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ABSTRACT

The development of a spectral difference-based statistical processing of hyperspectral images is provided in
this article. Kullback-Leibler pseudo-divergence function, which was specifically developed for the metrological
processing of hyperspectral images, is used at the foundation of the statistics. As a demonstration of its use, the
proposed statistics are used in visualising surface variability within a set of pigment patches. It is then further
exploited to detect anomalies and deterioration that occur on the patches.

1. INTRODUCTION

Hyperspectral imaging has been used for quality control for, e.g., textile industry,1,2 offset printing press,3

and recycling plants.4 This imaging technology offers a great accuracy thanks to its high spatial and spectral
resolutions. Facing the lack of metrological solutions for the analysis of spectral measurements, in this work we
propose several statistical tools that are based on a spectral difference space.

Despite data reduction or band selection techniques being the commonly used strategy in dealing with hy-
perspectral images,5 data from all wavelengths are exploited in the proposed approach. With data reduction
techniques, the acquired spectral accuracy gets removed before to analyse the data. Spectral differences between
the different components of an observed surface, which is an important part of metrology, also cannot be pre-
served. The reason is because spectra are not vectors in the Euclidean space and, therefore, Euclidean metrics
are not metrologically valid.6 Furthermore, there is no valid addition and subtraction operations defined for
reflectance spectra.7 In order to develop metrological solutions, the proposed spectral statistics are based on
the Kullback-Leibler pseudo-divergence function (KLPD),8 which has been shown to respect all of the expected
metrological constraints.7

In addition to providing the building blocks of the spectral difference-based spectral statistics, this work
will also demonstrate their use in visualising and analysing the surface variability of a set of pigment patches.
Specifically, the statistics will be used to detect anomalies or defects and discoloration in pigment patches.

2. DIFFERENCE-BASED STATISTICS FOR SPECTRAL DATA

2.1 Kullback-Leibler pseudo-divergence function

Kullback-Leibler pseudo-divergence (KLPD) function is a difference function specifically developed to enable a
metrological processing of hyperspectral data,8 assuming a contiguous wavelength sampling over a certain range.
It measures the difference between two spectra S1 and S2 in terms of their shape ∆G and intensity ∆W :

dKLPD(S1, S2) = ∆G(S1, S2) + ∆W (S1, S2)

∆G(S1, S2) = k1 · dKL(S̄1, S̄2) + k2 · dKL(S̄2, S̄1)

∆W (S1, S2) = (k1 − k2) log

(
k1
k2

) (1)

In computing ∆G, the two input spectra Si will always be considered as probability density functions. This
requires them to be normalised, therefore S̄i, in order to be used correctly within the Kullback-Leibler (KL)
divergence function dKL(S̄1, S̄2) as in (2). The normalisation procedure allows computing shape differences, while
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neglecting the intensity information. For this reason, ∆W explicitly takes into account the intensity differences
through the normalisation factors kj of each spectrum S̄j . Details on the computation of KL divergence, a
normalised spectrum, and its corresponding normalisation factor are as follows:

dKL(S̄1, S̄2) =

∫ λmax

λmin

S̄1(λ) · log
S̄1(λ)

S̄2(λ)
dλ

S̄j =

{
s̄j(λ) =

sj(λ)

k

}
, kj =

∫ λmax

λmin

sj(λ) dλ

(2)

Note that, strictly speaking, KLPD is not a distance function since it does not hold the property of triangular
inequality. Additionally, the assessment of this spectral difference function has been carried out previously, both
theoretically and through numerical experiments embedding metrological constraints.7

2.2 Histogram of spectral differences

A color image of a red pigment patch is shown in Figure 1a. Through visual observation, it can be seen that
there are four different shades within the patch. The colors in each shade are not exactly the same. However,
since their variations are relatively small, we can determine visually that each shade is relatively homogeneous in
colors. This observation is also reflected in the spectral domain. Ten reflectance spectra are randomly selected
from the patch and are shown in Figure 1b. First of all, it can be observed that all spectra have similar curves
or shape, but vary in their intensity. Spectra belonging to the brighter red color will have bigger intensity, while
those of the darker shade have smaller intensity. Secondly, there are also variations within the same shade, albeit
small ones. The shape and intensity of spectra coming from the same shade are highly similar.

(a) Pigment OP-1 (b) Reflectance spectra

Figure 1: A red pigment patch and ten of its randomly selected reflectance spectra. The number annotations
mark the pigment shade where the spectra comes from.

The previous observation made in the spectral domain was possible due to the low number of spectra being
shown. But as the number of spectra increases, the discrimination we can make also decreases. Through the use of
KLPD function, a spectrum can now be represented by a single difference value relative to any arbitrary spectral
reference being used. This further allows the visualisation of a set of spectra S through a histogram of spectral
differences (HSD) DS,Sref

= {dKLPD(Si, Sref),∀Si ∈ S}. Using a theoretical equi-energetic white spectrum as
reference Sref = {sw(λ) = 1,∀λ ⊂ [λmin, λmax]}, HSD of the pigment patch in Figure 1a are computed and shown
in Figure 2a. In this visualisation, we can see four Gaussian-like distribution of pixels, representing the four
shades of red that we can perceive in the pigment patch. Note that, in an HSD, the used spectral reference is
always located at the origin. Thus, in the case of the illustrated HSD where a white spectrum is used as reference,
the closest distribution to the origin is the brightest red while the farthest one corresponds to the darkest red.

The representation of a spectral set and, therefore, its distribution through KLPD space is not limited to one
dimension. Since the difference function is composed of two components, i.e., shape and intensity, the histogram
can be further decomposed into a two-dimensional one DS,Sref

= {(∆G(S, Sref),∆W (S, Sref)) ,∀S ∈ S}. The
bidimensional histogram of spectral differences (BHSD) of the same pigment patch is shown in Figure 2b. It is
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(a) (b)

Figure 2: Histogram of spectral differences (HSD) and bidimensional histogram of spectral differences (BHSD)
of pigment patch in Figure 1a, computed relative to a theoretical equi-energetic white spectrum. Each numbered
Gaussian-like distribution in the HSD corresponds to the same shade number in the pigment patch.

constructed relative to the same reference, i.e., theoretical equi-energetic white spectrum. As seen in the figure,
pixels in the patch are still distributed within four main distributions corresponding to the pigment shades.

2.3 Statistical moments of a spectral difference set

Given a set of spectra or a spectral image, there exist no way of statistically modelling its pixel distribution
directly from the n-dimensional acquisition or reflectance space. The task, however, can be translated into a
spectral difference space as illustrated for a one-dimensional case in Figure 3. Given any arbitrary reference
point xref, the probability density function of the pixels P (xi) is now observed relative to xref. Consequently,
the average location is changed from µ to µ − xref. In the higher dimensional spaces, the probability density
function can be extended simply by means of a difference to the reference point P (d(xi, xref)). Bear in mind
that, by definition, a distance or divergence function is a positive measurement.

Figure 3: Illustration of the translation of univariate statistical moments of a one-dimensional probability density
function P (xi) into a difference space relative to a reference point xref or to an average spectrum. Note that, by
definition, the notion of difference always has positive values.

In the univariate domain, the first and second statistical moments are defined as follows:

Average µ = E[X] =
∑
xi
xi · f(xi)

Variance V ar(X) = E[(X − µ)2] =
∑
xi

(xi − µ)2 · f(xi)

Std. Deviation σ =
√
V ar(X)

(3)

To properly extend them to the spectral difference space, first, we have to carefully consider what is an average
for spectral data. If a spectrum is regarded as a vector in the Euclidean space, the notion of average can be
defined as the spectrum of local average µS = {E[s(λ)],∀λ ⊂ [λmin, λmax]}, where the average value is computed
independently for each wavelength. This marginal processing of average spectrum, however, neglects the natural
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interdependency between neighbouring wavelengths and almost always create a new false spectrum that does
not exist in the initial set of spectra. The median spectrum µ̃S is a good alternative to the average, since
it is the closest spectrum to the theoretical average9 and will always be a spectrum chosen from the set. To
compute a median in the multivariate domain, typically, Vector Median Filters (VMF)10 is used. However, it is
computationally expensive and a more efficient alternative using a distance-based conditional ordering relation
has been proposed.11

The second consideration to take in extending the univariate statistics in (3) to the spectral domain is the
subtraction operation (xi − µ). Direct subtraction has no sense neither in the physical nor optical domain. We
are then forced to translate the purpose into the notion of difference. Finally, having defined the median µ̃ as
alternative to the local average and extending the subtraction operation through the notion of difference, the
standard deviation of a spectral difference set σ̃S can therefore be defined as follows:

σ̃S =

√∑
Si∈S

(
dKLPD(Si, µ̃S)

)2
f(Si) (4)

As an example of the use of the statistics for spectral data, Figure 4a shows 200 randomly selected spectra
from the brightest pigment shade in 1a and the median spectrum µ̃. Note that µ̃ is computed from all pixels of
the shade and not only the 200 ones that are shown. Using this µ̃ as a reference, an HSD of the patch is obtained
and shown in Figure 4b, along with the standard deviation σ̃ computed for the set.

(a) Median spectrum µ̃ of shade-1 (b) HSD of shade-1 relative to µ̃

Figure 4: Median spectrum µ̃, HSD, and standard deviation σ̃ of the set of spectra coming from shade-1 of the
pigment patch shown in Figure 1a. Note that for observational purposes, (a) only shows 200 randomly selected
spectra, plotted in gray color and (b) has a vertical axis shown in a log scale.

2.4 Structural statistical moments of a spectral difference set

The previous extension of statistical moments to the spectral domain was enabled by the representation of a
spectral set S in an HSD. By further exploiting the decomposition of HSD to BHSD, a spectral inner variance-
covariance matrix 12 Γ̃S can be defined as follows:

Γ̃S =

(
αGG αGW
αGW αWW

)
where αGG =

∑
Si∈S

(
∆G(Si, µ̃S)

)2
f(Si)

αWW =
∑
Si∈S

(
∆W (Si, µ̃S)

)2
f(Si)

αGW =
∑
Si∈S

(
∆G(Si, µ̃S) ·∆W (Si, µ̃S)

)
f(Si)

(5)

Having defined Γ̃S , Mahalanobis distance (MD) between any arbitrary spectrum S and a known spectral set
S can be computed as written below. Note that this MD essentially computes distance in the normalised BHSD
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space. The normalisation itself is against the variance-covariance matrix Γ̃. Therefore, MD is analogous to the
normalisation of an HSD relative to its standard deviation σ̃.

dM (S,S) =

√
dKLPD(S, µ̃S)T Γ̃−1S dKLPD(S, µ̃S) (6)

3. DETECTION OF PRINTING ANOMALIES

An immediate application of the spectral statistics described in Section 2.3 is in detecting anomalies or outliers
from hyperspectral images with stationary content, which will be provided in this section.

3.1 Dataset

Hyperspectral images coming from screen-printed pigment patches are used for this experiment, see Figure 5.
The images vary in their spatial dimensions, typically around 850×550 pixels. Their spectral information covers
405.37–995.83 nm with 186 spectral bands. The shown color images were generated through color transformation
involving CIE 1931 RGB color matching function (2◦ standard observer) and D65 illumination, mimicking how
the human visual system perceives the patches under daylight.

(a) GR-1 (b) GR-2 (c) GR-3 (d) OP-7 (e) Reference image

Figure 5: Pigment patches with printing defects and an example of reference image generated for GR-3.

Some spots can be observed on the pigment patches in Figure 5, which occur as a result of imperfect printing
process. Knowing that there should be four relatively homogeneous color shades within each patch, a reference
image segmenting the pigment shades are produced for each target. An example for pigment GR-3 can be
observed in Figure 5e.

3.2 Experiment and results

Assuming a normal distribution, the empirical rule, or also known as 68-95-99.7 rule, will be used. This rule
states that in a normal distribution, 99.7% of the population lie within three standard deviation from the the
mean, or median in this case of spectral statistics. Therefore, anomalies are those pixels lying more than 3σ̃
away from the median µ̃. In order to use this threshold t = 3σ̃, the statistics µ̃ and σ̃ are obtained independently
for each pigment shade. Pixels in the image are determined to belong to a shade according to the generated
reference image.

To illustrate the steps of the experiment, the rightmost shade of pigment GR-3 will be used. Its original
image is shown in Figure 6a, with the anomaly image next to it. This result is obtained by, first, computing
spectral differences of the pixels relative to the median of the shade µ̃ using KLPD function. This further allows
the visualisation in an HSD, as shown in Figure 6b, and also the σ̃. Determination of anomalies is then carried
out simply by drawing a threshold line at 3σ̃ in this HSD space. Anomalies are those located above the threshold.
Finally, after carrying out the procedure for each individual shade and for all the four pigments, the final anomaly
images for the used pigment patches are provided in Figure 7.

4. DETECTION OF PIGMENT DETERIORATION

Surface defects due to imperfect printing process is not the only problem that can disturb the surface of pigment
patches. Pigments can deteriorate, either due to heat or other factors that happen during the storage. Figure
8a shows a color image of a pigment patch1 that has deteriorated, generated mimicking its perception through

1Spatial characteristics of this patch is similar to those shown in Figure 5, while its spectral characteristics are identical.
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(a) (b)

Figure 6: (a) The rightmost shade of pigment GR-3 and the found anomalies marked by yellow pixels. (b) The
anomalies are those pixels located above the threshold 3σ̃ in the shown HSD.

(a) GR-1 (b) GR-2 (c) GR-3 (d) OP-7

Figure 7: Final anomaly maps showing locations of defects on the surface of each pigment patches. The defects
are those pixels colored in yellow.

the human visual system under daylight. Its rightmost shade has two main colors. One is a bright yellow, while
the other one seems to be its darkened version. The deterioration becomes more evident in Figure 8b, which is
generated by directly using the peak sensitivity of the hyperspectral sensor at 644.74, 552.19, and 466.01 nm as
the RGB channels. Through this observation, it is evident that pixel distribution in the pigment shade is not
unimodal.

(a) (b)

Figure 8: Example of a pigment patch (OP-3) that has deteriorated. The first color image is generated the same
way as those in Figure 5, mimicking the human visual system. The second color image is generated using the
spectral bands at the sensor’s peak sensitivity.

To analyse the content of a deteriorated pigment patch, observation can be carried out in the BHSD space.
One is obtained for the rightmost shade of pigment OP-3 and is shown in Figure 9a, with variance-covariance
matrix also provided. In this BHSD, two main directions of tails of the distribution can be observed, i.e.,
vertical and horizontal. However, this observation cannot be used to definitively say that the distribution is not
unimodal. By further processing the BHSD into a Mahalanobis distance (MD) space, we can then start removing
the outliers in the distribution. In this normalised space, and by assuming a normal distribution, the empirical
rule is used again. Only pixels located within 3Γ̃ will be considered. Finally, Figure 9b is obtained, where two
peaks can be observed from the distribution of pixels with MD lower than 3Γ̃. To fully automate the process,
this final histogram of MD can be passed on to a unimodality test, e.g., dip test.13
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(a) (b)

Figure 9: (a) BHSD obtained for the rightmost shade of pigment OP-3, plotting all pixels within the shade. (b)
Histogram of Mahalanobis distance obtained from normalising the BHSD against its variance-covariance matrix
Γ̃. This histogram only shows values below 3Γ̃.

5. CONCLUSION

Spectral difference-based statistics have been developed in this work. Its foundation is in the use of Kullback-
Leibler pseudo-divergence (KLPD) function, which has been shown in a previous study to be satisfying the
expected metrological properties. Through the use of this difference function, the task of statistically modelling
the n-dimensional hyperspectral data can now be translated into the domain of one-dimensional spectral differ-
ence space. Due to the natural decomposition of KLPD into shape and intensity differences, the representation
can be extended to a two-dimensional one, allowing more sensitivity to the spectral variability within an image.

The use of Mahalanobis distance as the immediate step from the definition of the statistical moments made it
possible to use a normalised threshold. According to the empirical rule in statistics, 99.7% of the population in
a normal distribution lie within three standard deviation from the median. Thus, this rule can be used to detect
anomalies, which in this article was applied to screen-printed pigment patches. Pigment deterioration detection
was also carried out in this study, assuming that the numbers of pixels corresponding to deteriorated pigments
are quite significant. The determination of whether deterioration has happened was simply in being able to say
that the distribution of pixels is not unimodal.

As a concluding remark, we have been able to develop the statistics for spectral data and use it for stationary
content. The fact that we have been able to use the statistics in a straightforward manner and by simply using a
normalised threshold, shows the potential of this approach. To continue this work, the statistical moments will
be developed into a higher order ones, e.g., kurtosis and skewness, through the notion of directed distance.
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