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Abstract—Exploiting memory level parallelism (MLP) is cru-
cial to hide long memory and last level cache access latencies.
While out-of-order (OoO) cores, and techniques building on
them, are effective at exploiting MLP, they deliver poor energy
efficiency due to their complex hardware and the resulting
energy overheads. As energy efficiency becomes the prime design
constraint, we investigate low complexity/energy mechanisms to
exploit MLP.

This work revisits slice-out-of-order (sOoO) cores as an energy
efficient alternative to OoO cores for MLP exploitation. These
cores construct slices of MLP generating instructions and execute
them out-of-order with respect to the rest of instructions. How-
ever, the slices and the remaining instructions, by themselves,
execute in-order. Though their energy overhead is low compared
to full OoO cores, sOoO cores fall considerably behind in terms of
MLP extraction. We observe that their dependence-oblivious in-
order slice execution causes dependent slices to frequently block
MLP generation.

To boost MLP generation in sOoO cores, we introduce
Freeway, a sOoO core based on a new dependence-aware slice
execution policy that tracks dependent slices and keeps them out
of the way of MLP extraction. The proposed core incurs minimal
area and power overheads, yet approaches the MLP benefits of
fully OoO cores. Our evaluation shows that Freeway outperforms
the state-of-the-art sOoO core by 12% and is within 7% of the
MLP limits of full OoO execution.

I. INTRODUCTION

Today’s power-constrained systems face challenges in gen-
erating memory level parallelism (MLP) to hide the increasing
access latencies across the memory hierarchy [1]. Historically,
memory latency has been addressed through multilevel cache
hierarchies to keep the frequently used data closer to the core.
While cache hierarchies provide lower-latency in L1 caches,
they have grown in complexity to the point where the 40-
60 cycles it takes to access the last level cache has itself
become a bottleneck. Therefore, exploiting MLP across the
entire hierarchy, by overlapping memory accesses to hide the
latency of later requests in the “shadow” of earlier requests, is
crucial for performance. However, the traditional approaches
to extract MLP, such as out-of-order (OoO) or run-ahead
execution, are not energy-efficient.

The standard means of extracting MLP is out-of-order
(OoO) execution, as it enables parallel memory accesses by
executing independent memory instructions from anywhere in
the instruction window. However, the ability to identify, select,
and execute independent instructions in an arbitrary order,
while maintaining program semantics, requires complex and

energy hungry hardware structures. For example, one of the
key enablers of OoO execution, the OoO instruction queue, is
typically built using content addressable memories (CAMs),
whose power consumption grows super-linearly with queue
depth and issue width.

State-of-the-art MLP extraction techniques aim to improve
performance by increasing the amount of MLP extraction
beyond the OoO execution. However, they fail to deliver
energy efficiency primarily because they build upon already
energy hungry OoO execution and further introduce significant
additional complexity of their own. For example, Runahead
Execution [2] continues to extract MLP after an OoO core
stalls, but requires additional resources for checkpointing and
restoring states, tracking valid and invalid results, psuedo
instruction retirement, and a runahead cache. This additional
complexity entails a significant energy overhead.

To minimize the energy cost of MLP exploitation, a new
class of cores, called slice-out-of-order (sOoO) cores, builds
on energy efficient in-order execution and adds just enough
OoO support for MLP extraction. These cores first construct
groups, or slices, of MLP generating instructions that contain
the address generating instructions leading up to loads and/or
stores. The slices are executed out-of-order with respect to the
rest of the instructions. However, the slices and the remaining
instructions, by themselves, still execute in-order. As the MLP
generating slices bypass the rest of the potentially stalled
instructions, sOoO cores extract significant MLP. Yet since
they only support limited out-of-order execution, they incur
only a fraction of the energy cost of the full out-of-order
execution.

The state-of-the-art sOoO core, the Load Slice Core
(LSC) [3], builds on an in-order stall-on-use core. LSC learns
MLP generating instructions using a small hardware table. To
enable these instructions to execute out-of-order as regards
to the rest of the instructions, LSC adds an additional in-
order instruction queue, called the bypass queue (B-IQ). By
restricting the out-of-order execution to choosing between the
heads of two in-order instruction queues (the main, or A-IQ,
and the B-IQ), LSC minimizes the energy requirements while
still exploiting MLP.

Though highly energy efficient, existing sOoO cores fall
noticeably behind OoO execution in terms of MLP extraction.
Our key observation is that inter-slice dependencies limit
MLP extraction opportunities. For example, when a dependent



memory slice1 reaches the head of the in-order B-IQ in
LSC, it blocks any further MLP generation by stalling the
execution of subsequent, possibly independent, slices until
the load instruction of its producer slice receives data from
the memory hierarchy. Our analysis reveals that, in LSC, the
dependent slices block MLP generation for up to 83% of the
execution time (average 23%). More importantly, the MLP
loss is not just caused by the long stalling dependent slices
whose producers miss in the on-chip caches. We demonstrate
that, counter-intuitively, the dependent slices cause significant
MLP loss even if they only stall for a few cycles: our results
show that about 65% of the dependent slice induced MLP
loss is caused by slices whose producers hit in the L1 cache.
Together, these results demonstrate that dependent slices are
a serious bottleneck in LSC.

This work addresses the fundamental limitation of the state-
of-the-art sOoO core’s ability to extract MLP: its dependence-
oblivious first-in first-out (FIFO) slice execution causes depen-
dent slices to delay the execution of subsequent independent
slices. We propose to abandon the FIFO model in favor of
a dependence-aware slice scheduling model. The proposed
model tracks slice dependencies in hardware to identify depen-
dent slices and steers them out of the way of the independent
ones. As a result, the independent slices execute without
stalling and expose more MLP.

To achieve this, we introduce Freeway, an energy efficient
core design powered by a dependence-aware slice scheduling
policy for boosting MLP and performance. Freeway tracks
inter-slice dependencies with minimum additional hardware,
one bit per entry in Register Dependence Table, to filter out
the dependent slices. These slices are then steered to a new in-
order queue, called the yielding queue (Y-IQ), where they wait
until their producers finish execution. Such slice segregation
clears the way for independent slices to unveil more MLP
as they no longer stall behind the dependent slices. Overall,
Freeway delivers a substantial MLP boost by unblocking
independent slice execution with minimal additional hardware
resources. Our main contributions include:
• Identifying that the dependence-oblivious FIFO slice exe-

cution is a major bottleneck to MLP generation in existing
sOoO cores. We further demonstrate that dependent slices
limit MLP even if they stall only for a few cycles (i.e. their
producers hit in the L1 cache).

• Proposing a new dependence-aware slice execution policy
that executes independent slices unobstructed by tracking
and keeping the dependent slices out of their way, hence
boosting MLP.

• Introducing the Freeway core design that employs minimal
additional hardware to implement the dependence-aware
slice execution: one bit per entry in Register Dependence
Table, 7-bits per entry in Store Buffer, a FIFO instruction
queue, and some combinational logic.

• Demonstrating, via detailed simulations, that Freeway out-

1A dependent slice is one that contains at least one instructions that depends
on the load instruction of another slice, called producer slice.

performs state-of-the-art sOoO core by 12% and is within
7% of the MLP limits of full OoO execution. We also
analyze the remaining bottlenecks that cause this 7% perfor-
mance gap and show that mitigating them brings minimal
performance returns on resource investment.

II. BACKGROUND AND MOTIVATION

A. MLP vs Energy: IO, OoO, and slice-OoO cores

Existing core designs force a trade-off between MLP and
energy efficiency. For example, an in-order (IO) core can be
highly energy efficient, but is unable to generate significant
MLP, and therefore delivers poor performance. In contrast,
OoO cores are generally good at extracting MLP, but at the
cost of (much) lower energy efficiency. To exploit MLP while
delivering high energy efficiency, a recent design, the Load
Slice Core (LSC) [3], proposed a new approach of slice-
out-of-order (sOoO) execution. LSC builds on an efficient
in-order core and employs separate instruction queues, A-
IQ and B-IQ, for non-MLP and MLP generating instructions,
respectively. This enables MLP generating instructions in the
B-IQ to bypass the potentially stalled load consumers in the
A-IQ. By exposing MLP in this way, LSC avoids much of the
complexity of full OoO architectures.

MLP Extraction: Figure 1 shows how the sOoO execution
of LSC fairs against IO and OoO cores in exploiting MLP.
As a stall-on-use IO core stalls on the first use of the value
being loaded from memory, it serializes all the loads in this
example, resulting in no MLP. The OoO core is able to
extract the maximum MLP by overlapping the execution of
independent load instructions (I0, I3 and I7). When these
loads’ data returns, their dependent loads (I5 and I10) are also
overlapped. The sOoO execution of LSC falls between the IO
and OoO cores. LSC overlaps the execution of the first two
load instructions (I0 and I3) as the B-IQ enables I2 and I3 to
bypass the stalled instructions (I1) in the A-IQ.

Figure 1 also demonstrates a major limitation of LSC: it is
effective in extracting MLP only when the memory slices are
independent. A dependent slice at the head of the B-IQ stalls
MLP extraction by blocking the execution of the subsequent
independent slices. In Figure 1, slice S2 stalls the B-IQ and
delays the execution of the next independent slice S3 until its
producer slice S1 receives data from the memory hierarchy.
Such slice dependencies limit MLP and overall performance.
However, an Ideal sOoO core, that allows fully out-of-order
execution among slices, would eliminate this limitation. As
shown in Figure 1, an ideal sOoO core matches the MLP
generation of a full OoO core.

Energy Consumption: LSC’s sOoO execution is implemented
with simple hardware components: FIFO queues and small
tables for tracking slices. As a result, it only slightly increases
the area and power consumption compared to an already small
IO core. In contrast, the energy requirements of OoO cores
are substantially higher due to the use of complex structures,
such as CAMs. Indeed, previous research [4] has shown that
the ability to select arbitrary instructions from IQ is one of the



ld r1=M[r7]           

add  r2=r1+1

add  r8=r8+1

ld r2=M[r8]

add  r2=r2+1

ld r3=M[r2]

sub  r4=r3-1

ld r4=M[r9]

add  r1=r4+2 

sub  r4=r4-1

ld r5=M[r4]
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Figure 1: Overlapping memory accesses in IO, OoO, LSC, and Ideal sOoO. The arrows show inter-slice dependencies.
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Figure 2: Performance gain for LSC and Ideal-sOoO over IO
execution. Prefetching is enabled in all designs.

most energy consuming tasks in OoO cores. Carlson et. al. [3]
concluded that LSC incurs only 15% area and 22% power
overheads over an IO core (ARM Cortex-A7), whereas an out-
of-order core (ARM Cortex-A9) requires 2.5x area and 12.5x
power compared to the same in-order core.

The slice-out-of-order execution in LSC is a promising
step towards energy efficient MLP extraction. However, LSC’s
strict FIFO execution of memory slices limits its potential
to extract MLP in the case of dependent memory slices.
To understand this limitation, we next explore its impact on
performance.

B. Potential for MLP extraction

To quantify the potential MLP available in a sOoO core,
we compare LSC, with its in-order B-IQ, to a LSC with a
fully out-of-order B-IQ (Ideal-sOoO). While an out-of-order
B-IQ would be impractical (it would defeat the efficiency
goal of avoiding the complexity of out-of-order instruction
selection), it allows us to observe the maximum MLP gains
possible if independent slices can bypass other stalled slices.
(Our simulation methodology, including microarchitectural
parameters, is detailed in Section V.)

Figure 2 shows the performance gains obtained by LSC
and Ideal-sOoO (LSC with a fully out-of-order B-IQ) over an
IO core. The relative difference between the two shows the
opportunity missed by LSC due to its FIFO slice execution.

The average performance gain of Ideal-sOoO over LSC is
20%, and more than 50% on GemsFDTD, h264ref, hmmer,
and leslie3d, due to relatively larger numbers of dependent
slices. However, there is little gain for calculix, lbm,
and milc, as they have fewer dependent slices (See Sec-
tion II-C). Overall, the majority of the workloads demonstrate
considerable performance opportunity if we can eliminate the
dependent slice bottleneck.

C. Sources of stalls in the bypass queue

For a deeper understanding of the microarchitectural bottle-
necks limiting MLP extraction in LSC, we examine the stall
sources afflicting the B-IQ and categorize them as follows:

• Slice Dependence Stalls: A dependent slice at the B-IQ
head is waiting for its producer to receive data from the
memory hierarchy.

• Empty B-IQ Stalls: There are no instructions (memory
slices) in the B-IQ.

• Load-store Aliasing Stalls: A load at B-IQ head cannot
be issued because an older store in the A-IQ is waiting to
write to the same address (true alias)2.

• Other Stalls: Intra-slice dependencies, unresolved store
addresses blocking younger loads, etc.

For this study, we assume an ideal core front-end (no instruc-
tion cache or BTB misses and a perfect branch predictor) to
isolate the slice execution bottlenecks.

Figure 3 shows the breakdown of stall cycles (when no
instruction is issued from neither the A-IQ nor B-IQ) as a
fraction of overall execution time. The figure reveals that
instruction issue is stalled for, on average, 47% of the exe-
cution time, and Slice Dependence Stalls are responsible for
almost half of these stalls. The Slice Dependence Stalls are
particularly significant in gcc, mcf, soplex, and hmmer,
where they account for more than 80% of all stalls. Notice
that gcc and mcf are the most severely affected workloads,
yet they are not the ones that show the highest performance
opportunity with Ideal sOoO execution (Figure 2). The reason
is that the performance opportunity is a function of not only

2In LSC, store data calculation and store operation itself go to the A-IQ,
whereas, the store address calculation goes to the B-IQ.
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Figure 3: Percentage of execution time the issue stage is stalled
in LSC, and the breakdown of stall sources.

the number of stalls caused by dependent slices, but also
where their producer slices hit in the memory hierarchy. As
shown in Figure 4, the majority of producer slices, in gcc and
mcf, miss in the on-chip cache hierarchy and must be loaded
from memory. This long memory latency stalls instruction
retirement, and therefore causes the instruction window to fill
which blocks further MLP generation and limits performance.

Empty B-IQ Stalls are the second largest source of stalls.
We observe that the primary reason for the B-IQ to be empty
is a full instruction window and the oldest instruction is not
ready to retire. As a result, no new instructions can enter
either instruction queue. This could be remedied through
larger instruction windows or methods such as Runahead
Execution [2]. The third largest source of stalls are Load-store
Aliasing Stalls, and they are particularly severe in bwaves,
cactusADM, gromacs, lbm, and povray. However, on
average, they only stall the execution for about 8% of the
overall execution time.

Looking at the potential of a fully out-of-order B-IQ, we
see that there is roughly a 20% performance gain possible over
LSC’s in-order B-IQ. The majority of this loss is due to Slice
Dependence Stalls, where the B-IQ is blocked by dependent
slices. Next, we analyze memory slice behaviour to mitigate
this bottleneck.

III. ADDRESSING SLICE DEPENDENCE

A generic approach to handling dependent slices is to get
them out of the way of the independent slices by buffering
them outside of the B-IQ. To this end, we next study the
memory slice behaviour to understand which dependent slices
should be buffered and where they should be buffered.

A. Which dependent slices to buffer?

Intuitively, only the dependent slices that stall the B-IQ
for many cycles need to be buffered. Such long stalls are
typically due to the slice’s producers hitting in the LLC or
memory. However, unintuitively, we found that 65% of the
Slice Dependence Stalls are caused by dependent slices that
stall only for a few cycles as their producers hit in the L1
cache. This demonstrates that even the relatively short L1 hit
latency (4 cycles in our simulation) can significantly limit the
MLP and performance in a sOoO core with strict FIFO slice
execution.
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Figure 4: Breakdown of Slice Dependence Stall cycles based
on the producer slice hit site in the memory hierarchy. lbm
does not have any dependent slices.

Figure 4 shows the breakdown of Slice Dependence Stall
cycles based on the producer slice hit site in the memory
hierarchy. The results are especially interesting for workloads
such as hmmer, where producer slices almost always hit in the
L1 cache, and yet dependent slices are responsible for more
than 96% of all stall cycles, which accounts for about 31% of
the execution time.

These results suggest that it is important to buffer all
dependent slices, even those that only stall for the duration
of an L1 hit. Interestingly, this also suggests that in many
cases we should only need to buffer the dependent slices for a
few cycles (to cover L1 latency) to achieve much of the MLP
benefit. If such limited buffering is sufficient, it would suggest
we can achieve these benefits at a low implementation cost.

B. Where to buffer?

To mitigate the slice dependence bottleneck, the dependent
slices need to be kept in a separate buffer to prevent them from
stalling the B-IQ. However, traditional instruction buffers, such
as the Waiting Instruction Buffer [5], are complex, energy
intensive, and are designed to buffer instructions for longer
time intervals, such as during LLC misses. In addition, those
designs require the instructions to be inserted back to the main
IQ before issuing them for execution [5], [6]. The extra energy
and latency of re-inserting instructions is particularly costly for
instruction slices which will only be buffered for a few cycles.

A simple FIFO queue is an attractive alternative instruction
buffer due to its low complexity and energy cost. However,
as instructions can only be picked from the head of the FIFO
queue, buffering all dependent slices in a single queue will
cause a bottleneck if the younger slices become ready for
execution before the older slices. This may occur primarily for
two reasons: First, if a younger slice has fewer slices before
it in its dependence chain than a slice in an older chain. Or,
second, if the producer of a younger slice hits closer to the core
in the memory hierarchy than the producer of an older slice.
To understand the implications of these effects, we analyze
potential stall sources to determine if a single, cheap, FIFO
queue is appropriate for buffering dependent slices.
Slice dependence depth: Slices further down their depen-
dence chains can potentially stall the execution of slices in
a younger chain. To better understand this, we define the
dependence depth of a slice as the number of slices in
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Figure 6: Slice dependence depth distribution.

the dependent slice chain leading up to it. For example, in
Figure 5, S1 and S4 are independent slices and start the
dependent slice chain, hence their dependence depth is 0. Next,
S2 and S5 are at dependence depth 1 because they have one
slice ahead of them, S1 and S4, respectively.

Using this definition, we observe that a younger slice with
a lower dependence depth is likely to become ready before
an older slice with higher dependence depth. For example, in
Figure 5, S3 (depth 2) will be ready only after both S2 and S1
have received their data, whereas S5 (depth 1) needs to wait
only for S4. If all the slices hit at the same level in memory
hierarchy, leading to similar execution times3, S5, the younger
slice, will be ready for execution before S3. However, it will
be stalled behind S3 in the FIFO queue, thereby limiting MLP
extraction.

To understand the potential bottleneck due to such stalls, we
study the slice dependence depth in our workloads in Figure 6.
As the figure shows, 78% of all slices are independent slices
(depth 0) and do not need to be buffered. Of the remaining
slices that do need to be buffered, more than 72% are at
dependence depth 1. Therefore, as the majority of dependent
slices are at the smallest depth of 1, the stalls caused by slices
at larger dependence depths (6% of all slices) are likely to be
minimal.
Producer slice hit site: Even if dependent slices are at the
same dependence depth, a younger slice can still become ready
earlier than an older slice if its producer hits closer to the core

3Slice execution time is a function of number of instructions in the slice
and the hit site of the load ending the slice. However, we discovered that
it mostly varies due to the load hit site as most of the slices have similar
instruction count.
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Figure 7: L1 cache hit rate for producer slices at dependence
depth 0. lbm does not have any dependent or producer slices.

in the memory hierarchy than the producer of the older slice.
For the example in Figure 5, S2 and S5 both are at dependence
depth 1, but S5 may become ready earlier if its producer S4
hits in L1 and S2’s producer S1 hits in LLC or farther. In this
scenario, S5 will be stalled as S2 is blocking the head of the
FIFO queue.

To understand the extent of the potential bottleneck, we
study the hit site of producer slices with at least one dependent
slice. For this study, we only consider the producer slices at
dependence depth 0 because the majority of dependent slices
are at depth 1 (e.g., dependence chain lengths of 2 slices).
Figure 7 shows that more than 96% of these producer slices hit
in the L1 cache. Therefore, as the majority of producer slices
hit at the same level, L1, the dependent slices are likely to
become ready in the program order, and, hence, incur minimal
stalls due to ready younger slices waiting behind stalled older
ones.

Overall, Figures 6 and 7 suggest that a single FIFO queue
for all dependent slices is sufficient to expose most of the
potential MLP available from out-of-order slice execution.
This is because most of the dependence slices are at the
dependence depth one and the majority of producer slices hit
in L1, indicating that it is unlikely that dependence slices will
stall behind each other. (Our results in Section VI-C validate
that additional queues bring only minimal performance gains.)

IV. FREEWAY

Freeway is a new slice-out-of-order (sOoO) core designed
to achieve the MLP benefits of full out-or-order execution.
Freeway goes beyond previous work by addressing the sources
of sOoO stalls identified in our analysis (Section III) to execute
the majority of memory slices without stalling on dependent
slices. Freeway requires only small changes over the baseline
sOoO design (LSC), and thereby retains its low complexity. As
a result, Freeway is able to substantially increase the exposed
MLP and performance, while retaining a simple, and energy
efficient design.

An overview of the Freeway microarchitecture is presented
in Figure 8. The components common to both LSC and Free-
way, such as the B-IQ, are shown in light gray. The additions
required for Freeway are in white. As Freeway builds upon
LSC, we first describe the baseline LSC microarchitecture
before providing an overview of the Freeway design and,
finally, a detailed discussion of the key design issues.
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A. Baseline sOoO

The first sOoO design, the Load Slice Core, builds upon
an energy efficient in-order, stall-on-use core. LSC identifies
MLP generating instructions (slices) in hardware and executes
them early (via the B-IQ) with minimum additional resources,
thereby achieving both MLP and energy efficiency.

To identify MLP generating instructions efficiently, LSC
leverages applications’ loop behaviour to construct memory
slices in a backward iterative manner, starting with the memory
access instructions. In each loop iteration, the producers of
the instructions identified in the previous iteration are added
to the slice. LSC identifies the producers of an instruction
through the Register Dependence Table (RDT), which maps
each physical register to the instruction that last wrote to it.
LSC then uses a simple PC-indexed Instruction Slice Table
(IST) to track the instructions in memory slices. By building up
slices via simple RDT look-ups over multiple loop iterations,
LSC avoids the complexity and energy overheads of explicit
slice generation techniques [7], [8].

To exploit MLP, LSC adds an additional in-order bypass
queue (B-IQ) to the baseline IO core. The MLP generating
instructions (slices), as identified by IST, are dispatched to
the B-IQ, which enables them to bypass the instruction in the
main instruction queue (A-IQ). For store instructions, only
the address calculation is dispatched to the B-IQ so that their
addresses are available earlier, and subsequent loads can be
disambiguated. The data calculation and the store operation
itself proceed to the regular instruction queue (A-IQ), as
they rarely limit MLP. By allowing such limited out-of-order
execution, MLP generating instructions can bypass (via the
B-IQ) stalled instructions in the main instruction flow (the A-
IQ). As a result, the sOoO execution of the LSC allows it to
extract considerable MLP, without the energy cost of the full
out-of-order execution.

B. Freeway: Overview

While LSC is effective in exploiting MLP when the mem-
ory slices are independent, dependent slices cause a serious
bottleneck due to LSC’s strict FIFO slice execution. As LSC
mixes dependent slices with the independent ones in the B-IQ,
it limits MLP by delaying the execution of independent slices
stalled behind the dependent ones. To increase MLP, Freeway

abandons LSC’s FIFO slice execution and allows independent
slices to execute out-of-order with respect to dependent ones
with minimum additional hardware.

To enable out-of-order execution among slices, Freeway
tracks slice dependencies in hardware and separates dependent
slices from independent ones. Freeway uses the slice depen-
dency information to accelerate independent slice execution
by reserving the B-IQ exclusively for them. To handle the
dependent slices, leveraging the insights from Section III,
Freeway introduces a new FIFO instruction queue called the
yielding queue (Y-IQ). Dependent slices can then wait in the
Y-IQ, yielding execution to the independent slices, until they
become ready for execution. As our analysis in Section III
demonstrated, the dependent slices mostly become ready in
program order, therefore, ready dependent slices should rarely
stall behind the non-ready ones. This characteristic allows us to
use simple hardware to boost MLP by executing the majority
of slices from both the B-IQ and Y-IQ without any stalls.

Freeway requires only minimal additional hardware, as
shown in Figure 8, to support out-of-order slice execution:
extending the RDT entries with one bit to track whether
an instruction belongs to a dependent slice; adding a FIFO
instruction queue (Y-IQ) for dependent slices; extending each
store buffer entry with 7 bits and comparators to maintain
memory ordering; and adding logic to issue instructions from
the Y-IQ in addition to from the A-IQ and B-IQ.

C. Freeway: Details

We first describe the mechanism for tracking slice depen-
dence and then provide details of instruction flow through
Freeway, before discussing memory ordering requirements.

1) Tracking dependent slices: We classify a memory slice
as a dependent slice if it contains at least one instruction that
depends on the load instruction of an older slice4. Freeway
detects dependent slices in the Register Rename stage by lever-
aging the existing data dependence analysis of the baseline
core. These analyses are required by LSC to identify the
instructions belonging to memory slices. The first instruction
of a dependent slice can be identified trivially using the data
dependence analysis as it is the instruction that receives at least

4A slice is not classified as dependent if it depends on a non-load instruction
of a older slice.



one of its operands from a load instruction. Identifying the
remainder of the dependent slice instructions is more involved
as they may not be directly dependent on the load. Therefore,
the dependence information must be propagated from the
first dependent instruction to the memory access instruction
terminating the slice.

Freeway extends LSC’s RDT with a slice dependence bit to
propagate the dependence information through a slice. The
dependence bit indicates whether the instruction reading a
register would belong to a dependent slice or not. Initially the
slice dependence bits are 0 for all RDT entries. When Freeway
detects a load instruction, it sets the slice dependence bit of
its destination register’s RDT entry to 1, as any slice instruc-
tion reading this register would belong to a dependent slice.
Subsequently, if the slice dependence bit for any of the source
registers of an instruction is found to be 1, the instruction
is marked as a dependent slice instruction. In addition, the
dependent slice bit of its destination register’s RDT entry is
set to 1. This propagates the dependence information through
the slice. As such, Freeway only requires 1 additional bit
per RDT entry to identify the chain of dependent instructions
constituting a dependent slice.

2) Instruction Flow Through Freeway: Front-end: The
Freeway front-end is very simliar to that of LSC, but with
the addition of dependent slice identification and tracking. As
with LSC, after instruction fetch and pre-decode, the IST is
accessed with the instruction pointer to check if an instruction
belongs to a memory slice or not. This information is propa-
gated down the pipeline to assist instruction dispatch. Next,
register renaming identifies true data dependencies among
instructions so that dependent instructions wait until their
producers finish execution. At this point Freeway consults the
RDT to determine if a memory slice instruction also belongs
to a dependent slice, and passes on this information to the
dispatch stage.
Instruction Dispatch: Freeway dispatches an instruction to
one of the three FIFO instruction queues (A-IQ, B-IQ, or Y-IQ)
based on the slice and dependence information received from
the IST and RDT. Loads, stores, and their address generating
instructions, as identified by the IST are dispatched to the B-
IQ if they belong to independent memory slices. In contrast,
if the RDT classifies them as part of a dependent slice,
they are dispatched to the Y-IQ, where they wait until their
producer slices finish execution. The rest of the instructions
are dispatched to the A-IQ. For Stores, as with LSC, the data
calculation and the store operation itself are dispatched to the
A-IQ. Whereas the address calculation goes to either the B-IQ
or Y-IQ, based on its dependence status. Such split dispatching
for stores enables their addresses to be available early so that
the subsequent loads can be disambiguated against them and
continue execution, if they access non-overlapping memory
locations.
Back-end: The instruction scheduler selects up to two
instructions from the heads of the FIFO instruction queues
and issues them to the execution units. The instructions can
be selected from different queues or from a single queue

using an age based policy (Prioritizing slice delivers similar
performance). This scheduling policy enables restricted out-
of-order execution as younger instructions in one queue can
bypass the older instructions waiting the other queues, despite
the instructions queues themselves being FIFO. However, such
out-of-order execution necessitates tracking the instruction or-
dering to ensure in-order commit. Freeway, like LSC, employs
a Scoreboard for tracking instruction order from dispatch.
Instructions record their completion in the Scoreboard as
they are executed. When the oldest instruction finishes, it is
removed from the Scoreboard in program order. To track a
sufficient number of instructions, Freeway and LSC increase
the size of Scoreboard over what is typical in an in-order core.

3) Memory ordering: Before describing Freeway’s mecha-
nism to maintain memory ordering, we first discuss how the
baseline LSC maintains this order. LSC computes memory
addresses strictly in program order as all address calculations
are performed via the FIFO B-IQ. Despite the FIFO address
generation, younger loads can still bypass the older stores that
are waiting in the A-IQ (recall that only the address calculation
for stores is performed via B-IQ, whereas the store operation
itself passes through the A-IQ). Therefore to avoid loads from
bypassing the aliased stores, LSC incorporates a store buffer.
It inserts store addresses in to the store buffer so that they
can be used to disambiguate the subsequent loads. LSC then
issues loads to memory only if their address does not match
any store address in the store buffer, thereby ensuring memory
ordering.

This mechanism cannot be directly ported to Freeway to
maintain memory ordering. This is because the strict FIFO
address generation in LSC guarantees that all previous out-
standing stores have their addresses in the store buffer when
a load is about to be issued. Freeway, in contrast, allows
independent memory slices to bypass the dependent ones
waiting in the Y-IQ. As a result, a load may not check against
an older store whose address calculation is still waiting in the
Y-IQ and the address has not yet been written to the store
buffer. To avoid this scenario, Freeway marks all loads and
stores with a sequence number in program order. In addition,
stores are allocated an entry in the store buffer at dispatch
and the entry is later updated with the store address when
available. As a result, loads that are about to be issued can
look in the store buffer to check if all previous stores have
computed their addresses. They only proceed to execution
if there are no unresolved and aliasing stores. This simple
store buffer extension maintains memory ordering while only
requiring the addition of a small (depending on instruction
window size) sequence number to the store buffer entries.

It is worth noting that, as with LSC, Freeway issues stores
to the memory only when they are the oldest instruction in
the instruction window. Therefore, such stores do not violate
memory ordering even though they can bypass older loads
waiting in the Y-IQ, that access the same memory location.
When such a bypassed load becomes ready, it checks the
store buffer and finds a store with the same memory address.
However, instead of forwarding data from the store, the load



Core 2GHz, 2-wide issue, 64-entry scoreboard
Branch Predictor Intel Pentium M-style [9]
Branch Penalty 9 cycles (7 cycles for in-order core)

Functional Units 2 Int, 1 VPU, 1 branch, 2 Ld/St (1+1)
L1-I 32 KB, 4-way LRU
L1-D 32 KB, 8-way LRU, 4 cycle, 8 MSHRs

LLC 512KB per core, 16-way LRU,
avg 30-cycle round-trip latency

Prefetcher stride-based, 16 independent streams
Main Memory 4 GB/s, 45 ns access latency

Table I: Microarchitectural parameters

is issued to memory as the store is younger.

V. METHODOLOGY

To evaluate Freeway, we use the Sniper [10] simulator
configured with a cycle-accurate core model [11]. Sniper
works by extending Intel’s PIN tool [12] with models for
the core, memory hierarchy, and on-chip networks. Area and
power estimates are obtained from CACTI 6.5 [13] using its
most advanced technology node, 32nm. We use the SPEC
CPU2006 [14] workloads with reference inputs. Furthermore,
we use multiple inputs per workload to evaluate performance,
energy, and area, though the results presented in Section II
and III use only a single representative input. To keep the
simulation time reasonable, SimPoint methodology [15] is
used to choose a single most representative region of 1 billion
instructions in each application.

We compare the MLP, performance, energy, and area over-
heads for the following four core designs:
In-order Core: We use an in-order stall-on-use core, resem-
bling ARM Cortex-A7 [16], as a baseline.
Load Slice Core: LSC, as proposed by Carlson et al. [3],
with strict in-order memory slice execution.
Freeway: Our proposed design with dependent slice tracking
and a FIFO yielding queue (Y-IQ) to enable out-of-order
execution among slices.
Ideal-sOoO: LSC with a fully out-of-order B-IQ. This design
provides an upper bound on the performance limits of MLP
in sOoO cores as it can execute MLP generating instructions
from anywhere in the B-IQ, thus preventing stalled slices from
blocking MLP exploitation.
Out-of-Order Core: We use a fully out-of-order core, re-
sembling ARM Cortex-A9, as a limit on performance through
ILP and MLP exploitation.

The key microarchitectural parameters are presented in
Table I, with all core designs being two-wide superscalar with
64-entry instruction window and a cache hierarchy employing
hardware prefetchers.

VI. EVALUATION

In this section, we first evaluate the performance benefits
from Freeway’s dependence aware slice execution, in compar-
ison to LSC, Ideal-sOoO, and full OoO. Next, we breakdown
the performance to understand where Freeway’s benefit comes
from. We then compare against the Ideal-sOoO to analyze the
opportunity missed by Freeway, and finally present the area
and power requirements of Freeway.

A. Performance

Figure 9 presents the performance gains of LSC and Free-
way over the baseline in-order core. The figure also shows the
performance limits of Ideal-sOoO (MLP limit) and full OoO
(MLP+ILP limit) execution. On average, Freeway delivers
12% higher performance than LSC as it attains 60% speedup
over the in-order execution compared to 48% for LSC. More
importantly, Freeway is within 7% of the performance of
Ideal-sOoO, which is the upper bound on the performance
achievable via MLP exploitation (MLP limit). An OoO core
delivers 33% more performance than Freeway as it exploits
both ILP and MLP, whereas Freeway targets only MLP.
However, this additional performance comes with high area
and power overheads (Section VI-D).
Freeway vs LSC: On individual workloads, Freeway com-
prehensively outperforms LSC on workloads like hmmer,
leslie3d, and GemsFDTD where dependent slices stall the
B-IQ of LSC for a significant fraction of execution time
(Figure 3). Freeway eliminates these stalls by steering the
dependent slices to the newly added Y-IQ, thereby executing
the subsequent independent slice without stalling and boosting
performance.

A closer inspection reveals that Freeway’s performance gain
over LSC is a function of not only the number of stalls
caused by dependent slices, but also where producer slices
hit in the memory hierarchy. For example, workloads such as
gcc, soplex, and omnetpp, where slice dependencies stall
execution for more than 45% of time, benefit only moderately
from Freeway. The reason for this behaviour is that more than
70% of the producer slices in these workloads miss in the
on-chip cache hierarchy and must be loaded from memory.
(Figure 4). This latency stalls instruction retirement, and
therefore causes the instruction window to fill, which blocks
further MLP generation and limits performance. In contrast,
Freeway delivers significantly more performance (95% and
76%, respectively) for hmmer and leslie3d, despite LSC
stalling on slice dependencies for only 30% of the execution
time. This is because almost all of the producer slices in
these workloads hit in the L1 cache. Therefore, the instruction
window is rarely full and Freeway can continuously exploit
MLP and improve performance.

Finally, Figure 9 also shows that both Freeway and LSC
perform similar on workloads such as zeusmp, milc, lbm,
and calculix. These workloads do not have many depen-
dent slices and the corresponding stalls, as shown in Figure 3,
are minimum. As a result, Freeway does not have much
opportunity for improvement and delivers similar performance
as LSC.
Freeway vs Ideal-sOoO vs OoO: Figure 9 shows that
the majority of the benefits of full OoO execution can be
obtained primarily by exploiting MLP as Ideal-sOoO (MLP
limit) achieves about 72% of the performance benefits of
full OoO (MLP+ILP) execution. Furthermore, the figure also
shows that Freeway captures the bulk of this MLP opportunity
and reaches within 7% of the performance delivered by ideal-
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Figure 9: Performance gain of different core designs over in-order core.
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Figure 10: CPI stack for: (a) mcf and (b) hmmer.

ized MLP extraction (Ideal-sOoO design). Comparing to OoO
execution, which targets both ILP and MLP, Freeway falls
short on workloads that present significant ILP opportunity,
such as calculix, gromacs, zeusmp etc., as it exclusively
aims for MLP. However, on workloads that offer little ILP,
such as sjeng, perlbench, xalancbmk, etc., Freeway
is within 15% of the full OoO performance. Overall, full
OoO execution provides 93% performance gain over in-order
execution compared to the 60% gain of Freeway, resulting
in a performance difference of 33%. However, this additional
performance comes at a significantly higher area and power
costs as discussed in Section VI-D.

B. Understanding the Performance Benefits

To better understand the performance gains, we present
CPI stacks in Figure 10 that break down the execution time
across the memory hierarchy and base components (instruction
cache and branch behaviour etc.). For this analysis, we pick
two representative workloads, mcf and hmmer. In mcf, the
majority of execution time is spent in waiting for data from
the off-chip memory, whereas most accesses in hmmer hit in
the L1 cache.

As expected, Freeway benefits from reducing the mem-
ory access time in both workloads as shown in Figure 10.
However, as the workloads spend their time waiting on data
from different levels in the memory hierarchy, the benefits
show up in different parts of the CPI stack. In mcf, Freeway

reduces average off-chip memory access latency, whereas
in hmmer, the average L1 access time is shortened. Also,
Freeway provides relatively less CPI reduction for mcf (1.8x)
compared to hmmer (3x), over IO execution. This is because,
as alluded in Section VI-A, off-chip memory accesses in mcf
lead to frequent full instruction window stalls that block MLP
exploitation. Overall, these results show Freeway’s efficacy
in tolerating the access latency across the whole memory
hierarchy, especially compared to LSC, irrespective of where
the bottleneck lies.

C. Analysis of the Remaining Opportunity
Figure 9 shows that despite its dependence aware slice ex-

ecution, Freeway lags behind the optimal performance “Ideal-
sOoO (MLP limit)” by 7%. We observe that there are two main
factors that cause this gap: First, Freeway addresses only the
slice dependence related stalls but not the other stall sources
detailed in Section II-C (Load-Store Aliasing, Empty B-IQ,
etc). Second, buffering all dependent slices in a single Y-IQ
leads to stalls when a younger slice becomes ready earlier than
an older slice, although this is infrequent. Here we analyze the
performance loss due to these factors and explore the potential
solutions to avoid it.

As Figure 3 shows, load-store aliasing is the largest source
of potentially mitigable stalls after slice dependence. (Empty
B-IQ stalls require physical or virtual expansion of the in-
struction window, and are not considered.) Such load-store
aliasing causes LSC to stall for 8% of the execution time.
Furthermore, as Freeway enables early execution of indepen-
dent slices, it can potentially expose more aliasing if some
of the aliased loads were earlier hidden behind the dependent
slices in the B-IQ of LSC. To quantify the related performance
loss, we simulate skipping the aliased loads and issuing the
subsequent instructions if they are ready. Though impractical,
such scheduling shows the potential benefits of eliminating the
load-store aliasing related stalls. The skip Aliased Load bar
in Figure 11 shows that Freeway obtains only 2% additional
performance by eliminating all such stalls. As the Other stall
sources contribute even less, we do not quantify their impact
on performance loss. From this analysis we see that even
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Figure 11: Freeway performance gain achieved by skipping the aliased loads and adding another Y-IQ.

completely addressing these sources of stalls would result in
little performance gain.

As discussed in Section III-B, buffering all dependent slices
in a single Y-IQ might lead to stalls if younger slices become
ready before the older ones (either the younger slices are at
smaller dependence depth or their producers hit closer to the
core in the memory hierarchy). As almost all the producers hit
in the L1 cache (Figure 7), we only consider mitigating stalls
due to slice dependence depth by adding a single additional
Y-IQ. Here we explore the benefits of having the first Y-
IQ to buffer only the dependent slices at dependence depth
1, while the rest of the dependent slices go to a second Y-
IQ. As a result, the stalls in the first Y-IQ will be reduced
as all the slices are at the same dependence depth. The
skip Aliased Load+Additional Y-IQ bar in Figure 11 shows
that an additional Y-IQ brings only 1.5% more performance.
These results confirm our hypothesis that a single Y-IQ is
enough to capture the most of the opportunity in out-of-order
slice execution.

If combined, the above optimizations would bring perfor-
mance to within 3.5% of the optimal. However, individually
they provide only minimum performance returns on the re-
source investment.

D. Area and Power overheads
To evaluate the area and power overheads of different core

designs, we use CACTI 6.5 to compute the area and power
consumption of each of their major components in 32nm
technology. The area overhead of LSC is about 15% over the
baseline in-order core. Freeway requires very little additional
hardware over LSC: one bit per entry in RDT, 7 bits per entry
in the store buffer, and the Y-IQ and logic to issue instructions
from it. As a result, it needs only 1.5% more area than LSC. In
contrast, as shown by Carlson et al. [3], the OoO core incurs
an area overhead of 154% over the baseline in-order core.

For power calculations, we use static power consumption
and per-access energy values from CACTI and combine them
with activity factors obtained from the timing simulations to
compute power requirements of each component. Our evalua-
tion, together with prior results [3], show that LSC, Freeway,
and OoO core increase the average power consumption by

1.22x, 1.24x, and 12.6x respectively over an in-order core.
These results reveal the exorbitant area and power costs of the
moderate performance benefits achieved by OoO core over
Freeway.

VII. RELATED WORK

A large body of prior research focuses on tolerating memory
access latency to prevent cores from stalling. This work can be
divided into two broad categories: techniques that extract MLP
by overlapping the execution of multiple memory requests,
and techniques that prefetch data proactively into caches by
predicting future memory addresses. To some extent, these
categories are complementary as prefetching can increase
the number of overlapping memory requests by speculatively
generating accesses that would otherwise be serialized due
to dependencies or lack of resources. However, the energy
efficiency of the majority of these techniques is bounded by the
underlying energy intensive OoO core. Freeway, in contrast,
provides an energy efficient alternative that these techniques
can build on to potentially raise overall efficiency.
MLP Extraction: OoO execution is the most generic ap-
proach for generating MLP. However, it is limited by the
instruction window size. The following techniques break this
size barrier to boost MLP extraction:
Runahead Execution: Runahead Execution [2] improves MLP
by pre-executing instructions beyond a full instruction window.
Once the OoO core stalls due to a full ROB, Runahead
checkpoints the processor state, tosses out the ROB stalling
instruction, and continues to fetch subsequent instructions.
These new instructions are executed if their source data is
available, thereby generating additional memory accesses and
boosting MLP. Hashemi et al. [17] observed that Runahead
incurs significant energy overhead due to the core front-end
being operational during the entire runhead duration. They
proposed to filter out the instructions leading up to the memory
accesses and buffer them in a Runahead Buffer. This allowed
them to save energy by power- or clock-gating the core front-
end while supplying instructions from the Runahead Buffer.
Hashemi et al. [18] further observed that Runahead’s ability to
generate MLP is restricted by the limited duration of runahead



intervals, when core is stalled due to full ROB. To address this,
they proposed a Continuous Runahead Engine, located at the
memory controller, that continuously executes memory slices
in a loop irrespective of whether the core is stalled or not.
Helper Threads: These techniques rely on pre-executing
“helper threads” or code segments to generate MLP. A helper
thread is a stripped down version of the main thread that
only includes the necessary instructions to generate memory
accesses, including control flow instructions. However, helper
threads require an independent execution context (SMT or
a CMP core) for their execution. As they generate memory
accesses in parallel with the main thread, they increase MLP
and/or prefetch data.

Helper threads can be generated either in software or
dynamically in hardware. On the software side, many prior
works have proposed compiler/programmer driven approaches
for helper thread generation [19], [20], [21], [22], [23], [24],
[25] while others have proposed dynamic compilation tech-
niques [26], [27]. These techniques either execute the helpers
threads on an available SMT context [19], [24] or require a
dedicated core [23].

Collins et al. [28] explored helper thread generation in
hardware by tracking dependent instruction chains in the back-
end. To keep the helper thread generation off the critical path,
they introduced large, post-retirement, hardware structures to
filter the desired instructions. Once the helper threads were
generated, they were stored in a large cache and run on a
free SMT context. Annavaram et al. [29] also extracted the
dependent chains of operations that were likely to result in
a cache miss in hardware, though from the front-end during
instruction decode, and added a dedicated back-end for the
execution of such chains.

Slipstream [30] uses two cores to execute both a filtered
version of the application, called the A-stream, ahead of the
full application, called R-stream. The A-stream communicates
performance hints such as branch-directions or memory ad-
dresses for prefetching back to the R-stream. However, the
power and area overhead of using two cores to execute a single
application is significant.

To summarize, helper threads incur significant overhead as
they require: 1) an independent execution context (SMT, a
CMP core, or dedicate hardware) for their execution, 2) a
mechanism to construct them either in hardware or software, 3)
duplicated instruction execution in the main thread and helper
thread. Freeway does not incur such overheads.
Prefetching: Prefetchers predict future addresses based on
the prior memory access patterns. However, they either have
limited coverage due to being limited to simple access patterns
or require extensive hardware. For example, stride and stream
prefetchers [31], [32] require only simple hardware but are
limited to regular access patterns. Advanced prefetchers, such
as Correlation Prefetchers [33], [34], [35], enable complex
access pattern prefetching at the cost of large tables to link
the past miss addresses to future miss addresses. Spatial and
temporal streaming based prefetching has also been explored
to prefetch the huge datasets of server applications [36], [37],

[38], though they still incur significant storage and energy
overhead. Recently, co-design of prefetching with replacement
policies has also been explored in [39], [40].

However, the majority of MLP extraction and prefetching
techniques build on an energy exhaustive OoO core which
necessitates high energy budget. In contrast, Freeway offers a
low energy cost alternative to OoO cores that these techniques
can leverage to improve overall energy efficiency.

VIII. CONCLUSION

Tolerating long memory and LLC access latencies is critical
for performance. MPL exploitation techniques such as out-of-
order execution, runahead execution, etc., have been successful
in hiding these latencies, however, at the cost of large energy
overheads. Recent attempts to address these in an energy-
efficient manner have led to slice-out-of-order (sOoO) cores.
These cores construct slices of MLP generating instructions
and execute them out-of-order with respect to the rest of in-
structions. However, the slices and the remaining instructions,
by themselves, still execute in-order. By limiting the out-of-
order execution this way, sOoO cores are able to achieve much
of the MLP benefits of OoO processor with far less hardware
overhead.

This work introduces Freeway, a highly energy-efficient
core that approaches the MLP benefits of full out-of-order
execution. To keep the energy overhead low, Freeway builds
upon a modern sOoO core. We show that, though energy
efficient, state-of-the-art sOoO cores miss significant MLP op-
portunities due to inter-slice dependencies. Freeway addresses
this bottleneck by identifying dependent slices and introducing
an efficient dependence aware slice execution policy based on
a detailed analysis of slice behaviour. Freeway’s policy forces
dependent slice to yield to independent slices, hence boosting
MLP and performance. Moreover, as shown through our analy-
sis and simulation, Freeway’s policy can be implemented with
a simple FIFO queue, which requires only minimum additional
hardware over the baseline sOoO core. Our results show that
Freeway is able to outperform previous sOoO designs by 12%
and delivers performance within 7% of the MLP limits of the
ideal sOoO execution.
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