

 1

GENERATIVE DESIGN

 IN PRODUCT DEVELOPMENT

Creating an Urban Concept Car

for Shell eco-Marathon

Short:
Investigation and shaping of a generative design methodology for

product development, implemented in the design and construction of an
energy efficient urban concept car participating in Shell Eco-Marathon.

Author: Eirik Evjan Furuholmen

Supervisors: Christer Elverum, Cesilia Haskins

 2

Abstract

This thesis is an investigation and shaping of a generative design methodology for product
development, implemented in the design and construction of an energy efficient UrbanConcept
car for participation in Shell Eco-Marathon.
No studies was found to present general strategy for implementing generative design into
product development. Thus, this thesis is presenting such a strategy base on similarities drawn
between human problem-solving, design theories and methodologies and genetic algorithms –
one of the major technologies for generative systems.
The aim of the implementation in the development of the vehicle is both to test the
methodology on a real product development case, as well as creating a competitive vehicle for
the competition. This was conducted through the development of the cars monocoque. The
implementation led to very satisfying results in the development, and good results in the
competition.

 3

Sammendrag

Denne oppgaven er en undersøkelse og utforming av en generativ designmetodikk for
produktutvikling, implementert i prosjektering og konstruksjon av en energieffektiv
UrbanConcept bil for deltakelse i Shell Eco-Marathon.
Ingen studier ble funnet å presentere en generell strategi for implementering av generativ
design i produktutvikling. Dermed presenterer denne avhandlingen en slik strategibase basert
på likheter trukket mellom menneskelig problemløsning, designteorier og metodologier og
genetiske algoritmer - en av de viktigste teknologiene i generative systemer.
Målet med implementeringen i utviklingen av kjøretøyet er både å teste metodikken i et ekte
produktutviklings scenario, samt å skape et kjøretøy som kunne nå langt i konkurransen. Dette
ble utført for utviklingen av bilen monocoque. Implementeringen førte til svært tilfredsstillende
resultater i utviklingen, og gode resultater i konkurransen.

 4

Acknowledgements

First and foremost, I want to thank my supervisors Christer Elverum and Cecilia
Haskins, for their incredible positive attitude and helpful detections towards the thesis.
Secondly, I want to give a huge thanks to all the member the DNV GL Fuel Fighter team
over the last two years that have both contributed to this thesis, as well as made the last
years at NTNU a great experience. NTNU itself ant the staff that in way have helped in
the development have also been highly appreciated, and a special thanks to Knut
Aasland, Børge Holen and Natalia Trotsenko.
A special thanks also goes to the other master students of the FF18/19 team; Lars
Ramstad, Kristoffer Sydnes and David Swensen, which had huge contributions to the
thesis and the work in DNV GL Fuel Fighter, as well as Sindre Trefall for his work with
fluid dynamics in the last year. Jennifer Nugyen also deserves ha huge thanks for her
effort as the deputy leader of the project, helping with administrative management and
all economics of the project.

 5

Content

Abstract .. 2

Sammendrag ... 3

Acknowledgements ... 4

1 Introduction ... 7

1.1 Background and motivation ... 8

1.2 Project scope ... 11

1.2.1 Problem description and objectives ... 11

1.2.2 Research questions .. 12

1.2.3 Limitations ... 12

1.3 Author’s role in the development .. 13

1.4 Method and thesis structure ... 13

2 Theory ... 14

2.1 Background on Generative Design ... 14

2.1.1 The basics of Genetic Algorithms ... 16

2.1.2 Applications of Generative Design ... 19

2.1.3 Future of Generative Design .. 20

2.1.4 Why genetic algorithms is an interesting analogy for innovation 21

2.1.5 Limitations of Genetic Algorithms and Generative Design 23

2.2 Existing Generative Design methodologies for Product development 23

3 Development of a Generativ Design Methodology ... 26

3.1 Angle of approach ... 26

3.2 Creating a framework; comparing GA and human problem-solving 27

3.3 Comparing GA to DTM within the framework .. 30

3.3.1 Representation .. 30

3.3.2 Thinking ... 35

3.3.3 Evaluation .. 37

3.3.4 Influence .. 39

3.4 Proposed methodology ... 41

3.4.1 Summary of important factors for each step: ... 43

4 Development of Monocoque ... 44

4.1.1 Design tools and process overview .. 44

 6

4.1.2 Structural tools and process overview ... 46

4.1.3 Aerodynamic tools and process overview .. 47

4.2 Initial representation ... 50

4.2.1 Fitness space ... 50

4.2.2 Solution space ... 51

4.2.3 Knowledge space ... 51

4.3 Iterations ... 51

4.3.1 Iteration set 1 .. 51

4.3.2 Iteration set 2 .. 53

4.3.3 Iteration set 3 .. 55

4.3.4 Iteration set 4 ... Feil! Bokmerke er ikke definert.

4.3.5 Iteration 5 ... Feil! Bokmerke er ikke definert.

4.3.6 Iteration 6 ... Feil! Bokmerke er ikke definert.

5 Discussion .. 59

5.1 Monocoque development and results ... 59

5.2 Methodology ... 61

5.3 Further work.. 62

6 References ... 63

6.1 Articles and books ... 63

Automatic citation updates are disabled. To see the bibliography, click Refresh in the Zotero
tab. ... Feil! Bokmerke er ikke definert.

6.2 Figures ... 65

6.3 Webpages.. 66

 7

1 Introduction

The student team DNV GL Fuel Fighter (FF) from NTNU has been developing and building cars
participating in the international engineering competition Shell Eco-Marathon Europe (SEM)
since 2008, which is the largest of several student competitions hosted by Shell all over the
world. Every year FF and about 2000 other students from teams around the world are gathered
in this competition to test their cars up against each other, with the ultimate goal of creating
the most energy-efficient vehicle.

Figure 1: Opening ceremony of the Shell eco-Marathon 2019, with all the participants and a few of the 110 cars competing.

The competition has two types of vehicles; Prototype, where the drivers lie horizontally in tiny
vehicles usually constructed with three wheels, and the larger 4 wheel UrbanConcept class that
has more resemblance with road-legal vehicles for the consumer market. In the latter class, the
race is constructed to simulate city driving, consisting of 15 laps to be completed within 35
minutes, each with a length of 970 meters where the car has to come to a full stop each lap
(SEM18). The two vehicle types are also divided into three classes of energy source, ranging
from Battery-Electric and Hydrogen to different fuels for Internal Combustion. As the classes
are highly different in terms of energy consumption, winners are awarded within each energy
class, while off-track awards (such as the Innovation Award and the Design Award) comprise
either all, or each of the two vehicle types. In addition, a new competition called UrbanConcept
Autonomous was introduced in 2018. Here, UrbanConcept vehicles can attend to prove their
capability of autonomous driving through a range of tests, giving the competing teams points to
determine the winner.

 8

Over the years, 4 UrbanConcept cars and 1 Prototype car have been developed and built by the
DNV GL Fuel Fighter team, with several master students being part of the project. Most of the
cars are improved on for 2 to 3 years to bring out the best potential of the design before a new
car is built. Some years have been highly successful in terms of results, with a first place in the
hydrogen class in 2009 and second place in the Battery-Electric class 2018, as well as winning
and pall positions for both Vehicle Design and Communications over the years. Other times
however, the team has been troubled with technical issues under the competition or been
unable to compete at all, not making it through the rigors technical inspection to be allowed
onto the track.

The author has been part of the organization for the last two years of his master study, the first
year as the leader of a R&D team researching new technologies and planning the development
of the 5th UrbanConcept vehicle. Last year the author has been managing the DNV GL Fuel
Fighter team, with 40 engineering students developing and builting the DNV GL Fuel Fighter 5.
To the author being part of the organization has been an immensely educational and exciting
experience, solving complex engineering problems and cooperating with other passionate and
skillful students from different countries and study directions. It is a place where the
engineering theory acquired from courses over the years can be applied to a real-world
problem, putting theory into practice. It is also a place where team effort is essential to
succeed, creating friendships as well as interpersonal skills of future value.

1.1 Background and motivation

Figure 2: The cars developed by DNV GL Fuel Fighter since its beginning in 2008.

 9

When radical new technologies for aiding product development emerge, it can have a huge
effect on how humans innovate. The tools engineers utilize can greatly amplify their ability to
transform ideas into products, and also change how this process is conducted.
Tools that are involved in product development range from mechanical tools such as milling
machines and assembly lines, computer-based tools such as FEM software and programming to
more organizational directed tools such as Enterprise Resource Planning and Product Lifecycle
Management. These have all influenced the way engineers innovate products, and the
companies that adopt the latest technology often gain an advantage in their industry.
Tools that are made to aid the actual product development process itself have had an even
more direct impact on how problems are solved. CAD software was originally created to
improve and automate paper-based and manual tasks, but has shown to be much more
influential. The possibility of enabling quick exploration and visualization have completely
changed the culture and process and of design (Brown 2009). The development of simulation
software has in a similar manner enabled engineers to create increasingly advanced products.
However, continuously advancing modeling and simulation systems do not only change our
abilities and the manner in which we create products, but also human problem solving itself
(Becker et al. 2005).

Generative Design (GD) is an emerging technology that by many is predicted to create a new
paradigm for engineering design and problem-solving in a wide range of fields ((Türkmenoğlu
2015), (McCormack et al. 2004), (Janssen et al. 2002)). With the use of Generative software
systems, solutions to problems can be generated, explored and optimized in a manner that
resembles natural evolution. The computer becomes a design generator, gaining “creative like”
abilities compared to its normal passive roles as a performance analyst, visualizer, data checker
and drafts tool (Shea et al. 2005). The utility of these systems is then to automatically generate
and optimize solutions to problems more rapidly than previous techniques, and in some cases
creating solutions that would be impossible to come up with using former engineering tools
and human ingenuity.
While there is no agreed-upon definition of the term yet, as several software companies and
disciplines disagree which technologies and methods it embodies, it seems to be a general
consensus that it is a design method where generation of form is based on rules or algorithms
(Agkathidis 2015). Defining the term is also difficult as it is having a transformative impact on
such a wide specter of areas and industries, from art and architecture to a range of engineering
disciplines.
In essence, generative systems is just a category of optimization software, and the field of
optimization has been part of engineering for decades. However, generative design brings a big
shift in the common conception of optimization; form techniques for fine tuning of objects or
systems in the final stages of development, to an approach for concept exploration and
optimization from the very beginning and throughout the development process. This shift can
be attributed to the algorithms ability to explore and determine one or several near optimal
solutions in a vast solution space, rather than finding the single global optimum to a well-
defined problem.

 10

Janssen et al. (2002) describe generative and evolutionary systems as an emerging third phase
of computer design tools. In their paper, the ability to enhance the capacity of visualization
trough CAD is depicted as the first phase of computer tools, while simulation software enabling
analysis to quantify performance of design are considered as the second phase. Although both
of these technologies have changed the way problems are solved, they are considered to be
passive in the manner they are altering the process. This means they substitute manual tasks
and aid problem solving without changing the actual structure of development to any large
degree. Hence, the design methodologies from the pre-computer area are still highly valuable
for innovation with these tools implemented in the process.
This third phase of generative and evolutionary tools however, are considered to not only aid
and/or replace manual tasks, but also cognitive parts of human innovation. It might therefore
change the structure of the design process, requiring a different approach to design to be
effectively implemented. Some, such as Janssen et al. (2002), predict it will demand a change
from having the designer at the core of the problem solving process, to methodologies where
the generative system is the central guiding principal . Others see the change as going from an
approach where humans solve problems using tools, to that of constructing algorithms to which
problems are specified (Nordin 2018), in a sense, moving from solving problems to growing
solutions.

Although much of the technology behind generative systems have been around for some time,
such as topology optimization (TO) and genetic algorithms (GA), its use in product development
has not been significant.
This can be ascribed to the huge processing power needed to solve advanced problems, as well
as the difficulty of representing complex problems in algorithmic terms. However, with the
increasing access to computer power and more versatile software, these systems have had a
boom over the last years. Another aspect is the advancements and affordability of 3D printing,
which in some cases can be the only way to realize some of the designs created with generative
systems. Several of the largest CAD and FEM software companies such as Dassault Systems,
Siemens and Autodesk are therefore heavily invested in developing competent systems at the
time of writing, and industries like aerospace, aviation and automotive are in the forefront of
implementation.

The sheer power that Generative Design can have in solving engineering problems, and their
transformative potential for problem solving in general spiked the author’s first interest in the
field while researching possible technological applications for DNV GL Fuel Fighter. In a
competition like Shell eco-Marathon, adopting new technology in a clever way might create an
advantage over other competitors, enabling the team to push the boundaries in areas like
weight and aerodynamics that are essential for energy efficiency. Implementing a generative
design approach to advance the development of the DNV GL Fuel Fighter 5 thus became the
initial ambition for this thesis.

However, it is a long way from an initial product idea to plotting values and constraints into a
tailored algorithm for optimization, or using generative systems on a detailed CAD model.

 11

At the very beginning of a product development process, there is often simply nothing to
optimize yet. As a result of this gap, and the notion that these systems could demand an
untraditional approach, the subsequent question was clear; how can Generative Systems be
implemented successfully from the very beginning of the development, and what methodology
can aid the process?
Researching the literature on this field exposed that although many people predict the
technology to have a huge impact, very few articles have been written on the actual change it
inflicts on product development, and what methodologies are needed for successful
implementation in general cases. The large part of articles written on generative design,
whether about product development or other areas, are focused on its utility in specific cases
or the development of specific algorithms.
This gap in the research field evolved to become the second ambition of this thesis;
approaching a generative design methodology for product development in general, which
facilitates the implementation of generative systems when the opportunities of utilization
arises throughout the process.

With the author’s limited knowledge of the subject to begin with, and at NTNU in general, the
ambitions of this thesis has been difficult to realize. However, the possibility of both
contributing new ideas to such a promising field as Generative Design, and advancing the
development of DNV GL Fuel Figher 5 was predominant in choosing the topic. Being part of FF
has also given a rare opportunity that was critical for these goals, being able to both explore
technology with little risk, and investigate the implementation in a real product development
case.

1.2 Project scope

1.2.1 Problem description and objectives

With the notion that GD Systems will have a huge impact on the way engineering design is
conducted, this thesis attempts to find methodologies and tools to create a framework that can
aid the implementation of generative design in product development, creating an optimization
driven design process. As few studies was found to present a general strategy for implementing
generative design into product development, the thesis is attempting to develop its own
methodology.
Further, this process is applied to the real product development case of creating an urban
concept car for participation in Shell Eco-Marathon. The aim of the implementation in the
development of the vehicle is both to test the methodology on a real case, as well as creating a
competitive vehicle for the competition. This is to understand generative systems hands on,
and utilize this to understand the possibilities and limitations for implementing the technology.
This is conducted through the implementation of the methodology and generative systems in
the development of the vehicle monocoque, witch constitutes the complete body of the car
and its internal structures, in addition to doors, hood and and rear hatch. The implementation

 12

is thus not just a case study for the methodology, as the success of the vehicle development is
regarded to be of high importance to the author and the DNV GL Fuel Fighter Team. Thus, the
thesis is in short a study of the interplay between strategy and development.

1.2.2 Research questions

From approaching such a methodology, and implementing the generative systems to enhance
the development of DNV GL Fuel Fighter, three research questions are asked in this thesis;

- How has generative design been implemented in product development before?

- What impact does Generative Design as a methodology have on the process of
engineering design and problem solving?

- Can the implementation of generative design create a competitive advantage in the

development of DNV GL Fuel Fighter 5?

The relation to the work are of these are discussed in the final chapter. However, to the reader,
it is important to have this questions in mind when reading the thesis, as they in large are
answered throughout the work and not its conclusion.

1.2.3 Limitations
There are several limitations to the scope of this project. As FF is a self organized volunteer
project, with students from different classes for the most part are part of the project for a
single year (although some staying only a half, while others several years), the continuity is a
huge limitation. Most of the students working with the beginning of the development of this
car in the first year was shifted with new members the following year. This means that for every
new year the learning curve is exceptionally large if one wants to develop a competitive vehicle.
The complexity of the project also limits the implementation of generative systems, as the
advanced methods needs more effort than what would be required from the average
volunteer. The implementation is therefore concentrated at the monocoque development, that
two other master students in the project also was focused on.
The time is also a huge limitation. Planning the development the first year with a small sub
group of the team, and then constructing and building a whole car from scratch in the matter
the next year is highly difficult task, especially with the problem of continuity. This means that
the level of advanced methodes has to be applicable to the timeframe, and implementing
generative systems on all structural parts would be unreasonable.
Another limitation is that of verification of the process, especially for implementation in
product development in general. Processes are hard to verify, as a setup of two identical
projects is needed, and even then, the knowledge of the people involved might interfere with
results. Building two cars side by side using different approaches is obviously out of the scope,

 13

thus, the verification of the models effectiveness had to be drawn from the results of the
development.

1.3 Author’s role in the development
As the author has led the first years R&D team as well as the whole team as project manager
the following year, it is natural that the thesis tis written from a strategic point of view. All the
decisions and work presented is therefore influenced by a several team members over the two
years, and defining all contributions throughout the thesis would be difficult, especially since
much of the work and decisions are team efforts. As the thesis is written in passive form, it is
therefor important to state the work that was done solely by the author, and the work done
solely by others. The development of the methodology which will be presented has been the
independent work of the author, while the development of the monocoque was a joint effort.
The authors main contribution to the monocoque has been the development of vehicles design
and all CAD models throughout the project, relating to all dimensional requirements by Shell
and other parts, as well as structural and aerodynamic changes. The author was also
responsible for the strategy of utilizing different generative design approaches and the overall
development strategy, as well as contribution to aerodynamic solutions, and interpreting the
results to generate new CAD models. All the optimization using the Hyperworks tool was done
by fellow master students Kristoffer Sydnes and David Swensen, and there work was essential
to the generative strategy implemented. All aerodynamic simulations was also done by other
members, with Sindre Trefall as major contributor in the final year of development utilizing
OpenFoam. Many of the figures presented is therefor showing this joint effort, with CAD
representations created by the author, and simulations done by other team members.

1.4 Method and thesis structure

This thesis is approached with the following method; first a literature review is done to give the
reader an overview of the field of generative design. This is done to explain the basic operators
of generative design and why they are an interesting analogy for innovation, as well as the
applications limitations and future of generative design. Further, existing theories and
mereologies are discussed.
Then, a comprehensive study of the similarities between genetic algorithms, human problem
solving and design theories and methodologies are conducted to approach a methodology for
implementing generative design into product development.
Finally, an overview the development of the monocoque is presented with the emphasis to give
the reader an understanding of how the methodology was implemented and changed the
overall development process.
Finally the results and the work done is discussed with the aim to answer the research
questions.
Direct citations are used more often than paraphrasing in this paper, especially when
comparing GA to DTM and human problem solving. This is because the author wants to ensure
the reader that opinions and similarities are not skewed. When the basis for creating the theory
is finding similarities, using paraphrasing would make the process less valuable. Comparing one

 14

statement in one theory to another in another theory trough paraphrasing, one could easily
make it seem that things fit well together. Direct citations are then a more honest way of
comparison.

2 Theory

2.1 Background on Generative Design

Although the term GD have been used in the field of architecture since the 1970s, it is rather
new term in relation to product development (Nordin 2018b). Despite being used in
architecture for such a long time, there is no clear definition of what GD is, and different fields
have different viewpoints. In architecture, the term is often used on par with Parametric
Design, while in engineering it is often used on par with topology optimization. Other, like the
major CAD software developer Autodesk, see both these technologies as prerequisites of GD,
blurring the lines of how to define it. The Wikipedia page on GD lists two definitions, but both
are very vague and the page itself has multiple issues and contradictions in trying to describe
GD accurately;

"Generative Design is a morphogenetic process using algorithms structured as non-linear
systems for endless unique and unrepeatable results performed by an idea-code, as in Nature." -
Celestino Soddu, 1992. (1)

"Generative Design is the transformation of computational energy into creative exploration
energy empowering human designers to explore greater number of design possibilities within
modifiable constrains." - Sivam Krish, 2013. (1)

Some companies that are in the forefront of developing Generative Systems (GS) such as
Autodesk`s Dreamcatcher Project, are using the term as core in their marketing, while other
large companies such as Dassault Systems never use the term in the description of similar
software solutions like Isight. Autodesk define GD as the process of using systems that mimics
nature’s evolutionary approach to design (2). They describe how the process works by
explaining that designers or engineers input design goals into generative design software, along
with parameters such as materials, manufacturing methods, and cost constraints. Then, using
cloud computing, the software explores all the possible permutations of a solution, quickly
generating design alternatives (2).
Although this description gives insight to what GD can do, it does not define what it actually is.
The author will use a broad definition stated by Fernandes and Margarida (2003); they describe
a GS as a system that generates options for design problems, and that the basic system in all
Generative Systems is Algorithmic Systems. GD is then the practice of mediating the design
process by using GSs, where various potential design solutions can be created determined by
algorithms. In that sense, Parametric Design is a simple type of GD, as it is based on the use of

 15

hierarchical algorithmic systems controlled by one-directional relationships (Fernandes and
Margarida 2003).
While Topology Optimization has been around for about 20 years and used more advanced
algorithms in the same manner as GD to optimize design problems, the focus has been, as the
name states, that of optimizing topology. Although this is a major part of GD, the definition is
not limited to this, but holds all qualities that could be optimized in a design. This would then
mean generating a design solutions or mediating parts of the design process for any quality, like
the aesthetic coloring of an object, the conductivity of an alloy or the optimization of a plastic
molding process. GD is also not limited to optimizing problems, which is the focus of topology
optimization, but also constitutes the ability to generate multiple design options that can be
evaluated by the designer. In that way, GD is not the closed process within GSs, but the use of
GSs. This means that humans can replace or participate in parts of the algorithm used in the GS,
for instance choosing between multiple aesthetic propositions for a design created by the
algorithm. This creates a shift in how design is conducted; instead of designing an object we
want, we design or use an algorithm that designs the object we want.

Before going into details of the utilization of GD, it is necessary to explain what sort of
algorithms are that are commonly used. Since algorithms are simply the use of sequential
instructions for solving a problem, all programs can be considered algorithmic. It is important
then to state the class of algorithms that can be considered to generate options for design
problems. Where one draws the line of which algorithms to consider as simply problem-solving
methods and which to consider solution generating methods is not straightforward. However,
one could say that some algorithms are created in order to solve problems exactly, while others
are created simply to search for good solutions. It is the latter that mainly is utilized when using
GSs, as the problems they are applied to is simply too hard to solve with precise methods. This
does not mean that the algorithm never find optimal solutions, but that the means to solve
problems more resembles a child’s search for solutions, rather than the procedure of a
mathematician - although a very efficient child. For hard optimization problems, approaching
the problem by searching for a near optimal solution can be the only way to efficiently finding a
solution at all.

The algorithms often used to solve these kind of problems is a class called metaheuristics, that
can find solutions without being constructed directly solve the problem at hand, in contrast to
problem-specific heuristics. Although not completely restricted to metaheuristics, GSs is then in
large user oriented software that utilize metaheuristic algorithms to optimize or generate
multiple solutions for design problems. Boussaïd et al. (2013) states that all metaheuristics
share the following characteristics:

- They are nature-inspired (based on some principles from physics, biology or ethology.?
- They make use of stochastic components (involving random variables).
- They do not use the gradient or Hessian matrix of the objective function.
- They have several parameters that need to be fitted to the problem at hand.

 16

There exist a wide range of metaheuristics that suites different kind of optimization and
solution generating problems, and going through all is out of scope for this paper. Some of the
popular classes are Shape Grammar, Lindenmayer Systems, Particle Swarm, Cellular Automata
and Evolutionary Algorithms. The latter are further divided into four main types: Genetic
Algorithms (GA) Evolutionary Programming (EP), Evolutionary Strategies (GS) and Genetic
Programming (GP). Of these, the GA (GA) has become the most popular method for solving
hard optimization problems as it has the widest applicability (Gábor and Ekártab 2003). It is in a
sense the allrounder of the metaheuristics, and is particularly fit for generating form or styles
(Singh and Gu 2012).
In comparing GA to other types of metaheuristics, Gábor and Ekártab (2003) explains that the
reason for GA being especially suited for optimization problems is that while other methods
always process single points in the search space, genetic algorithms maintain a population of
potential solutions. They also point out the flexibility of GA is also due to its ability to solve
complex problems by handling multiple parameters simultaneously. GA can therefore be said to
be the most flexible and practical algorithm of for GD. Although the different metaheuristics
have very different ways of generating solutions, explaining how GA works will give the reader a
better understanding of how GD generates solutions, and will thus be elaborated in the next
section. However, the motive for describing how GA works is ultimately to clarify how the
intuitions of GA may help in the implementation of GD in product development. The section will
therefore only explain the basic of an ordinary GA to give the reader a ground for
understanding, as more specific details will be elaborated in conjunction with the development
of the generative design methodology in section 4.

2.1.1 The basics of Genetic Algorithms

Generative Algorithms was introduced by John Holland in the 1970s with the idea of mimicking
the natural selection in evolution. It consists of operators that imitate genetics and Darwin’s
principles of how life evolve, and although the algorithmic interpretation of these principals is
highly simplified compared to nature itself creating an almost rudimental algorithm, the GA
often generates unexpectedly complex solutions to difficult problems (Gábor and Ekártab
2003). Even with these simple operators, the algorithm can mimic evolution like abilities, such
as making a physics based 3D model of a human run completely life like without any knowledge
of what running is.
The encoding of problems into GA use much of the same terminology as the DNA; decision
variables are encoded as finite-length strings consisting of certain alphabets with a defined
cardinality that outline the constraints of a population of potential solutions to a problem. The
distinct strings within this cardinality is called chromosomes, which are the representations of
each individual solutions to the problem. The shorter alphabets that the chromosome consists
of are called genes, which are distinct parts that are describing certain areas of a solution.
Alleles are the smallest descriptions of the problem, which describe the values of each gene.

Figure 3: Representation of a problem, here as a simple bit-string

 17

The representation of a problem and potential solutions is often described by bit-strings, but as
problems grow more complex, many other representations can be applied, like parameter lists,
tree structures or even complex programs (Sastry et al. 2014). For instance, the chromosome
could be the representation of a microwave oven consisting of several parts; each gene could
represent each part of the assembly, while the allele describes the measurements of each part.
The cardinality or constraints of the problem representation creates the framework for how the
product can be assembled and the region of values allowed, defining the solution space of the
problem and thereby the possible microwave ovens that can exist in the population.
The GA differentiates between the genotype space; which is where all representations of
solution are described, and the phenotype space; where the actual solutions are located.
Different combinations of genes and alleles map onto the phenotype space to create actual
solutions. Relating to the microwave oven, the genotype space would describe all the values
and interactions of parts of a solution, and is thus the knowledge that describes the product.
The phenotype space is the solution itself, and could for instance be represented as a CAD
model. Further, to measure the fitness of a solution to apply the artificial natural selection of
different solutions, the algorithm needs a means of evaluating solutions with some fitness
criteria, determining a fitness space. This is often done with an objective function such
mathematical models or the use of FEM analysis or other simulation tools, but could also be the
subjective opinion of humans. Potential solutions in the phenotype space then maps onto the
fitness space to test how good the proposed solutions are, producing information of how to
evolve the next generation of the population of solutions.

Figure 4: The GA mapping between each space.
https://www.researchgate.net/figure/Genotype-phenotype-mapping-and-
fitness-function-in-evolutionary-design_fig3_226912968

 18

The GA files through an iteration process, where new generations of candidate solutions are
produced continuously and added to the population, creating better solutions without any
specific strategy other than measuring its own evolutionary progress towards the goal (Sastry et
al. 2014):

1. Initialization: An initial population of solutions is created randomly or with some
knowledge of the domain.
2. Evaluation: The initial population or offspring population is evaluated against the
fitness criteria, such as objective functions, simulations or with human interaction.
3. Selection: Copies of solutions of higher fitness are reproduced to enforce a survival-
of-the-fittest mechanism to the population. This can be done with several types of
techniques, such as roulette-wheel selection, ranking selection, stochastic universal
selection and tournament selection, giving preference to which solutions are considered
good.
4. Recombination: Two or more solutions are selected as parents and combined with
some type of crossover operator, to create new offspring of solutions with different
traits from each parent solution.
5. Mutation: Single solutions are selected and small changes are made, adjusting the
solution in its vicinity with small random changes in the solution.
6. Replacement: The offspring solutions created by step 3-5 are put back into the
population, and different methods such as elitist-, steady-state- or generation-wise
replacement are applied to decrease the size of the population.
7. Repeat: the steps from 2–6 are iterated until a defined termination criterion is met.

These steps explain the very basic of how the GA operates, but there exists numerous variants
and advanced versions of the algorithm, like Multi objective-, Steady-State-, Distributed-,
Parallel-, Messy-, Hybrid-, Structured- and injection island GA just to name a few. A search of
GA in Google Scholar gives over 2 million results, which gives a clue to how huge this field is,
not to mention the field of metaheuristics in general.
Further, advanced GSs often not only use a single algorithm, but can be utilizing combinations
of algorithms. The term Hyper-Heuristics is used as the ability of selecting, combining,
generating or adapting several simpler heuristics (3), making the system adaptive to different
problems. In the table underneath, the basic operators of natural selection and GA is put side
by side, clearly showing the inspiration in GA from nature’s way of solving problems.

 19

Figure 3: Similarity of GA an natural evolution.

2.1.2 Applications of Generative Design

There almost seem to be no boundary to the application of metaheuristics for difficult
problems. A Wikipedia page on the applications of GAs alone lists almost 80 different topics (4),
ranging from airlines revenue management and mechanical engineering to computational
chemistry and the training of artificial neural networks. Gábor and Ekártab (2003) states that
the branches of mechanical engineering where GA is most predominantly used are conceptual
design, shape optimization, data fitting, reverse engineering, mechanism design and robot path
design.

However, making GD useful is about utilizing these metaheuristics trough Generative systems
that can solve a range of problems, instead of building specific algorithms for specific problems.
These systems therefore often contain multiple readymade algorithms that can be applied on a
higher level, making them easier to employ on a range of problems. They are increasingly used
tools in architecture for applications such as floor facility layouts and beam structure
optimization, with programs like Rhino and Grasshopper. In the domain of mechanical
engineering, topology optimization based on load has been the widest use of GSs (also
employing other methods than metaheuristics such as Solid Isotropic Material with Penalization
(SIMP)), but also other types like sizing, shape, topography, and mesh structure optimization
are common. There exist multiple programs for these specific applications, and larger software
companies increasingly have them built into their CAD software as modules, such as Fusion 360,
Tosca Structure and Siemens NX. Increasingly advanced applications have emerged recently and
are under development, such as fluid optimization tools like Tosca Fluid and design
optimization for manufacturability and assembly such as Frustum’s software Generate. Isight, a
workbench program from Dassault Systems allows users to build customized iterations
between optimization algorithms and programs such as Ansys Fluid, Catia, Abacus and a range
of other programs. Even graphic design tools have emerged, such as Processing, making it
possible to create art, typography and advanced infographics with the aid of algorithms.

 20

Although there has been much hype around this type of systems, there is no doubt that they
will influence the future of product development. The reason that these systems have become
increasingly popular in recent time (even though optimization with metaheuristics and other
algorithms have been around for decades) is without doubt related to the huge advancements
in additive manufacturing and cloud computing. While additive manufacturing makes it possible
to create the advanced shapes that often emerge from GD, the increasing power of cloud
computing makes it possible to run processor expensive algorithms with more ease. This huge
advancement in technology makes GD very interesting for the process of developing the next
Fuel Fighter car. Gulanova and Vereš (2014), professors from the Institute of Transport
Technology and Design at the Slovak University of Technology, states that generative design as
a new method of product development and innovation has become very important in the
automotive industry at present. The reason for the introduction of this method into the process
of development tasks solution is simple. This approach to car innovation leads to a reduction in
the time spent developing prototypes.

Figure 4: some of the applications presented by Autodesk.

2.1.3 Future of Generative Design

Another interesting area of computer-aided technologies to aid innovation of product
development is a rather new type of tools known as CAI (computer-aided innovation). While
the initial ideas in the beginnings of these programs was focused on aiding designers in early
stages of product development, more integrated visions have emerged, with the goal of aiding
the complete process from the fussy front end of innovation to successful products in the
market (Leon 2009). There exist several tools that guide product development, but they are
often separated, and used by different departments of an organization. The idea behind these
CAI tools is to integrate commonly used tools throughout the process into a single platform that
can better guide the innovation of a whole company. These could be organizational tools such
as Product Life Cycle Management, Enterprise resource planning, Knowledge Management, CAx
systems etc, but also problem-solving methods and product development strategies such as
decision-making tools, system-engineering tools, TRIZ and Set-Based Concurrent Engineering

 21

Systems. Hence, it is not only a question of IT solutions, but also one of the in-depth focalization
on the development of methodologies and concepts for supporting innovation teams more
effectively and efficiently, thus improving the advantages of adopting new integrated CAI
systems (Leon 2009). Dassault System’s 3Dexperience platform is an example of a step in the
direction of these systems, with a single platform for social and collaborative apps (3DSWYM
and Enovia), 3D modelling apps (Solidworks, Catia and Geovia), information intelligence apps
(EXALEAD, NETWIBES) and content, simulation and GS apps (3DVIR, DELMIA and Simula).

With the wide applications of metaheuristics such as GAs, it is clear that these techniques can
becom an essential part of CAI systems in the future, making it possible to optimize the product
development process as a whole as well as its parts. Metaheuristics have already been proven
useful to aid or optimize all kinds of tools and development methods that CAI systems consist
of.
Leon (2009) claims that it is expected that changes in innovation paradigms will occur through
the use of computer-aided innovation methods and tools, and that new information
technologies, such as Semantic Web, Text and Data Mining, chaos theory and Evolutionary
Algorithms, will play an important role in the future of computer-aided innovation. If this
prediction is right, one could ask the question of what impact such tools will have on the way
humans solve problems in the future? As the tools in many ways shape the way we innovate,
adapting our product development processes to the tools would be necessary to utilize the its
full potential.
Since GAs has shown to be the most flexible and applicable algorithm of the metaheuristics in
several fields of product development as well as other areas, it might become central in
optimization and generation of solutions in future CAI systems, which would be synonymous
with advanced GSs. These systems would aid innovation and solve problems in a manner more
like natural evolution. Hence, to utilize its potential, it is sensible that humans should adapt a
problem-solving strategy that more resembles the tool, and consequentially natural evolution.

2.1.4 Why genetic algorithms is an interesting analogy for innovation

Humans have always been in pursuit of finding better ways of generating ideas and translating
them into the real world to solve problems. The generation and translation that in novel ways
creates value could be regarded as the innovative part of engineering. Even though engineers
have become increasingly better at solving problems trough out the centuries, with a growing
body of knowledge, more advanced tools and innovative methods - there is still an actor that in
many ways is a far superior problem solver and innovator, namely nature itself. The question
then is obvious; can we utilize nature’s ingenuity in problem solving to benefit our own?
GAs was developed from this intuition, and as of now it is the best approximation of nature’s
way of solving problems that we have translated into computational methods. As described
earlier, using GAs and other optimization techniques has led to novel solutions, so the answer
to the question stated above would be yes. However, the broad view is that these ways of
mimicking nature can be used as tools to help us solve problems, rather than ways in which to
solve problems, or stated in another way; using nature’s abilities rather than adopting them.

 22

Another question then arises; can we become better innovators by solving problems in a
manner that is more in line with nature?
There are numerous design theories and methodologies that try to describe and create ways to
innovate and solve problems, but few draws an analogy to natural evolution. This could be
because a connection between human and nature’s way of innovating cannot be drawn, or that
if it is possible, doing so does not create a better framework for solving problems than the
existing methodologies based directly on human and organizational innovation. However, if
there exist a resemblance between human and natural innovation, it should also be possible to
draw analogy between human innovation and GAs, as GA mimic nature’s most essential
building blocks for solving problems.
This analogy between human innovation and GA was made by Goldberg in 1991, one of the
most cited authors in the Evolutionary Algorithm community. From having used the metaphor
of human innovation in his writing about GA from the 1980s, he made this connection explicit
in his book Genetic Algorithms as a Computational Theory of Conceptual Design. In the book, he
states that few studies have examined the eureka moment and the mental computations that
get us them; yet, surely it is the shroud of mystery surrounding the processes of discovery,
innovation, and invention that most urgently needs to be lifted if we are to get beyond the
current witches brew. An exception to this state of affairs may be found in the literature of
genetic algorithms (GAs) [1,2], although the connection of this body of work to design theory
has been poorly understood, if recognized at all. (D. E. Goldberg 1991).
Goldberg later saw this connection as the interplay between thinking of innovation as a model
of what GAs do and thinking of GAs as a model of what innovation is (David E Goldberg 2000).
He stated that the latter is the most important intuition, arguing that if this connection holds,
what we really are doing when constructing better GAs is creating a computational model of
the innovative processes of humans. Several authors have followed this intuition with the
development of better GAs directly, but also in connection with computer aided innovation and
design theory as well as many other topics.
In the area of using GA in computer aided innovation, Gábor and Ekártab (2003) states that
although the basic aim is to provide a solid basis for building computer programs to
automatize—or at least assist—the design process, modeling has contributed to a better
understanding of what design is. Similar claims have been made regarding the development of
design methodologies; there is no doubt that much resemblance exists between evolutionary
design [D. E. Goldberg, 2003; P. Bentley, 1999] and the design methodologies described in
engineering literature [Wood, K.L. and Otto, K.N., 1999], so why not thrive on it more
extensively in the modern product development processes? (Stanković, et al. 2006). Though
Goldberg’s intuition exemplifies maybe the earliest and strongest connection between GA and
innovation, he only makes this link to certain parts of the innovation process. However, other
authors have also made the jump from human problem solving and design theories and
methodologies to natural evolution and GA in additional areas of innovation. The actual
similarities will be elaborated in section section 3.

Searching for a design theory that draws on the similarities of innovative processes of human
thinking and GAs is therefore interesting for two reasons. First, as suggested earlier, the

 23

implementation of new tools drastically change the ways in which human processes of
innovation are conducted. Understanding similarities between the building blocks of GD and
human problem solving is therefore essential to be able to utilize these tools to the fullest. This
especially applies because GD seems to have such a broad usage that in the future may
permeate the whole product development process, as well as its highly different nature from
existing tools and systems. Secondly, as claimed in this section, there exist similarities between
human innovation and GA. Understanding and adopting the mechanisms of GA that relates to
human innovation - and in that sense the ingenuity of nature - into our design theories and
methodologies could in it-self create more innovative product development processes.

2.1.5 Limitations of Genetic Algorithms and Generative Design

Although GD as presented seems to solve all problems, there is obviously limitations that hold
this technology back. Already, the huge amount of data power required to run advanced
optimizations is mentioned. Another huge difficulty is that of describing problems in order to
create good problem representations for the algorithm, leading to good solutions. Rothlauf
(2006) has done an extensive work for creating guidelines for creating good problem
representations for Genetic and Evolutionary Algorithms, but still stress that since no theory of
representations exists, the current design of proper representations is not based on theory, but
more a result of black art. He goes on to explain that the lack of existing theory not only hinders
a theory-guided design of new representations, but also results in problems when deciding
which of the different representations should be used for a specific optimization problem. If
constraints of a problem can be described as well-defined ranges and connections, the process
of constructing the representations may be simpler, but this is often not the case in real-world
problems. Further, all the operators of the GA have to be fine-tuned to create good results. The
rate at which they are applied and the choice of different type of operators highly affect the
performance of the algorithm for different problems (Gábor and Ekártab 2003).
The complexity and computation power requirements also grows extensively when moving
form optimizing single problems to several aspects of a design simultaneously. Although multi-
model optimization methods have been commercialized (such as multi model optimization in
Altair Hyperworks and Dassault System Isight), it is still in a crude state when it comes to
optimizing the totality of several parts of a design and all its interfaces.

2.2 Existing Generative Design methodologies for Product development

Few studies are conducted on the implementation of GD in product development in a broad
sense. The most comprehensive study, although not heavily cited, is to the author’s knowledge
by Nordin (2018). Nordin’s study of challenges in the industrial implementation of GD Systems,
is a case study on two different firms, one developing aesthetic products, and the other
technical products. The difficulty of finding articles describing the general implementation of

 24

generative design is something Nordin also explaines; Though many studies have been aimed at
validating either the technical feasibility or the usefulness of generative design systems, there is,
however, a lack of research on the practical implementation and adaptation in industry.
Nevertheless, he describes six points that seem to create issues for implementation ito
problem-solving of both artistic and technical nature:

1: Moving from automation to generation
2: Moving from designing a product to designing an algorithm
3: Knowing what to automate
4: Replacing rules-of-thumb with measurable constraints and objectives
5: Avoiding loopholes in the constraint and objective formulations
6: Parameterizing and simplifying geometry

He explains that the main difficulty lies in the new systemization of parts in the design process
that GD demands, and that companies have a hard time adapting. Knowledge is also seen as an
important factor in Nordin’s research. In cases where commercial systems are not applicable,
the designer or engineer also have to understand programming to be able to optimize a
problem. Going from creating a design to describing the design in algorithmic terms is a huge
barrier for the design process. Nordin quotes the renowned computer scientists Donald Knuth
to explain this problem: “Meta-design is much more difficult than design; it’s easier to draw
something than to explain how to draw it”.

Some articles have been written on the importance of the interplay between CAD and the
generative systems methods, putting this in the core of the generative design approach. Krish
(2011) describes the the Generative Design Approach (GSM) as a theoretical framework for
based on the interplay between parametric modeling and evolutionary systems such as GA. He
states that the genotypes are CAD models and the phenotypes are instances of it, thus the
mapping between the two is direct, developing the model to implement generative design
directly onto CAD systems. Further he states 5 stages to implement the model:

1. Creating the genetic model.
2. Setting the initial envelope.
3. Generating designs.
4. Filtering phenotypes.
5. Selection & fine tuning.

Although the method has value, it is designed for a specific case; that of implementing
generative systems into parametric modelling. In a way, it therefor only creates generality for
this specific use.
The generative modelling technique called Knowledge based Integrated Design and evaluation
System (KIDS) developed by Volvo Aero (Isaksson 2003) also puts modeling in the center of
development, stating that the product model is the carrier of all product information, which the
design process is continuously improving. The model ascribes the generative ability of the
process to that of reusing past knowledge existing in the models in an in a way that can

 25

generate new products, reducing the level of abstraction in the early stages of design. However,
the methode is developed to reuse pas knowledge, it is more of a framework of storeing CAD
knowledge in a generative manner, so that the company can reuse parts and combination of
parts in creating similar products. The method also does not link this generating ability to
generative design or any optimization method, and is purely a model framework. A simple
example could be that of creating a connector between two different drain pipes; by
parametric representation dimensions and number of bolts, or reuse of old models from a
library, the connector can be generated rather than modelled. Similar frameworks can be
found in the field Knowledge Based Engineering (KBE), however the general focus of this
discipline is building knowledge based systems that can generate product options based on
previous work, and does not to a large degree use optimization in these process.

Figure 5: A graphic representation of the KBE system of Volvo Aero, utilized in the development different variants of jet engines.
Left: the three levels of KIDS. Right; the first level of this framework describing the modular representation of problems.

A more general view focused on the human part of the implementation is the constraint-based
human-machine cooperative interactive product design system proposed by Guoyan et al.
(2009). The model attempts to describe the interaction between human and computer
decision-making and operations, creating a human-machine cooperative system. In order to
create a this interface, Guoyan et al. describes three important factors:

- Developing visual interactive tool of optimization process.
- Saving variables, objective functions, constraint network and search strategy in model

library.
- Developing an interface between interactive tool of optimization process and model

library, so that the designer can modify model through the interactive interface.

Guoyan et al. also weight the importance of creating a flexible model so that variables,
constraints, objective functions and search strategies can be modified by the designer directly
by modifying the model, instead of numeric interaction. This allows the designer to respond to
feedback information of the system in the interface between human and computer, so that the
optimization process can be guided.

 26

Figure 6: constraint-based human-machine cooperative interactive product design system proposed by Guoyan et al. (2009)

3 Development of a Generativ Design Methodology

3.1 Angle of approach

There are numerous design theories and methodologies that conceptualize and categorize
design activities in different ways, as the activities depends on the viewpoint and level of
abstraction (Sim and Duffy 2003). A ground is therefore needed to set the level of abstraction
and angle in a meaningful way.
With the notion that both human problem solving and GD can both benefit and supplement
each other, the strategy is to approach a methodical framework that fits both human
innovation processes and the requirements and operators of GD. The starting point is therefore
to compare the workings of GA to psychological theories of mental activities in human problem
solving. While using innovation for explaining working mechanisms of GAs is very useful, as a
design metaphor it poses difficulty as the processes of innovation are themselves not well
understood (Sastry, Goldberg, and Kendall 2014). Starting with comparing GA to the psychology
of human problem solving to create an angel of approach might therefore be a better than
comparing GA directly to existing design theories or methodologies (DTM). Even though the
mechanisms of human problem solving also is of somewhat mystic nature, it is more defined in
simple terms in literature. One could also say that innovation simply is problem solving done in
“novel ways” that creates value, and that a “good” design theory for product development is a
mindset for solving problems in a way that fosters innovation. Thus, the comparison of the
steps and activities in GA and human problem solving will be used as a ground for determining
the level of abstraction and angle of approach.

 27

After a general framework and level of abstraction is created in this manner, the next step will
be to compare GA to acknowledged DTM in literature within the purposed framework to find
concepts in product development that show some coherence for both GA and the psychology
of human problem-solving. DTM can be defined as methodologies and theories created to
include one or more areas to manage design, such as design knowledge, design information,
design process, resources, and design complexity (Tomiyama et al. 2009). Many of these
theories overlap in several areas, as they all try to create models and tools that can aid the
design process. However, they often differ in what is regarded as the central focus, and some
only describe a certain area of the process. Comparing GA to DTM through the proposed
framework is consequently done to find areas and different points of focus of DTM in general
that should be emphasized in a design theory for implementing GD in new product
development.
Covering all parts of all acknowledged theories and methodologies to find coherence in this way
is out of scope of this paper, but parts of some theories and methodologies have been selected
as they seem to bear resemblance with the workings of GA. It is important to state that the
comparison of DTM to GA in this manner is not done to reinforce the notion of GA as a theory
of human innovation, as one could always find similarities when comparing two such broad
fields. The reason for finding coherence is simply done to find ideas from DTM that can aid the
implementation of GD in new product development, based on the two notions explained; that
GA as a theory of human innovation might be useful, and that the implementation new tools in
product development will impact the human problem-slowing process in a manner that
resembles the workings of the tool itself.
Finally, in formulating a methodology, it is important to bear in mind that there is no point in
creating a theory without the intention to use it. Tomiyama et al. (2009) highlights two
important problems that was in focus when Hans Grabowski established the Universal Design
Theory in 1990s; the problem of universality and the problem of applicability in industrial
practices. These aspects need to be considered carefully throughout the development for of the
methodology to be helpful in any way.

3.2 Creating a framework; comparing GA and human problem-solving

As stated in the previous section, the effort of finding common ground between GA and human
innovation starts with the comparison of the sequential steps and activities of GA to the mental
steps of and activities human problem solving. Steinberg and Davidson (2003) states that
several psychologists have described the problem-solving process in terms of a cycle [Bransford
& Stein, 1993; Hayes, 1989; Sternberg, 1986], and that humans goes through mental stages in
an iterative cycle to solve problems:

1. Recognize or identify the problem.
2. Define and represent the problem mentally.
3. Develop a solution strategy.
4. Organize his or her knowledge about the problem.
5. Allocate mental and physical resources for solving the problem.

 28

6. Monitor his or her progress toward the goal.
7. Evaluate the solution for accuracy.

They point out that the cycle is descriptive, and that these stages are not necessarily sequential
for all problem-solving processes. The iteration are necessary because the solution to one
problem gives rise to another problem, which then again needs to be solved through the
problem-solving cycle (Steinberg and Davidson 2003). Hayes (2013), one of the authors referred
to by Steinberg and Davidson describes the problem-solving process more in terms of the
activities a person goes through rather his or her mental processes:

1. Finding the problem; recognizing that there is a problem to be solved,
2. Representing the problem; understanding the nature of the gap to be crossed,
3. Planning the solution; choosing a method for crossing the gap,
4. Carrying out the plan,
5. Evaluating the solution; asking “how good is the result?” once the plan is carried out,
and
6. Consolidating gains; learning from the experience of solving

Even though the steps of these two explanations of human problem solving differ in some
points, they share a similar understanding. How can these ways of breaking down the problem-
solving process relate to the way GA works? As described in section 7.1.2, the GA goes through
a series of steps that are iterated to generate a solution. To give the reader a way to compare,
the steps described by Sastry, Goldberg, and Kendall (2014) are briefly summarized again:

1. Initialization: An initial population of solutions is created randomly or with some
knowledge of the domain.
2. Evaluation: The initial population or offspring population is evaluated against fitness
criteria.
3. Selection: Copies of solutions of higher fitness are reproduced to enforce a survival-of-
the-fittest mechanism to the population.
4. Recombination: Two or more solutions are selected as parents and combined with
crossover to create new offspring of solutions
5. Mutation: Single solutions are selected and small changes are made, adjusting the
solution in its vicinity.
6. Replacement: The offspring solutions created by step 3-5 are put back into the
population, and different methods to decrease the old generation are implemented.
7. Repeat: the steps from 2–6 are iterated until the defined termination criteria are met.

These steps are the very basic of the conventional GA. Variants of GA may exclude or have
additional steps in the sequence as well as other configurations of ordering the steps.
Seeing a connection between the two ways of solving problems is difficult with these
simplifications on a high level, but the author would argue that similarities can be drawn. In the
following paragraphs, the basic ideas creating the ground for these similarities will be explained
briefly, and will be elaborated in the following sections by relating design theories and

 29

methodologies to GA. The similarities drawn are based on four notions with the aim to cover
both the human and GA problem-solving process; that of Representation, Thinking, Evaluation
and Influence:

First, in solving a problem, both humans and GA needs to understand the problem itself. Before
the initialization of the first population of the GA, the problem needs to be described in
algorithmic terms in such a way that makes it possible for the algorithm to represent the first
population, making recombination and mutation is possible. As Gábor and Ekártab (2003)
states; when designing a genetic algorithm for a given problem, choosing the representation
(i.e. constructing the chromosome) is the first step. Without representations, no use of GEAs is
possible (Rothlauf 2006). In one sense, this is true for human thinking as well; to solve a
problem a mental representation is required to understand it, as well as a way of organizing
knowledge about the problem to create clarity, such as visualizing its parts. On the basis of this
view, one could say that there must exist some form of representation of the problem and
solutions, as well as knowledge and its relations to be able to approach it.
Secondly, in order solve a problem there must be some form of thinking that generates new
solutions or ideas for solving the problem. The “thinking” that generates solutions in GA is the
process of selecting solutions and applying recombination or mutation. In the same manner
humans must develop a strategy, and allocate mental and physical resources for solving the
problem (Steinberg and Davidson 2003). As will be elaborated later it is the connection
between these “thinking” operators of GA and human thinking that created the basis for
Goldberg’s intuition of GA as a model for human innovation.

Third, both human and GA problem solving needs a way of evaluating the fitness of a proposed
solution to the problem. Without evaluation, there is simply no means of measuring progress or
how good a solution is. GA ensures this by using a fitness function, or functions, that evaluates
how well the solution solves the problem, as well as evaluating by comparing it to the
population of existing solutions. A person must in the same manner find a way to monitor his or
her progress toward the goal (Steinberg and Davidson 2003), by evaluating the fitness of the a
solution to the problem. In addition, measuring the solution against the population of similar
existing solutions is in the same way central to measure progress.

Fourth, after a solution is evaluated, new knowledge is created in relation to the problem. The
recognition of new knowledge, as well as the new solution itself creates a ground for
determining an influence on the old representation. This influence is then what regulates how
one should change the former representation, allowing the process of solving the problem to
begin a new iteration, and create new solutions with an updated body of knowledge and
potential solutions to the problem. GA determines this influence by manipulating the
population with a certain rate reproduction and replacement, creating more of the fit solutions
and less of the weak. The next generation will then develop with a better ground for creating
good solutions. Similarly, a human must consolidate the gains by learning from the experience
of solving (Hayes 2013), and use this to update the body of knowledge and solutions creating a
ground for a new.

 30

The basic ground for the methodology is then the iteration of these four steps;

1. Create a representation of the problem; the solutions, knowledge, objectives and its
relations.

2. Utilize the representation to guide the thinking required to generate new solutions.
3. Evaluate the new solutions to determine fitness and gain new knowledge.
4. Recognize and determine what influence the new solutions and knowledge should have

on the old representation, leading to an iteration by creating a new representation in
the first point.

3.3 Comparing GA to DTM within the framework

3.3.1 Representation
In creating a representation of a problem, two aspects seem to be similar for GA and human
problem solving. The first is the means of decomposing the problem into smaller sub problems
in order to create a representation. The second is the link between knowledge and solution
relationship in human problem solving, and genotype and phenotype relationship in GA. First,
the similarities of decomposition will be discussed.

3.3.1.1 Decomposition similarities
When using Genetic and Evolutionary Algorithms for optimization purposes, representations are
required for encoding potential solutions (Rothlauf 2006). In a way, representing the problem is
the same as representing a solution, or at least the possibility of a solution. The goal of
representation is then to create a problem-solution abstraction. Decomposing a problem in into
smaller sub-problems and understanding the relations is therefore crucial for the construction
of a working GA, as these sub-problems are the basis for writing the different genes of the
algorithm. The relationships between these sub-problems are of equal importance, as they
determine the laws of how the algorithm can combine the genes to create solutions. It is then
only by this problem decomposition into smaller sub-problems, solving them separately and
combining them to form different solutions, that the algorithm can evolve better solutions
(Rothlauf 2006).
The analogy to human intuition is apparent, as humans tend to decompose problems into
smaller more manageable parts that are easier to solve. This intuition has created a whole field
of study in engineering, namely Systems Engineering, as well as several design theories and
methodologies for breaking down a problem-solution abstraction into sub-problems and its
relations.

 31

One of the widely used methodologies is the Design Structure Matrix (DSM) where elements
denote individual components of a product and off-diagonal numbers (or marks) represent
interactions between the components (Tomiyama et al. 2009). This guides the product
development to decompose and understand the elements of the proposed solution to a
problem and the interactions between the elements in a similar manner to that of GA. The
Contact and Channel Model (C&CM) is another methodology that decompose a solution into
building blocks to create an integrated model; that of Working Surface Pairs (WPS) and Channel
and Support Structures (CSS). The method is created to guide the designer in representing the
system coherently by understanding the functions, shapes and its relations to the environment,
with an emphasis on the interfaces between parts (T. Tomiyama et al. 2009). The
decomposition into smaller sub-problems is also imperative in organizational environments, as
different backgrounds and competences are needed in different areas of a larger problem.
Decomposition could really be seen as the cornerstone of human’s ability to solve large
problems.

Nevertheless, in representing a problem to be solved by a GA, simply describing the sub-
problems and relations is often not sufficient. It could be enough if the problem for example is
to optimize an assembly choosing from a range of fixed parts for fixed positions, but often the
sub-problems are more complicated, such as finding an optimal topology. The algorithm need a
defined space in witch to operate, hence the representation must be described in such a
manner that a range can be defined. Understanding the constraints of the problem is then
essential for this problem decomposition in GA, as the constraints set the frames in which the
algorithms can work within (Gábor and Ekártab 2003). An example could be that of optimizing a
bridge; one part of the representation could determine the length and number of cables used,
while another part determines the thickness of the cables. Thus, the constraints of the problem
is needed in order to find valuable solutions, as one probably does not want a million cables of
1mm diameter, or one cable of 10m diameter to be part of the solution space. Setting the
constraints right is then important to determine the solution space to explore and the allowed
combination of sub-parts; if the representation is very general, the space could be too large,
resulting in too many impossible, spiky or unusual shapes being generated, and the probability
of finding valid shapes can be quite low. …On the other hand, limiting the size of the search
space or access to some of its regions by the genetic representation may hinder innovation in
the GA process (Gábor and Ekártab 2003). It is important here to differentiate between the
representations of the problem itself, defined by the constraints, and the representations
created within the constraints as genotypic solutions, defined by points within the constraints.

Figure 9: Representation of problem, here as
problem-tree where each part or problem consist
of independent sub-parts or problems. For both
GA and human problem-solving, creating a
problem representation and understanding its
relations to knowledge and information is
crucial. This creates the Genotype Space for GA
which corresponds to Knowledge space in human
problem-solving. For humans, this space could
also contain information and resting knowledge
that are not used in the current representation.

 32

In a similar manner for human problem-solving, the design process can be viewed as a
constraint satisfaction problem: given constraints on functionality, structure, and
manufacturability, produce a detailed structural description of an artifact (Sapossnek and
Center 1991). Often, the constraints handling of problems is embedded only as a sub part of
many design theories and methodologies, but there are also ones that put this notion in the
center of the reasoning, such as Parametric Design Thinking (Bhooshan 2017) and Constraint-
Based Systems Design like DOC (Design Objectives and Constraint). A constraint-based design
system is defined by Sapossnek and Center (1991) as a system capable of explicitly representing
and operating upon the relationships (explicit and implicit, given, derived and assumed)
between the aspects (abstract and concrete) of an artifact relating to its life-cycle concerns
(including functionality, structure, manufacturability and serviceability) for the purpose of
maintaining the truth values of the relationships. They also highlight the difference between
parametric design systems and constraint systems, stating that the latter separate the problem
statement from the solution while the first do not. Another theory where constraints is a major
part of the reasoning is Set-Based Design. This connection of this theory and GA will be
described further with the notion of influence. Consequentially, understanding and defining the
problem constraints, and utilizing tools for decomposing the problem into smaller sub-
problems and their relations to create a representation is an essential part of both the human
and GA problem solving process.

These, and many other similar methodologies in the field of systems engineering are developed
to aid the decomposition, but often do not explain what kind of decomposition will yield the
best solution. An exception of this is the theory of Axiomatic Design, where this problem is a
central idea. An important part of the theory is its two axioms that states that a good design is
one that have (Tomiyama et al. 2009):

- Maximum independence of the functional elements.
- Minimum information content.

In this way, it can guide the designer to decompose the problem in such a way that the
elements of the design is easy to change in order to create new solutions, as well as guiding the
creation of a solution that is simple but effective. Here another interesting analogy to the
decomposition of GA can be drawn. John Holland, an early pioneer in the field of evolutionary
computation, called effective groups of sub-solutions the building blocks of GA. He stated in the
1970s that the basic idea of GAs is that they: (1) implicitly identify building blocks or
subassemblies of good solutions and (2) recombine different subassemblies to form very high
performance solutions (David E Goldberg 2000). Holland used the term “building blocks” to
describe highly fit schemata. A schema basically is a way of creating a group or subset of
solutions or sub-solutions with similar genes; two sub-solutions of a problem could be
described with the binary alphabet as the bit-strings (111) and (110), a schema containing these
solutions would be the bit-string (11*), where * denotes a “don’t care” symbol. In the same way
that GA creates good solutions by combining highly fit sub-solutions, good solution strategies
are created by combining highly fit schemata of low order. The alphabet itself relates to the

 33

information content of the representation, as a long alphabet would give more possibilities to
each of the positions in the string and thus adding complexity. Goldberg used the notion of
building blocks and alphabet to propose two principles for constructing good representations
for GAs (Rothlauf 2006):

- Principle of meaningful building blocks: The schemata should be short, of low order, and
relatively unrelated to schemata over other fixed positions.

- Principle of minimal alphabets: The alphabet of the encoding should be as small as
possible while still allowing a natural representation of solutions.

To the authors knowledge, the similarities between Goldbergs principles and Axiomatic Design
Theory have not been drawn before, but it is clear that there exist some sort of resemblance.
One could therefore argue that these ideas from Axiomatic Design could be a guiding principle
of problem decomposition that benefits both the human and algorithm.

3.3.1.2 Solution-knowledge and genotype-phenotype similarities
The second similarity between the representation in GA and human problem solving is that of
dividing actual solutions from the knowledge it exists of. These could be viewed as different
spaces, and for GA these spaces are called search space and solution space. The search space is
the space of coded solutions, i.e. genotypes or chromosomes consisting of genes. The solution
space is the space of actual solutions, i.e. phenotypes. Any genotype must be transformed into
the corresponding phenotype before its fitness is evaluated (Gábor and Ekártab 2003). The
search space of GA contains all the genetic material that builds up the solutions and possible
solutions, and could therefore be viewed as a space of knowledge or information that every
solution is constructed from. With direct analogy between GA and nature, the DNA of a person
contains knowledge and information regarding the person, but is not the actual person. To
evaluate how well the person can run, the DNA is therefore of little use. In the same manner, to
evaluate a solution generated from GA, the phenotype must be used. An example of the
genotype could be the numerical values of positions for all the nodes in a 3D representation of
a car, while the phenotype is the 3D representation itself. It is impossible to see the aesthetics
of the car by looking at the numerical positions.

Figure 10: A distinction is made between
the Knowledge/Genotype Space (Figure 1),
and the Solution/Phenotype space,
containing the solutions created by the
representations in knowledge/Genotype
Space. For humans, this space could also
contain ideas and concepts.

 34

Figure 11: Different solutions in the
Solution/Phenotype Space are created by
using different combinations of building
blocks in the Knowledge/Genotype space.
Here the representation is shown as a tree
structure with the possibility to map two
different solutions marked green and blue.
It is important to note that only actual
solutions can be assembled in GA, while for
humans, information or knowledge can
map to ideas or concepts.

There are several design theories and methodologies that also stress the importance of this
division. General Design Theory (GDT) defines an entity as a concrete existing object, and entity
concept as its abstract, mental impression conceived by a human being. (Tomiyama et al. 2009).
GDT states tree axioms to define the notion of entity, entity concept and their relation:

- Axiom 1 (Axiom of recognition): Any entity can be recognized or described by attributes
and/or other abstract concepts.

- Axiom 2 (Axiom of correspondence): The entity set S0 and the set of entity concept S
have one-to-one correspondence.

- Axiom 3 (Axiom of operation): The set of abstract concept is a topology of the set of
entity concept.

Although GA have the possibility to map in different ways than one-to-one (Gen and Cheng
2000 p. 6), the idea of separating the actual from the abstract is still the same as for GA. In
another design theory, the Characteristics-Properties Modeling of Weber, the distinction
between characteristics and properties is put into the center of reasoning about product
development/design (Tomiyama et al. 2009). The characteristics are the things that describe the
product and that can be determined or influenced directly, such as shape, materials,
dimensions and surfaces. Properties on the other hand cannot be influenced directly, as they
relate to the behavior of the product, qualities such as function, safety, weight, reliability,
aesthetic properties, assimilability, environmental friendliness, manufacturability, cost, etc,
(Tomiyama et al. 2009). Both of these theories then highlight the importance of separating
knowledge and information that defines a product or solution from the product or solution
itself, a distinction that is a core of how GA works; when comparing the abilities of different
individuals we must judge them on the level of the phenotype. However, when it comes to
reproduction we must view individuals on the level of the genotype (Rothlauf 2006). Based on
these similarities, making a clear distinction between the solution space and knowledge space
of the product development is seen as central.

 35

3.3.2 Thinking
Fundamental to Goldbergs view of GA as a theory for human innovation is the comparison
between the “thinking” operators of GA (selection in combination with mutation and
recombination), to humans mental process of continuous improvement and cross-fertilizing
types innovation (David E Goldberg 2000). Goldberg describes mutation as a form of genetic
hill-climbing mechanism, which does a random walk in the neighborhood of a solution by
creating a similar solution where one or a few parts of the genes are changed. He argues that
humans do this naturally, linking it to the continuous improvement in total quality management
and the Japanese method kaizen, meaning “change for better”. To explain this way of
innovating, Goldberg quotes the British author and politician Bulwer-Lytton: “Invention is
nothing more than a fine deviation from, or enlargement on a fine model. Imitation, if noble and
general, insures the best hope of originality.” (David E Goldberg 2000). Mutation can then be
described as the mapping between the solution and knowledge space exploring the periphery
of a solution, relating to the mental ability of remapping primitives.
Though mutation is a powerful tool for improving solutions, without the ability to do an
intelligent jump to test another strategy, the solution will often be stuck in a local optima. This
problem is solved by the recombination operator that are able to combine solutions that are far
away from each other in the solution space to create originality. For humans, this is the creative
ability of seeing sets of attributes or features in one context, and combining them with
attributes or features from another to create a new way of solving a problem. Goldberg quotes
the French mathematician J. Hadamard to explain this type off innovative thinking: “We shall
see a little later that the possibility of imputing discovery to pure chance is already excluded…
Indeed, it is obvious that the invention or discovery, be it in mathematics or anywhere else,
takes place by combining ideas.”(David E Goldberg 2000). Recombination can then be described
as the combination of solutions or knowledge by moving in the widths of the solution or
knowledge space, relating to the mental ability of doing a metaphorical transfer. In classifying
DTM that guides the generation of new design solutions, Tomiyama (2006) explains tree
strategies to be employed, emphasizing that theories can be denoted several strategies:

- Creativity-based design: Emergent synthesis (GA, simulated annealing, ANN, and
learning) and Intuitive approaches (association, analogy, stimulation methods,
brainstorming, bio-inspired design)

- Combination-based design: Systematic approaches (Pahl & Beitz)
- Modification-based design: Parametric design, Case-based reasoning, shape grammar,

modification rules TRIZ Emergent synthesis

Combination and modification based design here directly relates to the notions of metaphorical
transfer and remapping primitives described, and are in the same way strategies for moving in
the widths and between the solution and knowledge space. However, creativity-based design is
seen as a strategy on its own, referred to as a new design solution generated as a new element
of the entity set. For this to happen, new knowledge must be created, and few theories can
rationally explain it in a general framework (Tomiyama 2006). Tomiyama relates GA to the
creativity based design strategy, but even though the solutions created by GA in some cases
seem brilliantly creative and far superior to what a human could develop, the algorithm is still

 36

working within constraints determined by the knowledge and solution space, and as of yet it
cannot performer magic. Seeing that GA creates novelty by using the two simple strategies of
recombination and mutation, is the category of Creativity-based design then just the use of
combination and/or modification in creative ways? One could also argue that GA does not
belong to this category, as radical innovation requires an expansion of the knowledge and
solution space by giving the algorithm completely new information to work, and this act still
rest highly on human creativity taking a leap out of the current representation and body of
knowledge. An example could be that of creating a tire for snowy conditions; the GA may find
brilliant solutions for the grooves in the tire surface, but will newer create caterpillar tracks if
this possibility does not exist within the constraints of the chromosomal representation. Still,
the notion that good product development needs to employ a balance of combination and
modification based strategies holds weather or not one classifies the combination of these used
in novel ways as creativity-based design.

Figure 12: Mutation or Modification-based
design can be seen as mapping between the
knowledge/Genotype Space and the
Solution/Phenotype Space, modifying parts of a
solution. Crossover/Combination-based design
can be seen as movement in the widths of the
Knowledge/Genotype Space or the
Solution/Phenotype Space, combining solutions
or knowledge.

 37

3.3.3 Evaluation
For both humans and GA, it is strictly necessary to have a means of evaluating the fitness of a
proposed solution to a problem in order to know what to actually solve. In that sense, the
fitness criteria are what make a problem solvable, as it points out what direction to go in the
process. In some cases, the fitness is easily determined and singular, or is even the basis for the
problem in the first place. A predetermined fitness criteria could for instance be given by using
the goal oriented Design for X methodology, where X denotes a quality one wants to optimize,
for example weight. The fitness could then easily be evaluated by measuring the weight of
solutions. However, a single fitness criteria is often not sufficient for evaluating a solution in
new product development, and even the Design for X strategy may lead to multiple fitness
criteria originating the first (for instance Design for Aesthetics). In evaluating these types of
multi-objective problems, various design decision-making methods are developed to aid in this
process such as Multi-Attribute Decision Making (MADM). Other methodologies aid the
designer in the creation of the fitness criteria themselves and its relations to the product, such
as the initial step in Quality Function Deployment, Voice of Costumers, witch maps the
costumer’s requirements into the structure and components of the product. (Tomiyama et al.
2009). The variety of decision-making tools is then developed not only for evaluating the fitness
of solutions and concepts for some criteria, but also aid in representing the problem-solution
abstraction itself.

Both these aspects are important for the construction of GA as well. The fitness function or
functions of a GA have two parts that relate to the phenotype space and genotype space. The
first part maps the genotypic space Φg to the phenotypic space Φp, and the second maps Φp to
the fitness space R (Rothlauf 2006). In constructing a representation, one therefore
simultaneously construct the fitness space in order to evaluate solutions. The fitness space is
thus a part of the representation of the problem although it constitutes as an evaluation
process of the solutions when the algorithm is running. The initial step of problem-solution
abstraction is therefore the creation of a problem representation in genotype space that maps
solutions well onto the phenotype space, and a fitness function or functions that map solutions
in phenotype space well onto the fitness space.
However, knowledge about the fitness of sub-solutions in the genotype space is gained through
this phenotype evaluation as well, and actually serves as a strategy for evolving better solutions
by combining highly fit, low order schemata: Instead of building high-performance strings by
trying every conceivable combination, we construct better and better strings from the best
partial solutions of past samplings (David Edward Goldberg 1989).
Evaluating both solutions and sub-solutions throughout the process, as well as utilizing the
evaluation criteria to guide how the problem is represented is thus seen as an important factors
in the methodology.
As mentioned, product development often involves multi objective problems, and frequently
these objectives are also conflicting. One might create a terrific vacuum cleaner that cleans the
floor like no other on the market, but if four people are needed to lift it up the stairs, the
solution might not be the ideal household product. These kinds of problems are in the GA field
handled with the special class called Multi Objective Genetic Algorithms (MOGA). The
conflicting objectives are in GA often calculated and visualized as a surface called the Pareto

 38

optimal frontier, a theory originally created for economics, but later used in other fields such as
engineering and decision making. This front could for instance be explained by the acceleration
of a car: the frictional grip at the wheels are proportional with the weight of the car, and thus
with higher weight the car can apply more torque before the wheels slip. Having a huge engine
would with this knowledge be a smart strategy, but since force required to create momentum
forward is also proportional to the weight the problem is not so simple. The possible
combinations of weight vs. motor power would then trace out a curve where the best
accelerating cars would be the ones closest to the curve. The Pareto front could be a curve, a
plane or multidimensional planes that describe the frontier of various solutions to a problem
with different combination of attributes. The goal of a Pareto is to find and maintain a
representative sampling of solutions on the Pareto front. Hence, the term “optimize” is the
reference for finding a solution which would give the values of all the objective functions an
“acceptable trade off” to the designer (Leon 2009). The goal of the MOGA is then to close in on
the Pareto front to find the best solutions while keeping trade-off open. This is an important
factor in product development, as the goal is often not completely clear since costumer
requirements can depend on the outcome of solutions, as well as change throughout the
process. Allowing this is then a way of holding an openness to the goals within a structured
fitness space. However, some new or modified objectives requires a reconstruction of the
fitness criteria of the GA, and this is more difficult to implement into the iteration, although
dynamic fitness landscapes are possible (Richter 2010). Nevertheless, having a way of
evaluating not only the solutions and knowledge, but also the goals and fitness criteria
throughout the problem-solving process is central to both the flexibility of product
development and GA.

Further, central to the way GA close in on more pareto optimal solutions is the highly iterative
approach of evaluating each generation. Still, most decision-making tools are designed to
evaluate a single step in the development. The tool could of course be used in an iterative way,
but this is often not embedded in the methodology. The Total Design of Pugh was introduced as
an iterative approach to the decision-making process of product development, where concepts
are continuously evaluated through a Concept Selection Matrix or Pugh Matrix based on
different criteria. This was a unique contribution to the field, as it not only supports creation of
conceptual solutions, but also concept selection of the total system architecture, subsystems

Figure 13: are mapped onto the Fitness
Space, here shown as a pareto front.
Solutions that are closer to the pareto front
are regarded as better, while the other side
of the pareto front is infeasible. Solutions
with a high x-value would be better in one
objective (such as weight), while those with
a high y-value would be better in another
(such as motor power). The pareto front
could for instance describe the theoretical
limit of car acceleration .

 39

and individual components. (Tomiyama et al. 2009). Hence, iterative decision models like this
better resembles the evaluation and fitness of GA.

Altogether, three iterative notions of evaluation is then seen as significant regarding both GA
and human problem solving, the means of iteratively evaluating; the evaluation criteria itself,
solutions in the phenotype/solution space, and sub-solutions and knowledge in
genotype/knowledge space. Finally, the interrelationship between representation and fitness
criteria that allows well-organized mapping from knowledge/genotype space to
solution/phenotype space and on to the fitness space is regarded as important in constructing
the representation of the problem.

3.3.4 Influence
After thinking has led to new solutions and sub solutions, and the evaluation process has been
applied to determine their fitness (as well as the fitness criteria themselves), new knowledge
has come to the table. This brings up the question of what to do with the new knowledge and
solutions gained this way, and to determine what influence this should have on the former
understanding of the problem, potential solutions and the body of knowledge. A GA determines
this influence by altering the population of solutions with the Selection and Replacement
operators. The rate at which these operators are applied determines how the algorithms
evolve. Gábor and Ekártab (2003) states that this evolution is an emergent property of artificial
evolutionary systems. The computer is only told to (1) maintain a population of solutions, (2)
allow the fitter individuals to reproduce, and (3) let the less fit individuals die off. Selection
makes copies of the favorable solutions to enforce the survivor-of-the-fittest strategy of
evolution. The selection pressure determines how many new copies are made, and is a highly
important parameter for evolving good solutions. In a similar manner that the mutation and
recombination rate adjust the convergence and exploration of finding new solutions, the
selection pressure adjusts the overall base for convergence and exploration for the population
evolution as a whole. There are several types of selection methods, but in general the rate at
which they are applied controls the convergence. A strong selection pressure may cause the
algorithm to converge to a local optimum, while a low selection pressure may cause the GA to
random results that differ from one run to another (Jebari 2013). The replacement operator
works in similar ways on the old population by determining the faith of the parent solutions. It
controls the population diversity by deciding the lifetime and distribution of former
generations, so in that sense it is the Grim Reaper of the algorithm. There are several types of
replacement strategies, like generational; that removes the solutions in terms of their
generational age, or incremental/steady state; that removes the worst solutions in general
(Vavak and Fogarty 1996). Overall, replacement is then needed to keep the algorithm form
overflowing of solutions, as the selection, mutation and recombination operators work with the
population as basis. The selection and replacement then controls the evolution of the process,
and creates the emergent quality of the growing population. Goldberg (2000) refers to this
emergent quality by saying that the wisdom is in the population, and states that the population
is not only the original source of good notions, but it is also the testing ground for being sure

 40

that the best notions are indeed the best. Moreover, the population is where we “break some
eggs to make an omelette,” the place where we fail so that we may ultimately succeed.
Regarding GA on the notion of influence, it is important here to note the difference between
changing the representations of solutions i.e. the genotype population, and changing the
problem representation itself i.e. the constraints and objective functions that describe the
possible genotypes. The latter is usually held constant in the process of solving a problem
(although there exist exceptions, like Constrain Self-Adaptive Genetic Algorithms (T. K. Singh
2016)). Nevertheless, iterating on the problem representation itself outside the actual runs of
the algorithm would normally be needed if one wants to construct an effective algorithm. The
idea of having the reconstruction of the problem representation and fitness criteria within the
act of influence therefore makes sense.

Determining what influence new solutions and knowledge should have on the former
representation of the problem to move forward in product development is also highly
important for directing the human problem-solving process. The basic idea drawn from GA is
then to let the problem representation, and the solutions and knowledge within to evolve as a
complex system through iterations, continuously creating new ground to grow from for every
new generation. The idea of thinking of product development as an emergent process of
“growing solutions” rather than “solving problems” is more unconventional when comparing to
existing design theories and methodologies, but some appear to regard this view as central.
Complex Systems Thinking is a theory that directly refers to this emergent quality, it stresses
that in the development of radical innovations, a system cannot be described deterministically,
but only as a complex, evolutionary system where new structures can be created. The points of
qualitative change are regarded as instabilities, or bifurcations in the solution space, created
when new aspects or elements appear and grow in the system, re-structuring it, invading new
dimensions and leading to emergent properties and attributes (Rose-Anderssen et al. 2005).
Although not referring to emergence or evolution in its origins, the Set-Based Design theory is
another approach that bears resemblance with how GA evolves generations. A known paradox
in product development is that it is often necessary to explore the low levels of solutions to
create knowledge that will result in good decisions in the preliminary phases of development,
but the lower levels can only be explored when the preliminary decisions are already made.
This circular dependency can be broken by allowing the preliminary decisions to be stated as
sets, or constraints, so that lower levels in the development can create knowledge. Iterating
this approach will give more information to the higher levels of the problem, giving a better
understanding of the low-level solutions, which again create more accurate knowledge at
higher levels, further defining possible solutions. This is the basis for a Set-Based approach,
which shrinks the possibility for premature decisions, reducing rework as well as the possibility
of project termination. The nature of exploring by holding a larger solution space throughout
the process also creates a more flexible approach that better can meet changes in late process
(Singer, Doerry, and Buckley 2009). In this way, Set-Based design is focused on how the solution
space evolves throughout the process in a similar manner to that of selection and replacement
of GA by determining the influence of new knowledge and solutions of each generation and
level of detail; if the process is to divergent, one may not be able to create more detailed
solutions, while if the process is to convergent, it might lead to premature solutions. It is in

 41

many ways this way of balancing the influence of new solutions and knowledge in the existing
pool of solutions and knowledge and their representations that allows the circular dependency
between higher and lower levels of solutions to be broken in GA as well. Hence, the
determining the influence of each generation then controls the pace of the evolution of
solutions, and balancing this right is a major factor for the product development process

Consequentially, for both humans and GA, the evaluation of new knowledge, new solutions and
potential new fitness criteria and structuring of the problem, leads to the necessity of
determining what influence the evaluation should have on the former representation of the
problem, both its content and the constraints and relations describing the representation itself,
ultimately leading to creating a new ground for the emergence of new solutions.

3.4 Proposed methodology

Throughout this paper, different theories and methodologies have been compared to GA and
the steps of human problem solving. It is not an attempt to create something completely new,
but to find the factors that are of importance for utilizing GA, and use this as basis for
highlighting areas of known theories that might be emphasized in implementing GD. The
methodology is thus more of a guiding principal for understanding the strategies and mindset
that could be important for a successful GD process. An central notion behind the methodology
is that of moving the human problem-solving strategy towards the more emergent quality of
natural evolution, with the idea of “growing solutions” rather than “solving problems”.
Although this is a somewhat vague statement, it is still creating a different angle of approach.
The following figure explains the processes in relation to each other as they go through
iterations, starting with the step of representation:

Figure 14: Left: Balancing the influence is important for the product development process. For
human problem-solving, a Set-based approach can help to balance the influence of new and
old solutions in the solution space. For GA, the balance of selection preassure and
replacement rate is imortant. Right: In the same manner as the solution space, an influence
must be determined from new knowledge and potential new objectives to evolve the former
knowledge and fitness space.

 42

Figure 15: Starting with the initial representation, the steps of problem-solving goes through the circle in iterations, creating
changes in the Knowledge-, Solution-, and Fitness Space for each iteration. The blue arrows describe knowledge that are
transferred from each step to another. The red arrows represent the act in each step: Representation exerts change in the
spaces, and is thus directed upward starting with the knowledge space. New knowledge creates new solutions and can result in
change in objectives. Thinking utilizes information in the representation as a whole to create new solutions and knowledge, and
the arrows are therefore directed outwards. Evaluation exerts change in the structure by sorting different solutions in relation to
the fitness space, and is thus directed downward. Influence is determined by comparing evaluated solutions to the existing
solutions and representation, and the arrows are therefore directed outwards. For each rotation, a changes are made to the
representation creating a new level in each space.

 43

3.4.1 Summary of important factors for each step:

Representation

- Utilize decomposition strategies such as systems engineering for dividing the problem
into smaller more manageable sub-problems and their relations. This applies to all
spaces, such as parts, objective and functional requirement structures.

- Describing problem as constraints and boundaries rather than points, creating a
framework for solution generation.

- Creating a division of knowledge space, solution space and fitness space of the
representation to create a clear problem decomposition.

- Have a high degree of flexibility in the solution space, allowing for rapid adaptation of
new knowledge to be implemented.

- Creating a structured fitness space where objective and requirements and their
relations easily can be mapped onto solutions and sub solutions for rapid evaluation

- Using Axiomatic Design as guiding principle of the quality of the representation.

Thinking

- Utilizing the representation as a base for generating solutions.
- Determine strategies of solving the problem, balancing Combination-based design and

Modification-based design to generate solutions.
- Understanding where GD can substitute or aid the generation process, and when it is

strategical to employ this method over normal approaches.
- Determine if a leap completely out of the current body of knowledge is necessary to

move on, demanding a restructuring of the problem representation.

Evaluation
- Utilizing appropriate tools to determine fitness criteria, such as simulation or decision-

making tools, and visualization such as pareto for multi-objective problems.
- Evaluating new solutions, sub-solutions and knowledge in relation to the fitness space

as well as in relation to former solutions sub-solutions and knowledge.
- Evaluating the fitness criteria itself, allowing new or more defined objectives to come

into the process if needed.
- Understanding the interrelationship between representation and fitness criteria that

allows well-organized mapping between spaces and thus an effective representation.

Influence
- Utilize a Set-Based approach to balance the overall process.
- Continuously monitor the divergence/convergence of the overall process to determine

the actions to take before each iteration.
- Considering all aspects of updating the representation before a new iteration.

 44

4 Development of Monocoque

In this chapter, the development of the DNV GL Fuel Fighter 5 monocoque will be presented in
a broad sense. Many details such as calculations and dimensions are left out, as describing
every aspect of the development would both be highly comprehensive and outside the scope of
this thesis, as well as overshadow the goal of creating a clear view of the process for the reader.
As the purpose is to create an understanding of how the Generative Design methodology
process supported the development, the chapter is constructed in a similar manner to that of
the process. However, simplifications of the actual process are done to make it more reader-
friendly (such as describing several iterations within each iteration).
Before the initial representation and the iterations of the process are depicted, the objectives
of the monocoque are explained in relation to the overall project. A big effort was taken to
implement the hierarchical approach of both fitness, solution and knowledge space into the
organization, so that all parts could benefit from this process. It was also to ensure that the
parts connected to the monocoque would developed with the same understanding of
constraints and objectives. The system was implemented in Trello as a system design hierarchy
of all parts and their connections. In addition, all members where responsible for clearly stating
the objectives constraints and requirements of their parts and interfaces in relation to the
overall goal of the project.
The major objectives of the monocoque was in relation to the project goal can be divided into
structural, aerodynamic and design objectives, which will be further elaborated. Underneath
the considerations made prior to the development in terms of tools and generative systems, as
well as an overview of the process for each objective is described.

4.1.1 Design tools and process overview
As the design at all times “holds” the current solution constraining aerodynamic and structural
developments, choosing a good platform and methods to develop the design has a huge impact
on the process.
Considering the aesthetics, the use of generative software is very limited as “the feel” of an
object is very hard to state in mathematical terms. Even though there exist studies where
generative systems have been used in aesthetics and car design (such as the work of Tan et al.
(2013) using interactive genetic algorithms to generate car silhouette styles), it is was not
considered to be of use, especially since the interplay between design and aerodynamics is so
important in this case.
Finding the most optimal monocoque dimensions as a result of driver position and different
parts in relation to each other is also a problem that could be tackled by algorithms, as it is a
version of the classical packaging problems, a whole class of optimization algorithms in itself.
But also here, employing generative systems was considered to not be valuable. The reason for
this is that the major driving force determining positioning is also in this case aerodynamics.
Hence, finding dimensions such as the distance between front and back wheels depends on the
knowledge gained from the aerodynamic simulations throughout the process. This implies that
constructing an optimization process for determining dimensions in this case would be the

 45

same as implementing aerodynamic shape optimization, as will be explained later on have
some hurdles to overcome.
The key was then to use tools where new knowledge from different domains could be tested
and implemented iteratively, without these tools impairing the flexibility of the process itself.
Two important tools where used in this manner throughout the process; plasticine prototyping
and freeform 3D modelling, which will be explained further.

In the concept stage, the use of prototyping is of huge value for exploring and testing
strategies, and can also be valuable in later stages of development. This could for instance have
been done by carving shapes out of hard foam, as many previous teams have done, but this
approach would only hold a single solution for each prototype. Instead, by using plasticine,
each prototype could be adjusted iteratively as knowledge from aerodynamic simulations or
design features emerged. The prototyping could then be conducted in a set-based manner
where the flexibility of each concept created a potential for an infinite number of other variants
to be explored.

The same reasoning was used to find a suitable CAD approach to represent the design. The
parts connected to, or in other way interfering with the monocoque demands precise modeling,
which is typical for most engineering CAD software, using techniques such as solid body or hard
surface modeling. By defining the dimensions and relations of a model as parameters, known as
a parametric modeling workflow, changes can be made during the development without the
need to completely reconstruct the model. Parametric modeling was therefore considered to
be important to create flexibility of creating and positioning parts.
However, when modeling advanced surfaces like the exterior of a car, this workflow can reach
its limits. Parameterization of hard surface modeling is very efficient for simple surfaces (using
functions such as railed lofting for B-Rep Solids), but as the complexity of a surface increases,
there comes a point where the parameterization no longer is possible without creating complex
relations that are not native to most CAD software, or by severely limiting the range of the
parameters i.e. reducing the flexibility.
Another class of modeling software that handles complex surfaces with more ease, is organic or
freeform modeling. The direct interaction workflow of this modeling type is more like sculpting
with clay by direct modification of nodes on the surface rather than the construction of
pathways, and are the tool of choice for creating animated movies, CGI effects and games. A
type of ths called T-spline modelling, also inhabit G2 continuity (a measure of the surface
quality), which is important when dealing with smooth surface for aerodynamics. However,
almost all programs created for this use lack the parameterization and precision required in
engineering, and to create the most flexible workflow, the ability to utilize both parametric and
direct modeling was considered to be ideal.
Autodesk Fusion 360 and its “cousin” Autodesk Inventor is to the authors knowledge the only
programs that have direct T-spline modelling and parametric modelling of solids and hard
surfaces. Of the two, Fusion 360 was picked as it has an inbuilt computer aided manufacturing
(CAM) and simple simulation and topology optimization that team members could learn more
easily than other softwares. The idea was then to utilize this modelling approach in
combination with clay modelling, and translate between these two approaches. This translation

 46

was done with the use of a 3D scanner from prototype to CAD, and 3D printing from CAD to
prototype.

Figure 16: Several clay concepts was create innitially (1-2), and was transformed into a 3D representation (3). The constraints
and body was iterated multiple times for different T-spline representations (4-5), and design features was shaped using both 3D
modelling and clay modelling (6)

4.1.2 Structural tools and process overview
The use of generative design in the structural development of the monocoque was early in the
research understood to be possible, as there exists a wide variety of software solutions in this
discipline. The hunch was that if the right software was implemented wisely, the final product
would be lighter than what would be possible to achieve trough a normal engineering
approach. As learning software demands time, choosing the right one for our application was
important for success, and several software was researched and tested on initial concepts
before choosing. Isight, Tosca Structure, Siemens NX, and SolidThinking Inspire were considered
before choosing Fusion 360 topology optimisation and Altair Hyperworks. Although not highly
advanced, he Fusion 360 topology optimization tool was chosen for early concepts on the basis
that the car was modeled in the same software, which allowed for quick exploration without
conversion issues. Altair Hyperworks using the Optistruct solver was chosen for the major part
of the development, as it is the only commercial optimization software with advanced
composite laminate optimization, which also supports more common structural optimization
techniques such as topology, topography, shape, buckling, size and free size optimization. The
Optistruct solver also has the possibility of Multi Model Optimization, which would allow
multiple different models to be optimized in the same run for multi-disciplinary studies. It is by
far the most comprehensive optimization software for structural applications to date.
Before the development had begun, it was difficult to know which of these generative
techniques would be useful, and exactly how the process would unfold. However, the wide
range of techniques in the software setup gave the possibility to respond to implementation
opportunities down the line. Creating a complete strategy beforehand would also be
challenging, as there was no way of knowing how difficult and time consuming the different

 47

techniques would be to implement. Further, such a strategy could also potentially be restrictive
to the development by narrowing the solution space to early. One strategy was however used
as support; the C 123 approach developed by Altair. Even though this approach came from the
development of cars, it does not completely overlap the case of making a carbon fibre
monocoque. However, it gave an idea of the optimization techniques that typically would be
useful in the different stages of the development; topology optimization in the early stages of
concept development to understand critical load paths, sizing, shape and/or detailed topology
optimization as the concept gets more defined, and lastly, composite and ply optimization for
the final design.
As will be elaborated in the following chapters, the implementation of structural optimization
was highly successful, and yielded as much as 45% reduction in weight from the previous
monocoque even though the same manufacturing techniques were used. A short overview of
the developments throughout the process is laid out in the figure below.

Figure 17: In the conceptual phase, several iterations of topology optimization was done to find critical load paths and structural
elements in Fusion 360 (1). This was further iterated in more detailed models trough Hyperworks, creating a basis for support
structures within the monocoque (2). Using the Hyperworks ply optimization module, iterations was done to find optimal core
placement and carbon fibre layup taking production into account (3 and 4). Structural analysis was done to verify the
optimization and decrease the number of layers to a minimum (5). Finally, 2D Topology optimization was done to remove excess
material from support structures within the monocoque (6).

4.1.3 Aerodynamic tools and process overview
Aerodynamic simulation (CFD) is in general a highly data intensive task, especially for complex
cases like the airflow around a car body. Even though the increase in computational power
available has advanced the field extensively, there are still research being done to improve the
accuracy of simple cases like the airflow around a 2D circle. When it comes to aerodynamic
optimization, the problem of available computational power becomes even more prominent, as
a large number intensive simulation runs are required.
Generative design in CFD is therefore in its infancy compared to structural applications, and has
only recently been introduced in the car industry, mostly with the use of tailor made genetic

 48

algorithms and evolutionary strategies for specific cases (Othmer and Grahs, 2014). The design
process of developing low drag vehicles is therefore still mostly dependent on iterations done
manually by engineers supported by simulation software (Karpouzas et al. 2016). Nevertheless,
the three most promising aerodynamic optimization techniques for this case were researched
for implementation in the development of the monocoque.
The first idea was to utilize so called black box shape optimization, where the 3D model of the
exterior is parameterized in such a way that the nodes describing the surface can be modified
automatically. Coupling this with aerodynamic simulation that responds to evaluations of each
run by iteratively changing geometry variables (the node position and curvature), can optimize
the shape for a given objective function, i.g. minimizing drag. This could for instance be
implemented through Isight, coupling Ansys for simulations, Catia for 3D model
parameterization and a suitable optimization algorithm from the Isight library. The drawback is
that creating parameterized nodes for describing a surface can be highly complex. The cost of
running the optimization is also proportional with the number of variables, and for advanced
surfaces such as the car exterior consisting of hundreds or thousands of nodes, each describing
several directions and curvatures, this becomes quite problematic when the limit at this point is
closer to ten variables (Carsten Othmer 2014). No example of large scale implementation for
car bodies is therefore found in literature, and hence the technique was not considered to be
viable.

Another approach that held some promise for the early concept phase was to utilize a new type
of fluid optimization based on mesh elements rather than surface modification. The technique,
developed as late as 2003, works in similar ways as structural topology optimization; a meshed
design space uses local criteria to iteratively remove counterproductive areas with respect to
the objective function (Carsten Othmer 2014). The idea was to have the program find the
optimal shape around parts that where strictly necessary; wheels and the minimum cockpit of
the car and run several setups with different distances between the parts. Although not
creating perfect surfaces due to the pixilated shape of meshed bodies, it does not rely on the
control of nodes, and can in the concept phase find viable solutions on a single optimization
run. However, the technology has mainly been used to optimize internal flows to find optimal
shapes of air-ducts, and no commercial software of this type is at this point designed for outer
flow on cars. A license of Dassault Systems Tosca Fluid (one of the leading commercial
programs of this type) was nevertheless acquired with the hope of adjusting it to the case, but
after several attempts it was concluded to not be applicable.
It was later understood by the author that aerodynamic topology optimization on external flow
has not matured yet. One of the few studies found is the 2D optimization of the Ahmed body (a
simplified body resembling a car) done by Othmer et al. (2017), showing promising results.
Othmer also stated that only a one other paper was found on external flows, so weather or not
more have been done recently, the technique is definitely in its early days. It is however the
author’s opinion that this would be the ideal starting point for generating low drag shapes in
the early concept phase of the project when the technology is more available.

Lastly, the adjoint sensitivity type optimization method was considered. In many ways this is
similar to the shape optimization, but leaves out the automatic adjustment of the surface.

 49

Instead, it creates a sensitivity map on the 3D model that describes strategies that can be
implemented for a given objective function. In the case of optimizing for minimum drag, the
optimization generates colors on the 3D model describing the areas that should be moved in or
out normal to the surface to lower the total drag coefficient. In a way, this creates an
optimization process where the engineer substitutes one of the elements of a complete
generative system, responding to each iteration by adjusting the cad model.
Of the described optimization methods, it is definitely the most applicable at this point in time,
and has several commercial available softwares specifically designed to handle external
aerodynamics of cars such as Engys Helyx and Ansys Fluent Adjoint Solver. The latter was tested
by one of the team members, but was never fully implemented due to convergence issues that
were not resolved before the semester ran out.
As car aerodynamics is a fairly advanced simulation process that requires a lot of experience, it
seemed that the implementation of even more advanced aerodynamic optimization techniques
might be too complicated for a student project like DNV GL Fuel Fighter, especially when none
of the team members working with aerodynamic simulations where writing master thesis on
the project. However, we came close to implementing adjoint based optimization starting fairly
late in the process. An attempt of utilizing this technique for the next generation car could
therefore be very promising.
Even though the use of generative systems was not realized in the aerodynamic development,
the methodology of optimization was still employed. A rigorous process of simulations,
evaluations and CAD modifications in an iterative manner yielded very successful results, with a
total reduction in drag force of almost 25% compared to the previous model. In the figure
below, some of the important phases of the aero dynamical process is presented.

Figure 18: Initial aerodynamic simulations in Ansys Fluent was done on several 3D scanned concept clay models to test
aerodynamic strategies (1). The most promising strategy was further developed in clay to reduce drag (2). An initial T-spline 3D
model was developed on the basis of the 3D scanned model, and dimensions was iterated further to reduce drag and lift (3). A
final T-spline model was established, and several iterations of development was done of using Open Foam (4-6)

 50

4.2 Initial representation

4.2.1 Fitness space

Although constituting many other goals the fitness space of the monocoque can be devided
into the three major objectives that can be brought back to the vision of GNV GL Fuel Fighter,
to Inspire a sustainable future - through learning and creating innovative solutions that
challenge today's perception of transportation. This vision points to two major goals; winning
the Urban Concept Battery electric class, and winning the Vehicle Design Award. The Structural
and Aerodynamic objectives are the major drivers for the first goal, while design is enhibits the
last.

4.2.1.1 Structural Objectives
When considering the structural aspects of the monocoque, the main objective is simple;
minimizing weight within the constraints and requirements of the competition and the forces
acting on the car. Although this objective is simple, it requires advanced engineering to achieve
good results, and it becomes increasingly complex as one moves closer to the theoretical limit.
As the Shell eco-Marathon Minimizing weight is all about using materials and geometries with
the largest strength to weight ratio, which - with a certain degree of safety - barely can
withstand the forces applied. However, before materials completely fail, bending can become
an issue and might be the limiting factor. This especially applies to flexible materials like carbon
fiber in a case where displacement can negatively affect mechanical systems such as steering
geometry. The second structural objective is therefore to minimize compliance (or maximize
stiffness) of the monocoque to a tolerable point of displacement.

4.2.1.2 Design Objectives
The design objectives can be directed towards the goal of winning the Vehicle Design Award,
which by Shell is stated to be a vehicle that is aesthetic, ergonomic, eco-friendly, technically
feasible and utilize smart materials. The process of the design and overall engineering design is
also weighted in the totality of the award. Although these qualities are difficult to quantify, they
are seemed as highly important in the development, and is an equal part in optimizing the
vehicle comparing with the other objectives.

4.2.1.3 Aerodynamic Objectives
The aerodynamic objectives can be divided into that of minimizing both the drag coefficient and
frontal area, as well as approaching 0 lift. The drag coefficient is the number that describes how
well a certain shape glides through a fluid, and is unaffected by the shapes volume. The frontal
area of the shape (seen parallel to the flow), accounts for the size, and it is the product of these
two that determines the aerodynamic losses of the car. The lift creates either downforce
(negative lift making the car heavier), or lift force (such as an airfoil). Both of these scenarios
are drawbacks in the energy consumption of the vehicle, and should thus be as close as zero as
possible.

 51

4.2.2 Solution space
The initial solution space was not empty to begin with, as the previous car both served as a real
concept that was helpful in conceptualizing ideas and understanding the problem. In addition

4.2.3 Knowledge space
In the initial knowledge space, all the requirements from Shell that could effect the
development of the monocoque had to be clearly understood. There is a large number of rules
describing the dimensions of the vehicle such as total length, height and width, minimum
internal dimensions of the cockpit, driver position and door sizes and visibility. These are either
described as a range or a min or maximum. Further, there are several requirements for safety,
stating lodes that the vehicle must be able to withstand to be allowed on the track. As the
monocoque is connected to so many other parts, SEM rules of other systems might also
interfere with the monocoque directly, such as turning radius requirement.
All the parts connected to the mono also had to be considered in terms of space and
connections, as well as interrelationships.
When came to the knowledge of how actually build the car, the master thesis from previous FF
teams was resourceful, but knowledge was also gathered from comprehensive research by the
team.

4.3 Iterations

4.3.1 Iteration set 1

Representation
To create initial concept representations of what the car, it was important to first establish a
real representation of the boundaries and constraints set by the rules of Shell Eco marathon. As
the internal dimensions of the driver environment would be the strongest factor of the outer
shape of the vehicle, a real size cockpit model was developed. With a flexible wire netting
prototype of the cockpit, the driver position could be adjusted with the aim to minimize frontal
area and overall volume of the driver environment, without conflicting with the driver
ergonomics. The minimum volume was then 3D modelled together with other space consuming
parts like wheels, drive chain and luggage space requirements. Further, these minimal required
volumes was 3D printed in down scaled sizes to create a prototype platform where all volumes
could be moved independently.

 52

Figure 7: Left; the wire netting prototype, right; the minimum volumes determined by the prototype in CAD

Thinking
From the prototype representation, several clay concepts was built around the 3D printed
volumes with different aerodynamic strategies. There were common strategies for these
concepts such as minimal frontal area, streamlined and wing profile like shapes, and minimal
area of the cars endpoint (like a teardrop). However, as there is no “ideal” car shape for low
drag, strategies was drawn from other aerodynamic vehicles such as Aston Martin Valkyrie,
Volkswagen XL1 (the production car with the lowest drag coefficient of 0.19) and Googles
speed record-holding bicycle. Ideas was also taken from other aerodynamic competitors in Shell
eco-Marathon, as the very best of them have the lowest drag of vehicles developed in general
(almost half the drag coefficient of the best production cars built). This was however done with
care, not to jump to conclusions and limiting the possibility of finding new strategies.

Figure 19: Left, some of the different clay concepts, right; some of the vehicles for inspiration of aerodynamic strategies.

Evaluation
To evaluate each of the concepts, the clay models was 3D scanned to create a digital mesh to
create computable models. Although the surfaces of these prototypes did not have a perfect
finish, the mesh was good enough to give indicative results from aerodynamic simulation
trough Ansys Fluent. Computing the respective drag coefficient of the different scanned clay
concepts created a rapid and flexible prototyping and evaluation system. The most promising
concepts was studied more closely by looking at velocity profiles and areas of slip and

 53

turbulence to give information for further modification of the clay model, leading to new
simulations for evaluation and improvements.

Figure 20: Left; turbulence simulation of one of the concepts. Right; the best performing caly concept.

Influence
After several iterations and simulations, the concept with the lowest product of drag coefficient
and frontal area was chosen for further development, while the rest of the concepts was left
behind. This decision was based on the chosen concept having a Cd of about 0.24,
approximately 50% lower than any of the other concepts, as well as the lowest frontal area.
This concept was by no means a well-defined shape, but served as a starting point that held
promising aerodynamic abilities, as well a good potential for aesthetic development. Further, it
was clear that to gain more knowledge from the simulation to adjust the model, a better
surface representation was needed. A T-spline model could solve this problem and still hold the
flexibility of the concept. In addition, the idea to utilize GD in form of topology optimization in
the early concept stage came to the table, as this could generate knowledge that potentially
could alter the outer shape of the vehicle or the driver position.
Although the concept representation at this point was singular and not a set of solutions, the
concept could be said to contain an infinite set of solutions as the clay and T-spline share the
same ability of rapid change. The Set-Based thinking was therefor still employed, by not
defining the shape and keeping options open to gain knowledge from sets of versions.

4.3.2 Iteration set 2

Representation
The initial T-spline model of the concept was created by automatic generation, which is a rather
new method, and therefor had to be done via another program. By using Autodesk Recap, the
3D scanned tri-mesh model could be transformed into quad-mesh and from this into a T-spline
in Fusion 360. Surface smoothing functions ensured that the representation could create more
accurate aerodynamic results, while the T-Spline setup could allow direct modifications.

 54

The initial setup to perform the first structural optimization was made by creating a solid body
representation of the scanned mesh and subtracting the minimal volumes created in the first
representation. An exception was the drive chain and back suspension, as seeing how the
optimization would solve the problem of connecting the rear wheels to the body could be a
decision basis for choosing whether or not to keep the rear suspension from the previous
vehicle. Additionally, the doors was cut out in accordance with the requirements from Shell,
with the objective of minimizing the opening size. All other areas where kept filled, not
constraining the optimization more than necessary so it could utilize as much area as possible.
The load-cases and load constraints setup was then calculated from different scenarios, such as
maximum braking, maximum turning, bump loads, the required roof and toing hook load, and
passenger load when driving and stepping into the vehicle. To ensure that the optimization
would not optimize for single cases, different combinations of the loads where also used, such
as braking, turning and seatbelt loads simultaneously. The objective of the optimization where
set to minimize mass and maximize stiffens.

Figure 21: Left; the generated T-spline model. Right; the first solid body representation.

Thinking
The generated T-spline model was iterated to create more streamlined body and minimizing
the area of the tail of the car. This was done in several steps for each CFC simulation.
As the setup for optimization was done, the “thinking” part for generating structural load paths
could be performed by the computer. However, many adjustments was done to ensure that the
diminutions of the CAD was right, such as reconsidering the driving position before the
optimization.

Evaluation
With the improved surface finish of the T-spline, the aerodynamic simulations gave more
information of the strategies what seemed to work, and what did not. Through a combination

 55

of trial and error, as well as educated strategies from the team members, the aerodynamics
was improved to a Cd of around 0.20, while lift was slightly negative creating unwanted
downforce.
The results from the topology optimization was evaluated and gave an indication to the areas
of the vehicle had the highest influence in creating structural stiffness.

Figure 22: Left; flow simulation of the generated T-spline model. Right; Results from initial topology optimization

Influence
Although the generated T-spline model gave better results, the number of surface control
points made it difficult to impose big chances in CAD (with a lower limit of 10.000 points).
Adjusting areas of the car was problematic without disrupting the streamlined shapes, and a
new T-spline model with less control points was therefore needed to gain the same flexibility as
the clay model.
While the initial topology optimization was quite rough, not having precise internal dimensions
and a rugged outer surface from being a scanned clay model, it created knowledge for future
development. First, it gave an indication that the old back suspension design was a good
solution, leading to the decision of keeping the design for possible reuse or rebuild.
Secondly, it gave an indication of the structural importance of the connection between a-pillars
(the two narrow pilars dividing the front and the side windows) and wheel wells, in addition to
support between each wheel well.
As the interplay between aerodynamic and structural changes began to emerge in the
development, a better ground for deciding over the other at points of conflict was needed.
Additionally, more precise load-cases was desirable to have more confidence in the values,
leading to reduction in safety factors and consequently a lighter structure.

4.3.3 Iteration set 3

Representation

 56

As the lower limit of surface control points for generating T-spline automatically was reached, a
the new model had to be made from scratch. The strategy was a “just enough” principle, having
enough control points to define the surface, but not more than strictly needed to make future
changes as easy as possible. The new model also featured a parametric setup of the wheels and
cockpit, so that other configurations could be generated rapidly. After the basic body was
created, copies could be made with more control points to also explore aesthetic features. A
larger base for a new clay concept was also developed for rapid prototyping od new
aerodynamic strategies and aesthetic looks.

Figure 23: Left; the generated T-spline model (blue) and the initial constructed t-spline model. Right; the new clay model.

To gather more precise knowledge from the topology optimization, a new setup was made
using the T-spline model as the volume and using the old back suspension.
The same load cases where used for this optimization, but an attempt was made to gather
more precise data to create a better representation of the bump loads (impact from driving
over uneven surfaces). The load was a big contributor to the forces acting on the car, and was
highly difficult to calculate. The author therefor constructed a Design of Experiment for the old
vehicle, measuring different bumps at different speeds, vehicle weights and center of gravity,
so that the data gathered could transferred to the case of the new vehicle by using a the
multivariate analysis and optimization tool called Unscrambler X. Another team member built
and set up the experiment and gathered some limited but valuable data in the first attempt.
However in the second attempt the load cell used to measure the impact forces had problems
with noise, and the setup was difficult to use later because of snow conditions. Precise
knowledge was therefore not gathered, but enough to give confidents of a lower limit than
previously predicted, updating the knowledge space.
To create a better decision basis for aerodynamic versus structural choices, a team member
working with driving strategy optimization was requested to create a model where all vehicle
weights and Cd*A values where plotted against total energy consumption. Although this was a
simple model of ideal conditions (flat track without corners, and even acceleration, cruise
speed and deacceleration), it gave a starting point for decisions. It showed that a 10% decrease
in Cd*A amounted to about 6% decrease in total energy consumption, while the same decrease
in vehicle weight amounted to about 2% reduction. This meant that structural changes in most
cases was inferior to aerodynamics changes in conflicting areas. The graph underneath shows
the plot of the different value combinations, and could serve as a tool to determine the fitness

 57

of solutions, updating the fitness space. Although the theoretical limit is unknown for each of
the values (and especially the combination of the two), a curve plotting this limit would create
the pareto front of the problem, showing where the ultimate solution for winning the
competition would be.

Figure 24: The plot describes energy consumption as a function of the vehicles drag coefficient, frontal area and weight including
driver. A Cd*A of 0.12 and a weight of 160kg would as an example give an energy consumption of 9395 joule

Thinking
The new T-spline model with parametrical defined wheels and wheel wells made it a lot simpler
to impose changes on the CAD model, producing a rapid interplay between CFD simulations and
modelling. Together with the larger scaled clay model and several copies of the T-spline model,
different aerodynamic, aesthetic and ergonomic improvements and concepts could be made in
parallel. Aesthetic features could also be tested to measure potential drawbacks it might
impose on aerodynamics. The topology optimization could run by itself in parallel with this
development, freeing up valuable time.

Evaluation
The iterations created several improvements and knowledge of important factors for reducing
drag, lift and frontal area. Some of the major changes was sharpening the rear part of the
vehicle, and lowering frontal area further by modeling the surfaces as close to the minimal

 58

volumes as possible. More air was also directed to flow underneath the car, reducing unwanted
downforce.
The topology optimization reveled a more defined structure of giving more information of the
structural aspects.

Influence
Utilizing the space behind the driver was seen as a possible structural advantage. Moving the
driver forward, for both aero and structural advantage, and seeing that the t-spline needed
more information points to create aesthetic aspects.

4.3.4 The final iterations

In the following iterations throughout the project the same approach was used when
developing the vehicle. As going through the whole process is long, and the essence of how the
process was implemented in this manner can be exemplified by the first iterations, a short
overview is presented for the final stages. Before presenting the results of the process. As the
Final T- spline was done, the final stages of the iterations revolved around the final topology
optimizations and several free size, shape and ply optimizations. The employment of over 20
iteration of aerodynamic simulations and optimizations was possible with the interaction of T-
spline and Open Foam, eventually creating the final product.

Figure 25: overwiew of the final iterations of the project

 59

5 Discussion

5.1 Monocoque development and results

With the goal of creating a car that could excel in Shell-eco Marathon, aiming to win both the
Battery-Electric award and the Vehicle Design Award, the team was overall satisfied with the
results. Substantial improvements from earlier vehicles was made in all of the three major
objectives of the development; that of structure, aerodynamics and design.

The weight of the monocoque was reduced by as much as 45% from the previous vehicle, with
a weight of 22kg of the structural part of the monocoque, and 27kg including doors, hood and
rear hatch. The total weight of the car came down to 72kg compared to the previous car with a
weight of 85kg. Only one car have been lighter in the 12 years the organization have existed;
the first vehicle developed with a weight of 69kg. However, with a larger budget sponsored by
Petter Stordalen, the 2008 team where able to develop the vehicle using prepreg, which is
much lighter as it contains less resin. Had the monocoque been developed with this method,
the complete monocoque would have had a weight closer to 16kg, and changes in rules over
the years that impose weight on the car (such as additional an additional door and stricter
structural requirements). Overall, the structural development made the car one of the lightest
in the battery-electric class, with the lightest car weighing around 68kg (TIM UPS-INSA).

In terms of aerodynamics of the previous cars built by FF, the 2018 model was by far the best of
the vehicles with a Cd*A of around 0.148. This was one of the major reasons of the car taking
home a 2. place in SEM 2018. With a reduction in both frontal area and drag coefficient, the
new design pushed this value even further down with a Cd*A close to 0.111, leading to a 25%
reduction in aerodynamic losses. Only one other car (the SZEnergy form Hungary) was
considered to have a lower number in the class, with a Cd*A of somewhere between 0.09 and
0.1. But as this car was also in the heavy range of competitors weighing about 90kg, and was
not considered to be the strongest opponent.

The overall best vehicle in the SEM Battery-Electric class from the previous year was considered
to be TIM UPS-INSA from France. Being only 7% behind the them in the last year’s competition,
there was a good chance of beating them with the overall 25% reduction in aerodynamic losses
and 15% reduction in total weight. This would also mean setting a world record, making it the
world’s most energy efficient car developed. On paper this seemed likely, as the advantage the
FF2019 car had in aerodynamics was greater than the advantage TIM had in weight. Both cars
also employed a similar drive chain and engines, and had similar electrical losses. However, the
real world gave a different result than hoped for. Of the 4 attempts to set the best time, the
team only had two valid attempts. In the first attempt, the gearing system was not working
properly, and the front braking tubes was hitting the valve of the tires in all corners, leading to
substantial energy loss. In the 2nd attempt, scratching noises where heard when cornering, and

 60

it was discovered after the race that the steering arm in the front suspension was grinding
against the rim. Additionally, the rear wheels was found to be 3 degrees out of alignment.
Although these issues where fixed, a bad decision led the team to a failed 3rd and 4th attempt. A
win or loose mentality led to the idea of employing a newly developed gearing system that
would be highly efficient compared to TIMs. However, this system was untested before the
race. Although it seemed to work on the test track, the car had to cancel the actual race after
two rounds due to technical issues. These issues was not fixed, and the time for the last
attempt was to short to be able to use the old system. Yet, with the two slightly flawed
attempts, DNV GL Fuel Fighter ended up with a 5th place in the overall race, with 18 cars
participating. Although the results was not as high as hoped, the development of the structural
and aerodynamic objectives can be considered to be very successful. With more time for
testing and fine tuning, the car should therefore have a good chance of a strong position in
SEM2020.

When it comes to the design of the vehicle, holding qualities such as aesthetics and
ergonomics, the successfulness of the development is difficult to quantify. The Vehicle Design
Award is also not only a measure of these qualities, but the overall engineering design and
process of development. The award is therefore also seen as a measure of how well the car is
developed with regards to energy efficiency and environment, and consequently the materials
utilized and the structural and aerodynamic development.
With around 40 cars combined from each of the energy types in the UrbanConcept class, the
Sell eco-Marathon jury granted DNV GL Fuel Figher with the first place in Vehicle Design. This
was a major achievement, and gave the team better confidence that the work had paid off,
especially since this had been a goal from the very beginning of the project. The Vehicle Design
Award was granted with the following statement from Shell about the teams effort:

Top-class chassis optimisation and reworking of the internal structure, supported by physical
testing of carbon composite test specimens. Quality of both report and vehicle is exceptional.
Wooden steering wheel and dashboard a clear demonstration that sustainability had been
thoroughly considered with a robust design process.

In essence, these results of the development as a whole is the answer to the third research
question of this thesis: Can implementation of generative design over traditional methods
create a competitive advantage in the development of DNV GL Fuel Fighter 5?
It is of course not evidential that the implementation of generative design was the cause of the
good results, or how much it can be credited the technology or the method, as a traditional
approach with the same effort and team could yield similar or better results. This is impossible
to know, however a good indication of its effectualness is the comparison with previous teams
in FF. In terms of improvement it partook the biggest leap within all the major objectives from
previous teams, and the vehicle also had the strongest position in its first competition.
Although experiencing technical issues under the competition, the comparison of the vehicle
specifications to other contestants is also a good indication, as none of these are known to
employ generative design in this manner.

 61

5.2 Methodology

The first research question of this thesis was exploring of how generative design has been
implemented in product development before. Some of the theories closest to modeling this
implementation was presented described in the theory chapter, but as also described are hard
to find, especially since so many theories are focused on the technical side of implementing
algorithms for specific cases. Ideas that could be helpful form related field such as parametric
modelling and Knowledge Based Design was also presented, but is generally more oriented
towards reuse of entities or the construction of generative systems rather than the
implementation of generative design. Although many other related earlier fields could be
brought into the study, such as Multi objective and Multivariate Optimization, the general view
of the author is that very few studies tackles the general implementation of generative design
into product development. Few was also found to draw relations to former design theories, as
most are focused on the use of the tool rather its adoption and ability for changing the design
process.

The second research question has been the overall goal of this thesis, trying to figure out what
impact generative design as a methodology have on the process of engineering design and
problem solving. Both the development of the methodology and the implementation of this
methodology and generative systems in developing the monocoque has been an attempt to
answer this question for the reader.
The thesis create a methodology for implementation of GD in product development with the
basis that limited knowledge exist within this field. Hence, it is problematic to discuss its validity
in relation to literature in other ways than have been done and discussed throughout the
paper. In that sense, it is difficult to address the two major concerns described by Hans
Grabowski in the establishment of the Universal Design Theory, the problem of universality and
the problem of applicability in industrial practices.
What one could discuss is the approach that has been conducted. The first obvious
complication is that of reducing the problem to the consideration of a single component of GD.
Using the workings of the basic GA for describing GD is a huge simplification, and could
therefore be a wrong step in relation to implementation of GD. However, as discussed in
previous section, this simplification is done on several premises that explain the central role of
GAs. Further, the notion that the ways in which humans solve problems are affected by the
tools we use in a manner similar to the workings of the tool itself might be a wrong assumption
for GD. Although one could see that this is the case for several other tools now used, such as
CAx systems, it might not be true for GD. It could be that a completely unfamiliar approach to
human problem-solving then that of GD is needed to utilize these systems to the fullest. This
would be highly difficult to foresee before these systems have been applied more in industry.
Nevertheless, if this notion holds, one could also question the way the similarities are drawn.
First using the steps of human problem-solving and GA for creating a framework and level of
abstraction, and further using this framework for seeing similarities in of GA and DTM might be
a faulty approach. Completely different approaches could have been conducted, such as
flipping the process altogether, beginning with a specific DTM as ground for the abstraction, or

 62

grounding the process in the high level interaction of generative systems rather than
algorithms.
The use of literature can also be questioned. Although the use of acknowledge papers have
been stressed, seeing that little is written on the guiding objective of this thesis, also articles
with few citations have been used to describe certain concepts. The bibliography also lacks a
more nuanced view of the DTM field, as the work of Tetsuo Tomiyama has been the major
source of comparison. The author also acknowledges that with limited experience of using GD
tools, as well knowledge of the DTM field in general, creating a theory for implementation of
GD in New Product Development might be to bite off more than one can chew.
Finally, the complete approach itself, namely using literature to create a theory as a base
before implementing GD in Fuel Fighter might not be a good method. It might create a biased
view that could have implications for seeing what really should be the emphasized when
implementing GD. Another approach would therefore be to not research the implementation
before using the technology (although that boat has gone), and go into the process blindly to
see what drives the process. Consequentially, limiting this biased view is crucial to gain new
knowledge from the process in the future work of utilizing these programs.

-

5.3 Further work

There are numerous theories and methodologies one could bring into this work, as well as
deeper understanding of GD, to draw better analogies. Several other theories were originally
intended to take part in the paper, such as C-K Theory and Emergent Synthesis, as well as other
notions around GA such as Tree structure representations, and human-, and interactive-based
GA. However, at a point, creating a more solide model in terms of literature becomes absolete
to that of testing the model. Future work will therefore be to utilize the theory in a critical
manner, so that changes can be made to create an overall better theory. This can be done by
direct implementation as was conducted with Fuel Fighter, but also trough applying the theory
on already known cases of product development to give more understanding of its use
compared to other models.

 63

6 References

6.1 Articles and books

Agkathidis, Asterios. 2015. “Generative Design Methods,” 9.

Becker, Markus C., Pasquale Salvatore, and Francesco Zirpoli. 2005. “The Impact of Virtual
Simulation Tools on Problem-Solving and New Product Development Organization.” Research
Policy 34 (9):

Bhooshan, Shajay. 2017. “Parametric Design Thinking: A Case-Study of Practice-Embedded
Architectural Research.” Design Studies, Parametric Design Thinking, 52 (September): 115–43.

Boussaïd, Ilhem, Julien Lepagnot, and Patrick Siarry. 2013. “A Survey on Optimization
Metaheuristics.” Information Sciences, Prediction, Control and Diagnosis using Advanced
Neural Computations, 237 (July): 82–117.

Brown, Polly. 2009. “CAD: Do Computers Aid the Design Process After All?” Intersect: The
Stanford Journal of Science, Technology, and Society 2 (1): 52–66.

Fernandes, Sierra, and Rita Margarida. 2003. “Generative Design a New Stage in the Design
Process.” 2003.

Gábor, Rennera, and Ekártab Ekártab. 2003. “Genetic Algorithms in Computer Aided Design.”
2003.

Gen, Mitsuo, and Runwei Cheng. 2000. Genetic Algorithms and Engineering Optimization. John
Wiley & Sons.

Goldberg, D. E. 1991. “Genetic Algorithms as a Computational Theory of Conceptual Design.”
In Applications of Artificial Intelligence in Engineering VI, 3–16. Springer, Dordrecht.

Goldberg, David E. 2000. “The Design of Innovation: Lessons from Genetic Algorithms,
Lessons for the Real World.” Technological Forecasting and Social Change 64 (1): 7–12.

Goldberg, David Edward. 1989. Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley Publishing Company.

Gulanova, Jana, and Miroslav Vereš. 2014. COMPUTER AIDED GENERATIVE DESIGN OF
AUTOMOTIVE SHAPED COMPONENTS.

Hayes, John R. 2013. The Complete Problem Solver. Routledge.

Isaksson, O. 2003. “A GENERATIVE MODELING APPROACH TO ENGINEERING

 64

DESIGN.” DS 31: Proceedings of ICED 03, the 14th International Conference on Engineering
Design, Stockholm.

Janssen, Patrick, John Frazer, and Tang Ming-xi. 2002. “Evolutionary Design Systems and
Generative Processes.” Applied Intelligence 16 (2): 119–28.

Jebari, Khalid. 2013. Selection Methods for Genetic Algorithms. Vol. 3.

Krish, Sivam. 2011. “A Practical Generative Design Method.” Computer-Aided Design 43 (1):

Leon, Noel. 2009. “The Future of Computer-Aided Innovation.” Computers in Industry,
Computer Aided Innovation, 60 (8): 539–50.
.
McCormack, Jon, Alan Dorin, and Troy Innocent. 2004. “Generative Design: A Paradigm for
Design Research,” 9.

Nordin, Axel. 2018a. “Challenges in the Industrial Implementation of Generative Design
Systems: An Exploratory Study.” Artificial Intelligence for Engineering Design, Analysis and
Manufacturing : AI EDAM; Cambridge 32 (1): 16–31.
———. 2018b. “Challenges in the Industrial Implementation of Generative Design Systems: An
Exploratory Study.” Artificial Intelligence for Engineering Design, Analysis and Manufacturing :
AI EDAM; Cambridge 32 (1): 16–31.

Othmer, C., David E. Manosalvas-Kjono, Antony Jameson, and Juan J. Alonso. 2017.
“Aerodynamic Topology Optimization: Some Observations on Hysteresis in Separated Flows.”
In .

Othmer, Carsten. 2014. “Adjoint Methods for Car Aerodynamics.” Journal of Mathematics in
Industry 4 (1): 6.

Othmer, Carsten, and Torsten Grahs. 2014. “Approaches to Fluid Dynamic Optimization in the
Car Development Process.”

Richter, Hendrik. 2010. “Evolutionary Optimization and Dynamic Fitness Landscapes.” In
Evolutionary Algorithms and Chaotic Systems, 409–46. Studies in Computational Intelligence.
Springer, Berlin, Heidelberg.

Rose-Anderssen, C., P. M. Allen, C. Tsinopoulos, and I. McCarthy. 2005. “Innovation in
Manufacturing as an Evolutionary Complex System.” Technovation 25 (10): 1093–1105.

Rothlauf, Franz. 2006. Representations for Genetic and Evolutionary Algorithms. Gesellschaft
für Informatik.

Sapossnek, Mark, and Carnegie Mellon University Engineering Design Research Center. 1991.
“Research on Constraint-Based Design Systems.” Department of Electrical and Computer
Engineering, January.

 65

Sastry, Kumara, David E. Goldberg, and Graham Kendall. 2014. “Genetic Algorithms.” 2014.

Shea, Kristina, Robert Aish, and Marina Gourtovaia. 2005. “Towards Integrated Performance-
Driven Generative Design Tools.” Automation in Construction, Education and Research in
Computer Aided Architectural Design in Europe (eCAADe 2003), Digital Design, 14 (2): 253–
64.

Sim, Siang Kok, and Alex H. B. Duffy. 2003. “Towards an Ontology of Generic Engineering
Design Activities.” Research in Engineering Design 14 (4): 200–223.

Singer, David J., Norbert Doerry, and Michael E. Buckley. 2009. “What Is Set-Based Design?”
Naval Engineers Journal 121 (4): 31–43. https://doi.org/10.1111/j.1559-3584.2009.00226.x.
Singh, Tapan Kumar. 2016. “Constrained Self-Adaptive Genetic Algorithm.” SeMA Journal 73
(3)

Singh, Vishal, and Ning Gu. 2012. “Towards an Integrated Generative Design Framework.”
Design Studies 33 (2): 185–207. https://doi.org/10.1016/j.destud.2011.06.001.
Stanković, T, M Stošić, and D Marjanović. 2006. “EVOLUTIONARY ALGORITHMS IN
DESIGN.” 2006.

Steinberg, Robert J., and Janet E. Davidson. 2003. “The Psychology of Problem Solving.” 2003.

Tan, Hao, Chunhui Jing, Danhua Zhao, Fangzhen Zou, and Jianghong Zhao. 2013. “Using
Interactive Genetic Algorithm to Generate New Vehicle Styling Brand Elements with Feature
Lines,” 12.

Tomiyama, T., P. Gu, Y. Jin, D. Lutters, Ch. Kind, and F. Kimura. 2009. “Design
Methodologies: Industrial and Educational Applications.” CIRP Annals 58 (2): 543–65.

Tomiyama, Tetsuo. 2006. “A Classification of Design Theories and Methodologies,” January,

Türkmenoğlu, Saliha. 2015. “Paradigm Shift in Industrial Product Design: Generative Design.”

Vavak, F., and T.C. Fogarty. 1996. “A Comparative Study of Steady State and Generational
Genetic Algorithms for Use in Nonstationary Environments.” 1996.

Yu guoyan, Wang Xiaozhen, and Li peng. 2009. “A Constraint Based Evolutionary Decision
Support System for Product Design.” In 2009 Chinese Control and Decision Conference, 2585–

6.2 Figures

Figure 1: https://www.flickr.com/photos/shell_eco-marathon/48173313512/in/album-
72157709142796577/

 66

Figure 2: DNV GL Fuel Fighter

Figure 3: Rothlauf, Franz. 2006. Representations for Genetic and Evolutionary Algorithms.
Gesellschaft für Informatik. http://carlosreynoso.com.ar/archivos/rothlauf.pdf.

Figure 4: https://www.researchgate.net/figure/Genotype-phenotype-mapping-and-fitness-
function-in-evolutionary-design_fig3_226912968

Figur 5: https://www.semanticscholar.org/paper/Active-modules-identification-in-multilayer-
Li/1f1411a1e1b3f5170688fa68725c5dfd15f48546

Figur 6: https://medium.com/nyc-design/why-optimization-is-not-generative-design-
bc8ac3afddef

Figur 7: Isaksson (2003)

Figur 8: Guoyan et al. (2009)

Figure 9-15: Created by author based on other theories and models of GA

Figure 16-: DNV GL Fuel Fighter

6.3 Webpages

(1) https://en.wikipedia.org/wiki/Generative_design

(2) https://www.autodesk.com/solutions/generative-design

(3) https://en.wikipedia.org/wiki/Hyper-heuristic

(4) https://en.wikipedia.org/wiki/List_of_genetic_algorithm_applications

