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ABSTRACT
In this paper, we present a dynamic model for a generic drill-

string. The model is developed with the intention for component-
based simulation with coupling to external subsystems. The per-
formance of the drill-string is vital in terms of efficient wellbore
excavation for increased hydrocarbon extraction. Drill-string vi-
brations limit the performance of rotary drilling; the phenomenon
is well-known and still a subject of interest in academia and in
industry. In this work, we have developed a nonlinear flexible
drill-string model based on Lagrangian dynamics, to simulate
the performance during vibrations. The model incorporates dy-
namics governed by lateral bending, longitudinal motion and tor-
sional deformation. The elastic property of the string is modeled
with mode shape functions representing the elastic deformation,
with a finite set of modal coordinates. By developing a bond
graph model from the equations of motion, we can ensure cor-
rect causality of the model towards interacting subsystems. The
model is analyzed through extensive simulations in case studies,
comparing the qualitative behavior of the model with state-of-the
art models. The flexible drill-string model presented in this pa-
per will aid in developing simulation case studies and parameter
identification for offshore drilling operations.
Keywords: Offshore drilling, Drill-string dynamics, Nonlinear
vibrations, Lagrangian dynamics, Bond graphs

∗Address all correspondence to this author.

INTRODUCTION
The drill-string is a vital component of a drilling rig multi-

domain system, and crucial in establishing the wellbore for hy-
drocarbon extraction. A drill-string consists of individual pipes
joined together by tool joints, stabilizers to center the pipe in the
wellbore, measurement-while-drilling (MWD) tools, and sensor
wiring. This structure can be several kilometers long. A generic
model of the drill-string assembly is seen in Fig. 1.

The string is suspended in the derrick to the top drive, mov-
ing upwards when tripping out of hole, and downwards during
drilling and run-in of new pipe stands. The lower section of the
string, consisting of drill collars and the bit, is commonly referred
to as the bottom hole assembly (BHA). The drill collar section is
a set of heavier pipes to produce enough weight on bit (WOB)
when drilling and intervals of stabilizers keeping the string cen-
tred in the borehole. The torque on the bit is a consequence of
the applied torque at the top, WOB, and the torque from the for-
mation being excavated due to cuttings (cuttings from the rock
smashed by the bit due to rotation) and the friction from the rock
it self [1].

The drill-string classifies as a flexible slender object [2]. In
general, large vibrations are a problem, and in terms of drilling
there exist three distinct vibration modes:

a. Torsional vibrations, occurring along the string or at the bit
where the torque in the drill-string must overcome the static
torque from the formation to break free. This result in peri-
odic oscillatory behavior referred to as ”stick-slip” [3, 4].

1 Copyright © 2019 ASME

Proceedings of the ASME 2019 38th International
Conference on Ocean, Offshore and Arctic Engineering

OMAE2019
June 9-14, 2019, Glasgow, Scotland, UK

OMAE2019-95474

D
ow

nloaded from
 https://asm

edigitalcollection.asm
e.org/O

M
AE/proceedings-pdf/O

M
AE2019/58769/V001T01A014/6442650/v001t01a014-om

ae2019-95474.pdf by N
TN

U
 U

niversitets Biblioteket user on 21 January 2020

https://crossmark.crossref.org/dialog/?doi=10.1115/OMAE2019-95474&amp;domain=pdf&amp;date_stamp=2019-11-11


x0
y0

z0

u21e(z, t)
u22e(z, t)

u23e(z, t)

ψ(z, t)

Body
frame

Inertial
frame

kc

g

kc

lc

ω, T 0

Drill-
pipes

Drill-
collars

Bit

BHA

FIGURE 1. A DRILL-STRING ASSEMBLY WITH NOTATIONS.

b. Axial, compression, or longitudinal vibrations, also referred
to as “bit-bounce”. This occurs when the bit periodically
comes loose from the formation [5].

c. Lateral vibrations, also called whirling motion. Along the
length of the string the whirling motion tends to cause an
uneven pattern in the well trajectory, and can potentially re-
sult in formation fracture in the wellbore [5].

For the drill-string, vibrations can result in extensive wear or
failure of the bit and other components in the assembly [5]. The
vibration modes have been subject to extensive research for both
understanding and mitigation through new control strategies.

Modeling and simulation of drill-string dynamics is a large
research field, and subsequently a large number of models for
analyzing vibrations exist. An important contribution in the re-
search field of drill-string vibrations is the work of Kyllingstad
and Halsey [3]. The research in [3] concerns the string torsional
vibrations induced by stick-slip. The vibrations are modeled as
a transmission line reflecting the torsional waves created by the
stick-slip friction.

Commonly found in control applications are low-order or-
dinary differential equation (ODE) models, confined to vertical
well applications. In [6] a lumped model approach is used, rep-
resenting each string section as a mass-spring-damper object, for
both axial and torsional modes. The focus in [6] is analysis of the
effect of a down-hole bit-rock interaction model. These models
are suitable of real-time applications, but are confined to uncou-
pled vibrations.

Christoforou and Yigit [7] have developed a coupled second
order model with axial, torsional, and lateral dependency with
the objective of mitigation of vibrations. The model is developed
under the assumption of one-mode approximation, and the de-
pendency for the coupled vibrations is created by the bit-rock
friction model. A first-mode approximation is made, discretiz-
ing the assembly as two mass points. The coupling arises from
bore-hole wall and bit-rock interaction.

Tucker and Wang [4] model the drill-string dynamics as an
elastic rod with Cosserat theory. This method implies sectioning
the rod into finite elements with unit vectors, each representing
bending or twist, shear stress, and axial motion along the rod
length. The model then consists of a set of nonlinear partial dif-
ferential equations (PDE).

Jansen [5] analytically derived model equations for the vi-
brations listed above for sections of the drill-string (collar etc.)
and also uses a finite element model (FEM) as foundation for
analyzing the vibration stages of a drill-string. Jansen also pre-
sented a computer simulation program for a nonlinear drill-string
model. A FEM is favorable in terms of close-to-real results in ap-
plications but often requires large computational power and sig-
nificant analysis time [8].

Bakhtiari-Nejad and Hosseinzadeh [9] modeled the string
dynamics by solving the PDE for axial and torsional motion. This
is further lumped by using a Ritz-series expansion with assumed
modes to represent the vibrations. The string interacts with the
bit-rock model from [10].

Hovda [11] presents an axial model of a drill-string assem-
bly with a finite number of discrete mass-spring-damper ele-
ments. Unlike the above-mentioned work, this model incorpo-
rates the skin-friction arising from the mud-flow in the annulus
of the well. This is included to account for surge and swab ef-
fects arising from the vessel heave motion. The work presents a
semi-analytical approach, being favorable in terms of real-time
applications and model calibration towards field data.

Ritto et al. [2] presents a nonlinear model of a drill-string as-
sembly, including a stochastic model for the bit-rock interaction.
This approach is shown to account for uncertainties in the bit-
rock model, which in general is hard to predict with deterministic
models. A similar stochastic approach is applied to model lateral
vibrations in [8].

In the view of component-based modeling, the framework
of bond graph (BG) modeling plays a significant role. The struc-
ture creates a unified approach for multi-domain systems, and
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allows for graphical modeling. An overview of this tool is found
in [12]. In Pedersen and Polic [13] a bond graph model frame-
work for rotordynamic applications is developed. The resem-
blance between this and the current work is evident and as such
the current model development is a formal extension to this bond
graph model framework.

In terms of bond graph applications for drill-string model-
ing, Sarker et. al. [14] presents a lumped-section model for axial
and torsional motion. The bond graph model is comprised of el-
ement sections represented by rigid bodies, and the elasticity is
modeled by coupled torsional, axial and bending springs between
each body. The model is used to analyze drill-string behavior in
horizontal wells, and predicts the whirl phenomena close to the
BHA together with the coupling effect for axial and torsional
motion trough the bit-rock model.

In this paper, we derive a distributed-parameter model in
terms of the floating frame of reference formulation, taking ad-
vantage of mode shape functions to describe the elastic defor-
mation. The modeling framework is useful for establishing a
component-based model of a generic drill-string, undergoing de-
formation. The mode shape functions are derived by solving the
eigenvalue problem for a fixed-free Euler Bernoulli beam, longi-
tudinal bar and a shaft. We investigate the effect of including tor-
sional deformation and the effect of nonlinear coupling between
the elastic and rigid motion through simulation case studies. To
the best of the authors’ knowledge, using the floating reference
frame formulation for describing the coupling between lateral
and torsional deformation and structuring this in a component-
based model for a drill-string, has not been previously presented.

MODELING
We assume that no rotation of the drive machinery occurs

due to the fixation to the dolly guides. The dolly guides are the
vertical rails which the top drive is fixed to in the derrick tower.
Furthermore, we assume a vertical well profile and that the as-
sembly consists of drill-pipes.

A general drill-string assembly being subject to lateral mo-
tion is illustrated Fig. 1. With Fig. 1 as a starting point, we
consider an inertial frame located in space, a body frame at-
tached to a pipe disc element, and a deformed configuration in
frame {x,y,z}2. These frames are denoted {x,y,z}0, {x,y,z}1,
and {x,y,z}2, respectively. The frame and vector definitions are
shown in Fig. 2. We assume that the elastic, deformed element is
skewed in the horizontal plane, with no rotation around the x and
y axes. This assumption simplifies the analysis, since both pitch
and roll (inclination and azimuth) of the element is neglected.
This is reasonable in the current case, considering a vertical well.

This formulation is known as the floating reference frame
formulation [15]. This gives two sets of coordinates, one describ-
ing the rigid body motion, along with the coordinates describing
the elastic deformation. Additionally, we investigate the effect of
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FIGURE 2. FRAME DEFINITIONS.

coupling the lateral deformation to twisting of the pipe due to
torsion.

We start by defining the position of the pipe segment in space
and the transformations occurring in the system, to finally derive
the velocity of a point on the pipe element, subjected to elastic
deformation. The position of body frame {1} relative to inertial
frame {0} is given by r = [x,y,z]>, where the bold notation is
used for matrices and vectors. The rotation matrices from frame
{0} to {1} and {1} to {2} are given as

R0
1(θ(t)) =




cθ −sθ 0
sθ cθ 0
0 0 1


 , R1

2(ψ(z, t)) =




cψ −sψ 0
sψ cψ 0
0 0 1


 (1)

where cθ = cosθ , sθ = sinθ , θ(t) is the rotation angle from {0}
to {1} and ψ(z, t) is the rotation angle from {1} to {2} about the
z axis, given in terms of both space and time.

The position of an arbitrary twisted point p0
t in frame {2}

expressed in {0} is given by

p0
t = r+R0

1
(
p1

e +R1
2p2

t
)

(2)

where p1
e =

[
u1e, u2e, u3e

]> is the position of the origin of frame
{2}, p2

t is the position of a point undergoing torsion, and sub-
scripts e, t refers to elastic and torsion, respectively. The twisted
pipe material point p2

t has an additional angle ψ(z, t) due to tor-
sional deformation, being illustrated in the x, y plane in Fig. 3.
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FIGURE 3. PLANE VIEW OF THE PIPE ELEMENT.
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From Fig. 3, we can define the vector describing the twisted
point p2

t =
[
r̃, 0, 0

]>, where r̃ is the averaged radius of the pipe.
The time derivative of a material point on the pipe element

is derived as

ṗ0
t = ṙ+

(
Bθ +Sψ θ

)
θ̇ +Sψ

∂ψ

∂ t
+R0

1ṗ1
e , (3)

where Bθ =
∂R0

1
∂θ

p1
e , Sθ =

∂R0
1

∂θ
R1

2p2
t , Sψ = R0

1
∂R1

2
∂ψ

p2
t

and ṗ2
t = 0 since r̃ is constant, and Ṙ = ∂R

∂θ
θ̇ .

The flexibility of the pipe is represented by the elastic de-
formation p1

e(z, t) and ψ(z, t). These vectors can be described
utilizing mode shape functions obtained from solving the eigen-
value problem of lateral bending by means of the Euler-Bernoulli
beam model, longitudinal vibration of a bar and torsional vibra-
tion of a shaft. The mode shape functions are then defined by a
set of fixed-free boundary conditions according to [16], where
we obtain an infinite number of mode shapes in the x,y,z and ψ

direction. The argument for using fixed-free boundaries are that
the drill-string assembly is fixed in the top-drive.

Drill-strings are in general long, and therefore the mode
shapes are normalized according to [13]. The mode shapes for
lateral deformation grow without bounds when z→∞, due to the
hyperbolic functions. We derive the mode shapes in terms of the
normalized coordinate s = z/L in nondimensional form. For the
lateral bending modes, this yields

Nn,x(s) = Nn,y(s) = cos(βns)− cosh(βns)

−(sin(βns)−sinh(βns))
cos(βn)+cosh(βn)

sin(βn)+sinh(βn)

(4)

where n is the mode shape number and β is the root of the in-
dividual characteristic equation (see [16] for reference), deter-
mined out from the boundary conditions. The longitudal and tor-
sional mode shape functions are given by

Nn,z(s) = sin
(
(2n+1)π

2
s
)
, Yn,z(s) = sin

(
(2n+1)π

2
s
)
. (5)

Furthermore, we evaluate the spatial variables p1
e(z, t) and

ψ(z, t) by applying the Raleigh-Ritz approximations

u j,e(z, t)≈
n j

∑
k=1

Nk j(z)qk j(t) (6)

ψ(z, t)≈
nr

∑
k=1

Yk(z)qk(t) (7)

where the subscript r is for rotation, j ∈ {x,y,z} and each spatial
coordinate is a sum of n j and nr mode shapes multiplied with n j
and nr generalized time-dependent coordinates. We rearrange (6)
and (7) in vector form as

p1
e =




Nx 000 000
000 Ny 000
000 000 Nz






qx
qy
qz


= Nqe, ψ(z, t) = Yqψ (8)

where N j are row vectors, q j =
[
q1 j, q2 j, . . . qn j j

]>, qe =
[
q>x , q>y , q>z

]>
and qψ =

[
q1, q2, . . . qnr

]
are column vectors

with time dependent generalized coordinates, and the mode
shape matrix N and vector Y are defined as

N =




N1x N2x . . . Nn1x 000 000
000 N1y N2y . . . Nn2y 000
000 000 N1z N2z . . . Nn3z


 , Y =




Y1
Y2
...

Ynr




>

(9)

where the total amount generalized coordinates for the mode
shapes is then nmodes = ne +nr, where ne = nx +ny +nz.

The position and rotation of the pipe element in space and
time is then obtained by summation,

p0
t (z, t)=r(t)+R0

1N(s)qe(t), φ(z, t)=θ(t)+Y(s)qψ(t) (10)

at each sample time and φ(z, t) is the point at s = z/L.
The velocity of the material point on the pipe element can

be derived in terms of the generalized coordinates as

ṗ0
t (q, q̇)=

[
I H(q) R0

1N SY
]

q̇ (11)

where I is the identity matrix, H(q) = Bθ (q) + Sθ , and q =[
r>, θ , q>e , q>ψ

]>
are the drill-string generalized coordinates.

The configuration gives a total set of nq = dim(r)+ nmodes + 1
generalized coordinates.

SYSTEM ENERGY
The energy of a pipe segment dz is comprised of kinetic en-

ergy due to linear and angular velocity, and potential energy in
form of strain energy and gravitational potential energy. The ki-
netic energy T of the material point on the pipe disc dz is given
by

T =
1
2

∫

p
ṗ0>

t ṗ0
t dm (12)
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We further assume that the density and cross-sectional area of the
pipe is uniform over the entire length. Integrating (12) around the
pipe circumference for each mass point p0

t , then integrating along
the pipe axis z gives the total kinetic energy. The infinitesimal
area is derived according to Fig. 3 as dA = r̃ tw dα , where α is an
arc angle and tw is the pipe wall thickness. The element volume
is then dV = dAdz and the mass element dm is defined as dm =
ρdV = ρtwr̃dαdz. This allows us to rewrite (12) in terms of the
generalized coordinates as

T =
1
2

q̇>Mq̇ (13)

where M = M> is the system mass matrix for the pipe element,
i.e.,

M = r̃ρtw
∫

z

∫

α




I H R0
1N Sψ Y

. . . H>H H>R0
1N H>Sψ Y

. . . . . . N>N N>R0
1
>Sψ Y

. . . . . . . . . Y>S>ψ Sψ Y


dαdz (14)

where R>R= I has been used. The dimension of the mass matrix
is nq×nq, and depends on the number of generalized coordinates.
The moment of inertia of the pipe is then the integrated element
J = H>H.

The potential energy due to strain from deformation of the
element is due to the property of the pipe to resist deformation.
The strain energy of the element can be defined for each of the
distinctive axes in frame {2} according to [17], yielding

Ux =
1
2 EI
(

∂ 2u1e
∂ z2

)2

, Uy =
1
2 EI
(

∂ 2u2e
∂ z2

)2
(15)

Uz =
1
2 EA

(
∂u3e
∂ z

)2

, Uψ = 1
2 GI

(
∂ψ

∂ z

)2
(16)

where the products EI is the flexural rigidity for x,y, EA is the
axial rigidity and GI is the torsional rigidity. Using the definition
of pe(z, t) from (8), we can express the derivatives with respect
to z as

∂p1
e

∂ z
=

1
L

N
′
qe,

∂ 2p1
e

∂ z2 =
1
L2 N

′′
qe,

∂ψ

∂ z
=

1
L

Y
′
qr (17)

where the prime ′ and ′′ represent first and second derivative with
respect to z. The strain energy due to bending, longitudinal stress,

and torsion using (17) yields

U =
1
2

q>x
EI
L3

∫ 1

0
N
′′>
x N

′′
xdsqx +q>y

EI
L3

∫ 1

0
N
′′>
y N

′′
y dsqy

+q>z
EA
L

∫ 1

0
N
′>
z N

′
zdsqz +q>r

GI
L

∫ 1

0
Y
′>Y

′
dsqr

(18)

where N j are the row vectors from (9). Taken the advantage of
equal mode shape functions for lateral deformation, N′′x =N′′y , we
can write the total strain potential energy as

U =
1
2

(
q>x K1qx +q>y K2qy +q>z K3qz +q>r Kψ qr

)
. (19)

The total strain energy in matrix form can be written as

Ue =
1
2

q>




000 000 000 000
000 0 000 000
000 000 Ke 000
000 000 000 Kψ


q =

1
2

q>Kq (20)

where K = K>, and the stiffness matrix Ke = diag(K1, K2, K3).
The gravitational potential energy is derived in form of an exter-
nal force in the next section, and not included in the total poten-
tial energy.

EXTERNAL AND APPLIED FORCES AND TORQUES
The external forces acting on the body are the gravitational

force and impact force from the borehole wall. Since we consider
a pipe deformation which is subject to lateral movement with no
rotation around y2 or x2, we assume that z1 and z2 are oriented
vertically downwards. The gravitational force acting on dm is
Fg =

[
0, 0, gdm

]> and the virtual work of the gravitational force
acting on each point on the pipe is given by

δW e
g = F>g δp0

t (21)

where the virtual displacement is given by

δp0
t =

nq

∑
k=1

∂p0
t

∂qk
δqk =

[
I, H(q), R0

1N, Sψ Y
]

δq = Lδq (22)

where L =
[
I, H(q), R0

1N, Sψ Y
]
. Integrating the virtual work

for dm over the entire length of the string yields

δW e
g = r̃ρtwL

∫ 1

0

∫ 2π

0
F>g
[
I, H(q), R0

1N, Sψ Y
]

dαdsδq. (23)
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Inspecting this integral, we find that the last row of H is zero
and the product F>g R0

1N evaluates to a row vector [000,Nz]. We can
then simplify (23) as

τττ
e = 2π r̃ρL

[[
0, 0, g

]
, 0, [000,gNz], 000

]> (24)

where τττe
g is the vector generalized gravitational forces.

The drill-string is subject to lateral motion and hence is
constrained by the borehole wall. For the interactions occurring
while drilling we shall assume that the deformation of the bore-
hole wall is negligible, and we only consider the impact response,
i.e., the contact forces that occur when the string hits the wall.

The impact with the wall is modeled by a set of springs
which set up a reaction force. This is seen in the lower section
of Fig. 1. In this paper, the contact dynamics are adopted from
the Hertzian contact law in [8]. Referring to Fig. 1, the impact
occurs when the lateral displacement of the drill-string is larger
than the clearance variable lc. The discontinuous function for lat-
eral displacement in the x direction is defined as

Fc, j(z, t) =





−kc(−m(z, t)− lc)3/2, m(z, t)≤−lc
0, −lc ≤ m(z, t)≤ lc
kc(m(z, t)− lc)3/2, m(z, t)≥ lc

(25)

where m(z, t) is given by the position of the drill-string at z for
a given time. The expression in (25) is also defined in similar
manner for the y axis.

The generalized force governing the Hertzian contact law
for point i along the z axis in the borehole can then be derived as

τττ
e
c,i =

∫ 1

0

∫ 2π

0
Fc
>Lδ (s− zi

L
)dαds (26)

where δ (s− zi
L ) is the Dirac delta function and Fc = [Fcx,Fcy,0]>

is the vector of contact forces.

Non-conservative forces
Viscous damping is included to simulate the dissipation of

energy in the vibrating body. The viscous damping in verti-
cal wells includes the effect of drilling mud between the bore-
hole and string [11]. The damping matrix is defined as D =
diag(R1, R2, . . . ,Ri). Following [18], that each structure dissi-
pates energy when excited, we define the structural damping Ri
for each mode as

Rq = 2ξe
√

kimi, Rψ = 2ξψ

√
ciJi (27)

where ξ is the damping ratio, ki is the equivalent stiffness for
axial and lateral modes, ci is the equivalent torsional stiffness,
and Ji is the modal moment of inertia. The vector of damping
forces is then τττd

nc =−Dq̇, with subscript nc for non-conservative.

Actuating Forces
The actuating forces are the forces at the top of the pipe

due to hoisting or lowering, and the applied torque on the pipe.
The vector F0 = [Fx,Fy,Fz]

> is the vector of actuating forces ex-
pressed in the inertial frame. The two forces perpendicular to the
element on the x and y axis are restoring forces, which hold the
pipe in place. The definition of the forces acting on the pipe ele-
ment is illustrated in Fig. 4.

x2

y2

z2

ψ(z, t)
x0

y0

x2
y2

dFx

dFy

dFz

dm

Frame 2

x-y plane

FIGURE 4. DISTRIBUTED FORCES

The forcing function directing F0 to the point zp on the pipe
is the Dirac function δ (s− zi

L ). The virtual work of the actuating
forces for F0 is derived in similar manner as (26), yielding

τττ
a
f
> =

∫ 1

0

∫ 2π

0
F0>Lδ (s−

zp

L
)dαds (28)

Since the Dirac function is used to only evaluate the integral
when s = zp

L , we can rewrite (28) as

τττ
a
f
> = F0>

ΓΓΓ(zp,q) (29)

where ΓΓΓ(zp,q) = 2πL( zp
L )

The applied torque on the pipe is assumed to independently
interact with θ and ψ . We then define the virtual work of the
torque and the generalized torque as

δW a
t = T 0Wδq, τττ

a
t
> = T 0

ΛΛΛ(zp) (30)

where T 0 is a scalar, W =
[
000, 1, 000, Y

]
, τττa

t
> is the generalized

torque and ΛΛΛ(zp) =
∫ 1

0 Wδ (s− zp
L )ds.
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EQUATIONS OF MOTION
The Lagrangian of the system is defined as L = T −U . In-

serting for the kinetic and strain potential energy into the La-
grangian yields

L =
1
2

q̇>M(q)q̇− 1
2

q>Kq. (31)

The equations of motion for the system is then derived ac-
cording to the expression

d
dt

∂L
∂ q̇k
− ∂L

∂qk
= τk (32)

where τk is a generalized force. This gives a set of k ODEs for
the system. Performing the partial differentiation and taking the
time derivative of ∂L

∂ q̇k
yields the expression

M(q)q̈+C(q, q̇)q̇+Kq = τττ (33)

where Mq̈ is due to inertial acceleration of the element, C(q, q̇)
is the Coriolis-centripetal forces matrix, and τττ is the generalized
forces and torques, M and K are given in (14) and (20). The
elements of the C matrix is according to [19], given as

ck, j =
n

∑
i=1

1
2

(
∂mk, j

∂qi
+

∂mk,i

∂q j
−

∂mi, j

∂qk

)
q̇i (34)

where the length of k, i and j is equal to the number of general-
ized coordinates. Finally, τττ is defined as

τττ = τττ
e
g + τττ

a
f (F

0)+ τττ
a
t (T

0)+ τττ
e
c(Fc)+ τττ

d
nc(q̇). (35)

BOND GRAPH MODEL
To formulate the equations of motion in a component-based

framework, we utilize the structure of BG elements. A bond
graph model is derived from (33), according to the generalized
momentum p and displacement q in Hamiltonian form [20]. This
gives a field representation of the system. The time derivative of
the momentum is given as

ṗk =
d
dt

∂T
∂ q̇k

=
∂T
∂qk
− ∂U

∂qk
+ τk, ṗk = e

′
k + τk (36)

where e
′
k is the corresponding effort for inertia forces such as

Coriolis forces and the forces and torques due to the stiffness

of the system. The generalized momentum and corresponding
velocities are then derived as

p = Mq̇, q̇ = M−1p (37)

The gravitational force is represented as an effort source Se
and the damping from τττd

nc is modeled as an attached R element.
The external forces acting on the model is distributed with a
modulated transformer, denoted MTF, with modulus ΓΓΓ(q) and
ΛΛΛ. This constitutive relation holds if the transformer is power
conservative, yielding Fẋ = τττoutq̇out [18].

The final causal BG model for the drill-string component
is shown in Fig. 5. The graph has complete integral causality,
constraining the subsystems to supply effort as input. This is the
advantage of utilizing the BG methodology, where the complex
model is formed and now any relevant subsystem can be attached
to the model. Note that the bond [e1, f1]

> is split into [e5, f5]
> and

[e2, f2]
>.

SIMULATIONS
In this section, we investigate the model performance

through three simulation case studies; analyzing the input ef-
fect on the individual mode shapes, performing tracking of de-
fined revolutions-per-minute (RPM) set-points and the effect of
reducing the number of modes. Initially, we define our system
with four modes in u j,e and with two torsional modes in ψ . This
gives a set of 18 generalized coordinates for the system. The drill-
string parameters used in this section are presented in Table 1.

We start by simplifying the expression for the twist Rψ , en-
abling easier pre-calculation of the system matrices. The range
of the twist angle determines the number of terms for the Tay-
lor series expansion of cosine and sine in the rotation matrix. A
consequence of including more terms is increased computational

1 Se:τ e
g : r

I:M

1

C

R:ΦR(q̇)

Se:τ eg : qe

1

MTF

MTF

MTF

Γ(q)

Γ(q)

Λ

pi,θ e‘
k

e‘
k

pe,r

[
qi qθ

]>

[
qe qr

]>

q̇

F 0

F i
c

T 0

τ a
f

τ i
c

τ a
t

e1

f1

e2

f2

e4 f4

e3

f3

e5

f5

e6

f6

FIGURE 5. BG MODEL OF FLEXIBLE DRILL-STRING
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TABLE 1. PIPE STRUCTURAL PARAMETERS

L[m] ρ [ kg
m3 ] OD [m] ID [m] tw [m] r̃ [m] E [GPa] G [GPa] g [ m

s2 ]
1200 7850 0.125 0.107 0.018 0.058 200 79.3 9.81

time before and in simulation. In this paper we utilize 4th-order
expansion of the cosine and 3rd-order expansion of sine, which
limits the torsional twist of in the range of - 3π

2 < ψ(z, t)< 3π

2 .
The top drive torque system is modeled with a drive inertia

and a PID controller, simulating the torque motor. This system is
defined as

Itdω̇ = Tm−
T0

kg
−Rdω (38)

where Itd is the drive inertia, Tm is the torque produced by the
PID controller, T0 is the pipe torque, kg is the gear ratio from
the drive to the pipe, and Rd is the damping factor in the drive.
The top drive dynamics are implemented as a bond graph model,
connected as shown in Fig. 5. Hence, ω is the inertial top drive
angular velocity, being transformed to the pipe with ΛΛΛ. We use
a stiff controller with K = 10ζd , Ki = 5Itd, a form commonly
applied in early rotary drilling systems [21], where the gain is
set by the drill-string pipe characteristic impedance ζd = I

√
Gρ .

Furthermore, I is the pipe polar moment of area. The derivative
time is set to td = 0.1 s.

The force input in the lateral and vertical plane is set in
the inertial reference frame and transformed to the generalized
coordinates by τ =

[
F i

x , F i
y , F i

z
]

ΓΓΓ(q). Viscous damping is in-
cluded in the system at the end of the string, i.e., z = L, given
as Tf = ψ̇(z, t)R f , where ψ̇(z, t)=∂ψ(z, t)/∂ t and R f is chosen
to reflect the hydrodynamic damping and geometry of the bore-
hole due to mud and friction.

The system is modelled with proportional damping from
(27). Furthermore, the damping coefficients ξi are chosen experi-
mentally to simulate damped oscillations of the vibratory modes.
Initially ξx,y = 0.01, ξz = 0.1, ξψ = {0.1,0.2}.

The contact forces from τττe
c,i define the boundary to the well-

bore, starting at z = 300 m being distributed by 8 contact points,
and lc = 0.1 m, kc = 2500 ·103 N/m are taken from [7, 22].

Case 1: To evaluate the modal contribution, we perform a
spin up test to ωsp = 5 rad/s, simulating the model for 20 sec-
onds. The number of modes required depends on how accurately
we want to capture the frequencies being excited by the sys-
tem. Since the longitudinal deformation is uncoupled from the
lateral and torsional deformation we analyze the results of actu-
ating the string in the vertical direction. The results in terms of
root-mean-square (RMS) values describing the individual effect
on each mode is listed in Table 2.

From the numbers in Table 2, we can see that the first modes

TABLE 2. MODE RMS VALUES
Mode num. RMS(qe,x) RMS(qe,y) RMS(qe,z) RMS(qe,r)

1 1.094 0.8128 0.9566 1.124
2 0.03408 0.1516 0.03874 0.1244
3 0.08707 0.008734 0.009336 N/A
4 0.02765 0.02692 0.003668 N/A

are excited the most by the input from the top drive and the dy-
namics of the actuator for the vertical direction at z = 0. The
modes are based unforced response at the end boundary. How-
ever, a drill-string is normally in tension and the drill-collar sec-
tion is compressed when placed on the rock-bottom. In the fol-
lowing cases, we only consider the results in terms of off-bottom
rotation, with no interaction with vertical forces at the end bound-
ary.

The twist angle ψ(z, t) and the twist angular velocity ψ̇(z, t)
are seen in Fig. 6. The angle of twist reaches steady-state, and
the angular velocity along the drill-string becomes uniform.
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-0.05
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-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

FIGURE 6. TWIST ANGLE AND ANGULAR VELOCITY.

Case 2: In this case we set four individual set-points for ω at
4, 8, 16 and 20 rad/s (38 to 191 RPM approximately). The result
is seen in Fig. 7.

The plot shows a first-order response and a small lag in ωL
due to the torsional rigidity of the pipe. The qualitative response
is similar to the n-degree 2nd-order lumped models, where the
time period of a shear wave is ts =

2π
√

ρ√
G

being approximately
0.002 s. Seen in the top-most plot in Fig. 7 is small oscillations
for the angular velocity at the bottom of the well. This linked to
the lateral motion, which is seen at the boundary z = L in Fig. 8
for ω = 4 rad/s and 20 rad/s.

The lateral displacement at the end of the pipe is oscillating
with larger amplitude and frequency for higher RPMs. At this
stage we have not considered the effect of added mass and the
effect of fluid in the annulus. It is reasonable to think that the
effects would provide additional damping.
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FIGURE 8. LATERAL DISPLACEMENT FOR ω = 4 AND 20
RAD/S.

Case 3: In this case, three different models were developed.
Model 1 is equal to the one from the previous cases. Model 2 is
developed with 14 degrees of freedom (DOF), three coordinates
each in u j,e and one in ψ . Model 3 consist of 12 DOFs, with two
coordinates each in u j,e and ψ . The results of simulating for five
seconds is seen in Fig. 9. The proportional gain of the drive is
increased by a factor of 10, and the inertia is reduced from 90 to
80 kg ·m2. A model parameter change is made for the resisting
torque from viscous damping at z = L, where the coefficient is
increased from 65 to 80 N·m·s

rad .
The upper-most and lower-most plots indicate that the tra-

jectories correspond to the findings in Table 2, where the three
first modes play a significant role in the magnitude of lateral de-
formation. Less effect is seen on the torsional deformation, cor-
responding to one or two modes. The deviation seen in the lower-
most figure is approximately 0.0019 m.

In terms of simulation performance, we can evaluate the ra-
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FIGURE 9. SIMULATION OF THREE MODELS nq = 18, 14 AND
12. THE ANGULAR VELOCITIES ARE ω0,ωL AT z = 0 AND z = L
RESPECTIVELY, AND u1,e IS THE X AXIS DEFORMATION.

tio of simulation time to actual time defined as trt = ta/tsim, where
ta is the actual time. The ratio resulted in trt = 10.56 (Model 1),
trt = 1.47 (Model 2), and trt = 7.82 (Model 3). Model 1 and
3 have two coordinates in ψ , while Model 2 has one; the size
reduction in model matrices explains the difference in speed.
Model 2 is then assumed to be better suited for real-time appli-
cations.

CONCLUSIONS
In this paper we have derived a drill-string model with cou-

pled torsion and lateral motion in terms of the floating frame
of reference formulation, and additionally shown a component-
based structure of a drill-string model. The model was incorpo-
rated in a bond graph structure, where full integral causality is
ensured with the IC framework.

To limit the computational time and avoid numeric integra-
tion to obtain the mass matrix in terms of the non-dimensional
parameter s, the rotation matrix Rψ was approximated by a 3rd
and 4th order Taylor series expansion for sine and cosine, respec-
tively, which showed to have advantages for the reduced degree
of freedom Model 2 in terms of simulation time.

The model performance was tested in three simulation cases,
analyzing the total modal contribution, showing that the first
mode of the generalized coordinates was influenced the most by
the top drive dynamics. Limiting the number of modes through
geometry conditions and required accuracy is shown to improve
simulation speed towards real-time applications.

The model is component-based-oriented, including the dy-
namics of torsional, lateral, and longitudinal motion being able
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to be used in large scale simulation case studies. Further anal-
ysis of the dynamics of the model should incorporate the stick-
slip effect. Therefore, new implementation with the exact rota-
tion matrix Rψ should be done. However, this will likely lead to
increased simulation time.

Future work
We have shown that it is possible to model pipe twist in re-

lation to the lateral motion, achieving a model capturing the cou-
pled phenomena without relying on bit-rock interaction models.
However, validity of the proposed model is key to further use
in industry. The validity must be tested towards real-world mea-
surements and cross checked with existing models to best esti-
mate the nonlinear drill-string dynamics. The simulation showed
the coupling effect of torsional and lateral deformation. A control
design approach should be derived in terms of stabilizing the dy-
namics of the drill-string. Hence, testing existing control laws on
this model can give valuable insight of controller performance.
However, this was not the objective of this paper, and remains
future work.
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