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Abstract

Explainable recommendation, which provides explanations about why an item is recommended, has attracted growing attention in

both research and industry communities. However, most existing explainable recommendation methods cannot provide multi-model

explanations consisting of both textual and visual modalities or adaptive explanations tailored for the user’s dynamic preference,

potentially leading to the degradation of customers’ satisfaction, confidence and trust for the recommender system. On the technical

side, Recurrent Neural Network (RNN) has become the most prevalent technique to model dynamic user preferences. Benefit from

the natural characteristics of RNN, the hidden state is a combination of long-term dependency and short-term interest to some

degrees. But it works like a black-box and the monotonic temporal dependency of RNN is not sufficient to capture the user’s

short-term interest.

In this paper, to deal with the above issues, we propose a novel Attentive Recurrent Neural Network (Ante-RNN) with textual

and visual fusion for the dynamic explainable recommendation. Specifically, our model jointly learns image representations with

textual alignment and text representations with topical attention mechanism in a parallel way. Then a novel dynamic contextual

attention mechanism is incorporated into Ante-RNN for modelling the complicated correlations among recent items and strength-

ening the user’s short-term interests. By combining the full latent visual-semantic alignments and a hybrid attention mechanism

including topical and contextual attentions, Ante-RNN makes the recommendation process more transparent and explainable. Ex-

tensive experimental results on two real world datasets demonstrate the superior performance and explainability of our model.

Keywords: Dynamic Explainable Recommendation, Recurrent Neural Network, Attention Mechanism, Semantic Alignment,

Multi-model Fusion, User Interests

1. Introduction

In recent years, explainable recommendation has become an

active research topic in many online customer-oriented applica-

tions, such as social media, e-commerce and content-sharing

websites. By explaining how the system works and/or why5

an item is recommended, the system becomes more transpar-

ent and has the potential to allow users to tell when the sys-

tem is wrong (scrutability), help users make better (effective-
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ness) and faster (efficiency) decisions, convince users to try or

buy (persuasiveness), or increase the ease of the user enjoyment10

(satisfaction) (Tintarev and Masthoff, 2011). Current explain-

able models usually interpret the recommendations based on

user reviews. For instance, Zhang et al. (2014) proposed an

Explicit Factor Model (EFM) to learn user cared features from

the review information and fill them into pre-defined templates15

regarded as explanations. Chen et al. (2016) and Wang et al.

(2018c) extended EFM for more accurate user-item-feature ex-

planations by leveraging tensor factorization techniques. Chen

et al. (2018a) used attention mechanism to extract valuable item

reviews for explaining the rating prediction.20
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Despite effectiveness, these explainable recommendation meth-

ods still suffer from some inherent issues: (1) Most of them

model the item’s characteristics by only leveraging their tex-

tual features, which leads to the limited recommendation per-

formance and explanatory capability. In fact, for some types of25

items (e.g., clothing), their visual appearances play an impor-

tant role in their properties, which can greatly bias the user’s

preference towards them. For example, users can easily deter-

mine whether they watch a movie based on the movie poster

images. Thus, the visual features of items are also important30

complementary information for the explainable recommenda-

tion. (2) Most methods assume that user preferences are invari-

ant and generate static explanations. However, in real scenarios,

a user’s preference is always dynamic, and s/he may be inter-

ested in different topics at different states. The static assump-35

tion can easily lead to incorrect matches between the explana-

tion and user dynamic preference, thus impairing the recom-

mendation performance and degrading customers’ satisfaction,

confidence and trust for the recommender system.

Previous works that leverage the visual information for per-40

sonalized recommendation usually transform images into em-

bedding vectors, which are then incorporated with collabora-

tive filtering (CF) for improving the performance. For example,

McAuley et al. (2015) adopted neural networks to transform

images into feature vectors, and used the vectors for product45

style analysis and recommendation; He and McAuley (2016)

further extended the approach to pair-wise learning to rank for

recommendation; Geng et al. (2015) adopted image features

for recommendation in a social network setting; Wang et al.

(2017) extracted image features with neural network for point-50

of-interest recommendation. Though the recommendation per-

formance has been improved by incorporating image represen-

tation extracted with (convolutional) neural networks, the re-

lated works have largely ignored an important advantage of

leveraging images for recommendation – its ability to provide55

intuitive visual explanations. This is because by transforming

the whole image into a fixed latent vector, the images become

hardly understandable for users, which makes it difficult for

the model to generate visual explanations to accompany certain

recommendations.60

On the other hand, recent approaches that leverage Recur-

rent Neural Network (RNN) for recommendation have demon-

strated their effectiveness in modelling the temporal dynamics

of user preferences. RNN based methods adopt the last hid-

den state as the user’s final representation to make recommen-65

dations. With the help of gated activation function like long-

short term memory or gated recurrent unit (Cho et al., 2014),

RNN can better capture the long-term dependency. However,

it works like a black-box, for which the reasons underlying a

prediction cannot be explicitly presented. Besides, due to the70

recurrent structure and fixed transition matrices, RNN holds an

assumption that temporal dependency has a monotonic change

with the input time steps (Liu et al., 2017). It assumes that

the current item or hidden state is more significant than the

previous one. This monotonic assumption would restrict the75

modelling of user’s short-term interests and can not well distin-

guish the importance of several recent factors. For example, a

user is looking for interesting movies on the Internet. During

browsing, s/he tends to click on some movies with the “dis-

aster” topic which is treated as the user’s short-term interest,80

meanwhile s/he might click a comedy movie by accident or due

to curiosity. In this case, small weight should be provided for

the comedy movie. So the short-term interest should be care-

fully examined and needs to be integrated with the long-term

dependency.85

In this paper, we focus on the problem of simultaneously

multi-model explanation generation and dynamic user prefer-

ence modelling in the context of explainable recommendation.

The problem setup is illustrated in Figure 1. We propose a

novel Attentive Recurrent Neural Network (Ante-RNN) to ad-90

dress this problem. More specifically, we first learn image rep-

resentations with the latent semantic alignments between image

regions and the corresponding words in text. Meanwhile, in or-

der to capture the user’s long-term preference, a topical atten-

tion mechanism which can model the interactions between the95

words and the user’s interested topics is adopted to learn text
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Figure 1: Problem Setup. Given the users’ clicking sequence of items, different parts of the images are marked in rectangle to provide intuitive explanations for

the next recommended item. Meanwhile, their textual explanations are also provided by highlighting the topic-related words. Besides, the item in the red dashed is

more relevant to the current user’s intention. And the red line is thicker when the item is more important.

representations. After that, the representations from image and

text sources are integrated to obtain a joint representation of vi-

sual and textual features for each item by investigating different

modality fusion strategies, which is used as the input of Ante-100

RNN. Then a novel dynamic contextual attention mechanism is

incorporated into our model for modelling the complicated cor-

relations among recent items and strengthening the user’s short-

term interests. By combining the full latent visual-semantic

alignments and the attention weights learned from topical at-105

tention network and contextual attention network, Ante-RNN

makes the recommendation process more transparent and ex-

plainable. Compared with existing methods, our model not only

improves the recommendation performance, but also generates

textual and visual explanations for the recommended items.110

To summarize, this paper makes the following contribu-

tions:

• We propose an Attentive Recurrent Neural Network (Ante-

RNN) for the dynamic explainable recommendation which

could provide multi-model explanations according to the115

user dynamic preference. To the best of our knowledge, it

is the first time to jointly explore multi-modal and adap-

tive explanations in a unified framework for the person-

alized recommendation.

• In order to alleviate the issues caused by the monotonic120

assumption of RNN, a hybrid attention mechanism is de-

veloped to capture the user’s long-term dynamic interest

over different topics and strengthen the short-term inter-

est simultaneously. More importantly, our proposed dy-

namic contextual attention scheme incorporates diverse125

temporal factors of the user’s clicking sequence of items

(e.g. time interval and the time of week) to further im-

prove the recommendation performance.

• We analyze and study a variety of fusion strategies for

mutual association learning across modalities, and find130

that the attention-based fusion robustly achieves the best

results.

• We conduct extensive experiments on two real large-scale

datasets. The results show that Ante-RNN outperforms

state-of-the-art baselines in terms of Recall and NDCG135

on both datasets.

The remainder of the paper is organized as follows. Section

2 introduces the related work. In section 3, we formally define

the problem and our new model. We describe the datasets, com-

parative approaches, the evaluation criteria we use and experi-140

mental results in section 4. Finally, we present the conclusions

and future work in Section 5.
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2. Related Work

2.1. Explainable Recommendation

Researchers have shown that providing appropriate expla-145

nations could improve user acceptance of the recommended

items (Herlocker et al., 2000), as well as benefit user experi-

ence in various other aspects, including system transparency,

user trust, effectiveness, efficiency, satisfaction and scrutabil-

ity (Tintarev and Masthoff, 2011). However, the underlying150

algorithm may influence the types of explanations that can be

constructed. In general, the computational complex algorithms

within various latent factor models make the explanations diffi-

cult to be generated automatically (Tintarev and Masthoff, 2011).

Many meticulously designed strategies have been investigated155

to tackle the problem. For instance, the authors in (McAuley

and Leskovec, 2013) aligned user/item latent factors in matrix

factorization (MF) with topical distribution in latent dirichlet

allocation (LDA) for joint parameter optimization under the su-

pervision of both score ratings and textual reviews, and thus the160

user preferences are explained by the learned topical distribu-

tions. Ling et al. (2014) applied topic modelling techniques

with mixture of Gaussians on the reviews and generated in-

terpretable topics. Bao et al. (2014) further extended Ling’s

work and proposed a novel topical matrix factorization model165

(TopicMF) to extract topics from each review. To explain finer-

grained user preference, some approaches (Zhang et al., 2014;

Chen et al., 2016) combined matrix factorization (MF) and sen-

timent analysis (SA) to generate explanations at the feature-

level. More specifically, they extracted feature-opinion-sentiment170

triplets from the user review information, and infused them into

MF for collective user preference modelling. The explanations

were provided by filling the predicted user cared features into

pre-defined templates. Despite effectiveness, the final results of

these methods can be easily affected by the accuracy of the re-175

view preprocessing tools, and the complex process for extract-

ing triplets usually render them inefficient.

Recently, with the rapid development of deep learning tech-

nology, there has been a surge of interest in leveraging atten-

tion mechanisms to explain a recommendation. A common180

approach employed by these works involves two steps. First,

they merge the raw user review information related to a user

(or an item) into a document and attentively discovered valu-

able information in the document. The next step is to provide

the explanations by highlighting the words with the highest at-185

tention weights. In particularly, Seo et al. (2017) and Chen

et al. (2018a) automatically learned the importances of differ-

ent review sentences under the supervision of user-item rat-

ing information. To provide explanations tailored for different

target items, Tay et al. (2018) adopted ”co-attention” mecha-190

nism to capture the correlations between users and items. Apart

from user-review explanations, Ai et al. (2018) conducted ex-

plainable recommendation by reasoning over knowledge graph

embeddings, where explanation paths between users and items

were constructed to generate knowledge-enhanced explanations.195

Hu et al. (2018) built a multilevel personal filter to calculate

users’ attractiveness on textual information of items and pro-

vided interpretable recommendations upon them.

Although these methods have achieved promising results,

they failed to model user dynamic preference, and the provided200

explanations were usually static and unimodal, which may weaken

the persuasiveness of the explanations as mentioned before.

2.2. Sequence-aware Recommendation

Recently, a number of research works have demonstrated

that the sequential information (e.g., user sequential behaviors),205

which are regarded as the important information source for un-

derstanding user dynamic preferences, can be utilized to im-

prove personalized recommendations at the right time. In spe-

cific, early methods care more about transition properties be-

tween two successive behaviors. For instance, the factorized210

personalized Markov chains (FPMC) (Rendle et al., 2010) com-

bined matrix factorization with one-order Markov chain to cap-

ture the influence of the last behavior towards the next one. The

hierarchical representation model (HRM) (Wang et al., 2015)

generalized FPMC into a representation learning framework,215

and significantly improved the recommendation performance.

The major limitation of these methods lies in the ignoring of

4



Table 1: Summary of related studies about the sequence-aware recommendation. Fields without information in the related study are marked with a hyphen.

Features

Reference Model Short-term Behaviors Long-term Behaviors Relevance of Historical Behaviors Temporal Context

Rendle et al. 2010 Markov chain X - - -

Wang et al. 2015 Markov chain X - - -

Hidasi et al. 2015 RNN X X - -

Yu et al. 2016 RNN X X - -

Song et al. 2016 RNN X X - -

Zhu et al. 2017 RNN X X - X

Chen et al. 2018b RNN + Memory network +

Attention mechanism

X X X -

Huang et al. 2018 RNN + Memory network +

Attention mechanism

X X X -

Wang et al. 2018b DNN + Attention mechanism X X X -

Pei et al. 2017 RNN + Attention mechanism X X X -

Li et al. 2017 RNN + Attention mechanism X X X -

Ante-RNN RNN + Attention mechanism X X X X

long-term preference dependency.

To solve this problem, many models were proposed to cap-

ture user multi-step behaviors based on the recurrent neural net-220

work (RNN). Yu et al. (2016) represented a basket acquired

by pooling operation as the input layer of RNN, which outper-

forms the state-of-the-art methods for next basket recommenda-

tion. Song et al. (2016) proposed a multi-rate Long Short-Term

Memory (LSTM) with considering temporal user preferences225

for commercial news recommendation. Hidasi et al. (2015)

utilized RNNs for session-based online recommendation. Fur-

thermore, with the ability to express, store and manipulate the

records explicitly, dynamically and effectively, external mem-

ory networks (EMN) (Sukhbaatar et al., 2015) have shown their230

promising performance for many sequential prediction tasks,

such as question answering (QA) (Kumar et al., 2016), natural

language transduction (Grefenstette et al., 2015), and recom-

mender system (Chen et al., 2018b). Chen et al. (2018b) pro-

posed a novel framework integrating recommender system with235

external User Memory Networks which could store and update

users’ historical records explicitly. Huang et al. (2018) pro-

posed to extend the RNN-based sequential recommender by in-

corporating the knowledge-enhanced Key-Value Memory Net-

work (KV-MN) for enhancing the representation of user prefer-240

ence. Despite these models achieve some degree of improve-

ments, one of the important features - the temporal context

of user sequential behaviors - has been totally ignored. Re-

cently, Zhu et al. (2017) designed a model called Time-LSTM

to demonstrate the importance of time interval information for245

user dynamic preference modelling. However, their proposed

model was designed for a particular type of contextual infor-

mation (i.e. time intervals) and is not flexible to incorporate

other types of context (e.g. the time of week). What’s more, the

Time-LSTM model cannot automatically select important in-250

teraction records in the user-item interaction history when rec-

ommending items.

To model the different impacts of a user’s diverse histor-

ical interests on current candidate item, Wang et al. (2018b)

designed an attention module to dynamically calculate a user’s255

aggregated historical representation. Pei et al. (2017) extended

recurrent networks for modelling user and item dynamics with

a novel gating mechanism, which adopts the attention model

to measure the relevance of individual time steps of user and

item history for recommendation. Li et al. (2017) explored260

a hybrid encoder with an attention model to capture both the

user’s sequential behavior and main purpose in the current ses-

sion. Specifically, they involved an item-level attention mecha-
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nism which allowed the decoder to dynamically select and lin-

early combine different parts of the input sequence. Different265

from existing works, we propose a hybrid attention mechanism

which takes into account the user’s long-term interested topics

and short-term contextual surroundings at the same time. And

more importantly, the proposed dynamic contextual attention

scheme enables our model to selectively concentrate on critical270

parts of the sequential information and is fairly flexible, which

can easily add other types of contextual information when avail-

able. To illustrate more clearly, Table 1 summarizes the differ-

ences among related works with sequential information.

2.3. Multi-modality Fusion275

Multi-modality fusion enables us to leverage complemen-

tary information presented in multimodal data, thus discovering

the dependency of information on multiple modalities. There

exist two commonly used fusion strategies in previous research:

feature-level fusion and decision-level fusion. Specifically, feature-280

level fusion aims to directly combine feature vectors by con-

catenation (Sun et al., 2018) or kernel methods (Bucak et al.,

2014; Poria et al., 2016). Poria et al. (2016) used a multi-

ple kernel learning strategy to fuse the modality data on the

feature-level. Zadeh et al. (2017) proposed a tensor fusion tech-285

nique to fuse audio, visual and textual features at feature level.

Decision-level fusion builds separate models for each modality

and then integrates the outputs together using a method such as

majority voting or weighted averaging (Wörtwein and Scherer,

2017; Nojavanasghari et al., 2016). For instance, Wöllmer et al.290

(2013) combined the results of the text and audio-visual modal-

ities by a threshold score vector on the decision-level. Deep

neural network fusion was proposed in a recent study to fuse the

extracted modality-specific features (Zhang et al., 2018; Liang

et al., 2018). More recent approaches introduced LSTM struc-295

tures to fuse the features at each time step (Poria et al., 2017;

Chen et al., 2017).

In recommender systems, previous works often adopt the

strategy of combining image-, rating- and review-based fea-

tures for boosting recommendation performance. The most fre-300

quently used fusion methods are concatenation (Sun et al., 2018;

Guan et al., 2019), addition (Tan et al., 2016; Zhang and Wang,

2016) and element-wise product (Wang et al., 2018a). Recently,

Zhang et al. (2017) integrated images with reviews and ratings

in a multimodal deep learning framework for top-n recommen-305

dation. Cui et al. (2018) proposed a multi-modal Marginalized

Denoising AutoEncoder (3mDAE) to learn fusion features by

reconstructing the original multi-modal data. However, only

few works consider the sophisticated interactions between dif-

ferent modalities in the recommendation. For instance, Cheng310

et al. (2018) adopted a fully-connected neural layer directly af-

ter the addition fusion step to get better fusion features in the

rating prediction. Lian et al. (2018) proposed a multi-channel

deep fusion model which leverages an attention mechanism to

merge latent representations learnt from different domains in315

the personalized news recommendation. In this work, we ex-

plore several fusion techniques for mutual association learn-

ing across modalities (mainly based on the textual and visual

modalities) in the context of explainable recommendation.

3. Proposed Ante-RNN Model320

In this section, we describe the proposed Attentive Recur-

rent Neural Network (Ante-RNN) for the dynamic explainable

recommendation in detail. The basic idea of Ante-RNN is to

build a unified representation of the user’s interacted items, and

then generate predictions along with explanations based on it.325

The representation should take into account various potential

factors that influence user’s next decision. As shown in Figure

2, our model firstly learns text embedding with topical atten-

tion network fused with image embedding with the according

textual alignment in the same D-dimensional space to repre-330

sent item. Then our dynamic contextual attention mechanism

learns attentive weights by considering the contextual influence

of current interacting (e.g. clicking/reading) item to strengthen

the representation before GRU network, and thus to improve

the recommendation performance. Furthermore, the attention335

weights learned from topical attention network and contextual

attention network, can in turn help to explain the recommenda-
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Table 2: Notations used in the paper.

Symbol Description

U, I The set of users and items

E, F The set of word features and image features for an

item

M,N The number of image features and word features for

an item

v, x The image embedding and the text description em-

bedding

D Dimensionality of the image and text embedding

C The affinity matrix whose element represents the

similarity between image region and text word

ηu
t User u’s historical interested topics representation

ψ The number of topics

i Item representation after multi-model fusion

wc The contextual window length

r̃t User’s interest representation at timestamp t

Tw One hot encoding vector of time of week

δt One hot encoding vector of time interval

ot The output vector from GRU

tion results by the descriptive snippets learned from images and

texts.

In the rest of this section, we first define relevant notations340

used in this paper and formulate the recommendation problem.

Then, we present the image embedding with textual alignment

and topic-based text embedding in Section 3.2 and Section 3.3

respectively. In Section 3.4, several multi-model fusion strate-

gies are explained in detail. We introduce the dynamic contex-345

tual attention mechanism in Section 3.5 and finally in Section

3.6, the whole objective of our model and its training procedure

will be described.

3.1. Problem Formulation

Throughout this paper, all vectors are column vectors and350

are denoted by bold lower case letters (e.g. x and y), while

matrices are represented by bold upper case letters (e.g., X and

Y). We use calligraphic letters to represent sets (e.g.,U and I).

Lower case letters (e.g. x and y) represent as scalar parameters.

Table 2 summarizes the notations of frequently used variables.355

LetU = {ui, u2, ..., u|U|} and I = {i1, i2, ..., i|I|} represent the

sets of users and items respectively. For each user, we chrono-

logically organize his/her historical behaviors as a sequence of

tuples Ou = {(iu1, t
u
1), (iu2, t

u
2), ..., (iulu , t

u
lu

)} with the length lu, where

tu
1 ≤ tu

2 ≤ ... ≤ tu
lu

, and the s-th element (ius , t
u
s ) means that user360

u interacted with (i.e. clicked/viewed) item ius ∈ I at time tu
s .

Additionally, an image and a text description are available for

each item i ∈ I. Our task of explainable recommendation with

user dynamic preference is to learn a model such that for any

given user’s historical interacted item set Ou, it generates a list365

of top-k personalized items as recommendations for user u. And

further, its internal parameters or intermediate outputs should

provide explanations on both textual and visual modalities for

these recommended items according to the user’s preference at

time tu
lu+1.370

3.2. Image Embedding with Textual Alignment

Inspired by the work of Lee et al. (2018), we learn im-

age and its corresponding text description in a joint manner.

Though items can be expressed by multiple ways such as image,

video, sound, text and so on, the combined representations of375

items should require a feature fusion mechanism to ensure that

multiple inputs are appropriately integrated. Furthermore, the

strategy that synchronizes different inputs of multi-modalities

at the same level is an effective way as well (Gu et al., 2018a).

Therefore, in this paper, we consider to represent image at the380

word level because word is an important basic unit of represent-

ing users’ interests, and thus image-based item representation

and text/word-based item representation can be projected at the

same space.

Suppose an item includes a set of word features E = {e1, e2,385

..., eN}, in which each element ei ∈ RD, i = 1, 2, ...,N denotes

a word representation in the text description, and a set of im-

age features F = { f1, f2, ..., fM}, in which each element f j ∈

RD, j = 1, 2, ...,M denotes a region representation in the image.

Same with Lee et al. (2018), the image region representations390

are derived by adopting the Faster R-CNN model in conjunc-

7



Figure 2: The proposed Ante-RNN framework for explainable recommendation. (1) In blue square, the model learns image representation v with textual alignment

and text representation x with topical attention net of item at timestamp t, then the fused representation it can be achieved through textual and visual fusion

component to denote the item embedding at timestamp t. (2) The contextual attention net takes the fused representation it as input to learn user’s dynamic interest

representation r̃t . Finally, the model outputs the probability score of the next possible item the user interacted with.

tion with ResNet-101 pre-trained by Anderson et al. (2018) to

recognize the salient and obvious objects from image. Then, a

fully-connected layer is added to transform each region repre-

sentation into D-dimensional space. The word representations395

are achieved using bi-directional GRU (Schuster and Paliwal,

1997) to find the relationship between words and map language

to the same dimensional semantic vector space as image re-

gions.

Given E ∈ RD×N and F ∈ RD×M , the image embedding

with textual alignment starts with defining an affinity matrix

C ∈ RN×M , whose element ci j represents the similarity between

the corresponding feature vector pair of ei ∈ E and f j ∈ F .

Specifically, C is defined as

C = tanh(ET WbF ) (1)

where Wb ∈ RD×D denotes the correlation matrix to be learned.400

Next, based on the affinity matrix, to weigh the alignment of

each image region with respect to the text description, we adopt

a weighted summation of all word representations denoted as

ae
j =

N∑
i=1

αe
i jei (2)

where αe
i j = exp(ci j)/

∑N
i=1 exp(ci j) denotes the weight score on

how well the j-th image region and the i-th word match. After

that, to determine the importance of image regions given the

text description, the relevance between the j-th region and the

corresponding description can be defined as

R( f j, ae
j) =

f T
j ae

j

|| f j|| · ||ae
j ||

(3)

Then, the similarity between image F and text description

E can be defined as

S (E,F ) =
1
M

M∑
j=1

R( f j, ae
j) (4)

And the representation v of image F can be represented as the

weighted summation of all regions with respect to the align-

ments of text.

v =

M∑
j=1

R( f j, ae
j) · f j (5)

In Lee et al. (2018), the authors only focus on the hard-

est negatives in a mini-batch when formulating the objective

function. In practice, for computational efficiency, rather than

summing over all the negative samples as Kiros et al. (2014),

it usually considers only the hard negatives in a mini-batch of

stochastic gradient descent. Thus, we define our triplet ranking

loss as

l(E,F ) = max[0, α1 − S (E,F ) + S (Ê,F )] (6)

where α1 denotes the margin in triplet loss, Ê = argmaxt,ES (t,F )

represents the hardest negative. Different from Lee et al. (2018),

8



we only take into account the image-text alignment instead of

both image-text and text-image alignments for that we care about

how the text description can help image representations solely.405

3.3. Topic-based Text Embedding

To introduce user’s historical interested topics into the model

learning procedure and help to learn a better representation of

text description, we propose a topical attention network which

incorporates topic distribution to weigh the importance and rel-

evance of each word in the text. Specifically, we first conduct

topic modelling approach on all the users’ historical behaviour

streams to build a shared user topic space and learn the topi-

cal distribution for each user. Users’ historical behaviours are

collected at a certain time interval, for instance daily, hourly

and weekly. In our paper, we leverage stream LDA model in-

troduced by Gao et al. (2016) to learn topic distributions and

update the model with every user’s coming streams incremen-

tally. Therefore, the learned topic space is timely updated and

can well track the recent focuses on user behaviours. After that,

we aggregate all historical topic distributions of each user to

derive the representation of user interested topics at the cur-

rent time. Furthermore, a time decay approach (Ding and Li,

2005) is adopted to weight the different importance of the com-

ing streams. Thus, the user’s interested topics at time stamp t

can be defined as:

ηu
t =

1
Nu

t∑
i=1

ξu
i · e

−λ|t−i| (7)

where ξu
i is the user’s topic distribution at time stamp i, |t − ti|

indicates the time difference between the current time and the

topic time stamp i. Nu is a normalization parameter and λ is the

time decay parameter.410

Then, we can derive the interested topics embedding of each

user u as ηu
t ∈ Rψ×1 at time stamp t, where ψ is the number of

topics. After that, the topical attention network outputs the text

embedding x ∈ RD for each item i computed as a weighted

summation of each word embedding e j:

x =

N∑
j=1

a je j (8)

where D is the dimension of the word embedding, a j ∈ [0, 1]

is the attention weight of e j and
∑

j a j = 1. To obtain a j, j ∈

[1,N], we use the following equation to compute scores on how

well the interested topics embedding ηu
t matches the word em-

bedding in position j:

g j = qT
a tanh(Waηu

t + Uae j) (9)

where Wa ∈ RD×ψ, Ua ∈ RD×D and qa ∈ RD×1 are the weight

matrices. Finally, the topical attentive weight score a j can be

calculated with a softmax function

a j = so f tmax(g j) =
exp(g j)∑n
j=1 exp(g j)

(10)

3.4. Multi-Model Fusion

In previous sections, we have described the ways to extract

image and text representations, but how to model the interac-

tions between these two features and obtain a better fusion rep-

resentation is still a problem worth exploring. Therefore, in this415

section, we consider three different multi-modal fusion methods

as shown in Figure 3 to explore the sophisticated effects.

3.4.1. Direct Fusion

An intuitive way to do the feature fusion is to combine the

learned representations of multi-modalities directly. Normally,

there are three ways to fuse the learned representations, namely

concatenation, addition and element-wise product. Here, we

apply element-wise product which has been verified its effec-

tiveness by Chen et al. (2018c) and reveals favored performance

in our experiments.

i = v ⊗ x (11)

where v and x denote the learned textual and visual representa-

tions and i ∈ RD is the output after fusion. We omit subscript t420

for a simpler expression.

3.4.2. Neural Fusion

Inspired by the work of Cheng et al. (2018) but differently,

we first concatenate the visual and textual representations di-

rectly to keep the original modality characteristics, and then

9



Figure 3: Multi-model fusion architectures.

leverage a neural network to fuse them in a complex non-linear

way.

i = DNN([v; x]) (12)

where ; represents the concatenation operation. As for DNN(·)

model, we leverage several fully connected layers stacked to-

gether to derive the non-linear output.

r′0 = [v; x]

r′1 = ϕ(W1r′0 + b1)

r′2 = ϕ(W2r′1 + b2)

......,

i = ϕ(WLr′L−1 + bL)

where Wl and bl denote the weight matrix and bias for the l-th

fully connected layer. ϕ(·) denotes the activation function.

3.4.3. Attention Fusion425

Same modality may have different contributions for differ-

ent recommendation tasks. For instance, people show more in-

terests on visual-related features than textual descriptions on

image recommendation tasks, such as Pinterest and Instagram.

While textual features might provide more useful information430

than other kinds of modalities in news or movie recommenda-

tions. To fully exploit the difference of multimodal nature in

recommendation tasks, we apply an attention mechanism to as-

sign different weights for multi-modalities.

Different from previous two fusions, attention fusion adopts

an attention network over the extracted representations of modality-

specific features, helping the recommender system to tell the

different importance of the different modalities. Following the

work of Gu et al. (2018b), we adopt a tower pattern network

structure as the base of our attention network. The bottom layer

is the widest and each successive layer has smaller number of

neurons. Ultimately, the output from the last layer has the di-

mension of k, representing the relative importance for k differ-

ent modalities. In our paper, we set k = 2 denoting the visual

and textual modalities. Then, a softmax layer is applied to gen-

erate the weighted score for the modalities:

s = so f tmax(TowerNet([v; x])) (13)

where TowerNet(·) represents the deep neural network with

tower structure. s = [sv, st] is a k = 2 dimensional vector

representing the visual and textual attention score. Finally, a

dense layer is used to learn the associations across weighted

multi-modalities:

i = tanh(We[(1 + sv)v; (1 + st)x] + be) (14)

where i ∈ RD denotes the final fused item representation. We ∈435

RD×2D and be ∈ RD are parameters for the dense layer. We also

keep the original modality characteristics by using (1 + s).

3.5. Contextual Attention Mechanism

Given a sequence of items I = {i1, i2, ..., it} that the user u

interacted with and ordered according to time, where t repre-

sents the current time stamp. Recall that it represents the fu-

sion embedding of item it. Let Ct
i = [it−wc+1; ...; it] be a context

10



Figure 4: Diagram of contextual attention network.

matrix consisting of recent wc inputs, where wc is the window

width of the context. To learn user’s current representation con-

sidering the contextual effects, one can simply average all the

representations of his/her clicked items within the contextual

window:

r̃t =
1

wc

t∑
j=t−wc+1

i j (15)

However, user’s interests are full of stochasticity and contin-

gency, which means a user might accidentally click on wrong440

items or s/he is attracted by some unrelated items due to cu-

riosity. And we argue that time plays the key role on the user’s

next possible behaviour. For instance, one would like to watch

detective or horror movies on Friday and Saturday but might

prefer comedies on other days during a week. Besides, the time445

interval between item it and item i j, where j < t, also mat-

ters. Normally, events with fewer time intervals with respect

to the current time have greater impact on current behaviour.

Thus, apart from the representations of items within contextual

window, our contextual attention mechanism also considers two450

other factors1 as shown in Figure 4:

• Time of Week Tw is the time within a week measured

by hour. Specifically, we divide one week into 24 × 7 =

168 hours ordered from Monday to Sunday, and adopt a

vector with 169 dimensions (the first 168 dimensions are455

1It is worth noting that other kinds of factors such as location can also be

considered and according to the same transformation mechanism but it is be-

yond the scope of this paper.

for each hour of a week and the last one is for everything

older than that) to embed the time of week Tw. If a user

clicked an item at such as 00:10 on Monday, then this

event belongs to the first hour and the value in the first

dimension of the vector will be set to 1. If an event was460

happened out of 168 hours, the 169th dimension will be

set to 1.

• Time Interval δt is the time difference between the user’s

historical behaviour and the current time. Similar with

Tw, we apply a 169-dimensional vector and the first 168465

dimensions represent that the time intervals between the

timestamp of previous clicked item and the current times-

tamp are within 0 to 168 hours. The 169-th dimension

represents everything happened older than 168 hours. In

this way, we can explore how time difference affects the470

user’s next behaviour.

For each context vector i j, j ∈ [t − wc + 1, t] in Ct
i, we can

obtain its corresponding representation of Tw, j and δt j. To learn

the two factors and item’s representation i j together, one ordi-

nary way is the simple concatenation strategy as [i j; Tw, j; δt j].

However, we argue that factor embedding and item embedding

are learned differently, which means they are in different rep-

resentation space. Thus, we introduce the transformed embed-

dings

i?j = g([Tw, j; δt j]) (16)

where g(·) is the transformation function, and can be either lin-

ear

g([Tw, j; δt j]) = W f ([Tw, j; δt j]) (17)

or non-linear

g([Tw, j; δt j]) = sigmoid(W f ([Tw, j; δt j]) + b f ) (18)

where W f ∈ RD×338 (338 = 2 × 169) is the trainable trans-

formation matrix and b f ∈ RD×1 is the trainable bias. Since

the transformation is continuous, it can map factor embeddings

to item space while preserving their original relationship. We475

therefore can concatenate these two embeddings as ĩ j = [i?j ; i j].

11



After that, we perform the following attention mechanism:

ac
j = so f tmax(G(ĩ j)) =

exp(G(ĩ j))∑
t−wc+1≤k≤t exp(G(ĩk))

(19)

whereG is a deep neural network regarded as attention network

and so f tmax(·) is the softmax function to calculate the normal-

ized impact weight. The attention network G receives concate-

nation embedding as input and outputs the impact weight. Fi-

nally the embedding of user’s current representation can be cal-

culated as weighted summation of all item embeddings within

the contextual window:

r̃t =
∑

t−wc+1≤k≤t

ac
k ik (20)

We will demonstrate the efficacy of the attention network in the

experiment section.

3.6. Ante-RNN Model

Long Short-Term Memory (LSTM) is a special form of RNN,

widely used to model sequence data. LSTM uses input gate,

forget gate and output gate vectors at each position to control

the passing of information along the sequence and thus im-

proves the modelling of long-range dependencies. Gated Re-

current Unit (GRU) is the simplified version of LSTM networks

but still maintains all their properties (Cho et al., 2014). In GRU

unit, the activation ht at time t is a linear interpolation between

the previous activation ht−1 and the candidate activation h̃t. Af-

ter we get the output vector r̃t from contextual attention layer

as the input to the GRU layer, the following intermediate calcu-

lations can be achieved recursively during model learning pro-

cedure:

zt = σ(Wz r̃t + Uzht−1)

rt = σ(Wr r̃t + Ur ht−1) (21)

h̃t = tanh(Wc r̃t + Uc(rt � ht−1))

ht = (1 − zt)ht−1 + zth̃t

where update gate zt decides how much the unit updates its ac-480

tivation or content. rt is a set of reset gate to control the flow of

information, and � is an element-wise multiplication. σ(·) and

tanh(·) are the element-wise logistic function and hyperbolic

tangent function used to do non-linear projection. The length

of the output vector ot from GRU layer is the number of all485

candidate items, and a softmax layer is added after GRU layer

to output the probability distributions of all candidate items.

Illuminated by the recent successes of probabilistic sequen-

tial translation model (Pan et al., 2016), given a set of user’s

interacted items Iu = {i1, i2, ..., it} and current user’s interested

topics ηu
t , we formulate our recommendation problem as a co-

herence loss, where the log probability of the recommendation

is given by the sum of log probabilities over the clicked items:

l(ηu
t ,Iu) = −logPr(Iu|η

u
t ) =

Nu∑
t=1

−logP(it |ηu
t , i1, i2, ..., it−1; Θ)

(22)

where {i1, i2, ..., iNu } is the sequentially predicted items. Here,

i is corresponding to the fused image and textual embedding.

By performing our contextual attention mechanism, for each

time stamp t, we can get the user interest embedding r̃t ∈ RD

as the GRU input, as shown in Figure 2. Θ is the set of pa-

rameters of our framework, including contextual attention and

GRU layer, the parameters in image embedding network, topi-

cal attention network and multi-model fusion component. By

minimizing the above loss, the user interest evolvement can

be described dynamically, making the recommendation more

coherent and reasonable. Then the above probabilities can be

achieved through softmax classification function demonstrated

below:

P(it = p|ηu
t , i1, i2, ..., it−1; Θ) =

exp(W(p)
s ht)∑|I|

j=1 exp(W( j)
s ht)

(23)

where |I| is the number of candidate items, Ws is the parameter

matrix of the softmax layer in our model.

Finally, we can obtain the objective function as:

L =
∑
u∈U

l(ηu
t ,Iu) + λ1

∑
E,F

l(E,F ) + λ2||Θ||
2
2 (24)

where λ1 is the trade-off parameters for these objectives. λ2 ≥ 0490

is the coefficient of the weight decay term. Then, Ante-RNN

can be learned by the stochastic gradient descent and BPTT.

The parameters are automatically updated by Theano (Bergstra
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et al., 2010). By optimizing the above overall loss function in

a unified framework, our proposed method achieves personal-495

ized dynamic recommendation with considering image-textual

alignment, user’s interested topics, multi-model fusion and con-

textual influence jointly.

4. Experiments

In this section, we conduct our experiments on two real-500

world datasets. First, we introduce the datasets, evaluation met-

rics and baseline methods as well as parameter settings. Then

we make comparison between Ante-RNN model and the base-

lines. After that, the recommendation efficiency and the effec-

tiveness of the hybrid attention mechanism proposed in this pa-505

per will be tested, followed by the analysis on users with differ-

ent sparsity level and various parameters. Finally, we illustrate

the recommendation explainability.

4.1. Datasets

Experiments are conducted on two large scale datasets, namely510

Movielens 2 and Pinterest 3. The basic statistics of them are

listed in Table 3. For both datasets, we sort all user-item inter-

action pairs in the ascending interaction time order. The first

80% sequential histories are selected as training set and the rest

20% as test set. Besides, we randomly hold-out 10% interac-515

tion history of each user from training set as validation sets. To

measure the statistical significance of Ante-RNN over the base-

lines, we repeat the splitting process five times (i.e., generating

five pairs of training and validation sets). Averaged results are

reported in the following subsection.520

1. MovieLens dataset contains 27,753,444 ratings from

283,228 users on 58,098 movies from January 09, 1995 to Septem-

ber 26, 2018. In order to mimic implicit data, we binarized all

ratings independent of their values, considering them as posi-

tive feedback as it has been done by Rendle et al. (2009). Using525

the timestamps provided, we thus got an ordered sequence of

2http://files.grouplens.org/datasets/movielens/ml-latest-README.html
3https://sites.google.com/site/xueatalphabeta/academic-projects.

Table 3: Main properties of the experimental datasets.

Dataset #Users #Items #Interactions #Avg.

seq. len.

#Sparsity

MovieLens 283,228 58,098 27,753,444 115 99.83%

Pinterest 50,000 14,965 1,091,733 23 99.85%

consumption events for each user. The dataset contains only

sequences with a minimum length of 20. The average sequence

length is 115. We aimed at predicting the next movie to watch.

In order to obtain the textual information and poster image cor-530

responding to each movie, we downloaded descriptions and im-

ages according to tmdbID property provided in links.csv file

through TMDb API4.

2. Pinterest is one of the largest social curation networks.

This dataset with implicit feedback is constructed by Geng et al.535

(2015) for evaluating image recommendation. Due to the large

volume and high sparsity of this dataset, for instance, over 20%

of users have only one pin, we filter the dataset by retaining the

top 15,000 popular images and sampling 50,000 users who have

interactions on these images. This results in a subset of data540

that contains 50,000 users, 14,965 images and 1,091,733 inter-

actions. Each interaction denotes whether the user has pinned

the image to his/her own board. Since there is no description

information on images, we also collect corresponding descrip-

tions by using Pinterest API5.545

A sample of the dataset can be accessible through the link6,

and the full version of our dataset is available on request.

4.2. Evaluation Metrics

Based on temporally ordered lists of pinned/rated items, our

objective is to correctly predict the next item a target user will550

likely pin/rate. The ground truth at a particular time step is

therefore represented by a single user-item tuple. To present

the user with adequate recommendations, the target item should

4https://www.themoviedb.org/documentation/api
5https://developers.pinterest.com/docs/api/
6https://www.dropbox.com/sh/hinouvmaj7lginn/

AABpgBifZLQBYrHLHaVzzSUQa?dl=0
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be among the top few recommended items. Since we are in-

terested in measuring top-K recommendation instead of rating555

prediction, we measure the quality by looking at the Recall@K

and NDCG@K, which are widely used for evaluating top-K

recommender systems.

• Recall@K is defined as the fraction of cases where the

item actually consumed in the next event is among the560

top K items recommended (Powers, 2011).

• NDCG@K (Normalized Discounted Cumulative Gain)

is adopted to evaluate ranking performance by taking the

positions of the correct items into consideration (Järvelin

and Kekäläinen, 2000), and thus to assess if the items that565

a user has actually consumed are ranked in higher posi-

tions in the recommendation list.

We set K = 20, as it appears desirable from a user’s perspec-

tive to expect the target among the first 20 items (Hidasi et al.,

2015).570

4.3. Baselines

To validate the effectiveness of Ante-RNN, we compared

our model with the following methods. Note that all model-

based Collaborative Filtering approaches are learned by opti-

mizing the same pairwise ranking loss of Bayesian Personalized575

Ranking (BPR) for a fair comparison. BPR will be introduced

in detail below.

• BPR7: This method optimizes the latent factor model with

a pairwise ranking loss, which is tailored to learn from

implicit feedback. It is a highly competitive and popular580

baseline for item recommendation (Rendle et al., 2009).

We adopt matrix factorization as the prediction compo-

nent for BPR.

• VBPR8: The Visual Bayesian Personalized Ranking (VBPR)

model is a state-of-the-art method for recommendation585

leveraging item visual images (He and McAuley, 2016).

7https://github.com/gamboviol/bpr.
8https://sites.google.com/a/eng.ucsd.edu/ruining-he/.

• CTR9: Collaborative Topic Regression (CTR) learns in-

terpretable latent structure from user generated contents

so that probabilistic topic modelling can be integrated

into collaborative filtering (Wang and Blei, 2011).590

• GRU10: It is the state-of-the-art sequential recommenda-

tion method, and an extension of RNN for capturing the

long-term dependency (Yu et al., 2016). GRU is also the

basic of our Ante-RNN model.

• IARN11: Interacting Attention-gated Recurrent Network595

(IARN) model proposed by Pei et al. (2017) integrates an

attention mechanism into BRNN when modelling both

user and item representations for the sequential recom-

mendation. Then the inner product of user and item rep-

resentations is performed to predict user ratings.600

• MLAM12: The Multi-level Attraction Model (MLAM)

is a state-of-the-art interpreterable recommendation algo-

rithm, which leverages attention-based multi-level con-

textual information for Top-K recommendation (Hu et al.,

2018) and meanwhile provides explanations. In our sit-605

uation, we apply image features instead of the cast level

module and then build attractions over them.

• MV-RNN13: Multi-View Recurrent Neural Network (MV-

RNN) proposed by Cui et al. (2018) is a newly proposed

algorithm especially for sequential recommendations. Sim-610

ilarly, it incorporates visual and textual information to

deal with cold start issue and meanwhile applies a recur-

rent structure to dynamically capture the users’ interests.

Differently, they do not consider time factors between

user’s historical interactions and they use a denoising au-615

toencoder for multi-modality fusion.

Besides, we also adopt two variations of our Ante-RNN

model, namely t-Ante-RNN and v-Ante-RNN. In former model,

9https://github.com/blei-lab/ctr.
10https://github.com/LaceyChen17/DREAM.
11https://github.com/wenjiepei/IARN.
12https://github.com/rainmilk/ijcai18mlma.
13https://github.com/cuiqiang1990/MV-RNN
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we only keep text description of item as input and remove all

modules that are related to image processing to perform rec-620

ommendations, whereas the latter one only leverages images

as model inputs and modules with respect to text processing are

excluded when generating Top-N rank list. Other two variations

of Ante-RNN are Ante-RNN-D, Ante-RNN-N represent Ante-

RNN with direct fusion and neural fusion respectively, while we625

use Ante-RNN to represent Ante-RNN with attention fusion for

it achieves the best performance of all fusion methods.

4.4. Parameter Settings

For image embedding of Ante-RNN model, we use Faster

R-CNN in conjunction with ResNet-101 pre-trained by Ander-630

son et al. (2018) to extract Region Of Interests (ROIs) for each

image. The Faster R-CNN implementation uses an intersection

over union (IoU) threshold of 0.7 for region proposal suppres-

sion, and 0.3 for object class suppression. The class detection

confidence threshold is set as 0.2 to select salient image regions,635

and top 36 ROIs with highest confidence scores are selected.

We extracted features after average pooling, resulting in the fi-

nal representation of 2048 dimensions. The embedding dimen-

sion D is set to 128. Topic numbers ψ is set to 70 and 100 for

MovieLens and Pinterest datasets respectively. For time decay640

rate λ, we set it to 0.2 for MovieLens dataset, but a relatively

slow decay λ = 0.1 for Pinterest dataset. In the model train-

ing phase, the trade-off parameter λ1 is set to 0.2 by grid-search

over {0.2, 0.4, 0.6, 0.8}. The coefficient λ2 of weight decay term

is set to 0.0001. The contrastive margin α1 is set to 0.3. Learn-645

ing rate is set to 0.001. The window sizes wc are set as 5 and 3

for MovieLens and Pinterest dataset respectively.

The hyper-parameters of each baseline are tuned with the

validation set during training phase. Specifically, the dimen-

sion of latent factors (or embedding size) is set to 128 for base-650

lines. The regularization coefficient is set to 10 that works best

for BPR and VBPR. We set α of MLAM to 1, 4 and 2 for im-

age, word and sentence level attention model. Optimization for

baselines terminate until convergence or 150 learning epochs.

Other parameters are set the same with our model if not speci-655

fied.

4.5. Performance Evaluation

The performance of Ante-RNN and the baselines are re-

ported in terms of Recall@K and NDCG@K on two kinds of

datasets in Table 4. K ranges over {5, 10, 15, 20, 25}. From the660

results, we can see that: 1) The performance of BPR fails to sur-

pass the rest baseline models since that the latter ones integrate

either visual or text features into their modelling process. This

observation verifies that side information, e.g. image or text,

is complementary to ratings/ implicit feedbacks and thus can665

help to improve recommendation performance in real-world ap-

plications. Furthermore, by incorporating both visual and tex-

tual information, MLAM, MV-RNN and our Ante-RNN mod-

els obtain the best performance among all comparison meth-

ods. 2) It is worth noting that different side information takes670

on different importance for different datasets. For instance, t-

Ante-RNN achieves better performance than v-Ante-RNN on

MovieLens while performs worse than v-Ante-RNN on Pinter-

est. The reason may be that for movie recommendations, the

users pay more attention to the plot and descriptions on movies675

instead of posters, while users on Pinterest focus more on im-

ages than other side information. 3) For the baselines, neu-

ral recommendation algorithms, namely MLAM, IARN, GRU,

MV-RNN, Ante-RNN and its variations, greatly perform better

than the other baselines for that they can either better learn the680

latent features of items or better model user’s dynamic inter-

ests over time from sequential inputs. Among these, the perfor-

mance of MV-RNN is better than MLAM and IARN which ver-

ifies the importance of both capturing user’s sequential patterns

and integrating multiple side information. 4) Our Ante-RNN685

model outperforms over the baselines on all datasets and eval-

uation measures by combining visual and textual information

into representation learning process. Furthermore, the perfor-

mance of Ante-RNN is better than MV-RNN because the hybrid

attention mechanism also helps to model user’s long and short-690

term dynamic preferences. On MovieLens, it outperforms the

best baseline MV-RNN by 4.6% on Recall@20 and 4.1% on
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Table 4: Performance comparison (Mean ± Standard Deviation) w.r.t. Recall@K and NDCG@K (K=5, 10, 15, 20, 25) on two datasets (MovieLens and Pinterest).

“*” indicates that the improvements of our model over the best baseline are statistically significant for p-value < 0.01 with paired t-test.

MovieLens Recall@5 Recall@10 Recall@15 Recall@20 Recall@25 NDCG@5 NDCG@10 NDCG@15 NDCG@20 NDCG@25

BPR 0.128 ± 0.021 0.154 ± 0.012 0.172 ± 0.011 0.199 ± 0.016 0.215 ± 0.014 0.083 ± 0.009 0.096 ± 0.008 0.102 ± 0.011 0.114 ± 0.021 0.127 ± 0.012

CTR 0.189 ± 0.024 0.206 ± 0.013 0.223 ± 0.019 0.237 ± 0.021 0.251 ± 0.018 0.096 ± 0.011 0.103 ± 0.009 0.115 ± 0.015 0.128 ± 0.006 0.142 ± 0.013

VBPR 0.211 ± 0.018 0.226 ± 0.023 0.240 ± 0.021 0.256 ± 0.015 0.274 ± 0.019 0.102 ± 0.013 0.116 ± 0.012 0.129 ± 0.019 0.141 ± 0.011 0.153± 0.016

GRU 0.261 ± 0.031 0.274 ± 0.026 0.298 ± 0.019 0.311 ± 0.021 0.326 ± 0.024 0.133 ± 0.011 0.142 ± 0.016 0.157 ± 0.009 0.173 ± 0.018 0.185 ± 0.014

IARN 0.282 ± 0.016 0.297 ± 0.022 0.316 ± 0.034 0.331 ± 0.023 0.343 ± 0.021 0.157 ± 0.015 0.163 ± 0.011 0.179 ± 0.019 0.192 ± 0.008 0.208 ± 0.017

MLAM 0.309 ± 0.033 0.321 ± 0.026 0.342 ± 0.029 0.358 ± 0.018 0.371 ± 0.013 0.174 ± 0.011 0.186 ± 0.014 0.203 ± 0.012 0.217 ± 0.017 0.232 ± 0.015

MV-RNN 0.326 ± 0.023 0.338 ± 0.018 0.361 ± 0.019 0.375 ± 0.022 0.389 ± 0.025 0.191 ± 0.014 0.204 ± 0.011 0.225 ± 0.009 0.231 ± 0.015 0.253 ± 0.013

v-Ante-RNN 0.273 ± 0.026 0.291 ± 0.021 0.309 ± 0.023 0.326 ± 0.016 0.337 ± 0.020 0.146 ± 0.013 0.157 ± 0.011 0.162 ± 0.016 0.184 ± 0.012 0.203 ± 0.014

t-Ante-RNN 0.301 ± 0.018 0.315 ± 0.016 0.329 ± 0.019 0.347 ± 0.021 0.364 ± 0.022 0.162 ± 0.011 0.174 ± 0.015 0.193 ± 0.009 0.209 ± 0.014 0.226 ± 0.011

Ante-RNN-D 0.342 ± 0.013 0.361 ± 0.017 0.384 ± 0.008 0.393 ± 0.016 0.407 ± 0.014 0.208 ± 0.014 0.221 ± 0.012 0.239 ± 0.017 0.252 ± 0.013 0.275 ± 0.016

Ante-RNN-N 0.359 ± 0.008 0.385 ± 0.016 0.401 ± 0.021 0.416 ± 0.014 0.429 ± 0.017 0.220 ± 0.013 0.238 ± 0.018 0.251 ± 0.007 0.265 ± 0.016 0.286 ± 0.014

Ante-RNN 0.365 ± 0.006* 0.389± 0.013* 0.408± 0.016* 0.421± 0.015* 0.436± 0.011* 0.227± 0.012* 0.246± 0.007* 0.263± 0.016* 0.272± 0.021* 0.298± 0.015*

Pinterest Recall@5 Recall@10 Recall@15 Recall@20 Recall@25 NDCG@5 NDCG@10 NDCG@15 NDCG@20 NDCG@25

BPR 0.056 ± 0.018 0.073 ± 0.014 0.085 ± 0.011 0.094 ± 0.016 0.107 ± 0.023 0.032 ± 0.013 0.039 ± 0.011 0.047 ± 0.009 0.052 ± 0.014 0.058 ± 0.018

CTR 0.071 ± 0.011 0.083 ± 0.014 0.092 ± 0.017 0.106 ± 0.012 0.124 ± 0.015 0.039 ± 0.012 0.048 ± 0.016 0.053 ± 0.015 0.062 ± 0.019 0.067 ± 0.021

VBPR 0.078 ± 0.013 0.092 ± 0.024 0.103 ± 0.018 0.114 ± 0.012 0.135 ± 0.016 0.042 ± 0.008 0.053 ± 0.014 0.059 ± 0.017 0.064 ± 0.011 0.071 ± 0.019

GRU 0.109 ± 0.024 0.120 ± 0.013 0.131 ± 0.011 0.142 ± 0.016 0.153 ± 0.021 0.058 ± 0.012 0.061 ± 0.011 0.066 ± 0.016 0.071 ± 0.014 0.076 ± 0.012

IARN 0.113 ± 0.016 0.126 ± 0.012 0.139 ± 0.020 0.152 ± 0.017 0.164 ± 0.014 0.061 ± 0.008 0.067 ± 0.012 0.072 ± 0.011 0.078 ± 0.017 0.085 ± 0.014

MLAM 0.151 ± 0.019 0.173 ± 0.021 0.186 ± 0.017 0.201 ± 0.013 0.218 ± 0.014 0.079 ± 0.010 0.085 ± 0.014 0.093 ± 0.013 0.102 ± 0.016 0.114 ± 0.020

MV-RNN 0.175 ± 0.017 0.188 ± 0.015 0.207 ± 0.008 0.219 ± 0.012 0.237 ± 0.011 0.093 ± 0.016 0.101 ± 0.014 0.108 ± 0.019 0.119 ± 0.021 0.130 ± 0.017

t-Ante-RNN 0.136 ± 0.017 0.142 ± 0.023 0.157 ± 0.018 0.169 ± 0.015 0.183 ± 0.013 0.068 ± 0.011 0.074 ± 0.016 0.079 ± 0.016 0.091 ± 0.013 0.098 ± 0.011

v-Ante-RNN 0.141 ± 0.022 0.154 ± 0.015 0.162 ± 0.017 0.177 ± 0.016 0.197 ± 0.019 0.071 ± 0.010 0.076 ± 0.007 0.083 ± 0.015 0.095 ± 0.013 0.103 ± 0.016

Ante-RNN-D 0.202 ± 0.018 0.216 ± 0.022 0.229 ± 0.015 0.245 ± 0.011 0.258 ± 0.014 0.109 ± 0.012 0.122 ± 0.015 0.126 ± 0.011 0.137 ± 0.019 0.154 ± 0.013

Ante-RNN-N 0.218 ± 0.012 0.231 ± 0.016 0.241 ± 0.016 0.257 ± 0.013 0.269 ± 0.018 0.124 ± 0.008 0.136 ± 0.014 0.141 ± 0.012 0.149 ± 0.014 0.166 ± 0.012

Ante-RNN 0.223 ± 0.011* 0.238± 0.014* 0.252± 0.008* 0.264± 0.015* 0.276± 0.013* 0.129± 0.010* 0.145± 0.008* 0.148± 0.016* 0.162± 0.014* 0.181± 0.014*

NDCG@20, and much higher than the other baseline models.

Besides, we also analyze Ante-RNN with three fusion meth-

ods. From the table, we can observe that Ante-RNN-N always695

beats the Ante-RNN-D. It is because the non-linear transforma-

tion boosts the interactions among multi-modalities which leads

to a better fusion. The best performance appears with attention

fusion but the advantage is not prominent. It indicates that the

attention mechanism is more likely able to better capture the700

different importance of multiple input features.

4.6. Recommendation Efficiency

In addition to the advantage of recommendation accuracy,

we have also evaluated the efficiency of Ante-RNN on both

datasets. Table 5 shows the runtime comparison with GRU,705

IARN and MV-RNN. Other baselines are not listed here as

the implementation cannot leverage the computation power of

GPU. Experiments were conducted on a machine with a NVIDIA

TITAN X Pascal GPU. From this results, we observe that Ante-

RNN is comparable with other state-of-the-art approaches not710

utilizing the image information. Moreover, due to the efficient

sampling strategy for image-text alignment, our method con-

verges faster than MV-RNN which integrates image and text

features by using autoencoder.

During prediction process, given user clicking item it at715

time stamp t, the image embedding with textual alignment v and

word representations {e1, ..., eN} of its corresponding descrip-

tion can be achieved beforehand. For user u, the user interested
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Table 5: Runtime comparison (seconds) for training model on both datasets.

Dataset GRU IARN Ante-RNN MV-RNN

MovieLens 3725.03 4306.82 4913.67 12416.51

Pinterest 918.34 1150.96 1431.29 3504.02

topics embedding ηu
t can also be derived separately according to

a certain time interval, hour for instance according to equation720

7. Therefore, the actual online prediction can be accelerated by

only performing basic matrix operations with GPU.

4.7. Effect of Attention Mechanism

To get a better understanding of our Ante-RNN model, we

further evaluate the key component - topical (T) and contextual725

(C) attention mechanisms. In order to prove the importance

of time factors, we also evaluate two variations of contextual

attention mechanism, C-Tw and C-δt, by removing the time

of week or the time interval parameter from contextual atten-

tion network. Table 6 shows the effect of our basic Ante-RNN730

model with or without attention mechanism(s) for K = 20. Note

that: when we consider neither topical attention or contextual

attention mechanism, it means we only adopt image embedding

fused with textual embedding as GRU input for model learning,

and the text embedding is the average of word representation in735

the text. From the table, we can observe that:

(1) When both topical and contextual attention mechanisms

are applied, the recommendation performance is improved com-

pared with the other combinations. The good performance of

attention mechanism shows that the characteristics of user’s740

long-term and short-term interests are reflected at both levels.

(2) The contextual attention mechanism contributes more

for our model on two datasets as compared to topic-based at-

tention mechanism since the performance of our model dete-

riorates more without contextual attention component. This745

may be due to the fact that the contextual attention method can

strengthen the user’s short-term interest modelling which GRU

may lack, and capture the user’s main focus during a limited

time period, while the topic-based attention mechanism can as-

sist GRU to model user’s long-term interest pattern in a better750

Table 6: Effect of topical (T) and contextual (C) attention mechanisms as well

as their variations w.r.t. Recall@20 and NDCG@20. “*” indicates the statisti-

cal significance for p-value < 0.01.

Model
Attention

Type

MovieLens Pinterest

Recall@20 NDCG@20 Recall@20 NDCG@20

Ante-RNN

None 0.364 0.228 0.205 0.112

T 0.385 0.246 0.227 0.133

C-Tw 0.398 0.253 0.246 0.147

C-δt 0.387 0.249 0.232 0.136

C 0.406 0.259 0.253 0.151

T+C-Tw 0.414 0.268 0.258 0.159

T+C-δt 0.409 0.261 0.251 0.148

T+C 0.421* 0.272* 0.264* 0.162*

way, which also leads to the improvement of recommendation

performance compared with the model without topic-based at-

tention. Furthermore, two kinds of time factors integrated in

contextual attention method further strengthen the discriminat-

ing ability of user’s short-term focus.755

(3) When time interval is removed from contextual attention

network, the recommendation performance deteriorates more

than the contextual attention without time of week. For ex-

ample, comparing to the attention network C, the performance

degradation of C-δt is 1.9% and 2.1% on Recall@20 in Movie-760

Lens and Pinterest datasets respectively, while the performance

degradation of C-Tw is 0.8% and 0.7% correspondingly. It demon-

strates that time interval is more important to capture the user’s

short-term interest compared with time of week.

4.8. Analysis on Users with Different Sparsity Levels765

In this section, we study the impact of different sequence

lengths on the recommendation performance. Note that we do

not retrain our model with different sets of users, instead we

divide the test set into different groups by the number of items

per user. The results are shown in Figure 5, and we have the770

following observations:

(1) As sequence length increases, the performance of all

methods generally improves, indicating that sufficient temporal

context could ensure models that capture user’s interest patterns

in a better way. This also explains why the overall performance775

17



21-50 51-80 81-110 111-140 141-170
N

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Re
ca
ll@

20

BPR
CTR

VBPR
GRU

IARN
MLAM

MV-RNN
Ante-RNN

(a) MovieLens-Recall@20

21-50 51-80 81-110 111-140 141-170
N

0.10

0.15

0.20

0.25

0.30

0.35

ND
CG

@
20

BPR
CTR

VBPR
GRU

IARN
MLAM

MV-RNN
Ante-RNN

(b) MovieLens-NDCG@20

19-20 21-22 23-24 25-26
N

0.10

0.15

0.20

0.25

0.30

Re
ca
ll@

20

BPR
CTR

VBPR
GRU

IARN
MLAM

MV-RNN
Ante-RNN

(c) Pinterest-Recall@20

19-20 21-22 23-24 25-26
N

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

ND
CG

@
20

BPR
CTR

VBPR
GRU

IARN
MLAM

MV-RNN
Ante-RNN

(d) Pinterest-NDCG@20

Figure 5: Performance of Recall@20 and NDCG@20 w.r.t. the number of items per user on two datasets.
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Figure 6: Performance of Recall@20 and NDCG@20 w.r.t. the embedding size D ∈ {32, 64, 128, 256, 512} on two datasets.
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Figure 7: Performance of Recall@20 and NDCG@20 w.r.t. the window size wc ∈ {1, 2, 3, 4, 5, 6} on two datasets.

on MovieLens dataset is better than that on Pinterest.

(2) Overall, Ante-RNN achieves the best performance across

all different configurations of all the datasets, especially, when

the sequence length gets larger. On average, the relative im-

provements w.r.t. the second best method are 4.5% with train-780

ing records length of 21-50 and 4.3% with training records

length of 25-26 on Recall@20 in MovieLens and Pinterest datasets

respectively. This implies the remarkable advantage of Ante-

RNN in dealing with long sequences. Besides, we also find that

when the number of items per user is relatively small, Ante-785

RNN still keeps the advantages in performance, which indicates

that the hybrid attention mechanism and visual information in-

tegration could improve the recommendation quality when there

is insufficient training data for each user.

4.9. Parameter Analysis790

In this section, we analyse the influence of the embedding

size D and window length wc in the contextual attention mech-

anism to the performance of our Ante-RNN model.

4.9.1. Analysis of Embedding Size D

The empirical results displayed in Figure 6 indicate the sub-795

stantial influence of embedding size upon Ante-RNN and other

baselines. During experiments, we range D in {32, 64, 128, 256,

512} and fix other hyper-parameters to plot the corresponding
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results for K = 20 with respect to Recall@K and NDCG@K

on two datasets. Similar trends can be found on all models of800

both datasets. On one hand, the recommendation performance

improves along with the increasing of dimensionality, which

means that the representations hold more and informative re-

sources extracted from users and items. On the other hand, the

performance of recommendations will drop when the dimen-805

sionality continues raising, which demonstrates that the models

may suffer from over-fitting problem. It is worth noting that the

performance of our Ante-RNN model only slightly deteriorates

compared with other methods for that our model holds a higher

stability for the changes of dimensionality.810

4.9.2. Analysis of Window Size wc

In this part, we investigate the best window size for Ante-

RNN. The window size wc ranges from 1 to 6 with other hyper-

parameter fixed. When wc is set as 1, it can be considered as

the special case without contextual attention mechanism in our815

experimental cases. Figure 7 shows the performance results for

K = 20 with respect to Recall@K and NDCG@K on Movie-

Lens and Pinterest datasets. For both datasets, slightly differ-

ence can be observed on Recall@20 when wc > 2 while there

is an obvious difference on NDCG@20. We can also observe820

that the best window size can be chosen as wc = 3 and wc = 5

on Pinterest and MovieLens respectively. The superior window

size on MovieLens is larger than that of Pinterest, which may be

because the average sequence length on MovieLens is longer.

4.10. Recommendation Explainability825

In this section, we evaluate the explanations generated by

Ante-RNN from both qualitative and quantitative perspectives

based on the Movielens and Pinterest datasets.

4.10.1. Qualitative Evaluation

To provide better intuitions for the generated multi-model830

explanations of our recommendation results and to provide a

better understanding of our hybrid attention mechanism, we

present and analyze two examples learned by the model in a

qualitative manner. We also compare our method with MLAM,

a state-of-the-art explainable recommendation algorithm on two835

datasets. The examples are shown in Figure 9. In particular, we

show one user for each dataset with their topic historical in-

formation on the left side. The user’s recent pinned/rated four

items are displayed according to time order as well as the topics

that they belong to and their corresponding top-4 topic words840

extracted from item descriptions. The number on top of each

image represents the weight calculated from contextual atten-

tion layer and higher value means that the item is more impor-

tant in next recommendation task. When the model has pre-

dicted the next possible item it+1, the text description of it+1845

will be compared with user’s interested topics and related topic

words are tagged with red in our examples. Then, the high-

lighted regions in red square of item images are determined by

performing Eq.(1) and Eq.(2).

The changes of user’s interested topic distribution across850

different weeks of two datasets are shown in Figure 8. Here

we only select 3 representative topics appeared in users’ recent

historical records to illustrate the dynamic nature of users’ in-

terests, or else there will be too many lines tangled in one fig-

ure. We can see that, for example, on MovieLens, user 1 shows855

his/her long-term interests on topic #10 about “Romance” movies

(blue line in Figure 8(a)) which frequently occurred in his/her

historical records. However, the user’s current interests shift

to topic #65 “Disaster” movies (red line in Figure 8(a)) and

topic #28 “Animal” movies (green line in Figure 8(a)). Our860

model can capture user’s real-time interests through the dy-

namic contextual attention mechanism and recommend “Dis-

aster” related movie. Some of the highlighted topic words i.e.

storm and seas, can also be found in user’s visited items. How-

ever, though MLAM can also provide explanations on image865

and its description separately, they cannot align highlighted im-

age region together with its significant words. Besides, MLAM

thinks the major interest of user 1 is “Romance” movies (topic

#10) and thus recommends Remember Me instead, which ver-

ifies that our model can capture users’ dynamic preferences,870

whereas MLAM can only model static users’ interests.

On Pinterest dataset, our model demonstrates the ability of
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Figure 8: User’s interested topic distribution across different weeks on two datasets.
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Figure 9: Examples of the visual and textual explanations.

considering both long and short-term interests when recom-

mending items. Specifically, user 2 shows stable interest on

topic #81 “Healthy Food” as the yellow line in Figure 8(b) sig-875

nifies, while she also shows the recent active interest on topic

#17 “Cocktail” with cyan dotted line. Consequently, the recom-

mended item shows the combination features on both “Healthy

Food” and “Cocktail” with highlighted topic words of straw-

berry, greens and salad. Meanwhile, greens and strawberry are880

marked in image to show the focuses of user’s interests. Al-

though MLAM also recommends “Healthy Food” related item,

it still prefers the most frequently occurred items and no align-

ment can be found between visual and textual information.

4.10.2. Quantitative evaluation885

To quantitatively evaluate our model’s explainability, we

conduct crowd-sourcing evaluation by comparing our model

with MLAM. Specifically, we select the top-100 most active

users from the two datasets separately. For each of the users,

we present the image and its corresponding text description of890

the items that the user previously clicked for the worker to read.

The workers are expected to infer this user’s personalized pref-

erence from these information. Then they will be asked several

questions to compare the recommendations and explanations

generated by our model and MLAM model. Based on discus-895

sions in Tintarev and Masthoff (2007), we carefully designed

the survey questions to evaluate different aspects of the recom-

mender algorithm as follows:

• Q1: Which recommendation are you more satisfied with?

• Q2: Which model could provide you with more ideas900

about the recommended item?

• Q3: Which recommended item are you more likely to
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(b) Quantitative evaluation on the Pinterest dataset.

Figure 10: Results of the quantitative evaluation.

click after receiving an explanation?

• Q4: Based on the recommended items, which model gen-

erated explanation could help you know more easily and905

clearly why we recommend it to you?

For each question, the workers are required to choose from

three options (i.e., A:Ante-RNN, B:MLAM, C:Tie). We intend

to use Q1, Q2, Q3 to evaluate satisfaction, effectiveness, and

persuasiveness of an explainable recommender algorithm, and910

use Q4 to judge if our attention mechanism is more effective in

this problem.

To perform more accurate evaluations, we recruit 3 work-

ers through Amazon Mechanical Turk for each user’s case, and

one result is valid only when more than 2 workers share the915

same opinion. Besides, we require the workers to come from

an English-speaking country, older than 18 years, and have on-

line entertainment experience for involving a more diverse pop-

ulation of users. The statistical results are shown in Figure 10.

From the results, we can see that our proposed model appar-920

ently outperforms MLAM in all aspects of user study. More-

over, the results in Q3 and Q4 manifest that the explanations

generated by our model’s attention weights could promote the

persuasiveness and satisfaction of the recommender algorithm,

which verifies the effectiveness of our designed attention mech-925

anism.

4.11. Limitations

We demonstrated that the Ante-RNN model is able to gen-

erate both multi-modal and adaptive explanations with recom-

mendation performance comparable to the state-of-the-art meth-930

ods (Table 4). Yet there are still some limitations: 1) Ante-RNN

uses the Faster R-CNN model in conjunction with ResNet-101

pre-trained by Anderson et al. (2018) to learn image region rep-

resentations. However, not all the images in the dataset are reg-

ular and easy to distinguish. Some of them were graffiti, selfies,935

or even just screenshots of smart phones. Simply adopting a

pre-trained weight may cause deviations and inaccurate image-

text matching. Moreover, the named entities that are involved
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in the images cannot be well aligned with text. For example, the

ship in the first movie poster of Figure 1 cannot be aligned to940

“TITANIC” in its corresponding text description. Designing a

fine-tuning strategy for the pre-trained model and incorporating

knowledge graph into image-text alignment may help with the

problem and such is left as a matter for future work. 2) Due to

the gating mechanism of recurrent neural networks, our model945

cannot provide users with a direct and meaningful way to cor-

rect the recommendation process if they are unsatisfied with the

results. Developing recommendation approaches that are more

scrutable would be an interesting research topic and needs to be

addressed in future works.950

5. Conclusion

User preferences often evolve over time, and it is essential

to model their temporal dynamics for recommendation tasks

while providing explanations on them. In this paper, we pre-

sented an Attentive Recurrent Neural Network (Ante-RNN) for955

dynamic personalized recommendations. The proposed model

allows combining visual image information with text descrip-

tions for better recommendation. Furthermore, a novel hybrid

attention mechanism is introduced to strengthen user’s short-

term preference modelling and capture user’s long-term interest960

dynamics in a better way. The learned attention weights can in

turn help to provide reasonable interpretations on recommenda-

tion results. We also explore different fusion methods for multi-

modality integration. Extensive experiments on two real-world

large scale datasets verify that our model can not only pro-965

vide competitive recommendation performance, but also pro-

vide reasonable visual aligned with textual explanations for the

recommended items.

One future direction is to enrich user profiles from multi-

sources to alleviate cold-start issues for recommendations. Sec-970

ond, we consider other context information, such as time, loca-

tion, and user sentiments, to further improve our explainability.

We also plan to integrate other multi-modalities for a better rec-

ommendation performance.
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2017. Multimodal sentiment analysis with word-level fusion and reinforce-1000

ment learning, in: Proceedings of the 19th ACM International Conference

on Multimodal Interaction, ACM. pp. 163–171.

Chen, X., Qin, Z., Zhang, Y., Xu, T., 2016. Learning to rank features for rec-

ommendation over multiple categories, in: Proceedings of the 39th Interna-

tional ACM SIGIR conference on Research and Development in Information1005

Retrieval, ACM. pp. 305–314.

Chen, X., Xu, H., Zhang, Y., Tang, J., Cao, Y., Qin, Z., Zha, H., 2018b. Se-

quential recommendation with user memory networks, in: Proceedings of

the eleventh ACM international conference on web search and data mining,

ACM. pp. 108–116.1010

Chen, X., Zhang, Y., Xu, H., Cao, Y., Qin, Z., Zha, H., 2018c. Visually explain-

able recommendation. CoRR abs/1801.10288. arXiv:1801.10288.

Cheng, Z., Ding, Y., He, X., Zhu, L., Song, X., Kankanhalli, M.S., 2018. Aˆ

3ncf: An adaptive aspect attention model for rating prediction., in: IJCAI,

pp. 3748–3754.1015
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