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Despite the advantage of model-based design, anaerobic digesters are seldom designed using biokinetic
models due to lack of reliable kinetic coefficients and/or systematic approaches for incorporating kinetic
models into digester design. This study presents a systematic framework, which couples practical
identifiability, uncertainty quantification and attainable region (AR) concepts for defining process per-
formance targets, especially when reliable kinetic coefficients are unavailable. Within the framework, we
introduce the concept of self-optimizing ARs, which define performance targets that results in near
optimal operation in spite of variations in kinetic coefficients. Using the case of modified Hill model, only
3 out of the 6 model parameters (unidentifiable set) are responsible for the model prediction uncertainty.
The uncertainty bands (mean, 10th percentile and 90th percentile) on the model states has been
computed using the Monte Carlo Simulation procedure and attainable regions for the different levels of
uncertainty has been constructed and the boundaries interpreted into digester structures. The self-
optimizing attainable regions have been defined as the intersection region of the attainable regions
corresponding to the mean, 10th percentile and 90th percentile. Incorporating uncertainty significantly
reduces performance targets of the process but increases self-optimality in defining performance targets.
Unlike the attainable region, which represents the limits of achievability for defined kinetics, the self-
optimizing attainable region represents the set of all possible states attainable by the system even in
cases of kinetic uncertainty. In summary, the concept of self-optimizing ARs provides a systematic way of
defining process performance targets and making economic decisions under conditions of uncertainty.
© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

(Batstone, 2006). The model-based design is particularly important
as the capital cost for anaerobic digesters determined from design

Anaerobic digestion (AD) of animal manure is of great impor-
tance to the waste treatment and bioenergy industries, since the
biomethane produced is a promising renewable energy alternative
to fossil fuels. The modelling of anaerobic treatment process is a
mature research area, now with a strong shift from model devel-
opment towards application development, aimed at solving various
design and operational challenges. Various models have been
constructed to describe the anaerobic treatment process and the
key motivations for model development have mainly been opera-
tional analysis, technology development, as well as digester design
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is a key motivation for implementers. The kinetics captured by AD
models is highly important for an optimal digester design since
operating conditions, volumetric gas production, process stability
(Finn et al., 2013; Yu et al., 2013; Batstone, 2006; Kythreotou et al.,
2014), as well as effluent quality can be predicted (Kythreotou et al.,
2014; Yu et al., 2013). Despite the advantage of model-based design,
anaerobic digesters are seldom designed using biokinetic models
but rather based on a combination of hydraulic and organic loading,
where the digester capacity is determined for a given loading rate,
temperature regime, mixing, etc. (Wang et al, 2007). This is
because the use of biokinetic models is highly dependent upon
availability of kinetic coefficients (Batstone, 2006; Wang et al.,
2007), but it is often difficult to get reliable kinetic parameters in
practical operation, which results in kinetic uncertainty (and hence
uncertain process performance) if the models are used for digester
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design. Summarily, three main challenges can be mentioned with
the use of models to design anaerobic digesters: (1) Lack of sys-
tematic approaches for incorporating process kinetics in digester
design. (2) The reliability of some of the studies using kinetic
models to guide design of anaerobic digesters is undermined by
uncertainty existing in the in kinetic coefficients. (3) Existing
model-based studies are limited to single stage digesters and
operating the process as a single stage generally limits overall
performance. This is supported by the fact that AD involves mul-
tiple bioreactions steps (each step catalyzed by a specific group of
microorganisms) and when operated as a single stage, it limits the
possible combination of pathways since the process conditions are
only suitable for all microorganisms with no reaction being opti-
mized (EPA, 2006). However, most of the modeling studies on AD
have focused on the model development approach, techniques for
parameter estimation, with less effort devoted to assessing model
reliability (identifiability and uncertainty) or how to incorporate
uncertainty in digester design and operation. A systematic
approach for handling kinetic uncertainty in design of anaerobic
digesters with focus on multi-stage anaerobic digesters networks
as opposed to single stage systems will be a breakthrough in
advancing model-based optimization of anaerobic digestion.

This study is therefore designed to develop a systematic model-
based framework (Fig. 1) for performance targeting and synthesis
of anaerobic digester networks, when reliable kinetic models are
not available. The framework (Fig. 1) is realized in two phases,
which may involve feedback checks at specific steps depending on
the system performance after every step. In the first phase (model
reliability assessment), one selects a kinetic model appropriate for a
digested substrate of interest (e.g. solid waste, sludge, wastewater,
etc.), assesses the model’s reliability and quantifies the model
prediction uncertainty resulting from kinetic uncertainty. In the

second phase (self-optimizing design), one mainly defines the
robust performance targets of the system considering the uncer-
tainty bounds computed in phase 1. Phase 2 is based on the concept
of attainable regions, which is a geometric optimization technique
that is used for both performance targeting and reactor network
synthesis (Hildebrandt et al., 1990). The AR is a collection of all
possible output for all possible reactor designs by interpreting
chemical processes as geometric objects that define a region of
achievability without having to explicitly enumerate all possible
design combinations (Hildebrandt and Glasser, 1990). Central to the
AR concept is the availability of reliable kinetic models of all
fundamental processes (e.g. biochemical, physicochemical, physical
in the case of AD) occurring within the system. In particular,
simplified kinetic process models are emphasized as the AR theory
involves mixing and attainability of states through a relatively
complex geometric and hydrodynamic analysis (Hildebrandt et al.,
1990; Ming et al., 2016).

The novel idea presented in this study is that instead of using AR
to define an optimal performance target, which can only be ach-
ieved some of the times (due to kinetic uncertainty), the authors
define a near optimal performance target, which can be attained all
the time. This however involves an acceptable loss in process per-
formance resulting from the kinetic uncertainty. Anaerobic digester
systems designed with such an acceptable loss in performance
resulting from uncertainty in kinetic coefficients are referred to as
self-optimizing. Self-optimizing operation also referred to as self-
optimizing design/systems (Permin et al., 2016; Gausemeier et al.,
2006) is when we can achieve an acceptable loss by using con-
stant setpoint values for design/operation variables (e.g. tempera-
ture, kinetics, substrate characteristics, etc., for the case of
anaerobic digestion) without the need to reoptimize when varia-
tions occur. In the case of this study, we define self-optimizing
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Fig. 1. Two-phase framework for model-based synthesis of methane bioreactors.
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operation as an attainable region or performance target that results
in near optimal operation despite variations in kinetic coefficients
of the process. In the context of process engineering, a similar
concept has been applied to plant wide control, known as self-
optimizing control, characterized by the choice of self-optimizing
controlled variables (Skogestad, 2000; Jaschke et al., 2017).

In order to illustrate the applicability of the framework pre-
sented in Fig. 1, the modified Hill model published by (Finn et al.,
2013) was selected as a case study. The model considers substrate
effects and applies to anaerobic digestion of animal manure (diary,
poultry, beef or swine wastes) and predicts acidogens, metha-
nogens, organic substrate and volatile acids. In addition, the model
eliminates the need for factors such as alkalinity, concentration of
cation, dissolved CO, and ammonia gas because their effect is
already lumped into two important parameters found in the model,
the biodegradability constant (Bp) and acidity factor (Af).Even
though the modified Hill model has been selected, it is important
for readers to note that the major contribution of this study is the
development of a systematic framework, which couples practical
identifiability, uncertainty quantification and attainable region (AR)
concepts for defining process performance targets and synthesizing
anaerobic digester networks, especially when reliable kinetic co-
efficients are unavailable. The framework can be used for any other
dynamic model selected to describe the kinetics of the anerobic
treatment process.

Our recent studies have been first to illustrate the usefulness of
AR to define performance targets and model digester configura-
tions that optimize methane productivity and volatile solids
reduction (Abunde Neba et al., 2019c), as well as stability of
methanogenic archaea (Abunde Neba et al., 2019b). Both studies
put together have illustrated that a change in the kinetic model
structure or value of kinetic coefficients, induced by differences in
substrate and inoculum characteristics significantly influences the
performance target as well as the optimal digester configuration
required to achieve the target. In another recent study by the au-
thors, a framework was developed and embedded into a software
for using simplified microbial kinetic models for AR analysis in
cases where data requirements are limited (Abunde Neba et al.,
2020a). The integration of economic feasibility indicators (such as
payback period, benefit cost ratio, net present value and internal
rate of returns) with attainable region analysis has also been pre-
sented by the authors, which is very interesting for synthesizing
digester structures based on economic objectives (Abunde Neba
et al.,, 2019a). Finally, another approach, which only relies on
experimental data (no model required) is developed by coupling
attainable regions and fuzzy multicriteria decision making for se-
lection of digester subunits and synthesis of digester network
configurations (Abunde Neba et al., 2020b). It is interesting to
mention at this point that unlike other model-based studies on AR,
which assume that the kinetic coefficients of a model are known
before constructing the attainable regions, this study is novel in
that it rather quantifies the uncertainty in the kinetic coefficients
and propagates it onto the attainable regions. The authors call such
regions ‘self-optimizing attainable regions’, because they will al-
ways be attained even if variations occur in kinetic coefficients.
Once the AR is obtained, its boundary can always be interpreted
into digester structures, which can be used for industrial operation
in order to achieve the performance target defined by the region.

2. Theoretical concepts and methods description
2.1. Model reliability assessment

The reliability of a mechanistic model has to do with the degree
of uncertainty (the confidence band) of its model parameters and it

is influenced by three main factors (Sin et al., 2009, 2010a): (1) the
mathematical structure of the model, (2) the nature of the exper-
imental data used for identification, and (3) the set of model pa-
rameters used in the identification process. In this paper, the focus
is on analyzing the relation amongst model structure (factor 1),
identifiable set of parameters (factor 2) and reliability of anaerobic
digestion model although the discussion of the results is extended
to also reflect on the impact of the information content in the
experimental data (factor 2).

Given a kinetic model for a process, we define the following
three key steps needed to completely assess the reliability and
usage of the model:

Step 1: Perform a sensitivity-based identifiability to determine
the identifiable set of model parameters

Step 2: Estimate the identifiable set of model parameters and
quantify the confidence band

Step 3: Quantify the model prediction (output) uncertainty us-
ing the unidentifiable parameter set as inputs

For studying the identifiability of the biokinetic models, the
sensitivity and collinearity analysis are used. For parameter esti-
mation, the method of first order gradients, with gradients
computed using the discrete adjoint method, was used and 95%
joint and marginal confidence regions were used to assess the
identifiability following parameter estimation. For the input-output
uncertainty analysis, the Monte Carlo simulation procedure was
used.

The objective of this section is to analyze the aforementioned
necessary steps with respect to its application to the anaerobic
treatment process. However, the analysis requires that the process
model is known, and we therefore begin by describing the model of
the anaerobic treatment process.

2.1.1. Model selection and description

A number of simplified state-space dynamic models for the
anaerobic digestion process have been reviewed by Finn et al.
(2013). The modified Hill model which was developed for anaer-
obic digestion of animal manure (diary, poultry, beef and swine
wastes) was selected for this study. The model lumps the effect of
hydrolysis, alkalinity, cation concentration, dissolved carbon diox-
ide and ammonia into two important constants, the biodegrad-
ability constant (Bo) and acidity factor (AF) present in the modified
Hill model. The Hill model is a mechanistic (model parameters have
a physical meaning), which makes it interesting to understand the
identifiability characteristics of the model. The identifiability
characteristics of a model relates to set of parameters to be esti-
mated in order to accurately describe the observed mechanisms
described by the model (Donoso-Bravo et al., 2013) An “over-
calibrated” model would accurately describe/fit experimental data
but would lose its capability to predict(Donoso-Bravo et al., 2011),
which weakens the model’s reliability and hence applicability for
design purposes.

Fig. 2 presents an illustration of the model by showing the flow
of information between four compartments in the methane
bioreactor, which include inoculum, substrate, liquid phase and gas
phase.

The species conservation and biogas production equations for
the modified Hills model is presented as follows

a) Biodegradable volatile solids (S;) in the liquid phase of the
bioreactor
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Fig. 2. Information flow of the modified Hill model.

ds;

o= (81, —S1)D — kipuy X4

(1)

b) Volatile fatty acids (S,) in the liquid phase of the bioreactor

%: (S2,, = S2)D + kap1 X1 — k3pp Xz (2)

c) Acidogens (X;) in the liquid phase of the bioreactor

dditl: (u1 — K4, —D)X3 3)
d) Methanogens (X5 ) in the liquid phase of the bioreactor

2= (1o~ Ky, ~ DX, @

e) Methane gas flow rate

Qc, = VuakaXp (5)

The organic waste is characterized by using the two parameters,
which are biodegradability (B,), Eq. (6) and acidity (Af), Eq. (7). In
the modified Hill model, B, measures the ease with which the
organic substrate can be broken down and stabilized by anaerobic
bacteria while A¢ of a substrate can be defined as the amount of
volatile fatty acids contained in the substrate per unit mass of
biodegradable volatile solids

S1,, =BoSin (6)

in

52, :Afs1in (7)

In the modified Hill model the anaerobic biodegradability can be
computed via Eq. (8) while the acidity factor is computed using Eq.

(9).

8 VSgestroyed

By = as HRT - (8)
0" g VSudded
_ VFA,
Ar "By x VSL ®)

The modified Hill's model considers temperature dependence of
the anaerobic treatment process through an empirical model, Eq.
(10) and since the death rates are set to one tenth of the maximum
reaction rates, Eq. (11) they are also show temperature dependent.

1 (T) = g (T) = 0.012T — 0.086 (10)

Kin =Kz =010 (11)

10°C<T<60°C

In the modified Hill's model, the Monod function, Eq. (12) is
used to describe the growth rates of acidogenic and methanogenic
microorganismes.

= Hm151
1 Ks1 + $4

It is known that anaerobic digestion is sensitive to a wide-range
of inhibitory conditions either from toxic substrates or by-products
of microbial metabolism (Chen et al,, 2014). Since the methano-
genic archaea are most sensitive to inhibition than any other group
of anaerobic microorganisms (Chen et al., 2008), the Monod func-
tion used to describe the growth rate of methanogenic archaea will
be replaced by an inhibition counterpart, the Haldane model, Eq.
(13). The Haldane model is suited for growth processes affected by
the allosteric effectors present in the acidified substrate, non-
competitive inhibition (Kythreotou et al., 2014).

(12)

Bm2S2
(Ksz + 52) (1 + SZ/K,')

Mg = (13)

After having defined the kinetic model, we now proceed with
assessing the model’s reliability for synthesis of anaerobic
digesters.
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2.1.2. Sensitivity-based identifiability

Model sensitivity analysis provides dynamic information on
how the states of a process vary with changes in the model pa-
rameters. This information can be used to identify time intervals
where experimental data points carry more or less importance for
the parameter estimation process. For instance, if the sensitivity of
a model state to a given parameter is zero or close to zero in some
time interval, then variations in that parameter would have a little
influence on that state variable. What this means in practical
operation is that having a more accurate experimental measure-
ment of the state variable at that insensitive time interval will not
serve to improve the reliability of the parameter estimate. The
sensitivity-based identifiability consist of analyzing the sensitivity
of the model states to the model parameters, and using these
sensitivities to screen for parameter significance ranking by
calculating a sensitivity measure, §,°"" and for analyzing the near-
linear dependency between parameters by a measure called the
collinearity index, K.

Given a model for a process, the following five key steps needs to
be performed in order to completely assess the reliability and usage
of the model (Brun et al., 2002).

Step 1: Compute the absolute sensitivity

Since we do not have an explicit solution to the differential
equation model, the absolute sensitivities must be computed using
the sensitivity equations. For an n-dimensional system given by Eq.
(14)

Y=f(t.Y;B), Y(0)=Yo (14)

With state variable YeR", the parameter f=RP and Y, the
initial condition, the matrix of sensitivities dY /90 satisfy

d 9Y oF 9Y  oF

With initial conditions
aY(0)
“og ~Oome (16)

dY /00 is the Jacobian of the system. The sensitivity equations are
coupled with the original model differential equations and solved
to obtain the parameter sensitivities for the necessary time points.
The resulting matrix of absolute sensitivities at time point t S4(t) =
dY/9p will be of the form shown by Eq. (17).

Sa11 Sa12 -+ Saip
Sa(t) = Sa;21 Sa.:,22 - Sa:,2p (17)
Saﬁl SaAlz oee Sa,np

Step 2: Compute the non-dimensional sensitivity

The sensitivities of the observables are scaled using the same
weights as in Eq. (18), resulting in scaled sensitivities for an output j
and a parameter i:

Sna=Salt)- W (18)

The non-dimensional scaling/weighting matrix W is of the form
shown by Eq. (19) while the resulting non-dimensional sensitivity
of the form given by Eq. (20).

61/Sa B2/Sc1 Bp/Se1

we | B1/Sa B2/Se Bp/Se2 (19)
B1/Ss B2/Ses Bp/Sen
Snda1 Snd12 Snd,1p

S () = Snd 21 Sng,zz e Sndap (20)
Snc;,nl Snd1z - Snd..,np

Step 3: Compute the sensitivity measure

From the matrix of non-dimensional sensitivities, we compute
an overall coring for each parameter, called root mean squared
sensitivity, 6,"*%, to consider changes in time or across experiments.
The root mean squared sensitivity is computed using Eq. (21)

(21)

N is the number of state variables and k = 1,2...pwhere p is the
number of model parameters. A vector of root mean squared sen-
sitivities of the different model parameters is created of the form
given by Eq. (22)

msqr __ [ smsqr msqr msqr
S A o | (22)

The sensitivity measure (6™%) measures the relative impor-
tance of the parameters with respect to how the influence the
model outputs (states). The higher the magnitude of the sensitivity

measure the more important the influence of the parameter on the
states.

Step 4: Compute the normalized sensitivity
From the matrix of non-dimensional sensitivity, we compute the

normalized sensitivity for each parameter using Eq. (23), re-written
as Eq. (24).

_ Snd ik
Snorm - Snd(t) (23)

Snd,(1k)

Snom == 5—
2 k=15nd (1K)

Step 5: Compute the collinearity index

1=1,2, ....,n;k=1,2, ....p (24)

Finally, step five consist of computing the collinearity index vy
using Eq. (25)

1

_ 25

: T
AK =eigen <Snorm, I(SnormA K)

K stands for the index of the parameter subset, which is a
combinatorial function of the parameter vector {.

If the sensitivity functions of two or more parameters are
orthogonal (implying parameters are independent), the index of
that parameter subset (K) is equal to unity, but if the parameters are
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linearly dependent, the index approaches infinity. In order to find
an identifiable parameter subset, a threshold value (1-15) is usually
used (Brun et al., 2002; Sin and Vanrolleghem, 2007) where by any
parameter subset having an index (K) greater than the threshold is
said to be unidentifiable.

2.1.3. Parameter estimation: confidence bounds and correlation
analysis

In this section, we describe the adjoint-based gradient method
for parameter estimation. The method is selected rather than the
standard finite difference method because it takes less computing
time and is less sensitive to round-off and truncation errors, which
becomes very attractive for optimization problems with large
number of variables (Benitez et al., 2017). To facilitate mathematical
developments in subsequent sections, we redefine the model states
and parameters as follows;

Y1=51, Y2=5, Y3=X; Y4=X;, Y5=0Qc,

6‘1 :k]7 62 = k27 63 = k37 64 = k4, 65 = I<i17 66 = I<i2
(2

Minimize J(8) :%Y?bs - HM(t, Y’;ﬁ) (26)

subject to

dy

d_t1: (Y1, =Y1)D = G111 Y3 (26a)

dy,

i = (Y2, = Y2)D+fom Y3 — B3ppYa (26b)

dy-:

4t = (1 —Kag, = D)Y3 (26¢)

dy,

d_t4: (u2 — Kg, —D)Ys (26d)

Y5 =VuB4Ys (26e)

B1 <B3; Bs5<Bs B1,602.63.84 >0 B5,86>0

pi = wi(Bira), i=1,2

Eq. (26) presents a constraint nonlinear optimization problem,
where the constraints are differential algebraic equations. In order
to find the numerical solution of the problem there exist indirect
and direct methods of minimization of the objective function. In the
direct method, the state equations are influenced only by the pa-
rameters, and the minimization of the function is done by direct
adjustment of the model parameters. The simplest approach to a
direct method is that of first order gradients in which the state and
co-state equations remain separated. The system of continuous
equations is regarded as a limiting case of a system of discrete
equations as the time of a subinterval approaches zero. The opti-
mization problem is solved using the method of conjugate gradi-
ents with the gradient computed by the adjoint method. The
conjugate gradient algorithm is illustrated as follows
Given J : R"— R and VJ(f). Let 89 be the initial guess and set

- Vg (8

Fork=0,1,2,3,...

w0 —

Step 1: Perform a line search in the direction of to compute y =
Arg min®(p), which minimizes the scalar function ®(p) f(ﬁ“‘)
pwh)
Step 2: Compute %D = g0 4 4Kk
Step 3: Test for convergence. If satisfied Exit, else go to Step 4.
Step 4: Define 70 = Vl(ﬁ 1) .

(kB G 1egk+ D) )
Step 5: Compute w! =-Vgl(B )+ 70w and go to step
(1).

We notice that from the computational point of view a discrete
adjoint approach is the one needed to accurately compute the
gradient. The model equations are discretized using the Runge-
Kutta 4th order scheme as shown by Eq. (27)

v M (Y, 6) (27)

(Y1, = Y1)D — B1p1Y3

(Yz,n )D + Bam1Y3 — B3pp Yy

( Wy — Ky, — D) Ya

ViuaB4Yy
Ky =f (69, Y0; ) (27b)
K, 7f<t( +0.5h,Y® 05K 5) (27¢)
Ks f(t(" +0.5h,Y® 4 0.5K,; 5) (27d)
K, f(t" 4 h, Yk +I<3;ﬂ> (27e)
M(Y“‘), 6) S % (Kq + 2Ky + 2K3 + Ky) (27f)

The optimization problem can then be simply written in a
discrete and compressed form as in Eq. (28)

N

=3 E (Yobs Hy® ) (28)

k=0

Minimize J(§
subject to

yk+1) _ pm (y(k)’ g) -0 (28a)

The adjoint method consist of transforming a constraint opti-
mization problem into an unconstrained problem by defining the
Lagrangian, Eq. (29)

N
LY. B N =J(®) + > A [Y* D —m(Y®,5)] (29)
k=0
From the Lagrangian, we can then derive the state equations, Eq.
(30) and gradient of the optimization problem, Eq. (31). The Adjoint
model is given by Eq. (32) (Roulston, 1999).

oL(Y. 8, ) [W (Y“‘*ﬁ)} ' (30)

oy

_ a]k(ﬁ)
Tyl ke

oYk
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v (@)= S (v, p) 31)
M1 — MY (Y(k),ﬁ> Ak=ex AN=0 (32)

Step 1: Choose an initial guess 89 and set counter k = 0

Step 2: Solve the forward model Y*+1) — M (Y® @) and
compute the criterion J(§)

Step 3: Solve the Adjoint model 4,_; — ML (Y®), 8)2, = e, and
compute the gradient

VB~ — 3 M (v®.8)

k=0

Step 4: Determine the descent direction

if k=0

- (o)

else
ww_vg@w)+%%§2;<kw

Step 5: Perform a line search in the direction of to compute y =
Arg min®(p), which minimizes the scalar function ®(p) = f(ﬁ("),
pwk))

Step 6: Compute a new state vector estimate 5(”1) = 6(10 +

y Rk

Step 7: Set k =: k+ 1 and return to step 2 until a termination
condition is reached

All the work on the computer was carried out using Matlab
R2017b (Mathworks Natick) using i7-6600U, 2.6 GHz CPU PC with
16 GB RAM and 64bits operating system.

2.14. Uncertainty quantification in model predictions

As mentioned in section 1, self-optimizing operation of anaer-
obic digesters is when we have an acceptable loss in performance as
aresult of kinetic uncertainty in the model. In order to therefore use
the model to model the self-optimizing performance target, one
needs to quantify the model prediction uncertainty resulting from
uncertainty in kinetic coefficients. In order to quantify the model
prediction uncertainty, the Monte Carlo simulation procedure,
presented in Fig. 3 was applied in a similar way as in Sin et al.
(2010D).

Input-output uncertainty analysis is highly dependent on the
input uncertainty range (confidence bounds) as well as correlation
coefficients. The variance metrics and correlation coefficients of the
unidentifiable set of model parameters for the different biokinetic
models were obtained by estimating the complete set of parame-
ters (identifiable and unidentifiable) using the estimation proced-
ure presented in section 2.1.3.

2.2. Self-optimizing performance targeting

Given a set of reactions and associated kinetics, the following

five key steps needs to be performed in order to define the per-
formance target of a process using attainable region analysis (Ming
et al,, 2016):

> Define the reaction, dimension and feed set

> Define the fundamental processes occurring in the system

> Generate the AR using combinations of the fundamental
processes

> Interpret the AR boundary in terms of reactor equipment

> Define the objective function and overlay this onto the AR to
determine point of intersection with the AR boundary

> Determine the specific reactor configuration required to achieve
the intersection point

The previous two bullet points are important if the attainable
region is to be used to answer a specific design or optimization
question.

Some necessary conditions for AR can be summarized as follows
(Hildebrandt and Glasser, 1990; Hildebrandt et al., 1990):

> The AR includes all feeds to the system.

> The AR is convex.

> No process vector point out of the AR boundary.

> No rate vectors in the complement of the AR when extended
backward intersects the AR.
The objective of this section is to analyze the aforementioned
necessary requirements with respect to its application to the
anaerobic treatment process.

2.2.1. Reaction scheme and process kinetics

Using the information flow diagram of the kinetic model pre-
sented in Fig. 2, a stoichiometric scheme of the bioreaction occur-
ring in the anaerobic digester consist of two main reactions
catalyzed by acid-forming bacteria, Eq. (33) and methane-forming
bacteria Eq. (34)

.

kiS1 X1 + kaSs (33)
T;

k3Sy =3 Xy + kyCHy (34)

If we assume the specific death rate to be negligible compared to
the specific growth rate of both microbial populations, the rate
expressions for the different reaction species is defined by Eq. (35)
—(38)

X, = X1 (35)
Ix, = t2Xa (36)
rs, = — ki Xa (37)
rs, = kop1 X1 — k3pp X7 (38)

2.2.2. Fundamental processes

Various fundamental processes can occur within a system,
which for bioreactors may include: mass transfer, mixing, bio-
reaction (biodegradation, bioconversion), adsorption, heat transfer,
etc. The AR approach requires the fundamental processes taking
place in the system be identified. The following two main funda-
mental processes are identified to be associated with the anaerobic
treatment process: Biodegradation and mixing. The attainable
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Fig. 3. Monte-Carlo simulation method for uncertainty propagation (Morales-Rodriguez et al., 2012).

region (AR) for the anaerobic treatment process therefore repre-
sents the set of all possible states that can be achieved by a com-
bination the two fundamental processes, biodegradation and
mixing. In AR theory, mixing is performed by a continuous stirred
tank reactor (CSTR) while reaction (biodegradation) is achieved in a
plug flow reactor (PFR), since the operation of both reactors
respectively mimic the two fundamental processes. At steady state
operation, the general mathematical representation of a CSTR and
PFR are given by Eqgs. (39) and (40) respectively.

C=Cf +77(C) (39)
dc
=10 (40)

C is the state vector while r(C) is the reaction rate vector as shown
by Egs. (41) and (42) respectively.

C=[X; X2 S S (41)

r(C)=[rx, T1x, Ts rgz]T (42)

2.2.3. Dimensionality analysis and model reduction

The reaction stoichiometry of the system can be used to deter-
mine the dimension of the system. The dimension of the AR is
determined from the number of independent reactions occurring in
the reactor system, which defines the dimension of the stoichio-
metric subspace (the rank of the stoichiometric coefficient matrix
A), in which the AR must reside. Since there are two independent
reactions occurring in the system, the set of points generated by the
anaerobic treatment process must reside in a two-dimensional
subspace in R° (Ming et al., 2016). The reduced state and reaction
rate vectors are therefore presented by Egs. (43) and (44).

cC=[S, X" (43)

rQ)=[rs, ) (44)

The reduction involved expressing S; and X4, as a function of S,
and X, as shown by Egs. (45) and (46).

51 :S1m — k1 (X1 _le) (45)
1
X] :X1m + E [SZ —Szm + k3 (X2 —sz)] (46)

This reduction in the dimensions of the state and rate vectors
was done using the approach illustrate in our recent study using
attainable regions for synthesis and optimization of methane bio-
reactors (Ref). The model reduction assumes that the specific death
rates of acidogens and methanogens is negligible compared to their
respective specific growth rates.

2.24. AR construction and defining performance target for the
system

After stating the process kinetics, the AR construction process is
initiated by defining feed point and process conditions that influ-
ence the system. In anaerobic treatment, the digester is normally
maintained at constant temperature (isothermal process)
throughout retention time, which makes the AR dependent on the
particular temperature in the system. The anaerobic digestion was
carried out under mesophilic conditions at a temperature of 35°C.
Using the specified feed, kinetics and temperature conditions, the
set of points generated by solving the PFR equation are called the
PFR trajectory and those generated by solving the CSTR equation
are called the CSTR locus. The convex hull of the set of points
generated by the system defines the attainable region, which rep-
resents the limits of achievability by the system.

3. Results and discussion

In this section, data from a real experiment is utilized to illus-
trate the theories presented in the previous sections. The case study
is based on a batch methane bioreactor operated with diary
manure, where experimental measurements of volatile fatty acids
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and methane gas flowrate (which, can be used to get the concen-
tration of methanogenic archae) were obtained (Zaher et al., 2009).

3.1. Parameter identifiability measures

3.1.1. Sensitivity analysis

In this section, the objective was to determine, which set of
parameters should be estimated to accurately describe the mech-
anisms of the anaerobic digestion process. This depends on
analyzing the sensitivity function of the model parameters with
respect to with respect to the states. Fig. 4 presents the sensitivity
functions (dynamic sensitivities) of the states for the parameters of
the biokinetic model. From the shape of the sensitivity functions,
the authors made the following remarks: (1) All the states show
some sensitivity to the model parameters, which can either be a
negative or positive sensitivity. (2) The anaerobic microorganisms
mostly show negative sensitivity while the substrates show both
negative and positive sensitivities to the model parameters. Table 1
presents the numerical characteristics sensitivity analysis, which
include: the nominal values and scale of the model parameters; the
mean, minimum and maximum values of the dynamic sensitivities;
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the sensitivity measures (L1 and L2) as well as the number of data
points (N). The 130 data points corresponds to the small time step
of 0.0769 that was used to integrate the sensitivity equations from
0 to 10days.

Particularly, it is worth mentioning that for the substrates, the
biodegradable volatile solids is most sensitive to the acid yield
coefficient (k,) while volatile fatty acids are most sensitivity to the
Monod saturation constant for volatile acids (K,) and inhibition
constant (K;). For the anaerobic microorganisms, the acidogenic
bacteria is highly sensitive to the Monod saturation constant (K ),
while the methanogenic archae are highly sensitive to inhibition
constant (K;). These outcome accurately describe the underlying
theories of the anaerobic treatment process, which include:
breakdown of volatile solids into volatile fatty acids by acidogenic
bacteria, utilization of volatile fatty acids for growth of methano-
genic archaea as well as high sensitivity of methanogenic archaea to
inhibitions (Henze et al., 2008; Wang et al., 2007). Hence the results
clearly illustrate the ability of the model to describe the anaerobic
digestion process.

Fig. 5 presents the use of the sensitivity measure (sum of
sensitivity functions of the available measurements with respect to
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Fig. 4. Sensitivity of model states to model parameters.
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Table 1
Sensitivity measures of the observable states to the model parameters.
Parameters Value Scale L1 L2 Mean Min Max N
kq 0.1920 0.1920 0.0000 0.0000 0.0000 0.0000 0.0000 130
k> 0.5029 0.5029 0.2131 0.6086 —0.2042 —2.5915 0.0302 130
ks 0.1920 0.1920 4.6606 9.4970 3.9058 -1.9351 30.5131 130
K 25.0687 25.0687 0.7843 1.3894 —0.5965 —3.3613 0.4591 130
K 0.0899 0.0899 2.7457 7.4232 —2.5820 —30.8306 0.5022 130
K; 1088.8324 1088.8324 7.3896 12.9875 4.5331 —7.4461 32.5866 130
State(s): Volatile Acids State(s): Methanogens
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Fig. 5. Parameter significance ranking for observable states based on sensitivity measure.

parameters) to rank the model parameters, which reveals the
relative significance of the parameters with respect to the observ-
able states. Only the relative ranking for volatile acids, methano-
genic archaea as well as volatile acids + methanogenic archae as
model as model outputs are considered. This is because the
experimental data, which is used as our case study only contains
measurements for volatile acids methanogenic archae (calculated
form methane flowrate) and we therefore determine the set of
model parameters that are identifiable considering these two
observable states.

It is noteworthy that the yield coefficient (k;) is found

completely not sensitive to any of the observable states. The inhi-
bition constant (K;) was found most significant for all the observ-
able states followed by the yield coefficient (k3). The Monod
constants (Ks; and Ks;) and the yield coefficient (k;) were found
significant albeit to a relatively lower degree. The practical rele-
vance of the parameter significance ranking is that only those pa-
rameters with significant sensitivity measure with respect to the
observable states can be identified. Therefore, considering volatile
fatty acids and methanogenic archaea as the only observable states
in the system, the yield coefficient k; cannot be identified from the
available data since it has a sensitivity measure of zero. This implies
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only 5 out of the 6 model parameters can be candidates for
parameter estimation.

3.1.2. Collinearity analysis

This section of the identifiability analysis only considers those
set of parameters (5 out of the 6 model parameters were signifi-
cant), which have a significant effect on the observable states. The
collinearity analysis screens all possible subsets of the potential
candidate parameters to determine the identifiable subsets using a
collinearity index. The five potential candidates for parameter
estimation gives a total of approximately 31 parameter subset
combinations, with a maximum subset size of five parameters

Fig. 6a presents the collinearity analysis for all possible combi-
nations of parameter subsets while Fig. 6b presents collinearity
analysis for the potentially identifiable subsets. From Fig. 6, it can be
observed that of the 31 possible subset combinations, only 18 are
potentially identifiable (those having collinearity index less than
15) and with a maximum identifiable subset size of three
parameters

These findings suggest that for a given set of observable states
(experimental measurements), there exist many identifiable subset
combinations of model parameters having a maximum number of
parameters that can be estimated uniquely. Unique estimation
means that by using an identifiable subset, the estimated param-
eters should have a relatively lower correlation values and/or
confidence intervals. The results corroborate the theoretical
premise that subjecting an overparameterized model to limited
quality/quantity of data limits the number of parameter that can be
estimated to uniquely and accurately describe the system (Brun
et al., 2002; Sin and Vanrolleghem, 2007).

3.2. Model fits and parameter uncertainty

Two cases of parameter estimation were considered: one with
an identifiable subset (specifically k;, K, and K;) and one with all
the model parameters (known as the nominal case) so that the
effect of identifiability analysis can be ascertained. The model fits
for both cases are presented in Fig. 7 while parameter estimates
together with their 95% marginal confidence intervals are shown in
Table 2. Visually, both cases show a good fit between the experi-
mental measurements and model predictions with no observable
difference in both cases. However, from a numerical perspective
(see Table 2), the parameter estimates from the nominal case shows
a much higher degree of uncertainty (given as the standard

7000 . . 5
6000 | (a)
4
5000 -
x
3 o
£ 4000 - N
> ]
H 189
[] o
£ 3000 [ 5
= n
o]
S
2000
2
1000
. . WA 1
0 5 10 15 20 25 30 35

All possible parameter subsets (#)

deviation, which relates to the 95% marginal confidence interval)
than that of the identifiable case. Put it in another way, the iden-
tifiability analysis has served to reduce the degree of uncertainty in
model parameter estimates.

The results indicate that despite variation in parameter uncer-
tainty, the quality of the model fit to experimental data is not
compromised and using an identifiable subset of model parameters
serves to improve the quality of the model parameters. It is worth
mentioning that the identifiable parameter subset utilized for
parameter estimation is just one of the three identifiable subsets
available with size of 3. Other three-parameter combinations of
identifiable subsets can still be selected as candidates for the
parameter estimation. The focus of this study is not to consider all
the identifiable subset, but to illustrate how these identifiability
issues should be incorporated in digester synthesis.

3.3. Uncertainty quantification on model states

Recall from step 3 of section 2, which stated the need to quantify
the model prediction (state) uncertainty using the unidentifiable
parameter set as inputs. From section 3.2, we have demonstrated
the use of an identifiable parameter subset (k,,Ks, and K;) to reduce
uncertainty in model parameters. Even though the use of an
identifiable subset reduces parameter uncertainty, it causes
another problem, which is that of model uncertainty. This is
because those parameters that are not identifiable (k;,k, and K1)
need to be kept constant (probably using values estimated from
previous studies or independent experiments), which influences
the reliability of the model. Since the geometric optimization
technique of attainable regions presented in this study for synthesis
of anaerobic digesters is unique for a given kinetic model, an un-
reliable model will therefore result in an unreliable digester system,
which can easily lead to operational failure. Hence before using the
model to construct the attainable regions (which can be interpreted
into digester structures), we quantify and incorporate the model
prediction uncertainty into the limits of achievability of the system,
which is defined by the attainable regions.

Fig. 8 presents the results obtained from the Monte Carlo sim-
ulations. From a general perspective, the results indicate that each
of the model states have a time varying uncertainty band defined
by the 10th and the 90th percentile. The methanogenic archaea
shows insignificant uncertainty band to the model inputs at certain
times instants, where the mean, 10th and 90th percentile are equal.
The width of the band (difference between the 10th and the 90th
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T
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Fig. 6. Collinearity analysis for: (a) all possible combination of parameter subsets (b) potentially identifiable parameter subsets.
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Fig. 7. Model fits to experimental data for both nominal and identifiable cases.
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Table 2

Parameter estimates and uncertainty given as the standard deviation.

Model Parameters Parameter Estimates

Standard Deviation

Nominal case

Identifiable case

Nominal case Identifiable case

ky 0.1920 0.1920 45.8498 N/A
k; 0.5029 0.514889 3.2951 0.62322
ks 0.1920 0.1920 3.6133 N/A
Kq 25.0687 25.0687 386.8622 N/A
K 0.0899 0.852436 0.2822 0.78416
K; 1088.8324 1088.5435 22887.6440 12.1010

percentile) describes the spread of the distribution of the model
states resulting from parameter uncertainty and the larger the
width, the higher the degree of model output uncertainty. This is
often called mapping/propagating parameter (input) uncertainty
onto states (output) uncertainty.

The state uncertainty bands presented in Fig. 8 are highly
dependent on the uncertainty range of the model parameters. The
study used the joint confidence region (Fig. 9) of the sampled pa-
rameters, which takes into consideration the correlation amongst
model parameters and eliminates the need to define the correlation
amongst model parameters during the Monte Carlo procedure.

The interpretation of these results is based on the relationship
between uncertainty band and model quality: the higher the un-
certainty band, the lower the model quality. Hence model pre-
dictions for biodegradable volatile solids followed by volatile fatty
acids and acidogenic bacteria are deemed of low quality (large
uncertainty bands) while that of methanogenic archaea can be
deemed acceptable.

3.4. Self-optimizing attainable regions

Surely, whether of acceptable quality or not, the prediction

uncertainty around the model states affects the limits of achiev-
ability of the anaerobic digestion process and hence the nature of
the optimal digester structures. This is because for synthesis of
methane bioreactors using attainable region analysis, the predicted
performance target or limits of achievability by the system is
computed by the area of the convex hull for the set of states (out-
puts) achievable by the system.

Hence, when using attainable regions for performance targeting
and digester network synthesis, we suggest that it should be
mandatory to incorporate uncertainty of model prediction during
construction of the attainable regions. The approach here relies on
constructing the attainable regions using the three key points of the
state’s prediction (mean, 10th and 90th percentile) and superposing
the regions to obtain a robust region which considers the effect of
uncertainty. Fig. 10 presents the AR for the 10th percentile, mean
and 90th percentile state predictions on to which the digester
structures required to attain points on the AR boundary has been
overlaid. A detailed explanation of how the AR boundary has been
interpreted into digester structures is presented in our recent
publication (Abunde Neba et al., 2019¢). It can be observed that for
all the cases where the AR boundary is convex, the optimal digester
structure involves a plug flow digester in order to attain points on
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the AR boundary. This can be explained by the intrinsic geometric
characteristics of this type of reactor in relation to the properties of
the AR boundary. The AR boundary is composed entirely of reaction
and mixing surfaces only. Reaction surfaces are always convex and
the points that form convex sections of the AR boundary arise
specifically from points on PER trajectories (Ming et al., 2016). This
is so because governing equations of a PFR is a system of first order
ordinary differential equations Eq. (17), where a phase plane pre-
sentation of the solution of the system for a given organic load and
digestion time is called PFR trajectory. Geometrically, the rate
vector evaluated at points on the PFR trajectory is tangent to all
points on the trajectory (Hildebrandt and Glasser, 1990; Ming et al.,
2016). This implies the boundary of a true AR will always contain
points originating from PFR trajectory, otherwise it becomes a
candidate AR. Fig. 10d present the intersection of the three regions
to define the self-optimizing attainable region. It can be observed
that the region looks smaller than any of the three individual re-
gions (10th percentile, mean and 90th percentile). This illustrates
the accept loss in process operation mentioned in section 1. It is
necessary here to re-clarify exactly what is meant by self-
optimizing attainable regions. Unlike the attainable region, which
represents the set of all possible states that is attainable by the
system for a defined kinetics and initial condition (feed point), the

self-optimizing attainable region represents the set of all possible
states attainable by the system even in cases of kinetic uncertainty.
The size of the self-optimizing attainable region is related to the
domain of uncertainty defined for the unidentifiable set of model
parameters used for the uncertainty propagation. The presence of
uncertainty reduces the size of the self-optimizing AR and if the
domain of uncertainty is reduced, the size increases. As mentioned
in section 1, the attainable region defines the limits of achievability
(performance targets) by a system. This implies that considering
uncertainty has greatly reduced the limits of achievability by the
system even though we have benefited from increased robustness.
The authors will also like to clarify at this point that by performance
targets, the authors refer to the totality concentration of microor-
ganisms and substrates that can be output by the different digester
combinations using the fundamental processes occurring in the
system. This is defined by the attainable region of the system for a
given kinetics and by the self-optimizing attainable region for
different kinetic variations within a defined domain.

The findings from this study are therefore highly important in
making economic feasibility decisions about the performance of
biogas plants especially in cases where accuracy is very necessary.
Put it in another way, when assessing the economic feasibility of
the anaerobic treatment process, one can now consider the
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economic performance of the process even in cases of uncertainty
and reliably compare it with other process alternatives. In summary
coupling uncertainty analysis and attainable region theory provides
a systematic methodological framework for dealing with kinetic
uncertainty during design of biogas digesters and hence allows
biogas engineers to benefit from the advantages of model-based
design. These advantages include easy digester scale-up, less
experimental runs (hence less cost), as well as obtain optimal
design parameters and digester configurations. This approach is
therefore recommended as a reliable strategy for design of biogas
plants in cases of kinetic uncertainty, which is very common with
biokinetic models for anaerobic digestion.

4. Conclusion

A systematic model-based framework for the synthesis of biogas
reactors under cases of kinetic uncertainty has been developed.
Using the case of the modified Hill model for anaerobic digestion,
the following conclusions are made:

> Identifiability analysis reveals that only 5 out of the 6 model
parameters can be candidates for parameter estimation. The 5
potential candidates for parameter estimation gives a total of
approximately 31 parameter subset combinations, with a
maximum subset size of 5. Of the 31 possible subset combina-
tions, only 18 are potentially identifiable and with a maximum
identifiable subset size of 3.

> Parameter estimation indicates that despite variation in
parameter uncertainty, the quality of the model fit to experi-
mental data is not compromised and using an identifiable sub-
set of model parameters serves reduce the degree of uncertainty
(confidence interval) in model parameter estimates.

> Following sensitivity analysis, the biodegradable volatile solids
are most sensitive to the acid yield coefficient (k,) while volatile
fatty acids are most sensitivity to the Monod saturation constant
for volatile acids (Ks;) and inhibition constant (K;). For the
anaerobic microorganisms, the acidogenic bacteria is highly
sensitive to the Monod saturation constant (Ky,), while the
methanogenic archae are highly sensitive to inhibition constant
(Ky).

> Uncertainty quantification reveals that of the four model states,
the methanogenic archaea, shows an insignificant uncertainty
band to the model inputs at certain times instants, while all the
other sates show a degree of significant uncertainty to the
model inputs at all times instants

> The systematic model-based framework proposed in this study
has been based on the concept of attainable regions. Hence,
when using attainable regions for performance targeting and
digester network synthesis, we suggest that it should be
mandatory to incorporate uncertainty of model prediction
during construction of the attainable regions. The attainable
region obtained in such cases is referred to as a self-optimizing
attainable region, which is generally smaller than the attainable
region. It is concluded that incorporating kinetic uncertainty
onto attainable regions has greatly reduces the limits of ach-
ievability by the system even though we have benefited from
increased robustness. When the AR is obtained, the boundary of
the AR can be interpreted into digester structures, whereby the
optimal digester structure always involves a plug flow digester
in combination with either a CSTR and/or bypass streams.

In summary coupling identifiability analysis, uncertainty quan-
tification and the attainable region theory provides a systematic
methodological framework for defining the performance targets of
the anaerobic treatment process under conditions of uncertainty. It

is also worth mentioning that even though the study is based on the
anaerobic treatment process, the framework can be applied to
optimally design other environmental chemical processes, which
can be described with a kinetic model.

More research is needed to extend the concept of self-
optimizing attainable regions in the field of anaerobic digestion.
This study has focused on kinetic uncertainty and it would be
interesting to assess the effects of other potential sources of un-
certainty (such as substrate characteristics, presence of inhibitions
or temperature variations) on the performance targets (defined by
the self-optimizing attainable regions) of the anaerobic treatment
process.
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Nomenclature

Xiin Influent concentration of acidogenic bacteria (g ac./L)

Ar Acidity factor (g VFA/L)/(g BVS/L)

By Biodegradability constant (g BVS/L)/(g VS/L)

Ky, Specific death rate of acidogenic bacteria (d~1)

Kq, Specific death rate of methanogenic bacteria (d—1)

K; VFA inhibition constant (g VFA/L)

K; VFA inhibition constant for acidogenic bacteria
(g VFA/L)

Kip VFA inhibition constant for methanogenic bacteria
(g VFA/L)

Ks Monod half-saturation constant (g/L)

Ksq Monod half-saturation constant for acidogenic bacteria
(g BVS/L)

Ky Monod half-saturation constant for acidogenic bacteria
(g VFA/L)

Qc, Methane gas flow rate (L CHy/d)

S1,, Influent concentration of biodegradable volatile solids
(g BVS/L)

S2., Influent concentration of volatile fatty acids (g VFA/L)

S Concentration of biodegradable volatile solids in
bioreactor (g BVS/L)

S, Concentration of volatile fatty acids in bioreactor
(g VFA/L)

Sa(t) Matrix of absolute sensitivities

Sin Influent concentration of volatile solids (g VS/L)

Snd Non-dimensional sensitivity

X2, Influent concentration of methanogenic bacteria
(g me./L)

X1 Concentration of acidogenic bacteria in bioreactor
(g ac./L)

X5 Concentration of methanogenic bacteria in bioreactor
(g me./L)

Xin Influent biomass concentration (g/L)

kq Yield constant (g BVS/g ac./L)

ky Yield constant (g VFA/g ac./L)

k3 Yield constant (gVFA/g me./L)
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ty a2 Student t-distribution parameter

o Root mean squared sensitivity

U Specific growth rate of acidogenic bacteria (d—1)

H1m Maximum specific growth rate of acidogenic bacteria
(d1)

U Specific growth rate of methanogenic bacteria (d~1)

Uom Maximum specific growth rate of methanogenic
bacteria (d—1)

Um Specific growth rate of bacteria (d-1)

D Dilution rate (d—1)

HRT Hydraulic retention time (d)

S Substrate concentration (g/L)

T Reactor temperature (°C)

%4 Volume of methane bioreactor (L)

VFA, Influent concentration of volatile fatty acids (g VFA/ L)
VS Volatile solids
VSL Volatile solids loading (g VS/L)

w non-dimensional scaling/weighting matrix
f Inhibition factor

s Acidogenic fraction

Y Model states

I’} Parameter set

Yo Initial Condition

N Number of state variables

n Number of data points

p Number of parameters

Snorm Normalized sensitivity measure
Yk Collinearity index

A Eigen values of normalized sensitivity matrix
JB Least Square Criterion

vJ(6) Gradient of Least Square Criterion
yobs Observable states

H Observation matrix

M(t,Y,B) Discretized model

L(Y,8,4) Lagrangian

w Descent direction

P Step length
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