
The load-cases and load constraints setup was then calculated from different scenarios, such as 
maximum braking, maximum turning, bump loads, the required roof and toing hook load, and 
passenger load when driving and stepping into the vehicle. To ensure that the optimization 
would not optimize for single cases, different combinations of the loads where also used, such 
as braking, turning and seatbelt loads simultaneously. The objective of the optimization where 
set to minimize mass and maximize stiffens.  
 
   

 
Figure 21: Left; the generated T-spline model. Right; the first solid body representation. 

 
 
 
 
Thinking 
The generated T-spline model was iterated to create more streamlined body and minimizing 
the area of the tail of the car. This was done in several steps for each CFC simulation.  
As the setup for optimization was done, the “thinking” part for generating structural load paths 
could be performed by the computer. However, many adjustments was done to ensure that the 
diminutions of the CAD was right, such as reconsidering the driving position before the 
optimization.  
 
Evaluation 
With the improved surface finish of the T-spline, the aerodynamic simulations gave more 
information of the strategies what seemed to work, and what did not. Through a combination 
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of trial and error, as well as educated strategies from the team members, the aerodynamics 
was improved to a Cd of around 0.20, while lift was slightly negative creating unwanted 
downforce. 
The results from the topology optimization was evaluated and gave an indication to the areas 
of the vehicle had the highest influence in creating structural stiffness.    
 

 

 
Figure 22: Left; flow simulation of the generated T-spline model. Right; Results from initial topology optimization 

 
 
 
 
Influence 
Although the generated T-spline model gave better results, the number of surface control 
points made it difficult to impose big chances in CAD (with a lower limit of 10.000 points). 
Adjusting areas of the car was problematic without disrupting the streamlined shapes, and a 
new T-spline model with less control points was therefore needed to gain the same flexibility as 
the clay model.  
While the initial topology optimization was quite rough, not having precise internal dimensions 
and a rugged outer surface from being a scanned clay model, it created knowledge for future 
development. First, it gave an indication that the old back suspension design was a good 
solution, leading to the decision of keeping the design for possible reuse or rebuild.  
Secondly, it gave an indication of the structural importance of the connection between a-pillars 
(the two narrow pilars dividing the front and the side windows) and wheel wells, in addition to 
support between each wheel well. 
As the interplay between aerodynamic and structural changes began to emerge in the 
development, a better ground for deciding over the other at points of conflict was needed. 
Additionally, more precise load-cases was desirable to have more confidence in the values, 
leading to reduction in safety factors and consequently a lighter structure.  
 
 
4.3.3 Iteration set 3 
 
Representation 
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As the lower limit of surface control points for generating T-spline automatically was reached, a 
the new model had to be made from scratch. The strategy was a “just enough” principle, having 
enough control points to define the surface, but not more than strictly needed to make future 
changes as easy as possible. The new model also featured a parametric setup of the wheels and 
cockpit, so that other configurations could be generated rapidly. After the basic body was 
created, copies could be made with more control points to also explore aesthetic features. A 
larger base for a new clay concept was also developed for rapid prototyping od new 
aerodynamic strategies and aesthetic looks.  
 

 
Figure 23: Left; the generated T-spline model (blue) and the initial constructed t-spline model. Right; the new clay model. 

 
To gather more precise knowledge from the topology optimization, a new setup was made 
using the T-spline model as the volume and using the old back suspension.  
The same load cases where used for this optimization, but an attempt was made to gather 
more precise data to create a better representation of the bump loads (impact from driving 
over uneven surfaces). The load was a big contributor to the forces acting on the car, and was 
highly difficult to calculate. The author therefor constructed a Design of Experiment for the old 
vehicle, measuring different bumps at different speeds, vehicle weights and center of gravity, 
so that the data gathered could transferred to the case of the new vehicle by using a the 
multivariate analysis and optimization tool called Unscrambler X. Another team member built 
and set up the experiment and gathered some limited but valuable data in the first attempt. 
However in the second attempt the load cell used to measure the impact forces had problems 
with noise, and the setup was difficult to use later because of snow conditions. Precise 
knowledge was therefore not gathered, but enough to give confidents of a lower limit than 
previously predicted, updating the knowledge space. 
To create a better decision basis for aerodynamic versus structural choices, a team member 
working with driving strategy optimization was requested to create a model where all vehicle 
weights and Cd*A values where plotted against total energy consumption. Although this was a 
simple model of ideal conditions (flat track without corners, and even acceleration, cruise 
speed and deacceleration), it gave a starting point for decisions. It showed that a 10% decrease 
in Cd*A amounted to about 6% decrease in total energy consumption, while the same decrease 
in vehicle weight amounted to about 2% reduction. This meant that structural changes in most 
cases was inferior to aerodynamics changes in conflicting areas. The graph underneath shows 
the plot of the different value combinations, and could serve as a tool to determine the fitness 
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of solutions, updating the fitness space. Although the theoretical limit is unknown for each of 
the values (and especially the combination of the two), a curve plotting this limit would create 
the pareto front of the problem, showing where the ultimate solution for winning the 
competition would be.   
 
 

 
Figure 24: The plot describes energy consumption as a function of the vehicles drag coefficient, frontal area and weight including 
driver. A Cd*A of 0.12 and a weight of 160kg would as an example give an energy consumption of 9395 joule 

 
Thinking 
The new T-spline model with parametrical defined wheels and wheel wells made it a lot simpler 
to impose changes on the CAD model, producing a rapid interplay between CFD simulations and 
modelling. Together with the larger scaled clay model and several copies of the T-spline model, 
different aerodynamic, aesthetic and ergonomic improvements and concepts could be made in 
parallel. Aesthetic features could also be tested to measure potential drawbacks it might 
impose on aerodynamics. The topology optimization could run by itself in parallel with this 
development, freeing up valuable time.  
 
 
Evaluation 
The iterations created several improvements and knowledge of important factors for reducing 
drag, lift and frontal area. Some of the major changes was sharpening the rear part of the 
vehicle, and lowering frontal area further by modeling the surfaces as close to the minimal 
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volumes as possible. More air was also directed to flow underneath the car, reducing unwanted 
downforce.  
The topology optimization reveled a more defined structure of giving more information of the 
structural aspects.  
 
Influence 
Utilizing the space behind the driver was seen as a possible structural advantage. Moving the 
driver forward, for both aero and structural advantage, and seeing that the t-spline needed 
more information points to create aesthetic aspects.  

 
 
 
4.3.4 The final iterations 

 
In the following iterations throughout the project the same approach was used when 
developing the vehicle. As going through the whole process is long, and the essence of how the 
process was implemented in this manner can be exemplified by the first iterations, a short  
overview is presented for the final stages.  Before presenting the results of the process. As the 
Final T- spline was done, the final stages of the iterations revolved around the final topology 
optimizations and several free size, shape and ply optimizations. The employment of over 20 
iteration of aerodynamic simulations and optimizations was possible with the interaction of T-
spline and Open Foam, eventually creating the final product. 
 

 
 
 

 
Figure 25: overwiew of the final iterations of the project 
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5 Discussion 
 
5.1 Monocoque development and results 
 
With the goal of creating a car that could excel in Shell-eco Marathon, aiming to win both the 
Battery-Electric award and the Vehicle Design Award, the team was overall satisfied with the 
results. Substantial improvements from earlier vehicles was made in all of the three major 
objectives of the development; that of structure, aerodynamics and design.  
 
The weight of the monocoque was reduced by as much as 45% from the previous vehicle, with 
a weight of 22kg of the structural part of the monocoque, and 27kg including doors, hood and 
rear hatch. The total weight of the car came down to 72kg compared to the previous car with a 
weight of 85kg. Only one car have been lighter in the 12 years the organization have existed; 
the first vehicle developed with a weight of 69kg. However, with a larger budget sponsored by 
Petter Stordalen, the 2008 team where able to develop the vehicle using prepreg, which is 
much lighter as it contains less resin. Had the monocoque been developed with this method, 
the complete monocoque would have had a weight closer to 16kg, and changes in rules over 
the years that impose weight on the car (such as additional an additional door and stricter 
structural requirements). Overall, the structural development made the car one of the lightest 
in the battery-electric class, with the lightest car weighing around 68kg (TIM UPS-INSA). 
 
In terms of aerodynamics of the previous cars built by FF, the 2018 model was by far the best of 
the vehicles with a Cd*A of around 0.148. This was one of the major reasons of the car taking 
home a 2. place in SEM 2018. With a reduction in both frontal area and drag coefficient, the 
new design pushed this value even further down with a Cd*A close to 0.111, leading to a 25% 
reduction in aerodynamic losses. Only one other car (the SZEnergy form Hungary) was 
considered to have a lower number in the class, with a Cd*A of somewhere between 0.09 and 
0.1. But as this car was also in the heavy range of competitors weighing about 90kg, and was 
not considered to be the strongest opponent. 
 
The overall best vehicle in the SEM Battery-Electric class from the previous year was considered 
to be TIM UPS-INSA from France. Being only 7% behind the them in the last year’s competition, 
there was a good chance of beating them with the overall 25% reduction in aerodynamic losses 
and 15% reduction in total weight. This would also mean setting a world record, making it the 
world’s most energy efficient car developed. On paper this seemed likely, as the advantage the 
FF2019 car had in aerodynamics was greater than the advantage TIM had in weight. Both cars 
also employed a similar drive chain and engines, and had similar electrical losses. However, the 
real world gave a different result than hoped for. Of the 4 attempts to set the best time, the 
team only had two valid attempts. In the first attempt, the gearing system was not working 
properly, and the front braking tubes was hitting the valve of the tires in all corners, leading to 
substantial energy loss. In the 2nd attempt, scratching noises where heard when cornering, and 
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it was discovered after the race that the steering arm in the front suspension was grinding 
against the rim. Additionally, the rear wheels was found to be 3 degrees out of alignment. 
Although these issues where fixed, a bad decision led the team to a failed 3rd and 4th attempt. A 
win or loose mentality led to the idea of employing a newly developed gearing system that 
would be highly efficient compared to TIMs. However, this system was untested before the 
race. Although it seemed to work on the test track, the car had to cancel the actual race after 
two rounds due to technical issues. These issues was not fixed, and the time for the last 
attempt was to short to be able to use the old system. Yet, with the two slightly flawed 
attempts, DNV GL Fuel Fighter ended up with a 5th place in the overall race, with 18 cars 
participating. Although the results was not as high as hoped, the development of the structural 
and aerodynamic objectives can be considered to be very successful. With more time for 
testing and fine tuning, the car should therefore have a good chance of a strong position in 
SEM2020. 
 
When it comes to the design of the vehicle, holding qualities such as aesthetics and 
ergonomics, the successfulness of the development is difficult to quantify. The Vehicle Design 
Award is also not only a measure of these qualities, but the overall engineering design and 
process of development. The award is therefore also seen as a measure of how well the car is 
developed with regards to energy efficiency and environment, and consequently the materials 
utilized and the structural and aerodynamic development.  
With around 40 cars combined from each of the energy types in the UrbanConcept class, the 
Sell eco-Marathon jury granted DNV GL Fuel Figher with the first place in Vehicle Design. This 
was a major achievement, and gave the team better confidence that the work had paid off, 
especially since this had been a goal from the very beginning of the project. The Vehicle Design 
Award was granted with the following statement from Shell about the teams effort:  
 
Top-class chassis optimisation and reworking of the internal structure, supported by physical 
testing of carbon composite test specimens. Quality of both report and vehicle is exceptional. 
Wooden steering wheel and dashboard a clear demonstration that sustainability had been 
thoroughly considered with a robust design process. 
 
In essence, these results of the development as a whole is the answer to the third research 
question of this thesis: Can implementation of generative design over traditional methods 
create a competitive advantage in the development of DNV GL Fuel Fighter 5? 
It is of course not evidential that the implementation of generative design was the cause of the 
good results, or how much it can be credited the technology or the method, as a traditional 
approach with the same effort and team could yield similar or better results. This is impossible 
to know, however a good indication of its effectualness is the comparison with previous teams 
in FF. In terms of improvement it partook the biggest leap within all the major objectives from 
previous teams, and the vehicle also had the strongest position in its first competition. 
Although experiencing technical issues under the competition, the comparison of the vehicle 
specifications to other contestants is also a good indication, as none of these are known to 
employ generative design in this manner.  
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5.2 Methodology 
 
The first research question of this thesis was exploring of how generative design has been 
implemented in product development before. Some of the theories closest to modeling this 
implementation was presented described in the theory chapter, but as also described are hard 
to find, especially since so many theories are focused on the technical side of implementing 
algorithms for specific cases. Ideas that could be helpful form related field such as parametric 
modelling and Knowledge Based Design was also presented, but is generally more oriented 
towards reuse of entities or the construction of generative systems rather than the 
implementation of generative design. Although many other related earlier fields could be 
brought into the study, such as Multi objective and Multivariate Optimization, the general view 
of the author is that very few studies tackles the general implementation of generative design 
into product development. Few was also found to draw relations to former design theories, as 
most are focused on the use of the tool rather its adoption and ability for changing the design 
process.  
 
The second research question has been the overall goal of this thesis, trying to figure out what 
impact generative design as a methodology have on the process of engineering design and 
problem solving. Both the development of the methodology and the implementation of this 
methodology and generative systems in developing the monocoque has been an attempt to 
answer this question for the reader.  
The thesis create a methodology for implementation of GD in product development with the 
basis that limited knowledge exist within this field. Hence, it is problematic to discuss its validity 
in relation to literature in other ways than have been done and discussed throughout the 
paper. In that sense, it is difficult to address the two major concerns described by Hans 
Grabowski in the establishment of the Universal Design Theory, the problem of universality and 
the problem of applicability in industrial practices.  
What one could discuss is the approach that has been conducted. The first obvious 
complication is that of reducing the problem to the consideration of a single component of GD. 
Using the workings of the basic GA for describing GD is a huge simplification, and could 
therefore be a wrong step in relation to implementation of GD. However, as discussed in 
previous section, this simplification is done on several premises that explain the central role of 
GAs. Further, the notion that the ways in which humans solve problems are affected by the 
tools we use in a manner similar to the workings of the tool itself might be a wrong assumption 
for GD. Although one could see that this is the case for several other tools now used, such as 
CAx systems, it might not be true for GD. It could be that a completely unfamiliar approach to 
human problem-solving then that of GD is needed to utilize these systems to the fullest. This 
would be highly difficult to foresee before these systems have been applied more in industry. 
Nevertheless, if this notion holds, one could also question the way the similarities are drawn. 
First using the steps of human problem-solving and GA for creating a framework and level of 
abstraction, and further using this framework for seeing similarities in of GA and DTM might be 
a faulty approach. Completely different approaches could have been conducted, such as 
flipping the process altogether, beginning with a specific DTM as ground for the abstraction, or 
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grounding the process in the high level interaction of generative systems rather than 
algorithms.  
The use of literature can also be questioned. Although the use of acknowledge papers have 
been stressed, seeing that little is written on the guiding objective of this thesis, also articles 
with few citations have been used to describe certain concepts. The bibliography also lacks a 
more nuanced view of the DTM field, as the work of Tetsuo Tomiyama has been the major 
source of comparison. The author also acknowledges that with limited experience of using GD 
tools, as well knowledge of the DTM field in general, creating a theory for implementation of 
GD in New Product Development might be to bite off more than one can chew.   
Finally, the complete approach itself, namely using literature to create a theory as a base 
before implementing GD in Fuel Fighter might not be a good method. It might create a biased 
view that could have implications for seeing what really should be the emphasized when 
implementing GD. Another approach would therefore be to not research the implementation 
before using the technology (although that boat has gone), and go into the process blindly to 
see what drives the process. Consequentially, limiting this biased view is crucial to gain new 
knowledge from the process in the future work of utilizing these programs. 

-  
 
5.3 Further work 
 
There are numerous theories and methodologies one could bring into this work, as well as 
deeper understanding of GD, to draw better analogies. Several other theories were originally 
intended to take part in the paper, such as C-K Theory and Emergent Synthesis, as well as other 
notions around GA such as Tree structure representations, and human-, and interactive-based 
GA. However, at a point, creating a more solide model in terms of literature becomes absolete 
to that of testing the model. Future work will therefore be to utilize the theory in a critical 
manner, so that changes can be made to create an overall better theory. This can be done by 
direct implementation as was conducted with Fuel Fighter, but also trough applying the theory 
on already known cases of product development to give more understanding of its use 
compared to other models.   
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