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Summary

An increasingly competitive global market, together with stricter environmental
and safety regulations make it necessary for chemical process plants to operate
close to its optimum. As a result, there has been a growing interest in online
optimization methods, e.g., model predictive control (MPC), real-time optimiza-
tion (RTO), and economic MPC (EMPC). However, implementing such techniques
remains challenging, mainly due to the computational complexity and lack of ac-
curate dynamic models. Another approach is to use simple control structures that
keep speci�c controlled variables (CVs) at a constant value, also known as self-
optimizing control [122]. The central idea of self-optimizing control is to select CVs
such that in the presence of disturbances, the loss is minimized by holding them
at constant set-points. Besides using single measurements, selecting linear combi-
nations of measurements as CVs will further improve the self-optimizing control
performance.

Using all measurements available will, in theory, give the smallest loss, but
increases the risk of getting sensor failures and makes implementing the control
structure more di�cult. Instead, it is preferable to �nd an optimal measurement
subset using the branch and bound method derived in [26] or the mixed-integer
quadratic programming (MIQP) approach in [149]. However, when using decentral-
ized control, it is often desirable to impose some structural constraints on the CVs.
E.g., by only combining manipulated variables (MVs) with CVs associated with
certain units or parts of the process. Unfortunately, when structural constraints
are included, it makes the underlying optimization problem non-convex and thus,
�nding the optimal solution is di�cult. In the �rst part of this thesis, an alternating
direction method of multipliers (ADMM) algorithm is proposed for incorporating
structural constraints on the CVs. The resulting algorithm is computationally very
e�cient and able to �nd local solutions that give similar or better performance
when compared to existing methods.

Self-optimizing control focuses on the steady-state operation, and therefore,
the CVs are typically calculated using only steady-state models of the process. As
a consequence, little attention has been put on the dynamic performance when
selecting measurement combinations, where the general approach is to �rst com-
pute the optimal CVs and then design their respective controllers. The optimal
measurement combinations, can often (especially if many measurements are used)
result in very dynamically complex systems, that makes designing the feedback
controllers di�cult. If dynamic models of the process are available, then it should
be possible to also consider how using a measurement combination as CVs will
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Summary

a�ect the dynamics of the system. In the second part of the thesis, PI controllers
and measurement combinations are simultaneously obtained with the aim to �nd
an optimal trade-o� between minimizing the steady-state loss and the transient
response for the resulting closed-loop system. A solution can be found by solving a
bilinear matrix inequality (BMI), which becomes a linear matrix inequality (LMI)
by specifying a stabilizing state feedback gain. The resulting control structures
were evaluated on several case studies that consisted of di�erent distillation col-
umn models. The simulations showed that the resulting control structures could
give comparable performance to model predictive controllers (MPC) as long the
parameters for the PI controllers and the CVs had been chosen appropriately.

In the ideal case, it would be su�cient to only use self-optimizing control vari-
ables with feedback controllers, since the operation would remain near-optimal
without needing to change the set-points despite there being disturbances present.
However, self-optimizing control alone is unlikely going to achieve truly optimal op-
eration, and will probably require the inclusion of some online optimization method.
Common for most of these algorithms (e.g., RTO, EMPC) is that they require more
information about the current states and disturbances of the process. Measuring all
the relevant states and disturbances is in general not possible, and thus, they must
be estimated using appropriate state estimators. For chemical processes and other
large-scale systems, using centralized state estimators are in general not favorable
due to the high computational complexity. In addition, developing and maintaining
a set of local models will, in general, be a lot easier compared to using a single
global model. Therefore, it would be preferable to decompose them into multiple
di�erent local estimators, that uses a local model and the locally available mea-
surements. From the di�erent local estimates, it should be possible to reconstruct a
more accurate global state vector using some appropriate fusion method. However,
most existing fusion methods are limited to fusing only two state vectors of the
same size, where each locally computed estimate refers to the same states. How-
ever, chemical processes are usually composed of di�erent units where the dynamic
model for each unit contain their own set of states, with some being shared between
each other. Therefore, for the last part of this thesis, a fusion algorithm is proposed
that is able to fuse multiple state estimates, where parts of the local state vectors
are overlapping each other. The resulting algorithm was able to provide a fused
estimate with a lower estimation error compared to existing fusion methods.
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Chapter 1

Introduction

The following chapter de�nes the motivation and scope of the research conducted in
this thesis. In addition, it provides an overview of the thesis, the main contributions
by the author, and a list of the publications written during the course of the PhD
studies.

1.1 Motivation and scope

The ever-increasing competitive pressure in the global markets results in the need
for continuously improving the performance of chemical processes. Operating the
process close to its economically optimal operating point is thus essential. To
achieve optimal operation of a chemical plant, the goal is to maximize the prof-
itability while ensuring the plant is kept within acceptable operating regions that
satisfy environmental, safety and product requirements. Unfortunately, changes in
the optimal operating conditions are unavoidable due to external disturbances,
equipment wear and fouling that a�ects the process operation, as well as changes
in the prices for the raw materials and products. This leads to higher demands on
the control system, and therefore, e�cient design for the control structures and the
individual controllers is essential for improving the operation of chemical plants.
Typically, these control structures consist of a large number of simple feedback
controllers that can be combined with more advanced online optimization-based
algorithms to improve the pro�tability of the plant.

Optimal operation of processing plants is a challenging area where the contin-
uous changes in the operating conditions require control structures that are both
robust and capable of adapting to the new operating conditions. As a result, much
research has gone into developing new advanced control algorithms with increased
complexity. These controllers are often added on top of the already existing control
structure, which further increases their complexity. However, before trying to im-
plement advanced controllers, it may be worth investigating, whether the existing
control structure is used to its fullest potential.

Self-optimizing control o�ers a simple feedback strategy, which involves choos-
ing appropriate CVs that when controlled at a constant set-point, can give an
acceptable loss compared to the truly optimal operation. The research on self-
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1. Introduction

optimizing control is mainly focused on reducing the economic loss when the pro-
cess is at steady-state. However, driving the process to the desired operating point
requires implementing feedback controllers, that are capable of keeping the plant
stable when external disturbances are present. Therefore, both the controllers and
the selected CV will in�uence the robustness and controllability of the plant. A
poorly chosen CV can impose limitations on the achievable control performance,
which in turn may restrict the application of self-optimizing control to processes
with low dynamic complexity.

In this thesis, the main focus has been on the transient behavior when select-
ing the self-optimizing control variables, where the primary objective has been to
develop algorithms that simultaneously compute the measurement combinations
together with PI controllers. The resulting control structure should be capable of
providing near-optimal behavior, both in terms of the economic (steady-state) and
the dynamic performance for the resulting closed-loop system, thus, reducing the
need for having to implement more advanced controllers.

A common requirement for most advanced controllers is their need for more
information about the current process states and disturbances. However, measuring
all the relevant states and disturbances is in general not possible, and therefore,
they have to be estimated. For large-scale process plants, this can be challenging
due to high computational complexity and the varying degree of the availability and
the accuracy of existing process models. Therefore, this thesis proposes a method
for fusing multiple and partially overlapping state estimates that can be computed
by local estimators for di�erent subsystems.

1.2 Thesis overview

The thesis is structured into �ve di�erent parts, with a total of twelve chapters
that are organized as follows:

Part I − Introduction and preliminaries

Chapter 1 provides the introduction for this thesis and outlines the motivation
and scope of the conducted research.
Chapter 2 gives the commonly recommended systematic procedure for control
structure design in plantwide control. It also provides a summary of existing con-
trol strategies for achieving optimal operation in process plants.

Part II − Measurement selection in self-optimizing control

Chapter 3 reviews the previous work on self-optimizing control together with the
null space method and exact local method that are used to �nd optimal linear mea-
surement combinations. This is an important chapter for this thesis, since the main
contributions in both Part II and III are based on the principles of self-optimizing
control.
Chapter 4 covers some of the previous work made on optimal measurement selec-
tion in self-optimizing control that involves using mixed-integer quadratic program-
ming (MIQP) or a branch and bound algorithm. An alternative approach is also
proposed where the re-weighted l1 norm is used to �nd an approximate solution.

4



1.2. Thesis overview

The re-weighted l1 norm is less accurate than the existing methods but possesses
some properties that makes it easy to combine with other optimization problems,
which will later be exploited in Chapter 8 of the thesis.
Chapter 5 describes the controlled variable (CV) selection problem when the op-
timal measurement combination is constrained to a particular structure, e.g., a
block diagonal or a decentralized structure. Being able to �nd the optimal mea-
surement combinations with the desired structure, can be of great signi�cance to
improve the dynamical controllability or to give the CVs a more intuitive physical
meaning. Therefore, the �rst real contributions for the thesis is introduced in this
chapter where an ADMM algorithm is proposed to calculate the optimal measure-
ment combination with the prede�ned structural constraints. The algorithm were
able to obtain better solutions within a given time frame when compared to two
existing convex approximation methods and a commercial MINLP solver.

Part III − Accounting for the dynamics in self-optimizing control

Chapter 6 highlights the dynamic e�ects for the resulting system when measure-
ment combinations are chosen as the CVs. These are �rst illustrated through an
example to show that a signi�cant reduction in the interactions between the CVs
can be achieved if they are selected appropriately. The dynamic e�ects of the mea-
surement combinations are further discussed by investigating how they in�uence
the system poles and zeros.
Chapter 7 formulates several optimization problems for �nding the H2 or the H∞
optimal static output feedback (SOF) controller. The resulting SOF gain can be
transformed into decentralized PI controllers that are controlling a measurement
combination if one of the proposed methods for augmenting the system matrices
is used. This makes it possible to simultaneously compute the measurement com-
binations and the feedback controllers, which will be crucial in the next chapter.
Chapter 8 presents the main contribution for this thesis, where several algo-
rithms are proposed that simultaneously calculates the measurement combinations
and decentralized PI controllers while taking both the dynamic and steady-state
performance into account. The algorithms are based on the SOF methods that were
presented in the previous chapter and required solving a semi-de�nite programming
(SDP) problem that contains a bilinear matrix inequality (BMI). The BMI makes
the optimization problems non-convex, and they are, therefore, solved using an
iterative procedure. The resulting algorithm can be combined with the re-weighted
l1 norm to penalize the number of measurements used or the ADMM algorithm
to impose some structural constraints on the measurement combination. The ob-
tained control structures are evaluated through simulations on several case studies
and showed results that were comparable to using more advanced controllers.

Part IV − Hierarchical decentralized state estimation

Chapter 9 motivates the necessity for decentralized state estimation and reviews
some of the most common fusion methods when fusing two state vectors that refer
to the same states.
Chapter 10 aims to expand on the previously discussed fusion methods by propos-
ing a new algorithm that can fuse multiple state vectors, where some of the states
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overlap each other. This constitutes the third and �nal contribution for this thesis,
where simulations show that the proposed fusion algorithm gives a smaller estima-
tion error compared to the other methods.

Part V − Closing remarks

Chapter 11 concludes the thesis by summarizing the main contributions and their
simulation results.
Chapter 12 discusses possible future research directions for the presented work.

1.3 Thesis contributions

This thesis provides three main contributions that has been split into two di�erent
research areas:

1. Self-optimizing control:

a) Impose structural constraints on the measurement selection matrix.

b) Improve the dynamics of the self-optimizing control variable.

2. Decentralized state fusion for multiple and partially overlapping state vectors.
The �rst contribution for this thesis was the development of an ADMM algo-

rithm that can be used in self-optimizing control to �nd the optimal measurement
combination with the desired structural constraints. The resulting algorithm was
later combined with a branch and bound method to search for the optimal mea-
surement subset that gives the optimal linear measurement combination with the
speci�ed structure.

The second and the primary contribution for this thesis was the development of
several algorithms that computes the feedback controllers and the controlled vari-
ables (CVs) simultaneously, where the CVs consists of linear measurement com-
binations. Therefore, it becomes possible to search for controllers and CVs that
give the optimal trade-o� between the dynamic and the economic steady-state
performance.

The third and �nal contribution was the development of a method for fusing
multiple state vectors that can be of di�erent size and partially overlap each other.
This is a common setup in process plants since the di�erent units can have their
own estimator where only some of their states (e.g., �ows, temperature, and con-
centrations) are shared between them. Thus, the purpose of the proposed fusion
algorithm is to collect state estimates from di�erent local estimators and recon-
struct a global state vector with an improved accuracy.
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1.4 Publications

The work for this thesis has resulted in the following peer reviewed publications:
� J. R. A. Klemets and M. Hovd. An iterative LMI approach to controller
design and measurement selection in self-optimizing control. Proceedings of
the 2017 Asian Control Conference (ACC), pages 2849-2854, 2017.
(Chapter 7 and 8).

� J. R. A. Klemets and M. Hovd. Controller design and sparse measurement se-
lection in self-optimizing control. Proceedings of the 10th IFAC International
Symposium on Advanced Control of Chemical Processes (ADCHEM), pages
458-463, 2018.
(Chapter 7 and 8).

� J. R. A. Klemets and M. Hovd. Hierarchical decentralized state estimation
with unknown correlation for multiple and partially overlapping state vec-
tors. Proceedings of the 2nd IEEE Conference on Control Technology and
Applications (CCTA), pages 508-514, 2018.
(Chapter 9 and 10).

� J. R. A. Klemets and M. Hovd. Accounting for dynamics in self-optimizing
control. Journal of Process Control, 76:15-26, 2019.
(Chapter 7 and 8).

� J. R. A. Klemets and M. Hovd. An ADMM algorithm for incorporating
structural constraints in self-optimizing control. Proceedings of the 12th IFAC
Symposium on Dynamics and Control of Process Systems, including Biosys-
tems (DYCOPS), pages 64-69, 2019.
(Chapter 5).
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Chapter 2

Control structure design

Control structure design is a crucial part when it comes to achieving optimal opera-
tion of process plants. Control structure design deals with selecting the manipulated
variables (MVs) and the controlled variables (CVs) and determines the pairing be-
tween these variables. Although the interest surrounding control structure design
in literature has increased, it still constitutes only a small fraction compared to,
e.g., the research on controller design. However, there are strong arguments that
can be made for control structure design being more important in practice. This
was addressed by Foss in [44], where he criticized the control community for the gap
between theory and practice. Since then, Morari and co-authors have in [97], [95],
[96] introduced interesting theories on hierarchical control, multilevel optimization
and on control structure design. More recently, systematic procedures for control
structure design, including what to control and how to pair the variables have been
introduced in [124], and [36], where it is usually referred to as plantwide control.

2.1 Plantwide control

Chemical process plants are typically operated with the aid of a multilayer hier-
archical control structure, consisting of several layers that address di�erent time
scales [124], [36]:

� Scheduling (weeks),

� Site-wide optimization (days),

� Local optimization (hours),

� Supervisory (predictive, advanced) control (minutes),

� Regulatory control (seconds).
These di�erent layers are illustrated in Figure 2.1. From each layer, the set-points
for the CVs are sent from the upper layer downwards to the lower layer. The
economic optimization is usually located in an upper layer and uses, e.g., real-time
optimization (RTO) [101] to compute and send the optimal set-points to the lower
layers. The role of the lower layers are to drive the process to the desired set-points
using, e.g., model predictive control (MPC) or other low-level controllers (typically
PID Controllers).
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Site-wide optimization
(day)

Scheduling
(weeks)

Local optimization
(hour)

Supervisory control
(minutes)

Regulatory control
(seconds)

Figure 2.1: Typical control hierarchy in a chemical plant, adopted from [124].

The structural and strategic decisions which are involved in the control system
design of a complete chemical plant is often referred to as plantwide control [124],
[36]. A review on plantwide control is given in [82], where Larsson and Skogestad
propose to decompose the problem into a top-down and analysis and bottom-up
part:

I. Top-down analysis The top-down analysis focuses on steady-state eco-
nomics, where an economic optimization problem is formulated. Optimization is
performed both at the nominal operating point and for situations where impor-
tant disturbances are present. Based on the optimization results, a self-optimizing
analysis is done for �nding the active constraint regions and selecting the best CVs
in di�erent operational regions. For the top-down analysis, usually, only a steady-
state model of the process is required. The top-down design can be summarized
as:

1. De�ne operational objectives (optimal operation):

a) Identify a scalar cost function J (to be minimized).

b) De�ne operational constraints.

2. Find optimal regions of active constraints:
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2.2. Common methods for achieving optimal operation

a) Identify steady-state degrees of freedom and the expected disturbances.

b) Optimize (o�-line analysis) the operation using the available degrees of
freedom for the nominal case and with the expected disturbances.

c) Find the optimal regions of active constraints.

3. Choose candidate measurements that will minimize the economic loss. This
is further discussed in Chapter 3 on self-optimizing control.

4. Select location of throughput manipulator (TPM).
II. Bottom-up part The bottom-up analysis focuses on the dynamic control

of the process. Dynamic models of the process are necessary to validate the imple-
mentation of the proposed CVs from the top-down analysis. The bottom-up design
can be summarized as:

1. Select the structure of the regulatory control layer:

a) Select "stabilizing" CVs.

b) Choose inputs and pairings for the CVs that need stabilizing.

c) Stabilize the process.

2. Select the structure of supervisory control, which should:

a) Control the primary CVs.

b) Supervise the regulatory layer.

c) Perform switching between CVs for di�erent regions.

3. Select the structure of (or need for) optimization layer (RTO) which should:

a) Identify active constraints (identify regions).

b) Update set-points for the CVs (if necessary).

One of the main focuses on this thesis involves choosing candidate measurements
with the aim of both minimizing the economic loss and improving the regulatory
control performance. Therefore, step 3 in the top-down analysis and the pairing
problem in step 1 for the bottom-up analysis will implicitly be solved simultane-
ously in Chapter 8.

2.2 Common methods for achieving optimal operation

A short overview is given of di�erent methods which aim to obtain optimal opera-
tion of process systems. This is only a brief review, and for more information, the
reader is referred to the listed references and the references therein.

2.2.1 Extremum seeking control

Extremum seeking control (ESC) dates back to the 1920s [133] and has since had
many successful reported implementations made on di�erent process control appli-
cations [35]. The purpose of ESC is to �nd the optimal set-points (and MVs) that
either maximizes or minimizes an objective function. To �nd the optimal operat-
ing point, the system is perturbed using an external excitation signal to compute
the gradient [79]. Therefore, in ESC both the identi�cation of process states and
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obtaining optimal inputs are combined [8]. Typically, this method assumes that
the objective function, or at least explicit information on the structure of the ob-
jective function (how it depends on the states and disturbances) can be directly
measured. In either case, a fundamental requirement is that the disturbance space
has to be convex to guarantee that the estimation of the unknown parameters con-
verge to their true value. This, together with the assumption of state feedback and
slow speed of convergence are some of the major disadvantages for this method.
In addition, the introduced excitation signal to the plant can often be seen as
undesirable

2.2.2 Necessary conditions of optimality tracking

Necessary conditions of optimality (NCO) tracking, updates the inputs to keep an
analytical gradient for the Lagrange associated with the optimal process operation
at zero [126], [53]. Thus, NCO tracking resembles ESC in the respect that it does
not require a model, but rather a measurement of the cost function. Similar to
ESC, it su�ers some of the same disadvantages, which can make it di�cult to im-
plement in practice. Mainly, the slow convergence speed caused by, e.g., inaccurate
gradient information is an issue. However, one advantage of NCO tracking over
extremum seeking control is the possibility to track and adapt to changes in the
active constraints [127].

2.2.3 Real-time optimization

Real-time optimizing control (RTO), is an on-line optimization method that aims
to compute the optimal set-point using a process model and the available mea-
surements [31]. RTO is a popular method that is well suited to use for chemical
process plants [100]. Typically, a steady-state process model is utilized even though
dynamic versions of the RTO-framework are also starting to become more popu-
lar in the literature, e.g., [70]. However, RTO often requires a large and detailed
model of the plant, which makes it challenging to develop dynamic models that
accurately represent the process. Steady-state models, on the other hand, are often
more readily available and are also computationally cheaper to solve compared to
dynamic models.

When using conventional (steady-state) RTO, it is necessary to combine it with
several other methods to accurately update the model and predict potential dis-
turbances that are acting on the process. These typically, �rst require steady-state
detection and data reconciliation, followed with parameter estimation and a model
update. Since data reconciliation and parameter estimation are using steady-state
models, it becomes necessary to �rst use a steady-state detection method to ensure
that the steady-state condition has been ful�lled. Otherwise, the updated model
provided for the steady-state optimization won't be accurate, and the resulting
set-point will become suboptimal. This poses a major drawback for RTO since if a
disturbance occurs, it requires the controllers at the regulatory layer to �rst settle
the process at the current set-points before they can receive updated set-points
from the RTO. As a consequence, the time required for the RTO to �nd the new
optimal operating-point is usually several hours. Therefore, to improve the perfor-
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mance of RTO, the time required to update the model has to be reduced, in which
data reconciliation methods are likely to play a vital role.

2.2.4 Model predictive control

Model predictive control (MPC) has received much attention in the control commu-
nity and has become the most popular advanced control technology in the chemical
processing industries [112]. MPC is a real-time optimization method, where an op-
timization problem is solved on-line using a dynamic process model together with
some constraints. A sequence of control actions is chosen over a speci�ed horizon
window that will give the optimal trajectory according to the future prediction.
From the computed control action sequence, only the �rst sample is implemented on
the process after which the model is updated, and a new control action sequence is
computed. The main advantages of MPC is its ability to control multi-input multi-
output (MIMO) systems while handling process constraints. Traditionally, linear
process models are used but implementation with nonlinear models, i.e., nonlinear
MPC is becoming more popular, see e.g., [112], [92], [3] for numerous industrial
installations on both linear and nonlinear MPCs. However, when formulating the
optimization problem in MPC, it is important to ensure that it can be solved within
the required time frame. Thus, using too large and complex model or a too long
prediction horizon can be an issue. However, MPC is mainly used for set-point
control, where an optimization layer (e.g., an RTO) gives the optimal set-points to
use for varying disturbances. Thus, the economic objective is not being considered
by the MPC.

2.2.5 Economic model predictive control

Recently there has been an increasing interest in economic model predictive control
(EMPC) [39], which attempts to integrate the economic optimization and process
control performance together. The central idea behind EMPC is to incorporate the
control objective with the economic objective. As a result, the controller is simul-
taneously controlling the process while ensuring that it gives the optimal economic
performance. This is a major advantage compared to, e.g., RTO since it doesn't
have to wait until the process has reached steady-state before it starts driving the
process to its optimal operating points. However, despite the recent advancements,
there are still challenges when it comes to implementation in real processes, mainly
due to the computational complexity and requirement for accurate dynamic models
of the process.

2.2.6 Self-optimizing control

Self-optimizing control [122] refers to the strategy for �nding CVs that when kept
at constant set-points result in near-optimal operation of the process despite being
impacted by unmeasured disturbances. The self-optimizing control variables are
typically computed o�-line using a steady-state model of the process after which
simple feedback controllers can be used to keep the CVs at the nominal set-point.
The ideal CV would be the gradient of the cost function since keeping it at zero
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would result in the optimal operation of the process. However, for most practical
applications, it is not possible to measure the gradient. Instead, it is common to use
a CV that consists of a function of the available measurements, typically a linear
measurement combination, which will be discussed in more detail in Chapter 3.

The main advantage of self-optimization control is the simplicity of its control
structure, which makes it possible to be directly implemented at the lower regula-
tory control layer. Therefore, it is able to drive the process to the desired operating
point at a much faster time scale than the previously discussed methods. How-
ever, self-optimal control can su�er from plant-model mismatch since the CVs are
typically computed using a local approximation of the process plant. Furthermore,
self-optimizing control is only able to provide near-optimal operation under the
assumption that the active constraints remain the same. Otherwise, new CVs have
to be computed for every possible active constraint region.

Self-optimizing control is often presented as an alternative to the other meth-
ods (e.g., RTO, ESC, and NCO) for achieving optimal steady-state operation.
However, this can be misleading as pointed out in [64], where it was argued that
self-optimizing control should be viewed as a complement rather than a competitor
to the other existing methods. The reason is that self-optimizing control operates
at a faster time scale in a di�erent control layer, which makes it possible to combine
with the other strategies as demonstrated in, e.g., [130] and [77].

2.3 Conclusion

This chapter describes the typical control hierarchy for chemical process plants
together with the systematic procedure for control structure design in plantwide
control. Furthermore, various strategies for achieving optimal operation are brie�y
mentioned. One of these methods is self-optimizing control, which is used to de-
velop CVs that try to incorporate the economic objective into the regulatory layer.
However, more details on self-optimizing control will be given in the next chapter.
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Chapter 3

Self-optimizing control

In Section 2.2, some common optimization methods were brie�y covered that all
aimed to achieve optimal process operation. These consisted of both model-based
optimization methods (RTO, and EMPC), and model-free methods (NCO, and
ESC) but in general, their purpose was to �nd and update the optimal set-points
based on the disturbances that were present. Another approach is to use simple
control structures that keep speci�c controlled variables (CVs) at a constant value,
also known as self-optimizing control [122].

Self-optimizing control dates back to 1980, where Morari and co-authors in
[95] introduced the idea of using feedback to control and automatically drive the
process to the optimal steady-state. The key concept of self-optimizing control is,
therefore, to �nd CVs that when kept at constant set-points, indirectly keep the
inputs optimal (indirect optimizing control) [122]. More precisely, the aim is to
select CVs rather than determining optimal set-points.

For speci�ed disturbances (d), the optimization problem can be formulated as

min
x,u

J
(
x, u, d

)
(3.1)

subject to f(x, u, d)) = 0 (3.2)

gi(x, u, d)) ≤ 0 ∀i (3.3)

y = fy(x, u, d) (3.4)

where x ∈ Rnx , u ∈ Rnu , and d ∈ Rnd are the states, inputs, and disturbances, re-
spectively. The equality constraints are represented by f(·) and contain the steady-
state model equations; the inequality constraints in g(·) de�ne the constraints on
the operation, and the available measurements are given by y ∈ Rny . Typically, J
de�nes the economic cost of the process and can often be expressed as

J = feed cost + utilities cost− product value.

However, other objectives, such as energy e�ciency and indirect control [62] are
also possible. The solution to the optimization problem usually results in some of
the constraints being active, i.e., gi(x, u, d) = 0. To achieve optimal operation at
steady-state, the variables related to the active constraints should be controlled
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and kept as close as possible to their optimal set-points. Stabilizing the plant and
controlling the active constraints, therefore, requires a corresponding number of
degrees of freedom. This results in a reduced space optimization problem:

min
u
J∗
(
u, d
)
. (3.5)

Here, the model equations and active constraints, are implicitly included in J∗.
What remains is to determine which of the unconstrained variables should be kept
constant by using the remaining degrees of freedom. Therefore, the goal is to min-
imize the constrained cost function (J), using the available degrees of freedom (u),
in order to �nd the optimal operating point for the process.

Instead of evaluating a control structure using the reduced objective in (3.5),
[125], and [56] proposed to quantify the performance by designing the loss function:

L(u, d) = J(u, d)− Jopt(d), (3.6)

Here, the loss L is de�ned as the di�erence between the actual value of a given
cost function and the truly optimal value (accounting for the correct value of the
disturbance), i.e., truly optimal operation is achieved when L = 0. However, in
general, L > 0 and thus a smaller value for the loss function, L implies that the
plant is operating closer to its optimum. Based on the loss formulation in (3.6),
Skogestad de�nes the concept of self-optimizing control as:

Self-optimizing control is when we can achieve an acceptable loss with constant
set-point values for the controlled variables (without the need to reoptimize when
disturbances occur) [122].

An illustration of the loss between two candidate control structures is shown in
Figure 3.1, where it can be seen that c1 gives a smaller loss compared to c2 for some
disturbance d. Hence, the control structure represented by c1 would be preferable
to c2. With some candidate control structures being preferable to other, Skogestad
proposed in [122], [125], four main requirements that good self-optimizing control
variables should satisfy:

1. The CV should be easy to control, that is, the inputs u should have a signif-
icant e�ect on c.

2. The optimal value of c should be insensitive to disturbances.

3. The CV should be insensitive to noise.

4. In the case of several CVs, the variables should not be closely correlated.
Initially, brute-force methods were used to �nd the self-optimizing CVs [83],

where the idea was simply to evaluate all possible CV candidates when accounting
for the disturbances and measurement noise. The brute force approach requires
that a solution is found for each possible set of CVs. In the case of selecting single
measurements, it would require

Cnuny =

(
ny
nu

)
=

ny!

(ny − nu)!nu!
, (3.7)

possible CVs to be evaluated. Therefore, the number of possible control structures
will grow rapidly with the number of measurements ny.
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Figure 3.1: The cost for keeping two CVs (c1 and c2) at constant set-point compared
to the cost for truly optimal operation (Jopt) when a disturbance occurs, adopted
from [122].

With the brute-force evaluation quickly becoming intractable, most of the self-
optimizing control methods are based on local analysis. The local methods use a
steady-state model that has been linearized around the nominal operating point.
The motivation for using local methods is that a candidate CVs should be able to
perform well around the nominal operating point where the process is expected to
operate most of the time; otherwise, the CVs can be excluded [65]. Introducing the
deviation variables ∆u = u−u∗ and ∆d = d− d∗, then a Taylor expansion around
the nominal operating point gives

J(u, d) = J(u∗, d∗) +
[
J∗u J∗d

] [∆u
∆d

]
+

1

2

[
∆u
∆d

]T [
J∗uu J∗ud
J∗ud J∗dd

] [
∆u
∆d

]
. (3.8)

Here, Ju = ∂J
∂u and Jd = ∂J

∂d denotes the derivatives of the cost function in (3.5)

with respect to u, and d. Juu = ∂2J
∂u2 , Jud = ∂2J

∂u∂d and Juu = ∂2J
∂u2 denote the second

derivative with respect to u and d. Taking the gradient of (3.8) with respect to ∆u
and equating it to zero gives

∂J

∂u
= Ju + Juu∆u+ Jud∆d = 0. (3.9)

Since (3.8) has been approximated around the nominal operating point it results
in Ju = 0 and thus, (3.9) yields

∂J

∂u
=
[
Juu Jud

] [∆u
∆d

]
= 0. (3.10)

From which the optimal input ∆u∗(d) is

∆u∗(d) = −Juu∆u+ Jud∆d. (3.11)
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Combining (3.8) with the optimal input (3.11), Alstad showed in [4] that the loss
can be expressed as

L = (∆u−∆u∗(d))TJuu(∆u−∆u∗(d)) (3.12)

or alternatively,

L =
∥∥∥J−1/2

uu

[
Juu Jud

] [∆u
∆d

] ∥∥∥2

2
, (3.13)

where (3.11) has been inserted in (3.12).
Linearizing the measurements around the nominal point gives,

∆y = Gy∆u+Gyd∆d+ n, (3.14)

where n ∈ Rny is the measurement noise; Gy = ∂y
∂u ∈ Rny×nu and Gyd = ∂y

∂d ∈
Rny×nu are Jacobian matrices that represent the gain for the available measure-
ments from the inputs and disturbances respectively. Choosing CVs from the mea-
surements y yields

∆c = H∆y (3.15)

= HGy∆u+HGyd∆d+Hn, (3.16)

where H ∈ Rnu×ny is referred to as the measurement selection matrix and has the
following property,

HHT = I (3.17)

when only single measurements are selected as CVs.
To quantify the loss for a range of disturbances, diagonal scaling matricesWd ∈

Rnd×nd , and Wn ∈ Rny×ny are introduced to represent the disturbance and noise
such that

∆d = Wdd
′, (3.18)

n = Wnn
′, (3.19)

where d′, and n′ are the scaled disturbances and measurement noise respectively.
Using the scaling matrices for the given values of d′, and n′ together with CVs
represented by the measurement selection matrix H, the input ∆u can be obtained
from (3.16):

∆u = (HGy)−1(∆c−HGydWdd
′ −HWnn

′). (3.20)

By controlling the selected CVs at constant values (i.e., keeping ∆c = H∆y at
zero) then (3.20) can be simpli�ed to

∆u = −(HGy)−1H(HGydWdd
′ +Wnn

′). (3.21)

Combining ∆u from (3.21) and the optimal input from (3.11) into the loss function
(3.12) results in the loss expression derived in [56]:

L =
1

2

∥∥∥J1/2
uu (HGy)−1HY

[
d′

n′

] ∥∥∥2

2
, (3.22)
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where Y :=
[
FWd Wn

]
. Here, F represents the sensitivity matrix for the optimal

deviations in the measurements with respect to changes in the disturbances:

F =
∂yopt

∂d
. (3.23)

The matrix F can be obtained analytically:

F = Gyd −G
yJ−1
uu Jud. (3.24)

However, it is often easier to compute numerically by optimizing the nonlinear
steady-state model of the plant for selected disturbances.

With the expectation operator denoted E[·], and assuming the disturbances d
and measurement noise n are independent and uniformly distributed in the sets
d ∈ D, and n ∈ N . Then, the worst case and average loss were derived in [56], and
[76] respectively and are given by

Lworst = max
d∈D,n∈N

L =
1

2

∥∥∥J1/2
uu (HGy)−1HY

∥∥∥2

2
, (3.25)

Lavg = E
d∈D,n∈N

[L] =
1

2

∥∥∥J1/2
uu (HGy)−1HY

∥∥∥2

F
. (3.26)

The authors of [76] proved that obtaining the H that minimizes the average loss
in (3.26) is super-optimal and hence, the same H also minimizes the worst case
loss in (3.25). However, the opposite isn't necessarily true. Therefore, only the
minimization of the Frobenius norm will be considered in this thesis, where the
goal is to choose the selection matrix H such that the loss in (3.26) gets minimized.

3.1 Optimal measurement combination

Rather than selecting single measurements for the unconstrained optimization
problem in (3.5), a further reduction in loss can be obtained by selecting the CVs as
optimal linear measurement combinations, resulting in the control structure seen in
Figure 3.2. Two local methods for �nding the optimal measurement combinations
are the null space method and the exact local method.

Figure 3.2: Block diagram of the self-optimizing control structure.
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3.1.1 The null space method

Under the assumption that ny ≥ nu + nd independent measurements are available
and that the implementation error can be neglected, then [5] proposed the null
space method for selecting a measurement combination that will result in zero
local loss.

Theorem 3.1. Null space method [5]. Assuming that there are nu independent
unconstrained variables u; nd independent disturbances d; ny independent measure-
ments y. Moreover, if there is no implementation error (i.e., Wn = 0) and that
ny ≥ nu + nd independent measurements are available then selecting H ∈ Rnu×ny
as the left null space of F , H ∈ N (FT ) such that

HF = 0, (3.27)

then the loss in (3.26), and (3.25) will be zero (Lavg = Lworst = 0) as long as HGy

is non-singular.

Proof. When there is no measurement noise (Wn = 0) such that Y =
[
FWd 0

]
,

then the loss in (3.26) is given by

Lavg =
1

2

∥∥∥J1/2
uu (HGy)−1HY

∥∥∥2

F
(3.28)

=
1

2

∥∥∥J1/2
uu (HGy)−1H

[
FWd 0

] ∥∥∥2

F
(3.29)

=
1

2

∥∥∥J1/2
uu (HGy)−1HFWd

∥∥∥2

F
. (3.30)

If H is chosen such that HF = 0 then it is easy to see that (3.30) becomes zero.
An alternative proof can be found in [5].

3.1.2 The exact local method

The null space method's underlying assumption of no implementation error is
clearly unrealistic in practice. The method also requires the number of measure-
ments to exceed the sum of the number of inputs and the number of disturbances
(ny ≥ nu + nd), which can become very large. Therefore, it would be preferable
to �nd a solution which gives an optimal trade-o� between rejecting disturbances
and implementation errors by minimizing (3.26) with respect to H:

min
H

1

2

∥∥∥J1/2
uu (HGy)−1HY

∥∥∥2

F
. (3.31)

At �rst glance, this seems like a nonlinear optimization problem. However, an
important observation was discovered in [6], which found that (3.31) can be recast
as a convex optimization problem.
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3.1. Optimal measurement combination

Theorem 3.2. Exact local method [6] If H is a full matrix (with no structural
constraints) then the problem in (3.31) can be formulated as a convex constrained
optimization problem:

min
H

1

2

∥∥∥HY ∥∥∥2

F
(3.32)

subject to HGy = J1/2
uu (3.33)

Proof. From the original problem in (3.31), it can be shown that the optimal solu-
tion for H is non-unique and for any non-singular matrix Q ∈ Rnu×nu ,

Ĥ = Q−1H (3.34)

results in the same loss. This can be shown by [65]:

Lavg =
1

2

∥∥∥J1/2
uu (ĤGy)−1ĤY

∥∥∥2

F

=
1

2

∥∥∥J1/2
uu (Q−1HGy)−1Q−1HY

∥∥∥2

F

=
1

2

∥∥∥J1/2
uu (HGy)−1QQ−1HY

∥∥∥2

F

=
1

2

∥∥∥J1/2
uu (HGy)−1HY

∥∥∥2

F
. (3.35)

The non-uniqueness of H can be used to add the constraint in (3.33), which guar-
antees that the �rst part in (3.31) becomes J1/2

uu (HGy)−1 = I. Hence, the nonlinear
optimization in (3.31) can be recast as the convex optimization problem in (3.32)
and (3.33).

Theorem 3.3. Analytical solution [6] Assuming that Y Y T is non-singular
then the analytical solution to (3.32), and (3.33) is

HT = (Y Y T )−1Gy
(
Gy

T

(Y Y T )−1Gy
)−1

J1/2. (3.36)

Proof. The proof is given in [6].

The requirement that Y Y T is non-singular will always be satis�ed as long as
the measurement noise is nonzero.

Remark. Some additional insight was given by [149], who noted that Juu is
not needed for �nding the optimal H in (3.32), and (3.33). This means Juu can be
replaced with any non-singular matrix Q ∈ Rnu×nu and still give the optimal H.
This may simplify the calculations, as Juu can be di�cult to obtain numerically.
However, Juu would still be required to �nd the correct numerical value of the loss.
As a consequence, the analytical solution in (3.36) can be simpli�ed.

23



3. Self-optimizing control

Theorem 3.4. Simpli�ed analytical solution [149] Assuming that Y Y T is
non-singular then a simpli�ed analytical solution to (3.32)−(3.33) can be given by

HT = (Y Y T )−1GyQ, (3.37)

where Q ∈ Rnu×nu is any non-singular matrix, e.g., Q = I.

Proof. The proof is given in [149].

3.2 Conclusion

This chapter gives a review of self-optimizing control, where the aim is to �nd CVs
that when kept at constant set-point give near-optimal operation. A loss function is
commonly used to quantify the performance for the selected CVs, where the loss is
de�ned as the di�erence between the actual value of the operational cost compared
to the truly optimal operation. To simplify the evaluation of the candidate CVs, it
is common to use a local approximation of the loss function that can be obtained
by �rst linearizing the process model and the cost function. The loss can further
be reduced by using the null space method or the exact local method. These two
methods compute the optimal linear measurement combinations from the local
models that can then be used as CVs.

Recently, an approach for �nding the global approximation of the CVs have
been proposed in [145]. However, the global solution requires matrices that have to
be constructed using optimization data from the whole operation space. Therefore,
it is considered out of the scope of this thesis.
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Chapter 4

Selecting a measurement subset

The lowest steady-state loss can be achieved when the measurement combination
H is computed using all available measurements. However, for most practical cases,
this is not desirable as it leads to overly complex control structures and increases
the likelihood of getting sensor failures. Besides, often, there exists a subset of the
available measurements that can be used without any signi�cant reduction in the
steady-state performance [65].

Finding the best measurement subset is a combinatorial optimization prob-
lem, and the loss has to be evaluated at every possible measurement combination.
Selecting the best subset consisting of n measurements would, therefore, require
that

Cnny =

(
ny
n

)
=

ny!

(ny − n)!n!
, (4.1)

possible CV combination to be evaluated. To solve this problem, [75] developed a
tailor-made branch and bound algorithm. Another approach was presented in [149],
where the combinatorial problem was formulated using mixed-integer quadratic
programming (MIQP) that can be solved with standard MIQP solvers. These
two approaches will be summarized in the two upcoming sections. An alternative
method will also be proposed, where sparsity is promoted by using the re-weighted
l1 norm.

4.1 Mixed-integer quadratic programming

Yelchuru and Skogestad proposed in [149] to �nd the best measurement subset by
solving a MIQP problem. MIQP requires that the quadratic problem in (3.32), and
(3.33) to be vectorized since it can often be inconvenient for numerical software such
as Matlab to deal with matrix formulations. The measurement selection matrix,

H =


h1,1 h1,2 · · · h1,ny

h2,1 h2,2 · · · h2,ny
...

...
. . .

...
hnu,1 hnu,2 · · · hnu,ny

 (4.2)
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4. Selecting a measurement subset

is vectorized by stacking the rows of H, forming a column vector hδ ∈ Rnuny×1:

hδ =
[
h1,1 · · · h1,ny h2,1 · · · h2,ny hnu,1 · · · hnu,ny

]T
. (4.3)

The matrices Gy, J1/2
uu , and Y are vectorized in a similar fashion to become Gyδ ∈

Rnuny×nuny , Jδ ∈ Rnunu×1, and Yδ ∈ Rnuny×nuny , respectively. An equivalent
vectorized quadratic problem of (3.32), and (3.33) can then be reconstructed:

min
hδ

1

2

(
hTδ Yδhδ

)
(4.4)

subject to hδG
y
δ = Jδ (4.5)

To select the best subset, the MIQP formulation in [149] takes advantage of the
property that controlling a subset is equivalent to setting the entire column that is
not included in the subset to zero. Therefore, the following binary variables were
introduced

σδ =
[
σ1 σ2 · · · σny

]T
, σj ∈ {0, 1}, (4.6)

to represent whether a measurement is included in the subset or not. If a measure-
ment j is available in the selected subset, then σj = 1 and the jth column of H
will have at least one non-zero element. Otherwise, σj = 0 and all the values in the
jth column of H will be zero, which means that its corresponding measurement is
discarded from the obtained subset. The binary variable σδ will be incorporated
in (4.4) as constraints to restrict the number of measurements that will be used in
H. The binary constraints can be written as

Pσδ = n, (4.7)

where P = 1T1×ny is a ny dimensional matrix of ones, and n is the number of
measurement that should be included in the obtained subset. The resulting mixed
integer constraints on the column of H are formulated using the standard "big-M"
formulation [61]. The problem of selecting the optimal measurement subset can
then be written as

min
hδ,σδ

1

2

(
hTδ Yδhδ

)
(4.8)

subject to hδG
y
δ = Jδ (4.9)

Pσδ = n (4.10)
−m
−m
...
−m

σj ≤

h1,j

h2,j

...
hnu,j

 ≤

m
m
...
m

σj , ∀j ∈ 1, 2, · · · , ny. (4.11)

Here, m is a positive constant that is used in the big-M constraints to ensure that
whenever σj is zero, the corresponding column in H will also be zero. In addi-
tion, the constraints in (4.11) are also used to bound the decision variables on H.
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4.2. Branch and bound method

Therefore, if the value of m is chosen to be small, it will reduce the computational
load required to �nd a solution. However, when m is chosen to be too small, it
can result in some of the constraints to become active and as a consequence will
generate a suboptimal solution. Selecting an appropriate value for m is thus, not
straightforward and typically, requires using an iterative approach until no changes
are seen in the �nal solution.

The main advantage of formulating the measurement subset selection problem
as an MIQP is that it allows for standard MIQP solvers to be used, e.g., [149]
used CPLEX (International Business Machines, 2014) [63] to solve the problem in
(4.9)−(4.11).

4.2 Branch and bound method

The branch and bound (BAB) method take advantage of the monotonicity of the
loss function with respect to the number of measurements. This means whenever a
measurement is removed, it will result in a loss that is larger or equal to the loss for
the original set of measurements. Similarly, when adding measurements to a subset,
it should only be able to yield an improvement in the loss. Here, the general idea
of the bidirectional branch and bound is presented, which was introduced by Cao
and Kariwala in [27], for selecting individual measurements based on the minimum
singular value criterion. They expanded their work to use the BAB approach for
�nding the optimal subset of measurement combinations for minimizing the worst-
case loss in [74], and the average loss in [75]. For more details on BAB algorithms,
the reader is referred to [27], [74], and [75], as well as the corresponding publicly
available Matlab code in [24], [25], and [26].

The general principle of the BAB method is to divide (branch) the measurement
selection problem into smaller subproblems. If the estimated loss for a subproblem
is larger than a previously computed upper bound B, then the subproblem under
consideration can be discarded (pruned) since it will not be able to provide the
optimal solution. On the other hand, if the subproblem can't be pruned, it will be
divided into smaller subproblems that need further evaluation. The procedure is
repeated until there are no subproblems left to consider.

Let Xm denote the index set that describes the selected measurement subset,
where the value of the subscript m indicates how many measurements are included
in X. GyX denotes the gain matrix corresponding to the selected measurements,
i.e., the rows of Gy corresponding to the indices in X. Similarly, YX denotes the
matrix consisting of the rows in Y corresponding to the index set X. Finally, let
H∗X denote the optimal measurement selection matrix that gives the smallest loss
for the subset of measurements given by the index set X. Then, for given noise and
disturbances that are normally distributed, the optimal average loss is a function
of the index set X:

L(Xm) =
1

2

∥∥∥J1/2
uu (H∗XG

y
X)−1H∗XYX

∥∥∥2

F
. (4.12)

De�ningXn as an n-element subset selected fromXm. The subset selection problem
for �nding the globally optimal n-element subset X∗n that minimizes the loss can

27



4. Selecting a measurement subset

be formulated as

L(X∗n) = min
Xn⊂Xm

L(Xn). (4.13)

Using the monotonicity properties, an e�cient BAB algorithm can be developed
for selecting the best subset of measurements without having to evaluate every pos-
sible n-element measurement combination. Therefore, a BAB approach can be an
e�cient method for �nding the globally optimal subset, while signi�cantly reduc-
ing the number of subsets that needs to be evaluated. A downward or an upwards
BAB algorithm can be implemented, where measurements are gradually removed
or added to the subsets until the optimal subset has been found.

4.2.1 Downward branch and bound

The monotonicity property implies that if one index set Xn is contained in another
index set Xm (Xn ⊆ Xm), then the optimal loss of the superset must be less or
equal to the optimal loss of the subset [65]:

L(Xm) ≤ L(Xn). (4.14)

Thus, to present the downward BAB approach, let
¯
Ln(Xs), s > n, be a downwards

lower bound on L over all n-element subsets of Xs:

¯
Ln(Xs) ≤ min

Xn⊆Xs
L(Xn). (4.15)

Further, let B be a known upper bound to the minimum loss for the case when n
variables are selected, such that

B ≥ Lavg(X∗n), (4.16)

then this upper bound can be used to remove (prune) sets of measurements, i.e.,

L(Xn) > L(X∗n), ∀Xn ⊆ Xs if
¯
Ln(Xs) > B. (4.17)

The expression in (4.17) indicates that none of the subsets of Xs can be the
optimal subset. Therefore, Xs and all its subsets can be discarded without further
evaluation, since none of them will be able to produce a smaller loss. The condition
in (4.17) is referred to as the "pruning condition" and is used to systematically
eliminate suboptimal subset without the need for further evaluation.

The search tree is, typically, constructed asymmetrically to avoid subset re-
dundancy, i.e., the nodes on the same level contain a di�erent number of branches.
Figure 4.1 shows an example of a downwards solution tree, where a 2-element subset
is selected from a set of 6-elements. The top node represents the set of all available
measurements, whereas the bottom nodes are the terminal nodes for all possible
2-element subsets. Starting from the top node, at each level, one measurement gets
removed from its parent set, where the numbers at the di�erent nodes denote which
measurement has been discarded. To evaluate all possibilities for selecting 2 out
of 6 measurements, would require evaluating C2

6 = 15 measurement combinations.
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4.2. Branch and bound method

search
direction

root

4 5 6 5 6 6 5 6 6 6 5 6 6 6 6

3 4 5 4 5 5 5 5

2 3 4 3 4 4

1 2

54

3

Figure 4.1: Downwards solution tree, adopted from [27].

Using the pruning condition in (4.17), the tree structure can be used to organize
the search for the best combination. E.g., let's assume that the node furthest to
the right has been evaluated with the resulting loss becoming the current best es-
timate of the upper bound B. Then, if the loss obtained from the two nodes at the
�rst level are all higher (L > B), then those nodes and all their subnodes can be
discarded. Thus, a solution has been found that required only evaluating 3 out the
15 possible measurement combinations. [65]

4.2.2 Upward branch and bound

It is possible to implement an upward BAB approach for �nding optimal measure-
ment subset, even though it is a lot less popular in the research literature com-
pared to the downwards BAB. Contrary to a downward search, an upward search
begins with an empty set and then gradually expands to supersets measurement-
by-measurement, until the required subset size has been reached.

search
direction

root

2 3 4 5 6 3 4 5 6 4 5 6 5 6 6

1 2 3 4 5

Figure 4.2: Upwards solution tree, adopted from [27].

The upward BAB takes advantage of the upwards monotonicity property that
implies if an index set Xn is a superset of another index set Xs (Xn ⊇ Xs) then the
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4. Selecting a measurement subset

optimal loss of the subset must be less or equal to the optimal loss of the superset:

L(Xs) ≥ L(Xn). (4.18)

Thus, to present the principle of upward BAB, let B be an upper bound of L(X∗n)
as de�ned in (4.16) and

¯
Ln(Xs), s < n, be an upwards lower bound of L over all

n-element supersets of Xs:

¯
Ln(Xs) ≤ min

Xn⊇Xs
L(Xn). (4.19)

Then,

L(Xn) > L(X∗n), ∀Xn ⊇ Xs if
¯
Ln(Xs) > B. (4.20)

If the condition in (4.20) holds, then it means that none of the supersets for Xs

can be globally optimal. Therefore, Xs and all its supersets can be pruned without
further consideration.

The upward BAB method can also be represented using an asymmetric tree,
where an example for selecting 2 elements from a 6-element set is shown in Figure
4.2. In the upward tree, the bottom node consists of an empty set, whereas the
top nodes are the terminal nodes which represent all possible 2-element supersets.
Every node (superset) is obtained by adding one additional measurement to its
parent set until the top level is reached. Therefore, the sizes of the nodes get
increased when going upwards in the search direction, where the numbers at the
nodes in Figure 4.2 represent the added measurements.

4.2.3 Bidirectional pruning

In general, when trying to �nd optimal subsets from large measurement sets, the
downwards pruning based BAB methods tend to be more e�cient when the size
of the desired subset is large. However, the upwards pruning based BAB methods
tend to be more favorable when selecting subsets consisting of only a few variables.
Therefore, more sophisticated bidirectional pruning methods was developed in [27],
[74], and [75], which prune both from the top and the bottom of the tree, thus mak-
ing them e�cient at handling both cases. In addition, to combining upwards and
the downwards pruning, the authors of [75] also developed fast pruning methods
to improve the e�ciency of discarding suboptimal nodes. However, when search-
ing for measurement combinations, upwards pruning can only be applied when the
number of elements for the node under consideration is greater than n−nu. Thus,
Kariwala and Cao referred to it as a partial bidirectional branch and bound (PB3)
algorithm [74].

4.2.4 Bidirectional branching

Besides e�ective pruning methods, the PB3 algorithm further improves its perfor-
mance by using e�ective branching rules. These rules are used to determine the
way in which a node should be divided into multiple subnodes. The purpose of
using e�ective branching rules is to try discard as many of the non-optimal subn-
odes as possible. By accounting for the advantages and disadvantages in upwards
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4.3. Re-weighted l1 norm

and downwards branching, Cao and Kariwala proposed using a novel bidirectional
branching strategy in [27].

Instead of branching all possible nodes, the bidirectional branching approach
only produces two branches at a time. These two branches consist of an upward
branch and a downward branch of which the one with fewer terminal nodes (n-
element subsets) will be evaluated �rst. This allows for the sub- or supernodes
to be ordered in a way that the maximum number of nodes can be pruned that
is associated with suboptimal nodes. The decision of which two nodes to branch
and the order in which their subnodes should be evaluated is made on a best-�rst
basis. This means that the most promising candidates are evaluated �rst, which
increases the likelihood of being able to quickly discard suboptimal nodes and thus,
the number of nodes that need to be evaluated can signi�cantly be reduced.

4.3 Re-weighted l1 norm

An alternative approach, for �nding the optimal measurement subset is to solve
a multi-objective optimization problem, that gives the optimal trade-o� between
steady-state loss and the number of measurements used. If a column-wise sparsity
promoting function is included in (3.32) and (3.33), the optimization problem can
be formulated as,

J = min
H

1

2

∥∥∥HY ∥∥∥2

F
+ λ card(H) (4.21)

subject to HGy = J1/2
uu . (4.22)

By specifying a scalar value for λ, there will be a trade-o� between the steady-state
loss and the cardinality of H, where the cardinality of the measurement matrix H
is de�ned:

card(H) := the number of non-zero columns of H.

The cardinality function is non-convex and non-smooth, that still makes the opti-
mization formulation in (4.21) a combinatorial problem.

To address this issue, several convex relaxations like the l1 norm and the
weighted l1 norm have been proposed [23]. By using the weighted l1 norm, the
cardinality function can be approximated to:

card(H) ≈
∑
i,j

Wi,j‖Hi,j‖1 (4.23)

The authors of [23] noted that if the weightsWi,j are chosen to be inversely propor-
tional to the l1 norm, then there is an exact correspondence between the l1 norm
and the cardinality function. However, this requires a priori knowledge of the H
matrix, and therefore, a re-weighted scheme needs to be implemented, where the
weights are updated after every iteration (k) as,

W k+1
i,j =

1

‖Hk
i,j‖1 + κ

(4.24)
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where 1 >> κ > 0 ensures the update is well-de�ned.
The weighted l1 norm in (4.23) promotes element-wise sparsity. However, it can

easily be modi�ed to promote column (or row) sparsity as, e.g., shown in [7] by
revising it as,

card(H) ≈
∑
i,j

Wj‖Hi,j‖1 (4.25)

with the update rule:

W k+1
j =

1∑
i‖Hk

i,j‖1 + κ
(4.26)

For a given value of λ, the iterative procedure, described in Algorithm 1 can be used
to �nd a subset of the available measurements. By varying the value of λ, there will

Algorithm 1 Measurement selection using the re-weighted l1 norm.

Initialize: For k = 0 obtain Hk from (3.36 ) and compute W using (4.26).
1: Set k ← k + 1 and for the obtained W solve:

Hk = arg min
H

1

2

∥∥∥HY ∥∥∥2

F
+ λ

∑
i,j

Wj

∥∥∥Hi,j

∥∥∥
1

subject to HGy = J1/2
uu

2: If ‖Hk−1 −Hk‖2 < ε go to step 3, else update W using (4.26) and repeat step
1 and 2.

3: Remove the measurements that correspond to the zero columns in H.

be a trade-o� between the steady-state loss and the number of measurements used.
Additional weights may also be included to penalize certain control structures, e.g.,
if some measurement links are unattractive due to high implementation cost.

While the convergence properties for the re-weighted l1 norm are still not clearly
understood, numerical experiments have shown it to be a very e�cient method for
promoting sparsity, which also is demonstrated through simulations in Section 4.4.

4.4 Case study: Binary distillation column

In this example, the proposed Algorithm 1 is applied to the "column A" distillation
column model [121], where a binary mixture is separated that has a relative volatil-
ity of 1.5. The distillation column has 41 stages, which includes the reboiler and
the condenser. The stages are counted from the bottom with the reboiler as stage
1 and with the feed at stage 21. For the distillation column, the feed is assumed to
be given. Thus, it has four degrees of freedom; bottoms �ow rate (BF ), distillate
�ow rate (DF ), re�ux �ow rate (LR), and vapor boilup (VB). The distillate boilup
and bottom �ow rate are used to stabilize the two liquid levels in the condenser
and the reboiler. This results in the LV con�guration shown in Figure 4.3, where

32



4.4. Case study: Binary distillation column

the two remaining degrees of freedom are:

u =
[
LR VB

]T
. (4.27)

The objective is to get a top product with 99% light component (1% heavy) and a
bottom product with 1% light component, i.e., the cost function is

J =

(
xtopH − x

top,s
H

xtop,sH

)2

+

(
xbtmL − xbtm,sL

xbtm,sL

)2

, (4.28)

where the speci�cations for the top and bottom products are denoted with the
superscript s.

LC

LC

BF

xD

DF

xB

LR

VB

F0, qF
xF

Figure 4.3: Binary distillation column with LV con�gurations, adopted from [121].

As composition often is di�cult to measure, they will be controlled indirectly
using the temperatures inside the column as in [62]. It is assumed that the tem-
peratures Ti(◦C) on each stage i can be calculated using the linear function [121],

Ti = 0xL,i + 10xH,i (4.29)

with an accuracy of ±0.5◦C.
The main disturbances considered are changes in feed �ow rate (F0), feed com-

position (xF ) and feed liquid fraction (qF ), where F0 and xF can vary between
1 ± 0.2, and 0.5 ± 0.1 respectively. The nominal value for qF is 1.0, with a lower
bound of 0.9.

4.4.1 Measurement selection

Finding the optimal subset of measurements that minimizes the steady-state loss
for the binary distillation column example has previously been studied in [74],
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and [149]. The problem was solved in [75] with a partial branch and bound (PB3)
method, while in [149] a MIQP formulation was used. The optimal CVs and their
respective steady-state loss when using 2, 3, 4, 5, and 6 measurements obtained
using the PB3 approach presented by [75] can be seen in Table 4.1. The optimal

Table 4.1: Controlled variables and their respective loss, where the CVs obtained
using (PB3) [75], are compared to using Algorithm 1 (WL1). Here, the values
λ = 0.085, λ = 0.072, λ = 0.05, λ = 0.04, and λ = 0.03 have been used for
Algorithm 1 to �nd subsets of 2, 3, 4, 5, and 6 measurements, respectively.

No. of
meas.

Controlled variables (CVs)
Loss (L)
1
2
‖HY ‖2F

2
PB3 : c =

[
T12

T30

]
WL1 : c =

[
T12

T29

] 0.5478

0.5530

3
PB3 : c =

[
T12 + 0.0446T31

T30 + 1.0216T31

]
WL1 : c =

[
T12 + 15.2104T29

T13 − 14.0138T29

] 0.4425

0.4605

4
PB3 : c =

[
1.0316T11 + T12 + 0.0993T31

0.0891T11 + T30 + 1.0263T31

]
WL1 : c =

[
1.0811T12 + T13 + 0.2075T30

0.1205T12 + T29 + 1.0859T30

] 0.3437

0.3575

5
PB3 : c =

[
T12 − 11.6579T21 + 23.9043T29 + 24.2286T30

T13 + 11.2776T21 − 24.2492T29 − 24.5323T30

]
WL1 : c =

[
T11 + 1.6950T12 + 13.8901T29 + 15.5051T30

T13 − 8.7428T29 − 9.5234T30

] 0.2860

0.3253

6
PB3 : c =

[
1.9015T12 + 1.8769T13 − T21 − 0.0858T29 + 0.0636T31

1.8004T12 + 1.7724T13 − T21 + 0.0835T30 + 0.1420T31

]
WL1 : c =

[
2.0630T11 + 2.2804T12 + 2.0493T13 − T21 + 0.3015T30

2.2675T11 + 2.5064T12 + 2.2524T13 − T21 − 0.3238T29

] 0.2482

0.2632

CVs are compared to controlled variables computed using the re-weighted l1 norm
proposed in Algorithm 1. To obtain the desired subset size when using the re-
weighted l1 norm approach requires that appropriate values of λ have been chosen.
Since there is no way of knowing what value of λ causes the desired trade-o�
between the loss and the no. of measurements, these values are obtained using trial
and error. Where larger values of λ will reduce the size of the measurement subset
at the expanse of increasing the loss. In Figure 4.4, the e�ect λ with respect to the
measurement subset size is shown, where the resulting measurement combination
H for sets of 2, 3, 4, 5 and 6 measurements can be seen in Table 4.1.

Algorithm 1 promotes sparsity, using the weighted l1 norm as a convex relax-
ation for the cardinality of the H matrix. As a consequence, it can't guarantee
that it converges to the optimal measurement subset and therefore, it gives subsets
with a slightly larger steady-state loss compared to the ones obtained in [75] and
[149]. This is also demonstrated in Figure 4.5, where the loss with respect to the
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4.4. Case study: Binary distillation column
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Figure 4.4: λ vs. no. of measurements for the binary distillation column when using
the re-weighted l1 norm.

5 10 15 20 25 30 35 40

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
0.5

0.55

Figure 4.5: Steady-state loss vs. the number of measurements for the partial bidi-
rectional branch and bound (PB3) method and the re-weighted l1 norm algorithm
(WL1) implemented on the binary distillation column.

number of measurements for the re-weighted l1 norm is compared to the bidirec-
tional branch and bound (PB3) method [75]. The PB3 method is able to give a
slightly smaller loss but the CPU time required to �nd a solution is less a�ected by
the desired subset size when using the re-weighted l1 norm algorithm, as seen in
Figure 4.6. Thus, it might be preferable to use the re-weighted l1 norm approach
when dealing with very large measurement sets. However, this assumes that the
appropriate values of λ are known a priori.
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4. Selecting a measurement subset
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Figure 4.6: CPU time vs. the number of measurements for the partial bidirectional
branch and bound (PB3) method and the re-weighted l1 norm algorithm (WL1)
implemented on the binary distillation column.

4.5 Conclusion

Selecting the best subset of size n from ny measurements with the aim to mini-
mize the loss in (3.26) is a combinatorial optimization problem. The problem has
been solved in [75] by using a branch and bound algorithm, whereas an MIQP
approach was proposed in [149]. This chapter gives a brief overview of these two
methods, after which an alternative approach is investigated. The alternative ap-
proach recursively solves a re-weighted l1 norm optimization problem, where a
penalty parameter is included to penalize the number of measurements used. The
re-weighted l1 norm is used as a convex relaxation to the non-convex measurement
selection problem and, therefore, the proposed algorithm can't guarantee a globally
optimal solution as it converges to a local minimum.

A non-trivial example of a distillation column demonstrates that good results
can be found both with respect to the (near) optimality of the steady-state loss,
and the CPU time required to �nd the solution. The existing PB3 algorithm from
[75] is capable of �nding solutions with a lower loss compared to the re-weighted l1
norm. However, the re-weighted l1 norm seems to be less sensitive to the size of the
optimization problem. Therefore, it can be used to provide an easily computable
(and early) upper bound for the PB3 algorithm, which for large problems, can
reduce the computational demands. Another potential advantage of the proposed
re-weighted l1 norm algorithm is the ability to include additional weights that
penalize certain control structures, e.g., by including the cost of implementing
certain measurements. Thus, making it more �exible and easier to combine with
other algorithms, which will be demonstrated in Chapter 8.
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Chapter 5

Structural constraints

The lowest steady-state loss can be achieved when the measurement combination
H is a full matrix. However, in many practical cases, it may be preferable to
impose certain structural constraints on the measurement combinations. These
structural constraints may be needed to avoid pairing MVs to CVs that are located
far apart, causing long time delay and thus, reducing the dynamic controllability.
Furthermore, combining measurements that are of similar type (e.g., combining
several temperature measurements) may be preferred by the operators as it has a
more intuitive physical meaning. Additionally, when using decentralized control, it
is often desirable to impose some structural constraints on the CVs, e.g., by only
combining MVs with CVs associated with certain units or parts of the process.

These structural constraints on the measurement combination matrix H should
be included in (3.31), such that the optimization problem becomes:

min
H

1

2

∥∥∥J1/2
uu (HGy)−1HY

∥∥∥2

F
(5.1)

subject to H ∈ S, (5.2)

where S denotes the structural constraints that are imposed on H. Unfortunately,
it is not possible to reformulate (5.1) and (5.2) such that they become a convex
problem as in (3.32) and (3.33). This is due to there not being enough degrees of
freedom to make HGy = J

1/2
uu when H is forced to have a certain structure.

To address this problem, a generalized singular value decomposition (GSVD)
approach was proposed by [59] whereas in [147], and [148] two convex approxima-
tion methods for solving (5.1) and (5.2) were suggested. However, none of these
methods are able to guarantee a global optimum, but rather an upper bound for
the loss when using structural constraints. Here, an alternative approach is pro-
posed, where an alternating direction method of multipliers (ADMM) is used for
imposing structural constraints on the measurement combination H. However, �rst
a brief summary of the two approximation methods is given since they seem to able
to give a tighter upper bound on the loss compared to the GSVD method [146].
Therefore, they will be used as references when evaluating the proposed ADMM
method.
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5. Structural constraints

5.1 Approximation methods

Based on the observation in Theorem 3.2, which stated that the optimal solution
to the measurement selection matrix H is non-unique, Yelchuru and Skogestad
derived two approximation methods for solving (5.1), and (5.2). Both these have
based on numerical experiments shown to provide good upper bounds for the loss
when there are structural constraints imposed on H. An overview of these two
approaches will be given below, but for a more detailed description the reader is
referred to [147], [148], and [146].

5.1.1 Approximation method 1

The optimal solution to (5.1) and (5.2) is non-unique. Therefore, if H is a solution,
then there exists Ĥ = QH, which gives the same loss as long as the non-singular
matrix Q ∈ Rnu×nu preserves the desired structure on QH. E.g., if the desired
structure for H is block diagonal

H =

[
h1,1 h1,2 h1,3 0 0

0 0 0 h2,4 h2,5

]
, then Q =

[
q1,1 0
0 q2,2

]
gives

QH =

[
q1,1h1,1 q1,1h1,2 q1,1h1,3 0 0

0 0 0 q2,2h2,4 q2,2h2,5

]
.

Similarly, if H is constrained to a triangular structure, e.g.,

H =

[
h1,1 h1,2 h1,3 h1,4 h1,5

0 0 0 h2,4 h2,5

]
, then Q =

[
q1,1 q1,2

0 q2,2

]
gives

QH =

[
q1,1h1,1 q1,1h1,2 q1,1h1,3 q1,1h1,4 + q1,2h2,4 q1,1h1,5 + q1,2h2,5

0 0 0 q2,2h2,4 q2,2h2,5

]
.

Denoting the available non-zero elements in Q as nnz, then these additional degrees
of freedom can be used to match the nnz elements of HGy to the elements of J1/2

uu .
However, this requires that there are no zero elements in Juu to avoid getting the
solution H = 0.

To take advantage of the additional nnz degrees of freedom, a binary vector
βδ =

[
β1 β2 · · · βnunu

]
was introduced in [147], where βl ∈ 0, 1 corresponds to

the elements of HGy. For a column-wise vectorization of HGy (i.e., vec(HGy)l),
each element l is associated with the binary variable βl. Whenever the lth element
of vec(HGy) gets matched with the lth element of vec(J1/2

uu ), the corresponding βl is
set to 1, otherwise, it remains 0. Thus, the non-zero elements in Q are used to match
between nu and nnz elements of vec(HGy) to vec(J1/2

uu ), where
∑nunu
l=1 βl should

be kept between nu and nnz. The remaining unmatched elements in vec(HGy) are
allowed to vary between −b and b, which are formulated using the big-M approach.
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5.1. Approximation methods

The resulting a MIQP can then be formulated as

min
H,βδ

1

2

∥∥∥HY ∥∥∥2

F
(5.3)

subject to H ∈ S (5.4)

−b(1− βl) ≤ vec(HGy − J1/2)l ≤ b(1− βl), ∀l = 1, 2, ..., nunu (5.5)

nu ≤
nunu∑
l=1

βl ≤ nnz (5.6)

nuk ≤
nu−1∑
p=0

∑
k nuk∑

j=
∑
k nuk−1

+1

βlnup+ j ≤ nnzk , ∀k = 1, 2, ...,number of blocks (5.7)

where nuk , and nnzk are the number of inputs, and the number of non-zeros in Q
in block k respectively.

The above approximation method was in [146] referred to as a convex approx-
imation method. However, this is incorrect, since an optimization formulation in-
volving binary variables can't be convex. In addition, using the big-M formulation
may not be numerically robust, especially for large values on M.

The optimization in (5.3)−(5.7) can be extended to �nd subsets of measure-
ments with a speci�ed structure on H by �rst vectorizing (5.3), (5.4); and then
including the big-M constraints from (4.11).

5.1.2 Approximation method 2

For the second method, the equality constraint (HGy = J
1/2
uu ) in (3.33) is replaced

with the element-wise inequality constraint, HGy ≤ J
1/2
uu . The approximation can

then be written as:

min
H

1

2

∥∥∥HY ∥∥∥2

F
(5.8)

subject to HGy ≤ J1/2
uu (5.9)

H ∈ S (5.10)

The relaxation of the constraint in (5.9) provides H with additional degrees of
freedom that ensures a feasible solution exists when there are structural constraints
on H. While there is no available proof, numerical experiments have shown that
replacing the constraint (HGy = J

1/2
uu ) in (3.33) with HGy ≤ J1/2

uu in (5.9) results
in the same solution when there are no structural constraints on H [148]. However,
to avoid getting H = 0, J1/2

uu has to have some negative elements in each row. If
there are no negative elements in J1/2

uu , then it can be modi�ed such that

Ĵuu = QTuJuuQu, (5.11)

where Qu ∈ Rnu×nu is any non-singular matrix that makes Ĵuu contain some
negative elements.
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5. Structural constraints

The problem formulation in (5.8)−(5.10) can easily be extended to �nd a subset
of n variables with the desired structure on H by adding the big-M constraints from
(4.11) and vectorizing the problem (5.8)−(5.10).

5.2 ADMM for structured measurement combinations

The two approximation methods are only able to guarantee an upper bound on
the loss when the measurement combination matrix H is forced to have a particu-
lar structure. Therefore, an alternating direction method of multipliers (ADMM)
algorithm is proposed for incorporating structural constraints on the CVs. The
hope that it may be able to provide better results compared to the other existing
methods when obtaining structured measurement combinations.

5.2.1 Alternating direction method of multipliers

ADMM has extensively been studied since it was introduced in the 1970s [46] and
has shown to be a simple, yet a robust algorithm that is well suited for distributed
convex optimization in large-scale problems. However, it can also be extended to
non-convex problems, see [21] for a survey of ADMM and its di�erent applications.
Recently, there has also been an increasing interest in using ADMM for sparsity
promoting functions [88], [34].

There are many ways of describing the construction of the ADMM since it is
closely related to several other methods. However, the procedure given in, e.g., [21]
is one of the more common procedures of explaining ADMM and will thus, be used
here. This entails �rst, giving a short review over some of its precursors.

Dual ascent algorithm

Consider the following convex optimization problem

min
x
f(x) (5.12)

subject to Ax = b (5.13)

where x ∈ Rn, A ∈ Rm×n, and f(·) is a convex function. The Lagrangian for the
above problem is equivalent to

L(x, y) = f(x) + yT (Ax− b), (5.14)

with y ∈ Rm being the dual variable. The dual function is given by,

g(y) = inf
x
L(x, y) = −f∗(−AT y)− bT y, (5.15)

where f∗ is known as the conjugate of the function f [20]. The resulting dual
problem can then be formulated as

max
y

g(y). (5.16)
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5.2. ADMM for structured measurement combinations

Assuming that strong duality holds, then the optimal values for both the dual and
the primal problems should be the same. Therefore, from the optimal dual point
y∗, it is possible to recover the optimal primal point x∗ as

x∗ = arg min
x
L(x, y∗). (5.17)

In the dual ascent algorithm, the dual problem is solved using a gradient ascent
method. Denoting ∇g(y) as the gradient of g(y) Assuming g(·) is di�erentiable,
the gradient ∇g(y) can be evaluated as follows:

∇yg(y) = ∇y
(

inf
x
L(x, y)

)
= ∇

(
L(x∗, y)

)
= ∇yf(x∗) +∇yyT

(
Ax− b

)
= Ax− b.

(5.18)

The dual ascent algorithm consists of iteratively updating the following steps

xk+1 := arg min
x
L(x, yk), (5.19)

yk+1 := yk + ηk
(
Axk+1 − b

)
, (5.20)

where ηk > 0 is a scalar step size and the superscript k is the iteration counter.
The algorithm is called dual ascent since if ηk is chosen appropriately, then the
dual function will increase after each iteration such that g(yk+1) > g(yk).

Dual decomposition

A great bene�t of the dual ascent method is that for certain cases is it can be
used for decentralized implementation. E.g., assuming that the cost function f(·)
is separable, i.e.,

f(x) =

N∑
i=1

fi(xi), (5.21)

where x can be split into N di�erent sub vectors such that x =
[
x1 · · · xN

]
.

Decomposing the matrix A =
[
A1 · · · AN

]
such that A =

∑N
i=1Aixi, then the

Lagrangian can be written as

L(x, y) =

N∑
i=1

Li(xi, y) =

N∑
i=1

(
fi(xi) + yTAixi −

1

N
yT b

)
. (5.22)

Thus, the Lagrangian can also be separable in x, which means that the step in
(5.19) can be split into N di�erent problems that can be solved in parallel. The
resulting algorithm is referred to as dual decomposition and is formulated as

xk+1 := arg min
x
Li(xi, yk), (5.23)

yk+1 := yk + ηk
(
Axk+1 − b

)
, (5.24)

where the x minimization problem has been split into N sub problems that can be
solved independently.
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5. Structural constraints

Augmented Lagrangian and the method of multipliers

The dual ascent method requires that the function f(·) in (5.12) to be strictly
convex and �nite. This restriction motivated the development of the augmented
Lagrangian method, which o�ers a more robust alternative that is able to yield
convergence without less strict assumptions on f(·). The augmented Lagrangian
function for (5.12) is de�ned as

Lρ(x, y) := f(x) + yT
(
Ax− b

)
+
ρ

2

∥∥Ax− b∥∥2

2
, (5.25)

where ρ > 0 is a positive scalar value called the penalty parameter. The augmented
Lagrangian can be seen as the Lagrangian associated with the following problem:

min
x
f(x) +

ρ

2

∥∥Ax− b∥∥2

2
(5.26)

subject to Ax = b. (5.27)

The solution to this problem is clearly equivalent to the original problem described
in (5.12), and (5.13) since the added penalty term

(
ρ/2
)∥∥Ax− b∥∥2

F
is zero for any

feasible solution to x. Applying the dual ascent approach to the modi�ed problem
yields

xk+1 := arg min
x
Lρ(x, yk), (5.28)

yk+1 := yk + ηk
(
Axk+1 − b

)
, (5.29)

which is known as the method of multipliers. The bene�t of including the quadratic
penalty term is that the algorithm is able to converge under much milder conditions,
compared to the dual descent. However, the improved convergence properties come
at a cost. The main disadvantage is that with the introduced penalty term, it is no
longer possible to split the Lagrangian function and, thus, the method of multipliers
can not be used for decomposition. This drawback can be overcome using ADMM.

Alternating direction method of multipliers

Alternating direction of multipliers (ADMM) is an algorithm that solves optimiza-
tion problems by partitioning the decision variables into two groups. The algorithm
solves problems of the form

min
x,z

f(x) + g(z) (5.30)

subject to Ax+Bz = c, (5.31)

where x ∈ Rn, z ∈ Rm, A ∈ Rp×n, B ∈ Rp×m, and c ∈ Rp. The functions f(·) and
g(·) are assumed to be a convex and separable across the decision variable x and
z. The ability to split the objective into two parts (x and z) is what constitutes
the main di�erence between the initial problem in (5.12)−(5.13) and the above
problem.
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5.2. ADMM for structured measurement combinations

Similar, to the method of multipliers the augmented Lagrangian for the problem
in (5.30)−(5.31) can be formulated as

Lρ(x, z, y) = f(x) + g(z) + yT
(
Ax+Bz − c

)
+
ρ

2

∥∥Ax+Bz − c
∥∥2

2
. (5.32)

The ADMM algorithm solves the problem in (5.30)−(5.31) by iteratively solving,

xk+1 := arg min
x
Lρ(x, zk, yk), (5.33)

zk+1 := arg min
z
Lρ(xk+1, z, yk), (5.34)

yk+1 := yk + ρ
(
Axk+1 +Bzk+1 − c

)
, (5.35)

where ρ > 0. The ADMM algorithm closely resembles dual ascent and the method
of multipliers. Fist, it minimizes (5.32) with respect to x in (5.33), and then it
minimizes (5.32) with respect to z in (5.34). A dual update is performed in (5.35),
using a step size equal to the augmented Lagrangian parameter ρ. Thus, the optimal
x∗ and z∗ are solved in an alternating fashion, hence the name alternating direction.

The ADMM can be expressed more conveniently by combining the linear and
quadratic terms for the augmented Lagrangian in (5.32) and changing the dual
variable y to the scaled dual variable Λ = ρ−1y. By de�ning the residual,

r := Ax+Bz − c, (5.36)

the augmented Lagrangian in (5.32) can be rewritten to

Lρ(x, z,Λ) = f(x) + g(z) +
ρ

2

∥∥r∥∥2

2
+ ρΛT r. (5.37)

Since
ρ

2

∥∥r + Λ
∥∥2

2
=
ρ

2

(
r + Λ

)T (
r + Λ

)
=
ρ

2

∥∥r∥∥2

2
+ ρΛT r +

ρ

2

∥∥Λ
∥∥2

2
(5.38)

and, thus,

ρ

2

∥∥r∥∥2

2
+ ρΛT r =

ρ

2

∥∥r + Λ
∥∥2

2
− ρ

2

∥∥Λ
∥∥2

2
. (5.39)

The term
(
ρ
2

∥∥r∥∥2

2
+ ρΛT r

)
in (5.37) can be replaced with (5.39), resulting in the

scaled Lagrangian:

Lρ(x, z,Λ) = f(x) + g(z) +
ρ

2

∥∥Ax+Bz − c+ Λ
∥∥2

2
−
∥∥Λ
∥∥2

2
(5.40)

The solution for minimizing Lρ(x, z,Λ) with respect to x and z is independent on
the �nal term ‖Λ‖22. Therefore, the iterations can be written as

xk+1 := arg min
x
f(x) +

ρ

2

∥∥Ax+Bzk − c+ Λ
∥∥2

2
, (5.41)

zk+1 := arg min
z
g(z) +

ρ

2

∥∥Axk+1 +Bz − c+ Λ
∥∥2

2
, (5.42)

Λk+1 := Λk +Axk+1 +Bzk+1 − c. (5.43)
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5. Structural constraints

The scaled form of the ADMM (5.41)−(5.43) is equivalent to its unscaled form
in (5.33)−(5.35), but the formulas for the scaled form are often shorter and more
convenient to work with. In particular, it can be observed that ρ no longer appears
when updating the step size in (5.43), which is one of the main reason it is preferred
over the unscaled version.

5.2.2 The ADMM algorithm for imposing structural constraints

As previously mentioned, it is not possible to reformulate (5.1) and (5.2) such that
it becomes a convex optimization problem as in (3.32) and (3.33). This is due
to there not being enough degrees of freedom to make HGy = J

1/2
uu when H is

forced to have a speci�c structure. To solve this problem two convex relaxation
methods were proposed in [147], and [148] that �nds an upper bound for the loss
when structural constraints are imposed on the measurement matrix H. Here, an
alternative approach is suggested where the aim is to further reduce the loss for
measurement combinations with structural constraints by adapting the ADMM
algorithm presented in Section 5.2.1 .

Lemma 5.1. Under the assumption that Ĥ is the optimal measurement com-
bination that minimizes (5.1) with the structural constraints (5.2) where ĤGy is
full rank. Then, there exists a non-singular matrix Q ∈ Rnu×nu and a full matrix
H ∈ Rnu×ny such that

H = QĤ, (5.44)

where H satis�es

HGy = J1/2
uu . (5.45)

Proof. From Theorem 3.2, it was shown that the optimal solution for H is non-
unique, and for a non-singular matrix Q ∈ Rnu×nu

H = QĤ (5.46)

gives the same loss. Setting Q = J
1/2
uu

(
ĤGy

)−1
then

HGy = QĤGy = J1/2
uu . (5.47)

Thus, while there may not be enough degrees of freedom to make HGy = J
1/2
uu

when structural constraints are imposed on Ĥ, it is possible to �nd a non-singular
matrix Q such that QĤGy = J

1/2
uu .

Using Lemma 5.1, the nonlinear problem (5.1) and (5.2) is reformulated as
shown in the following theorem.

Theorem 5.2. If for some structural constraints S, there exists measurement
combinations Ĥ ∈ Rnu×ny , H ∈ Rnu×ny ; and a non-singular matrix Q ∈ Rnu×nu ,
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5.2. ADMM for structured measurement combinations

where both
(
HGy

)
, and

(
QĤGy

)
are full rank. Then the optimization problem in

(5.1) and (5.2) can be reformulated as follows:

min
H,Q,Ĥ

1

2

∥∥∥HY ∥∥∥2

F
(5.48)

subject to HGy = J1/2
uu (5.49)

H = QĤ (5.50)

Ĥ ∈ S (5.51)

Proof. When there are no structural constraints (H is a full matrix), it was shown
in Theorem 3.2 that minimizing the loss in (5.1) is equivalent of solving (5.48)
subject to (5.49). Furthermore, Lemma 5.1, implies that by imposing structural
constraints on Ĥ, it is possible to �nd a non-singular matrix Q such that (5.50)
and (5.51) are satis�ed with H, and Ĥ resulting in the same loss.

The inclusion of the additional decision variables Q and Ĥ gives H enough
degrees of freedom to satisfy the constraint in (5.49), while Q can be computed
such that Q−1H (and Ĥ) has the desired structure. Unfortunately, this is still a
non-convex problem due to the bilinear constraints in (5.50) and can, therefore,
be di�cult to solve. However, numerical experiments indicate that this problem
translates well to using alternating direction method of multipliers (ADMM).

The augmented Lagrangian associated with (5.48) and the constraint (5.50) can
be formulated as

Lρ(H,Q, Ĥ,Λ) =
1

2

∥∥∥HY ∥∥∥2

F
+
ρ

2

∥∥∥H −QĤ + Λ
∥∥∥2

F
, (5.52)

where Λ ∈ Rnu×ny is the dual variable (Lagrange multiplier), and ρ is a positive
scalar. The ADMM algorithm solves the problem in (5.48)−(5.51), by iteratively
solving,

Ĥk+1 := arg min
H,Ĥ
Lρ(H,Qk, Ĥ,Λk), (5.53)

subject to (5.49), and (5.51)

Hk+1, Qk+1 := arg min
H,Q
Lρ(H,Q, Ĥk+1,Λk), (5.54)

subject to (5.49)

Λk+1 := Λk +Hk+1 −Qk+1Ĥk+1 (5.55)

until it converges.
There are two major bene�ts for using ADMM on (5.48)−(5.51). First, it tem-

porarily relaxes the equality constraints in (5.50), thus, allows for more �exibility
when searching for the optimal solution. Secondly, by separating Ĥ from Q, both
the step in (5.53) and the step in (5.54) become convex quadratic optimization
problems with equality constraints. Therefore, there exist analytical solutions to
both these steps for improved computational e�ciency.
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5. Structural constraints

Analytical solution to the (5.54) subproblem

After dropping superscripts for notational simplicity, the H, Q minimization step
in (5.54) becomes

min
H,Q

=
1

2

∥∥∥HY ∥∥∥2

F
+
ρ

2

∥∥∥H −QĤ + Λ
∥∥∥2

F
(5.56)

subject to HGy = J1/2
uu . (5.57)

Theorem 5.3. Under the assumption that Y Y T is full rank and Ĥ is of full row
rank, then an analytical solution to (5.56) can be obtained for H and Q:

HT = (φ−1 − φ−1Gy(Gy
T

φ−1Gy)−1Gy
T

φ−1)χ (5.58)

+ (φ−1Gy(Gy
T

φ−1Gy)−1)J1/2
uu ,

QT = (ĤĤT )−1Ĥ(ΛT +HT ), (5.59)

where

φ := Y Y T + ρI − ρĤT (ĤĤT )−1Ĥ,

χ := ĤT (ĤĤT )−1ĤΛT − ΛT .

Proof. Solving (5.56) with respect to Q is an unconstrained quadratic optimization
problem, and the optimal solution can be obtained from:

∂L
∂Q

= (ĤĤT )TQT − ĤΛT − ĤHT = 0,

for which the solution forQT is equivalent to (5.59). To �nd a solution for (5.56) and
(5.57) with respect to H, the problem must satisfy the following KKT-conditions
[107]:

[
Y Y T + ρI −Gy

Gy
T

0

] [
HT

λTL

]
=

[
ρĤTQT − ΛT

J
1/2
uu

]
, (5.60)

where λL is the Lagrange multiplier for the constraint in (5.57). Replacing Q with
the solution from (5.59), the KKT conditions in (5.60) can be rewritten to:[

φ −Gy

Gy
T

0

] [
HT

λTL

]
=

[
χ

J
1/2
uu

]
. (5.61)

The optimal HT can then be found by inverting the KKT-matrix using the Schur
complement for the inverse of block partitioned matrices (see, e.g., [91]).
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Analytical solution to the (5.53) subproblem

The solution to (5.53) is identical to solving

min
H,Ĥ

=
1

2

∥∥∥HY ∥∥∥2

F
+
ρ

2

∥∥∥H −QĤ + Λ
∥∥∥2

F
(5.62)

subject to HGy = J1/2
uu (5.63)

ΓS vec(Ĥ
T ) = 0 (5.64)

with vec(ĤT ) being the vectorization of ĤT . ΓS is a matrix consisting of only ones
and zeros that is the orthogonal complement to the structural constraints imposed
on vec(ĤT ). E.g., if the structural constraints for Ĥ are:

Ĥ ∈ S :=

[
ĥ1,1 0 ĥ1,3

0 ĥ2,2 0

]
,

then ΓS should be chosen such that ΓS vec(Ĥ
T ) contains the elements that should

be set to zero, i.e.,

ΓS vec(Ĥ
T ) = 0 ≡

[
ĥ1,2 ĥ2,1 ĥ2,3

]T
=
[
0 0 0

]T
.

Theorem 5.4. Under the assumption of Q, and Y Y T being full rank, then an
analytical solution for (5.62)−(5.64) can be obtained for Ĥ and H:

vec(ĤT ) =
(
ζ−1 − ζ−1ΓTS

(
ΓSζ

−1ΓTS
)−1

ΓSζ
−1
)
vec(θ), (5.65)

HT = Υ(ρĤTQT − ΛT ) + ψ−1Gy(Gy
T

ψ−1Gy)−1J1/2
uu , (5.66)

where θ, ψ, and Υ are de�ned as

θ := ΥΛTQ− ψ−1Gy(Gy
T

ψ−1Gy)−1J1/2
uu Q− ΛTQ, (5.67)

Υ := ψ−1 − ψ−1Gy(Gy
T

ψ−1Gy)−1Gy
T

ψ−1, (5.68)

ψ := Y Y T + ρI, (5.69)

and ζ is given by

ζ = QTQ⊗ (ρΥ− I), (5.70)

with ⊗ being the Kronecker product.

Proof. The proof for (5.65), and (5.66) follows a similar procedure as in the proof
for Theorem 5.3, where the KKT conditions are �rst formulated to solve (5.62)-
−(5.64) with respect to H, and vec(ĤT ). The resulting KKT matrices with respect
toH is equivalent to the one in (5.60). Solving (5.60) forH and replacing the results
in the KKT conditions for vec(ĤT ) gives,[

ζ ΓTS
−ΓS 0

] [
vec(ĤT )
λL

]
=

[
vec(θ)

0

]
(5.71)

from which the results in (5.65) can be obtained.
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5.2.3 The proposed ADMM algorithm

The resulting ADMM algorithm can be seen in Algorithm 2, where �rst an initial
value for Q (e.g., Q = I) needs to be set, together with a positive scalar for the
parameter ρ.

Algorithm 2 ADMM for structural constraints.

Initialize: For k = 1, select a non-singular matrix Q, (e.g., Qk = I) and choose a
su�ciently large positive scalar ρ.

1: Calculate Ĥk+1 using (5.65).
2: Calculate Hk+1, and Qk+1 using (5.58) and (5.59).
3: Update Λk+1 using (5.55).
4: If the maximum number of iterations has been reached, or if both ‖Hk+1 −
Qk+1Ĥk+1‖2F ≤ ε1 and ‖Hk+1−Hk‖2F ≤ ε2 are satis�ed then stop. Otherwise,
set k to k + 1 and repeat step 1 to 4.

It is important to note that for non-convex problems, the ADMM algorithm
may not converge to the globally optimal solution; in fact, it may not converge at
all. Thus, it should only be considered as a local optimization method. Whereas
global convergence of ADMM can be guaranteed for convex problems, this is not
the case when dealing with non-convex problems. However, the ADMM algorithm
seems to be able to converge in most cases as long as the value of ρ is chosen to be
su�ciently large. Furthermore, even when it converges, the �nal result can depend
on how the initial values Qk and ρ were chosen. However, since all the steps can be
solved analytically, and a solution can be obtained relatively fast, it should be easy
to try di�erent initial values until a suitable solution has been found. Therefore,
the hope is that it may be able to provide better results than other methods when
obtaining structured measurement combinations.

5.2.4 Convergence

For convex problems, convergence for ADMM has been proved and illustrated in,
e.g., [21] and [38] as long as ρ > 0 and is �xed. While it is su�cient to select ρ > 0 to
guarantee convergence for convex cases, the value of ρ still plays an important role
in the performance of the algorithm when implemented on di�erent applications.
Where a poorly chosen value for ρ is often associated with slow convergence. Since
determining what constitutes good values for ρ are di�cult to know a priori, several
schemes have been proposed that vary ρ = ρk across the iterations [58], [144], [49].
In general, these methods work by either increasing or decreasing the value of ρk

whenever some speci�ed conditions are satis�ed, e.g.,

ρk+1 =


τρk, if ‖xk+1 − yk+1‖2 < µ‖yk+1 − yk‖2
τ−1ρk, if ‖yk+1 − yk‖2 < µ‖xk+1 − yk+1‖2
ρk, otherwise

(5.72)

where, τ > 1 and µ > 1 are constants. However, convergence can only be guaranteed
if ρk will, in the end, be held at a �xed value.
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5.2. ADMM for structured measurement combinations

While convergence to a globally optimal solution can be guaranteed for convex
problems, the convergence for ADMM when solving non-convex problems remains
an open topic of research. Despite the lack of convergence proofs, it has been
demonstrated that ADMM works extremely well on many applications with non-
convex objectives [88], [21]. The general consensus is that ADMM converges as
long as ρ has been chosen su�ciently large. This seemed to be due to the quadratic
term ρ

2

∥∥Ax + Bz − c
∥∥2

2
in (5.32) tend convexify the objective function locally

when ρ is selected large enough. For a number of di�erent nonlinear problems,
the convergence has recently been proved in [142], and [60], where [142] showed
convergence related to nonlinear consensus and sharing problems. A convergence
proof for a family of non-convex problems under more general conditions was shown
in [60].

These problems are all been dealing with the assumptions that the constraints
are linear and thus when the constraints are bilinear as in (5.53)−(5.55), the same
convergence proofs may no longer hold. However, recently W. Gao et al. showed in
[50] that ADMM employed on non-convex problems with multi-a�ne constraints
also converges to a set of stationary points as long as the penalty parameter ρ
has been chosen su�ciently large. Numerical experiments seem to con�rm this for
the problem in (5.53)−(5.55), as it is able to converge when ρ has been chosen
large enough. The smallest required value for ρ to ensure convergence has been
determined in [54] for a non-negative matrix factorization problem, and in [131] a
rank constrained optimization problem. However, these convergence results can't
directly be adapted for the problem in (5.53)−(5.55), due to the additional con-
straints in (5.49) and (5.51). Thus, determining what constitutes a su�ciently large
ρ to solve (5.53)−(5.55) is di�cult to know a priori. To further improve the ADMM
algorithm, a scheme is proposed that automatically updates the penalty parameter
ρ such that it converges to a set of stationary points.

5.2.5 Adaptive penalty parameter

The larger the value of the penalty parameter ρ, for the problem in (5.53)−(5.55)
the more the algorithm prioritizes satisfying the structural constraints versus re-
ducing the steady-state loss. Therefore, choosing a very large value of ρ will more
likely ensure convergence of Algorithm 2, but it may result in a measurement com-
bination H that gives an unnecessary high loss. If ρk →∞, then the optimization
problem essentially becomes:

min
Hk+1,Qk+1,Ĥk+1

ρ

2

∥∥∥Hk+1−Qk+1Ĥk+1 + Λk
∥∥∥2

F
(5.73)

subject to Hk+1Gy = J1/2
uu (5.74)

Ĥk+1 ∈ S (5.75)

For which the optimal solution is

(Hk+1 −Qk+1Ĥk+1) ≈ −Λk, (5.76)
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and thus, updating the dual step in (5.55) becomes

Λk+1 = Λk + (Hk+1 −Qk+1Ĥk+1) (5.77)

≈ Λk − Λk = 0 (5.78)

Therefore, the aim is to try to keep ρ small such that more emphasis is put on
minimizing the loss. However, ρ still have to be su�ciently large to ensure that
Algorithm 2 converges by forcing the be penalty term Λk to decrease such that as
k →∞:

Λk+1 − Λk → 0 (5.79)

By excluding ρ from the Lagrangian in (5.52), the following objective is de�ned:

Jk :=
1

2

∥∥∥HkY
∥∥∥2

F
+

1

2

∥∥∥Hk −QkĤk + Λk−1
∥∥∥2

F
. (5.80)

If the value of ρ has been chosen su�ciently large such that for two consecutive
iterations the following condition holds,

Jk+1 ≤ Jk, (5.81)

then the problem in (5.53)−(5.55) should also converge. If the sequence of (5.80)
is non-increasing, then Λk must also decease over time such that the condition in
(5.78) eventually holds, which means,

Hk+1 −Hk → 0 (5.82)

(Hk+1 −Qk+1Ĥk+1)→ 0 (5.83)

as k →∞. On the other hand, if the sequence of (5.80) keeps increasing, it would
imply that Λk grows at a rate faster than the loss ‖HkY ‖2F is able to decrease. In
this case, the value for ρ needs to increase until the condition in (5.81) is satis�ed
once again.

The resulting update rule for ρk is given thus given by

ρk+1 =

{
τρk, if Jk−1 − Jk ≥ ε
ρk, otherwise

(5.84)

where 1 >> ε ≥ 0, and τ > 1 (e.g., τ = 2). Note that in contrast to the typical
update scheme in (5.72), the value for ρk in (5.84) is never allowed to decrease.
The proposed ADMM algorithm with an adaptive penalty parameter can be seen
in Algorithm 3, where again an initial value for Qk (e.g., Qk = I) needs to be
set, together with an initial positive scalar for the parameter ρk. Choosing a small
value for the for the initial parameter ρk (e.g., ρk = 1), and then allowing ρk to
increase until it is su�ciently large such that the problem in (5.53)−(5.55) starts
to converge have shown to give good results.
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5.2. ADMM for structured measurement combinations

Algorithm 3 ADMM for structural constraints with adaptive penalty parameter

Initialize: For k = 1, select a non-singular matrix Q, (e.g., Qk = I), and choose
a positive scalar ρk (e.g., ρk = 1).

1: Calculate Ĥk+1 using (5.65).
2: Calculate Hk+1, and Qk+1 using (5.58) and (5.59).
3: Update ρk+1 according to (5.84).
4: Update Λk+1 using (5.55).
5: If the maximum number of iterations has been reached, or if both ‖Hk+1 −
Qk+1Ĥk+1‖2F ≤ ε1 and ‖Hk+1−Hk‖2F ≤ ε2 are satis�ed then stop. Otherwise,
set k to k + 1 and repeat step 1 to 5.

5.2.6 ADMM combined with the branch and bound method

The ADMM algorithm can't guarantee that a globally optimal solution has been
found since the underlying problem that it tries to solve in (5.53)−(5.55) is non-
convex. However, numerical experiments indicate that it often is able to give so-
lutions that are on pair to using, e.g., global search [136] despite requiring only a
fraction of the time. This will be demonstrated in more detail in Section 5.3. In
particular, the ADMM algorithm seems to work extremely well when dealing with
block diagonal constraints, at which it was repeatedly able to converge to the same
solution despite using di�erent initial conditions. This would imply that in most
cases, the property of monotonicity also should hold, i.e., the loss can't be reduced
by removing elements from the measurement matrix H (setting elements to zero).
Therefore, it is possible to combine the proposed ADMM algorithm with a branch
and bound type method to search for the optimal subset of measurements when
there are structural constraints imposed on the measurement selection matrix H.

When there are no structural constraints, very e�cient partially bidirectional
branch and bound (PB3) methods, have already been proposed for both the worst
case loss in [74], and the average case loss in [75] with publicly available code in
[25], and [26] respectively. Therefore, the existing code in [26] will be modi�ed to
also account for the structural constraints by having it call the ADMM algorithm.
These modi�cations will brie�y be outlined here, whereas, for more details on PB3
algorithm, the reader is referred to [74], and [75].

Let's recall the notation used to describe the branch and bound method in
Section 4.2, where Xm denoted an index set. The index set describes a selected
measurement subset, with the subscript m indicating how many measurements are
included in X. The gain matrix that corresponded to the selected measurement
was denoted GyX , and similarly, YX denoted the Y matrix for the index set X. The
optimal measurement combination, obtained using, e.g., (3.36) with index set X is
denoted H∗X , and the resulting average loss is given by the function:

L(Xm) =
1

2

∥∥∥J1/2
uu (H∗XG

y
X)−1H∗XYX

∥∥∥2

F
. (5.85)

Let X̂m denote an index set for which its optimal measurement combination Ĥ∗X
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contain some structural constraints SX . The corresponding loss is given by,

L(X̂m) =
1

2

∥∥∥J1/2
uu (Ĥ∗XG

y
X)−1Ĥ∗XYX

∥∥∥2

F
, (5.86)

which is same as in (5.85) but with Ĥ∗X obtained using, e.g., the proposed ADMM
algorithm for an index set X and the structural constraints SX . Next, let X̂n be
an n-element subset selected from X̂m. The selection problem for �nding the glob-
ally optimal n-element subset X̂∗n that minimizes the loss with the measurement
combination ĤX satisfying the structural constraints can be formulated as

L(X̂∗n) = min
X̂n⊆X̂m

L(X̂n) (5.87)

subject to ĤX ∈ SX . (5.88)

Using the monotonicity properties, the PB3 algorithm presented in [75] can be
modi�ed to also account for structural constraint by having it call Algorithm 3
whenever a node is being evaluated. Thus, the best subset of measurements can
be found that contains the structural constraints without having to evaluate every
possible n-element measurement combination. However, due to the ADMM algo-
rithm being more computationally expensive to evaluate then directly evaluating
the loss when there are no structural constraints, the downward and upward prun-
ing schemes are modi�ed with the aim to reduce the number of calls required to
the ADMM algorithm.

Downward pruning

The monotonicity property implies that if one index set Xn is contained in another
index set Xs (Xn ⊆ Xs), then the optimal loss of the superset must be less or equal
to the optimal loss of the subset [65]:

L(Xs) ≤ L(Xn). (5.89)

Similarly, if one index set has some structural constraints imposed, then the loss
has to be equal or larger compared to when there are no structural constraints:

L(Xn) ≤ L(X̂n). (5.90)

Thus, to present the modi�ed downward pruning scheme, let
¯
Ln(Xs), s > n,

be a downwards lower bound on L over all n-element subsets of Xs:

¯
Ln(Xs) ≤ min

Xn⊆Xs
L(Xn). (5.91)

Further, let B be a known upper bound to the minimum loss for the case when n
variables are selected with structural constraints, such that

B ≥ L(X̂∗n), (5.92)

then this upper bound can be used to remove (prune) sets of measurements, i.e.,

L(X̂n) > L(X̂∗n), ∀Xn ⊆ Xs if
¯
Ln(Xs) > B. (5.93)
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5.2. ADMM for structured measurement combinations

The expression in (5.93) indicates that none of the subsets of Xs can be the
optimal subset. Therefore, Xs and all its subsets can be discarded without further
evaluation, because none of them will be able to produce a smaller loss. The pruning
condition in (5.93), will be used as a downward pruning condition whenever a node
that is under consideration has an index set Xs that is larger than the terminal
set Xn. Thus, for index sets Xs with s > n, it is not necessary to account for the
structural constraints since the monotonicity property implies that if L(Xs) > B
with Xn ⊆ Xs, then

L(X̂n) ≥ L(Xn) > B, (5.94)

and X̂n can't be optimal.

Upward pruning

The upward BAB takes advantage of the upwards monotonicity property that
implies if an index set Xn is a superset of another index set Xs (Xn ⊇ Xs) then
the optimal loss of the subset must be less or equal to the optimal loss of the
superset:

L(Xs) ≥ L(Xn). (5.95)

Thus, to present the principle of upward BAB, let B be an upper bound of as
de�ned in (5.92) and

¯
Ln(Xs), s < n, be an upwards lower bound of L over all

n-element supersets of Xs:

¯
Ln(Xs) ≤ min

Xn⊇Xs
L(Xn). (5.96)

Then

L(X̂n) > L(X̂∗n), ∀Xn ⊇ Xs if
¯
Ln(Xs) > B. (5.97)

Condition (5.97) ensures that none of the supersets of Xs can be globally optimal.
Thus, Xs and its supersets can be pruned without further consideration. Similar, to
downward pruning, the structural constraints will be ignored unless the node under
consideration an index set Xs with an equal size to the desired terminal set (s = n).
As a consequence, the lower bounds can be conservative due to

¯
Ln(Xs) ≤

¯
Ln(X̂s),

which means that some nodes won't be pruned as quickly as they would if the
structural constraints were accounted for. However, since the PB3 algorithm will
spend most of its time evaluating nodes that won't be able to provide the optimal
solution, the more conservative pruning criteria will be used, since it reduces the
number of calls required to the ADMM algorithm.

Upper bound

As already mentioned, the structural constraints will only be considered when
evaluating the terminal sets Xn, and only after the following condition is satis�ed:

L(Xn) < B. (5.98)
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Assuming (5.98) holds, then Algorithm 3 is used to compute ĤX with the desired
structural constraints for the index set Xn. The resulting loss for the index set X̂n

is used to update the upper bound B according to

B =

{
L(X̂n), if L(X̂n) < B

B, otherwise.
(5.99)

As a result, the PB3 scheme can be used together with the ADMM algorithm to
�nd the optimal subset for measurement combinations with structural constraints.
Thus, it is not necessary to screen all possible solutions through exhaustive search
with the ADMM algorithm.

5.3 Case studies: Convergence of the ADMM algorithm

Here, the proposed ADMM algorithm has been evaluated on two di�erent case
studies. The main purpose is to see how Algorithm 3 convergences and how well it
is able to �nd a good local minimum for the non-convex optimization problem in
(5.1)−(5.2).

5.3.1 Random process

In the �rst case study, a random process has been generated. The process consists
of 3 inputs, 8 measurement and 4 disturbances with:

Gy =


−0.1031 0.2609 −0.8069
−1.0071 0.7786 0.8094
−1.5647 −0.1936 0.4398
1.8334 0.9947 −0.6062
0.0757 −1.2160 1.0620
1.9456 −0.8198 0.4871
0.1119 0.5672 0.2836
1.6124 −0.3451 0.6946

 , Gyd =


0.7930 −0.5819 0.7189 0.1261
0.7931 0.0451 0.2182 −0.1238
0.5492 0.4076 0.0258 −0.0536
−0.9135 0.0030 −0.0048 0.3923
1.2711 −0.2075 0.0509 0.0017
−1.0865 −1.1671 0.4221 −0.8474
1.1219 0.2733 −0.7735 0.3302
−0.5605 0.3294 1.4395 −1.9455

 ,
Juu =

[
29.4885 −4.5106 −5.9584
−4.5106 17.8899 −0.8324
−5.9584 −0.8324 31.0935

]
, Jud =

[
0.0550 0.3736 −1.2710 0.0749
−1.6069 1.3093 −2.2350 0.1956
1.0128 1.3157 −1.9978 −0.3612

]
,

Wn = diag
(

[0.4940 0.5855 0.6490 0.4489 0.1003 0.4080 0.0983 0.7851]
)
,

Wd = diag
(

[0.5351 0.6475 0.5311 0.2984]
)
.

Algorithm 3 is initialized with ρk = 1, but instead of having Qk = I, 1000 di�erent
initial values of Qk were randomly chosen to help evaluate how well the proposed
algorithm is performing. The �rst three initial values of Qk were given by,

Q1 =

[
−1.58 0.94 0.35
−0.18 −1.44 0.85
0.11 0.14 −0.50

]
, Q2 =

[
−1.51 −0.77 −1.11
−0.55 −1.35 −1.01
1.72 −0.03 −1.21

]
, Q3 =

[
0.01 0.59 0.75
−0.13 0.56 0.13
−0.70 −1.19 −1.04

]
(5.100)

and will be used to help illustrate some typical behavior that can be expected for the
convergence of Algorithm 3. Two di�erent sets of structural constraints are imposed
on the measurement combination H; a block diagonal constraint, where only one
element is allowed in each column of H; and a mixed structure, which allows for
some elements to exist in the same column of H. The resulting loss is compared to
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the approximation method 2 [148], and Global search [136] from the Matlab Global
Optimization Toolbox. Global search searches for the globally optimal solution by
exploring a set of local minima that are solved using the local solver fmincon. The
�nal solution from Global search often tend to give very good results, but the
algorithm can be computationally demanding for large scale problems.

Block diagonal constraints

A set of block diagonal constraints are imposed the measurement combination H
such that it results in the following structure:

H ∈ S =

 0 h1,2 0 0 h1,5 0 h1,7 0
0 0 h2,3 0 0 h2,6 0 0
h3,1 0 0 h3,4 0 0 0 h3,8

 . (5.101)
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Figure 5.1: Convergence of Jk, and ρk given in (5.80), and (5.84), respectively when
imposing the block diagonal constraints in (5.101).

The convergence for the function (5.80) together with the evolution of ρk can be
seen in Figure 5.1 when initializing with the Q matrices given in (5.100). Whenever
Jk is increasing, it will cause ρk to also increase. Once ρk has become large enough,
it forces Jk to begin decreasing again until it converges. For all 1000 experiments,
Algorithm 3 returned the same (but scaled di�erently) measurement combination,

H =

[
0 1.0000 0 0 −0.5860 0 1.0374 0
0 0 1.0000 0 0 −2.9920 0 0

1.0000 0 0 1.1341 0 0 0 −0.2867

]
,

which resulted in the loss L = 7.9982. The exact same results were also provided
when using Global search with Matlab global optimization toolbox. Using the ap-
proximation method 2 [148] yielded the following measurement combination,

H =

[
0 1.0000 0 0 0.0474 0 0.0770 0
0 0 1.0000 0 0 −27.6697 0 0

1.0000 0 0 8.7718 0 0 0 0.9503

]
,
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for which the loss was 11.4691. Thus, the proposed ADMM algorithm was able
to provide a solution that is signi�cantly better than the convex approximation
method 2, and that is on par with Global search.

Mixed constraints

Here, a mixed structure is investigated, where the structural constraints imposed
on the measurement combination H allows for multiple elements to exist on certain
columns of H:

H ∈ S =

 0 h1,2 h1,3 0 h1,5 0 h1,7 h1,8

h2,1 0 h2,3 0 0 h2,6 h2,7 0
h3,1 0 0 h3,4 0 h3,6 0 h3,8

 . (5.102)

The smallest loss was obtained using global search, which resulted in the measure-
ment combination,

H =

[
0 1.0000 0.3077 0 −0.6240 0 0.1250 0.0044

−17.0222 0 1.0000 0 0 22.3106 31.4103 0
1.0000 0 0 1.9637 0 −0.5584 0 −0.2668

]
,

with the loss L = 4.6620. The proposed ADMM algorithm was able to achieve the
exact same result as Global search for 907 out the 1000 experiments. The average
loss for the 1000 simulations was L̄ = 4.8426 with the largest obtained loss being
L̂ = 13.44396. In contrast, the resulting measurement combination when using the
approximation method was

H =

[
0 1.0000 0.0580 0 −0.0491 0 0.4855 0.3208

0.5676 0 1.0000 0 0 −1.3793 −2.1468 0
1.0000 0 0 9.6080 0 0.6697 0 0.9914

]
,

which gave the loss L = 11.2298. Thus, while in most cases, the proposed ADMM
algorithm outperforms the approximation method in terms of �nding an optimal
solution. There is always the possibility that in certain circumstances, the loss given
by Algorithm 3 is higher than the one obtained by the approximation method, due
to both methods only being able to guarantee a local solution.

The convergence for the function (5.80) together with the evolution of ρk can
be seen in Figure 5.2 when the proposed algorithm has been initialized with the
di�erent Q matrices given in (5.100). For all the three initial values on Qk, the
ADMM algorithm is almost able to converge after 40 iterations. Due to the rela-
tively quick convergence and computations of Hk+1, Ĥk+1, and Qk+1, it should
be possible to alter Algorithm 3 such that it performs several runs using di�erent
initial values of Qk. This would increase the likelihood of getting a result that is
close to the globally optimal solution.
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Figure 5.2: Convergence of Jk, and ρk given in (5.80), and (5.84), respectively when
imposing the mixed constraints in (5.102).

5.3.2 Evaporator

The next case study consists of the evaporation process represented in Figure 5.3.
The evaporator was originally treated by [103] and has been modi�ed in [76]. The
process uses 2 inputs u, 10 potential measurements y, with the 3 disturbances d
being changes in compositions and temperature of the in�ows:

u =
[
F200 F1

]T
(5.103)

y =
[
p2 T2 T3 F2 F100 T201 F3 F5 F200 F1

]T
(5.104)

d =
[
x1 T1 T200

]T
(5.105)

The economic objective of the evaporator is to maximize the operating pro�t [$/h]
and has been formulated in [76]:

J = 600F100 + 0.6F200 + 1.009(F2 + F3) + 0.2F1 − 4800F2. (5.106)

The CV selection containing structural constraints has been studied in [59], and
[146]. Four di�erent control structures (S1 − S4) were obtained in [146] that had
been designed to separate the measurements associated with the condenser and the
measurements associated with the evaporator. The control structure uses subsets
of 3, 4, 5, and 10 measurements from (5.104) and are given by

S1 =

[
0 h1,2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 h2,8 h2,9 0

]
, (5.107)

S2 =

[
0 0 0 h1,4 h1,5 0 0 0 0 0
0 0 0 0 0 0 0 h2,8 h2,9 0

]
, (5.108)

S3 =

[
0 0 0 h1,4 0 0 h1,7 0 0 0
h2,1 0 0 0 0 0 0 h2,8 h2,9 0

]
, (5.109)
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and,

S4 =

[
0 h1,2 0 h1,4 h1,5 0 h1,7 0 0 h1,10

h2,1 0 h2,3 0 0 h2,6 0 h2,8 h2,9 0

]
. (5.110)

Using the proposed ADMM algorithm, CVs are found for the above structural
constraints. These results are compared to using Global search [136] and approxi-
mation method 2 [148]. The resulting measurement combination H when imposing
the structural constraints in S4, were identical for both the ADMM algorithm and
global search, which resulted in

H =
[

0 1 0 136.8399 −9.8220 0 −2.2268 0 0 −5.2358
1 0 0.8319 0 0 −1.4251 0 34.1130 −1.9143 0

]
,

whereas approximation method 2 yielded

H =
[

0 1 0 151.2819 −10.2887 0 −2.6060 0 0 −5.0012
1 0 0.8295 0 0 −2.0407 0 41.6321 −2.1988 0

]
.

The resulting loss, together with the other obtained control structures, are available
in Table 5.1. In addition, the CPU time needed to compute the solutions has also
been included in Table 5.1.

Evaporator

Condensate
F3

Feed
F1, x1, T1

Product
F2, x2, T2

Steam
F100

p100

T100

Separator
p2, L2

F4, T3

Condensate
F5

Condenser

Cooling water
F200 T200

Figure 5.3: The evaporator process �owsheet, adopted from [76].

The results from Table 5.1 shows that for the structural constraints in (5.107)-
−(5.110) imposed on the evaporator, both the ADMM algorithm and the Global
search are able to �nd measurement combinations with a smaller loss compared
to the approximation method. In particular, for the constraint S3 in (5.109), the
improvement in the loss is of great signi�cance. The �nal result for the global
search and the proposed ADMM algorithm are almost identical; thus, both methods
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5.4. Case studies: Subset selection with structural constraints

seem able to �nd good solutions. However, the CPU time required by the ADMM
algorithm to compute the measurement combinations is 100 − 1000 times smaller
compared to Global search. Therefore, the ADMM algorithm is a lot more scalable.
This is also evident from Table 5.1, where the CPU time rapidly grows when
searching for solutions that contain a larger set of measurements. On the other
hand, the CPU time for the ADMM algorithm is almost una�ected by the increase
in the number of measurements.

Table 5.1: CVs for the Evaporator together with their respective loss and CPU time
when using Global search (G. search) [136], approximation method 2 (Method 2)
[148], and the proposed ADMM algorithm (ADMM).

Controlled variables (CVs) Loss CPU(s)

S1 :


G. search : c =

[
T2; F5 − 0.0800F200

]
Method 2 : c =

[
T2; F5 − 0.0386F200

]
ADMM : c =

[
T2; F5 − 0.0802F200

]

S2 :


G. search : c =

[
−6.2372F2 + F100; F5 − 0.0391F200

]
Method 2 : c =

[
−6.2592F2 + F100; F5 − 0.0386F200

]
ADMM : c =

[
−6.2374F2 + F100; F5 − 0.0391F200

]

S3 :


G. search : c =

[
P2 − 6.7287F5 − 0.0998F200; F2 − 0.0321F3

]
Method 2 : c =

[
P2 + 117.7954F5 − 4.9451F200; F2 − 0.0324F3

]
ADMM : c =

[
P2 − 6.7287F5 − 0.0998F200; F2 − 0.0321F3

]

S4 :


G. search : c =

[
f(T2, F2, F100, F3.F1); f(P2, T3.T201, F5, F200)

]
Method 2 : c =

[
f(T2, F2, F100, F3.F1); f(P2, T3.T201, F5, F200)

]
ADMM : c =

[
f(T2, F2, F100, F3.F1); f(P2, T3.T201, F5, F200)

]

58.2074

58.6554

58.2074

3.4788

0.0468

0.0312

11.9160

11.9439

11.9160

3.8532

0.0156

0.0624

20.3317

31.7479

20.3317

14.4457

0.0468

0.0936

8.8847

9.2450

8.8847

42.3075

0.1404

0.0624

5.4 Case studies: Subset selection with structural

constraints

The main purpose of these case studies is to evaluate how well the proposed ADMM
algorithm combined with branch and bound (PB3) [75] performs when selecting
measurement subsets with structural constraints imposed on the measurement com-
bination H. The results are compared to the approximation based MIQP methods
[147], [148], which were brie�y described in Section 5.1.

5.4.1 Evaporator

Here, the evaporator that was described in Section 5.3.2 will again be used as a
case study. The process consisted of 2 inputs u, 10 potential measurements y, and
3 disturbances d that were de�ned in (5.103)−(5.105) with the objective function
J being given in (5.106).
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5. Structural constraints

The subset selection with structural constraints imposed on the measurement
combination has previously been studied in [59], and [146]. Heldt used a general-
ized singular value decomposition (GSVD) approach in [59] whereas Yelhuru imple-
mented the two approximation methods [147], [148] in his PhD thesis [146] on the
evaporator process. The approximation methods were able to get slightly better
results compared to the GSVD approach. Out of the two approximation methods,
there was no di�erence in their �nal result, at least in terms of minimizing the
loss [146]. Therefore, the second approximation method is used as a benchmark to
compare the performance with the proposed ADMM algorithm combined with the
PB3 scheme.

The CVs will be designed to separate the measurements associated with the
condenser (P2; T3; T201; F5; F200) and the measurements associated with the evap-
orator (T2; F2; F100; F3; F1), such that the resulting structural constraints become:

S =

[
0 h1,2 0 h1,4 h1,5 0 h1,7 0 0 h1,10

h2,1 0 h2,3 0 0 h2,6 0 h2,8 h2,9 0

]
. (5.111)

Table 5.2: CVs for the Evaporator and their respective loss when using the convex
approximation method 2 [148], and the proposed ADMM algorithm with PB3.

No. of
meas.

Controlled variables (CVs)
Loss

1
2‖HY ‖

2
F

2
Method 2 : c =

[
T2; T201

]
ADMM : c =

[
F3; F200

] 65.3235

56.0260

3
Method 2 : c =

[
T2; F5 − 0.0386F200

]
ADMM : c =

[
F2 − 0.1639F100; F200

] 58.6554

20.4124

4
Method 2 : c =

[
−6.2592F2 + F100; F5 − 0.0386F200

]
ADMM : c =

[
−6.2376F2 + F100; F5 − 0.0391F200

] 11.9439

11.9160

5
Method 2 : c =

[
−6.2592F2 + F100; 0.0085p1 + F5 − 0.0420F200

]
ADMM : c =

[
−8.6799F2 + F100 + 0.4043F1; F5 − 0.0388F200

] 11.9328

10.8068

10
Method 2 : c =

[
f(T2, F2, F100, F3.F1); f(P2, T3.T201, F5, F200)

]
ADMM : c =

[
f(T2, F2, F100, F3.F1); f(P2, T3.T201, F5, F200)

] 9.2450

8.8847

For the structural constraints in (5.111), subsets of measurement combinations
are computing using the ADMM algorithm. These results are compared to using
approximation method 2 [148], which involved solving an MIQP using the IBM
ILOG Optimizer CPLEX solver [63] in Matlab, with m = 200 selected as the
value for the big-M constraint. The minimized loss as a function of the number of
measurement used can be seen in Figure 5.4 when using these two approaches, with
their CVs shown in Table 5.2 that corresponds to subsets of 2−5 measurements. The
proposed ADMM algorithm is able to �nd CVs that provide a signi�cant reduction
in loss compared to the approximation method. Especially when choosing a subset
of 3 measurements, the improvement in loss is almost threefold.

The CPU times required to compute the solutions are plotted in Figure 5.5.
When using ADMM with the exhaustive search, i.e., the ADMM algorithm is used
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Figure 5.4: The loss vs. the of number measurements when imposing structural con-
straints on the evaporator case study. The results are obtained using (i) exhaustive
search with Algorithm 3, (ii) the convex approximation method 2 in [148], (iii)
Algorithm 3 combined with PB3 [75], and (iv) MIQP to �nd the optimal subsets
without constraints [149].

on all possible measurement subsets, then the time it takes to �nd an optimal solu-
tion is almost 10 times higher compared to when combining the ADMM algorithm
with PB3. The two cases where MIQP is used requires less time than then PB3
with ADMM. However, since the size of the evaporator case study is relatively
small and both the approximation method and the proposed ADMM algorithm
with PB3 are able to obtain their solution almost under 1 second, then the small
di�erences in the CPU times become less important.
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10-2

10-1

100

101

102

Figure 5.5: The CPU time vs. the number of measurements when imposing struc-
tural constraints on the evaporator case study. The results are obtained using (i)
exhaustive search with Algorithm 3, (ii) approximation method 2 in [148], (iii)
Algorithm 3 combined with PB3 [75], and (iv) MIQP to �nd the optimal subsets
without constraints [149].
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5.4.2 Distillation column

Next, the ADMM algorithm with the PB3 method was evaluated on the binary
distillation column model [121]. The column is described in more detail in Section
4.4, where the objective is to minimize the deviations in the top product composi-
tion (xD) and the bottom product composition (xB) by using the re�ux �ow rate
(LR) and the vapor boilup rate (VB) as the inputs. There are 41 potential temper-
ature measurements Ti(oC) avaialble, where i denotes the di�erent stages inside
the column. Therefore, the aim is to obtain the optimal subset of the available
measurements when structural constraints have been imposed on the measurement
selection matrix H.

Table 5.3: CVs for the distillation column and their respective loss when using
approximation method 1 [147], the BARON solver from [78], and the ADMM al-
gorithm with PB3.

No. of
meas.

Controlled variables (CVs)
Loss

1
2
‖HY ‖2F

B
lo
c
k
d
ia
g
o
n
a
l
st
ru
c
tu
re

2

Method 1 : c =
[
T29; T12

]
BARON : c =

[
T30; T12

]
ADMM : c =

[
T30; T12

]
0.5530

0.5478

0.5478

3

Method 1 : c =
[
T30 + 0.989T31; T12

]
BARON : c =

[
T30 + 0.997T31; T12

]
ADMM : c =

[
T30 + 0.997T31; T12

]
0.4427

0.4427

0.4427

4

Method 1 : c =
[
T30 + 0.989T31; T11 + 0.992T12

]
BARON : c =

[
T30 + 0.996T31; T11 + 0.998T12

]
ADMM : c =

[
T30 + 0.996T31; T11 + 0.998T12

]
0.3441

0.3441

0.3441

41

Method 1 : c =
[
f(T21 · · ·T41); f(T1 · · ·T20)

]
BARON : c =

[
f(T21 · · ·T41); f(T1 · · ·T20)

]
ADMM : c =

[
f(T21 · · ·T41); f(T1 · · ·T20)

]
0.1046

0.1039

0.1039

T
ri
a
n
g
u
la
r
st
ru
c
tu
re

2

Method 1 : c =
[
T30; T12

]
BARON : c =

[
T30; T12

]
ADMM : c =

[
T30; T12

]
0.5478

0.5478

0.5478

3

Method 1 : c =
[
T30 + 0.989T31; T11 + 0.737T30 + 0.781T31

]
BARON : c =

[
T30 + 1.022T31; T12 + 0.974T30 + 1.040T31

]
ADMM : c =

[
T30 + 1.022T31; T12 − 0.164T30 − 0.123T31

]
0.4640

0.4425

0.4425

4

Method 1 : c =
[
T30 + 0.989T31; T10 + 1.006T11 + 0.690T30 + 0.774T31

]
BARON : c =

[
T29 + 1.137T31; T12 + 0.916T13 + 0.571T29 + 0.934T31

]
ADMM : c =

[
T30 + 1.023T31; T11 + 0.998T12 − 0.306T30 − 0.215T31

]
0.3529

0.3565

0.3439

41

Method 1 : c =
[
f(T21 · · ·T41); f(T1 · · ·T41)

]
BARON : c =

[
f(T21 · · ·T41); f(T1 · · ·T41)

]
ADMM : c =

[
f(T21 · · ·T41); f(T1 · · ·T41)

]
0.0937

0.0881

0.0881

Similar to the evaporator case study, selecting measurement subsets with struc-
tural constraints have been studied in [146] when using the MIQP with the two
approximation methods in [147], and [148]. The �rst approximation method was
shown in [146] to outperform the second one for this particular example, and thus,
it will be used for comparison to the proposed ADMM algorithm combined with
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5.4. Case studies: Subset selection with structural constraints

the PB3 method. In addition, the results will also be compared to the general pur-
pose solver BARON [78], which is considered one of the leading commercial global
solvers for solving mixed-integer nonlinear programming (MINLP) optimization
problems [84], [102].

In [146], the approximations methods were used to �nd measurement combina-
tion with block diagonal and triangular structures. In particular, the block diagonal
structure is often desirable in many practical situations due to dynamic reasons.
Similarly, a triangular structure can also be dynamically bene�cial, since it can re-
duce the time delays by, e.g., including the bottom tray temperatures for the re�ux
�ow rate LR. Therefore, these two structural constraints will also be considered
here, with the block diagonal constraints being

SBlk =

[
0 · · · 0 h1,21 · · · h1,41

h2,1 · · · h2,20 0 · · · 0

]
, (5.112)

and the triangular constraints given by

STri =

[
0 · · · 0 h1,21 · · · h1,41

h2,1 · · · h2,20 h2,21 · · · h2,41

]
. (5.113)

The resulting CVs for 2, 3, 4, and 41 measurements together with their respec-
tive loss, are shown in Table 5.3 for both block diagonal and triangular structural
constraints. The obtained loss for 3, and 4 measurements when using the approx-
imation method are higher for the triangular structure compared to the block
diagonal structure. This was also mentioned in [146] since it contradicts the mono-
tonicity property, in which adding more elements should not increase the loss.
Therefore, the optimal solution for the triangular structure needs to be at least
as good as the block diagonal structure when the number of measurements is the
same. A similar behavior can also be seen in Figure 5.6 where the loss has been
plotted against the number of measurements, for both the block diagonal and the
triangular constraints. For the triangular structure in Figure 5.6(b), the loss is oc-
casionally increasing when using the approximation method despite there being an
increase in the number of measurements. However, this is not the case when using
the proposed ADMM algorithm with PB3, which is able to provide solutions that
are monotonically decreasing as more measurements are added with a loss that is
less or equal to the convex approximation method.

The computational times required to solve the problems are shown in Figure
5.7, where the maximum time limit had been set to 3600 seconds. This is why
the ADMM algorithm is able to provide a better solution than BARON, despite
BARON being a global solver. However, even for the cases where the maximum
time limit has been reached, the ADMM algorithm with PB3 was able to give good
solutions. This is due to the branching strategy used by the PB3 method puts a
higher priority on evaluating solutions that are estimated to give good results. The
proposed ADMM algorithm with PB3 is able to �nd solutions in a time frame
that is comparable to the approximation method. It works especially well when
searching for a subset of measurements that is smaller than 27 for the triangular
structure. One reason for this may be due to the loss for the triangular structure
is smaller and a lot closer to the case when there are no constraints. The pruning
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Figure 5.6: The loss vs. the number of measurements when imposing block diagonal
and triangular structural constraints on the distillation column. The results are
obtained using (i) the BARON solver from [78], (ii) approximation method 1 in
[147], (iii) Algorithm 3 combined with PB3 [75], and (vi) PB3 to �nd the optimal
subsets without constraints [75].

conditions used when combining the ADMM algorithm with the PB3 method are
a bit conservative since the structural constraints are only being considered when
evaluating the terminal nodes. This would imply that the closer the loss is between
the optimal constrained and unconstrained measurement combinations, the more
e�ective will the pruning of suboptimal nodes be.
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Figure 5.7: The CPU time vs. the number of measurements when imposing block di-
agonal and triangular structural constraints on the distillation column. The results
are obtained using (i) the BARON solver from [78], (ii) approximation method 1 in
[147], (iii) Algorithm 3 combined with PB3 [75], and (vi) PB3 to �nd the optimal
subsets without constraints [75].
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5.5 Conclusion

In this chapter, an ADMM algorithm for incorporating structural constraints in
self-optimizing control variables has been investigated. It was demonstrated in two
di�erent case studies that the ADMM algorithm contained very good convergence
properties, both in terms of obtaining good solutions and the CPU time required
to �nd the solutions.

To �nd the optimal measurement subsets, the proposed ADMM algorithm was
combined with the partial bidirectionally branch and bound (PB3) method pre-
sented in [26]. The resulting scheme was able to �nd measurement subsets with
a smaller loss compared to the methods in [147], and [148] when implemented on
case studies, consisting of an evaporator and a distillation column. It may thus,
serve as an alternative to the approaches in [59], [147] and [148] when trying to
compute CVs with speci�ed structures.

Furthermore, the proposed algorithm seemed capable of computing solutions
that were on par with the commercial MINLP solver BARON [78], but with a
signi�cant reduction in the computational time. Thus, while the solution from the
proposed algorithm can't be guaranteed to be globally optimal, it can be used to
initialize BARON or other global solvers to reduce their CPU time.

65





Part III

Accounting for the dynamics in

self-optimizing control
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Chapter 6

Dynamic considerations for linear

measurement combinations

Self-optimizing control focuses on �nding controlled variables (CVs), that when
kept at constant set-points results in near optimal steady-state economic opera-
tion in spite of disturbances. Besides using single measurements as the CVs, the
null space, or the exact local method can be used to select linear combinations
of measurements (c = Hy) that can further improve the self-optimizing control
performance.

The null space method selects linear measurement combinationsH, such thatH
satis�es HF = 0, with F being the sensitivity matrix given in (3.24). When using
the exact local method, the matrixH can be obtained from equation (3.36). In both
cases, the resulting measurement combination matrix H can be multiplied with
any non-singular matrix Q such that Ĥ = Q−1H, without having any e�ect on the
steady-state loss. Therefore, when multiple unconstrained manipulated variables
(MVs) are available, both the null space and the exact local o�ers sets, consisting
of an in�nite number of possibilities for choosing the measurement combinations.
This property also holds for single input systems, when using the null space method
due to the non-uniqueness of the solution to HF = 0. All solutions give the same
loss from a steady-state perspective, but the dynamic response depends on how the
measurement combinations are selected. Thus, poorly chosen linear combinations
can lead to complex dynamic behavior for which designing feedback controllers
could be challenging.

6.1 Dynamic e�ects when selecting measurement

combinations

To better illustrate the dynamic e�ects when selecting measurement combinations,
let's consider an example of the same binary distillation column that was used for
the case study in Section 4.4. The objective is to minimize the deviations in the
product compositions using a linear combination of the temperature measurements
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6. Dynamic considerations for linear measurement combinations

inside the column. Let the available temperature measurements be,

y =
[
T11 T12 T14 T30 T31

]T
(6.1)

with the sensitivity matrix:

F =

[
3.0644 4.0279 6.1584 3.0958 2.3518
0.2172 0.2850 0.4384 0.2572 0.1946

]T
. (6.2)

Using the null space method, two possible candidates are considered c1 = H1y and
c2 = H2y, where H1 and H2 are given by

H1 =

[
0.1569 −0.0126 −0.0625 0.5869 −0.7917
0.6795 −0.6884 0.1185 −0.1437 0.1724

]
, (6.3)

H2 =

[
0.1938 0.7602 −0.6154 −0.0139 0.0752
0.9004 −0.3855 −0.1973 0.0269 −0.0318

]
. (6.4)

Both the linear combinations H1, and H2 satis�es HF = 0, and thus, they are
equivalent when only considering the steady-state loss. Therefore, it would be
preferable to select the CV that is easier to control.

One way of analyzing the two di�erent control structure is to use the relative
gain array (RGA) [22]. Let G(s) represent the transfer function for a continuous
process with an equal number of outputs and inputs. The RGA is then de�ned as

RGA(s) := G(s)×G(s)−T , (6.5)

where the symbol × denotes the element-by-element multiplication. For decentral-
ized control, the RGA can be used to determine the pairing of the inputs and
outputs using the following rules [125]:

� Pairing rule 1: Prefer pairings such that the rearranged system, with the
selected pairings along the diagonal, has an RGA close to identity at the
frequencies around the closed-loop bandwidth.

� Pairing rule 2: Avoid (if possible) pairing on negative steady-state RGA
elements.

The two proposed measurement combinations, given in (6.3) and (6.4) results
in the following steady-state RGA matrices:

RGAc1(0) =

[
17.44 −16.44
−16.44 17.44

]
, RGAc2(0) =

[
262.24 −261.24
−261.24 262.24

]
. (6.6)

Both the RGA matrices have negative elements in the o�-diagonal, which according
to the second pairing rule suggests a diagonal pairing of the inputs and the outputs
is preferred. Next, the RGA elements are plotted in Figure 6.1 for the c1, and c2
with respect to the frequency. After about 0.1 rad/min, the diagonal elements for
c1 = H1y in Figure 6.1(a) start to become close to one, with the o�-diagonal
elements becoming close to zero. Thus, at frequencies between 0.1 rad/min and
100 rad/min, the RGA matrix for the measurement combination in (6.3) is close
to the identity. The RGA elements for the second measurement combination (6.4)
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Figure 6.1: Magnitude of RGA elements for the binary distillation column

is shown in Figure 6.1(b). Here, there are large values for both the diagonal and
o�-diagonal elements (with the o�-diagonal corresponding to negative values) in
the RGA matrix for frequencies smaller than 10 rad/min. According to the �rst
pairing rule, it is desirable to have an RGA close to the identity matrix around
frequencies at the closed-loop bandwidth. Therefore, based on Figure 6.1, it would
suggest that using the measurement combination in (6.3) is preferable to the one in
(6.4) as it would likely result in a lot less interaction between the CVs. Especially, if
the closed-loop bandwidth is placed between 0.1 rad/min and 100 rad/min since in
that frequency region, the RGA in Figure 6.1(a) will closely resemble the identity
matrix.

6.2 Measurement combinations e�ect on poles and zeros

As illustrated in the previous section, the choice of the measurement combinations
can signi�cantly alter the dynamic behavior of the resulting system. Therefore,
similar to the work in [4], the measurement combinations e�ect on the poles and
zeros for the underlying plant will be discussed here.

De�ning a system described by a continuous state-space model as,

ẋ(t) = Acx(t) +Bcu(t) (6.7)

y(t) = Ccx(t) +Dcu(t) (6.8)

where x ∈ Rnx , u ∈ Rnu , and y ∈ Rny , are the states, inputs, and measurements,
respectively. When using a measurement combination Ĥ (Ĥ = Q−1H) is used,
then the measurements y in (6.8) can be replaced with the CV:

c(t) = ĤCcx(t) + ĤDcu(t) (6.9)

= Q−1HCcx(t) +Q−1HDcu(t). (6.10)

This results in a square plant which can be represented by the system matrices in
(6.7), and c ∈ Rnu in (6.10) as the new measurements. The measurement selection
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matrices Ĥ ∈ Rnu×ny , and H ∈ Rnu×ny gives the same steady-state loss as long
Q ∈ Rnu×nu is a non-singular matrix. Instead of the state-space model in (6.7) and
(6.10), a transfer function G(s) ∈ Rnu×nu can also be used to describe the system
when using measurement combinations, which can be given by

G(s) = Q−1HCc(sI −Ac)−1Bc +Q−1HDc. (6.11)

The poles determine the behavior and stability of the system and are the values
for s at which the denominator of a transfer functionG(s) becomes zero. For a state-
space model described in (6.7), and (6.10), the poles can be found by computing
the eigenvalues of the matrix Ac. [125]

Theorem 6.1. The location of the poles for the system given by (6.7), and (6.10)
are independent of the static non-singular matrix Q, and the linear measurement
combination H.

Proof. The location of the poles is equivalent to the eigenvalues of the system
matrix Ac in (6.7). It then becomes evident that matrices H, and Q have no e�ect
on the system poles since they don't in�uence the matrix Ac.

The zeros for a transfer function G(s) are the frequencies where the numerator
of G(s) becomes zero, i.e., it can be argued that zeros are the values for s in which
the transfer function G(s) loses rank. The location of the zeros plays a critical role
on the dynamic behavior of the system, where, e.g., zeros placed at the right hand
plane (RHP) will pose limitations on the achievable performance for the control
system that is being implemented. [125]

Theorem 6.2. The location of the zeros to the system given by (6.7), and (6.10)
is dependent on the measurement combination H, but are una�ected by the choice
of Q as long as Q is a static matrix that is of full rank.

Proof. De�ning the matricesN ∈ R(nx+nu)×(nx+nu), andM(s) ∈ R(nx+nu)×(nx+nu):

N :=

[
I 0
0 Q−1

]
, M(s) :=

[
sI −Ac −Bc
HCc HDc

]
. (6.12)

The state-space model in (6.7) and (6.10) can be written as[
0
c

]
=

[
sI −Ac −Bc
Q−1HCc Q−1HDc

] [
x
u

]
, (6.13)

which is equivalent to [
0
c

]
= NM(s)

[
x
u

]
, (6.14)

where the zeros are the values for s in which the polynomial system matrix NM(s)
loses rank [125]. Both N and M(s) are square matrices, with N always being a full
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6.3. Controller design for measurement combinations

rank matrix as long as Q is non-singular. The rank for the multiplication NM(s)
is then given by [51]:

rank
(
NM(s)

)
= rank

(
M(s)

)
. (6.15)

Therefore, the rank and hence, the location of the zeros are determined by the
matrix M(s), which is dependent on the measurement combination H.

When the system in (6.7) and (6.10) have multiple inputs u, then the resulting
system poles and zeros will have directions associated to them. The pole directions
can be obtained directly from the transfer function matrix G(s) at the di�erent
poles pi:

G(pi)up,i =∞, yHp,iG(pi) =∞. (6.16)

Here, up,i, and yHp,i are de�ned as the i:th input pole direction, and i:th the output
pole direction respectively with H being de�ned as the complex conjugate trans-
pose. The pole directions provide an indication on how much the i:th mode is
excited for each input and output [125].

Similarly, the i:th input zero direction, and the i:th output zero direction, de-
�ned as uz,i, and yHz,is respectively can be obtained from:

G(zi)uz,i =∞, yHz,iG(zi) =∞. (6.17)

The output zero directions yHz,i, are typically of greater interest than the input zero
directions uz,i since they give information about which output may be di�cult to
control. Thus, the achievable control performance will be limited by the CV that
corresponds to non-zero elements in the zero output direction. [125]

Theorem 6.3. The pole and zero directions for the system given by (6.7), and
(6.10) are dependent on both the non-singular matrix Q and on the linear measure-
ment combination H.

Proof. The pole and zero directions are given in (6.16), and (6.17), respectively,
where they both are in�uenced by the transfer function G(s). Since G(s), given
in (6.11) is dependent on both Q and H, it can be concluded that they both will
in�uence the pole and zero directions for the system.

To summarize, neither the measurement combination H nor the non-singular
matrix Q will change the location of the system poles. However, the choice of H
will in�uence the location of the zeros; and both Q and H will a�ect the pole and
zero directions for the system.

6.3 Controller design for measurement combinations

In Section 6.1, and 6.2, it was demonstrated that the selection of measurement
combinations will in�uence the dynamic behavior of the system. As a consequence,
they can have a signi�cant impact on the closed-loop performance, where the re-
sulting control con�guration is illustrated in Figure 6.2. For systems with multiple
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unconstrained degrees of freedom, the non-singular matrix Q can be chosen with
great �exibility as it doesn't in�uence the steady-state performance for which most
of the economics are based on. Therefore, the matrix Q was treated in [4], as a
static compensator, which can be used to try to decouple the system interactions
at some desired frequency range. A typical stepwise approach for designing the
closed-loop system shown in Figure 6.2 can then be given by:
Step 1 Obtain the optimal measurement combinationH that minimizes the steady-

state loss.

Step 2 Find a non-singular matrix Q such that Q−1H improves the controllability
of the system by, e.g., reducing the interactions between the resulting CVs.

Step 3 Design the feedback controllers K.
The �rst step can be solved using, e.g., the null space method in (3.27) or

for the exact local method in (3.36) to obtain a measurement combination H. If
the process is mainly perturbed by slow varying disturbances, then for the second
step, it may be su�cient to use steady-state decoupling by setting Q = G(0). A
decentralized controller can then be designed such that the closed-loop bandwidth
lies in the lower frequency domain. In case it is necessary to have a controller
with a faster response time, then Q should be chosen such that the interactions
between the CVs are reduced by, e.g., having the corresponding RGA be close to the
identity matrix around the desired bandwidth frequency. Alternatively, instead of
the RGA, some gramian based input-output pairing techniques could be used, such
as the participation matrix [30], the Hankel interaction index array [143], or the Σ2

interaction measure [19]. Finally, the feedback controller K needs to be tuned for
the CVs, after which dynamic simulations would typically be necessary to validate
the proposed control structure. If the result is not acceptable, the above three-step
procedure has to be repeated, which may require �nding a di�erent measurement
combination. As a consequence, selecting measurement combinations and designing
feedback controller can in certain cases, become a very tedious task since it may
require a lot of "trial and error".

Figure 6.2: Closed-loop system that controls a measurement combination.

The null space method and exact local method are steady-state only when
selecting measurement combinations H. Therefore, they don't account for the po-
tential dynamic complexity that these measurement combinations can add to the
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system. It should be possible to use the matrix Q to reduce the complexity of
the system by, e.g., decreasing the interactions around some frequency range. The
interactions can be determined using, e.g., the RGA, but it can be di�cult for
the designer to specify the frequency ranges. More importantly, even if the desired
closed-loop bandwidth is known, there exists no simple method of choosing Q such
that the interactions are improved around these frequencies. In addition, it may
not even be possible to design controllers that achieve acceptable performance for
the desired bandwidth. This holds in particular if the initially chosen measure-
ment combinations H have imposed severe limitations on the achievable control
performance due to RHP zeros. Similarly, gramian based methods for interaction
measurements don't consider the �nal closed-loop performance [9]. Furthermore,
the choice of Q is only relevant when there are multiple unconstrained degrees of
freedom. For single input systems, the value on Q becomes static gain only and
doesn't have any e�ect on the dynamics of the resulting system.

6.4 Conclusion

The pro�t for process plants is mainly determined by the steady-state economics,
and thus, little emphasis has been put on the dynamic performance when selecting
the measurement combination H. However, as demonstrated in this chapter, CVs
consisting of measurement combinations can give rise to complex dynamic behavior
which imposes limitations on the achievable performance.

It is in general, assumed that the plant has been stabilized before determining
the self-optimizing control variables. Thus, as long as the feedback controllers K
are not tuned too aggressively for the self-optimizing control variables, they should
be able to maintain the stability of the plant. It can, therefore, be argued that using
the above three-step procedure is su�cient to achieve a stable plant with acceptable
dynamic and steady-state performance. However, not fully utilizing the additional
tuning variables given by the matrices Q, and H when designing the closed-loop
system is clearly suboptimal. In particular, if a large improvement in the dynamic
response can be achieved for the same steady-state performance without needing
to increase the complexity of the control structure. In the two upcoming chapters,
a method is presented for selecting the measurement combination and designing
the feedback controllers. Instead of choosing K, Q, and H separately, the proposed
method computes them simultaneously by trying to solve a static output feedback
control problem.
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Chapter 7

Static output feedback control

When tuning feedback controllers, the aim is often to minimize some common
control performance criterion, such as the integrated absolute error (IAE). However,
in self-optimizing control, minimizing IAE may not be ideal. Instead, the self-
optimizing control variables should ideally, when subjected to disturbances, drive
the process to the new optimal operating point while minimizing deviations in
variables with large economic impact (e.g., the active constraints). Therefore, it
might be better to recast it as an optimization problem for �nding, e.g., the H2

or the H∞ optimal static output feedback (SOF) controller that minimizes the
deviations in a speci�ed performance output. Contrary to full state-feedback or
full-order controllers, which can be solved using linear matrix inequalities (LMI),
structured SOF generally results in bilinear matrix inequalities (BMI) and remains
an open problem [132], [114]. They are often solved to a local optimum by iteratively
�xing some variables and solving the resulting LMI.

In this chapter, formulations are given that can be used for �nding discrete or
continuous-time SOF controllers that minimize either the H2 or the H∞ norm for
the resulting closed-loop system. In addition, two ways of augmenting the system
matrices are presented, such that the resulting SOF controller can be transformed
into decentralized PI controllers that control linear measurement combinations.
These formulations are based on the two-step procedure for SOF controller de-
sign, introduced in [109], [37], [94], [2], and [98]. There an optimization problem
is formulated that contains a BMI, which can be made into an LMI if initialized
with a stabilizing state feedback controller. The advantage of these methods is that
they make it possible to decouple the controller parameters and the measurement
combination when solving the optimization problem. Therefore, these SOF meth-
ods will be expanded on in Chapter 8, where the goal will be to design feedback
controllers and select the self-optimizing control variables simultaneously.
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7. Static output feedback control

7.1 Static output feedback control in continuous-time

Consider a system described by the continuous linear time-invariant state-space
model,

ẋ(t) = Acx(t) +Bcu(t) + Ecw(t), (7.1)

y(t) = Ccx(t) +Dcw(t), (7.2)

where x ∈ Rnx , u ∈ Rnu , w ∈ Rnw , and y ∈ Rny are the states, inputs, disturbances,
and measurements, respectively. The aim is to �nd a controller K,

u(t) = Ky(t) = K
(
Ccx(t) +Dcw(t)

)
(7.3)

such that resulting closed-loop system

ẋ(t) =
(
Ac +BcKCc

)
x(t) +

(
Ec +BcKDc

)
w(t) (7.4)

is stable and minimizes either the H2 or the H∞ norm. In the upcoming sections,
two approaches are presented that tries to �nd the H2 or the H∞ optimal SOF
controller. Both these methods heavily rely on the following projection lemma (also
known as the elimination lemma [120]):

Lemma 7.1. (Projection lemma [111]) Given a symmetric matrix Ψ ∈ Rn×n
and two matrices U ∈ Rn×l and V ∈ Rm×n, there exists a matrix Ξ ∈ Rl×m that
satis�es

UTΞY + Y TΞU + Ψ ≺ 0 (7.5)

i� the following projection inequalities are satis�ed:

U⊥TΨU⊥ ≺ 0, (7.6)

V ⊥TΨV ⊥ ≺ 0. (7.7)

Here, U⊥ and V ⊥ are arbitrary matrices whose columns form a basis of the null
spaces of U and V , respectively.

7.1.1 H2 optimal control in continuous-time

Consider the following generalized extension of the system in (7.1) and (7.2) with
Dc = 0:

Process :


ẋ(t) = Acx(t) +Bcu(t) + Ecw(t),

z(t) = C2x(t) +D2u(t),

y(t) = Ccx(t),

(7.8)

where z(t) ∈ Rnz is the performance output vector. The process model maps
the exogenous disturbance inputs w(t) ∈ Rnw and the control inputs u(t) to the
performance output z(t) and the measured outputs y(t) as shown in Figure 7.1.

Let Tw,z represent the closed-loop system for (7.8) from the disturbance input
w to the performance output z. The H2 optimal control problem is to design
the controller K such that Tw,z is internally stable, and the H2 norm ‖Tw,z‖2 is
minimized. An upper bound for ‖Tw,z‖2 can be found using Lemma 7.2 [115], [37]:
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7.1. Static output feedback control in continuous-time

Figure 7.1: Control con�guration for static output feedback control.

Lemma 7.2. Suppose that the SOF controller K is chosen such that, the closed-
loop system Tw,z is asymptotically stable. Then for a given scalar γ, the inequality
‖Tw,z‖22 < γ2 holds if there exists a symmetric and positive de�nite matrix P ∈
Rnx×nx such that:

trace(ETc PEc) < γ2 (7.9)

ATclP + PAcl + CTclCcl ≺ 0 (7.10)

P � 0 (7.11)

where Acl, and Ccl are the closed-loop matrices that are de�ned as

Acl := Ac +BcKCc, (7.12)

Ccl := C2 +D2KCc. (7.13)

Lemma 7.2 implies that the upper bound on ‖Tw,z‖2 can be reduced by minimiz-
ing trace(ETc PEc) with respect to K and P while satisfying the matrix inequalities
in (7.10) and (7.11).

By introducing slack variables, [109] proposed a new parameterization method
for �nding the H2 optimal SOF controller. De�ning the linear function:

M2(P ) :=

[
0 BTc P

PBc ATc P + PAc

]
+

[
DT

2

CT2

] [
D2 C2

]
. (7.14)

Then the following theorem gives a necessary and a su�cient condition for de-
termining a stabilizing controller that minimizes the H2 norm for the closed-loop
system.

Theorem 7.3. There exists a non-singular matrix Φ1 ∈ Rnu×nu , and a matrix
Φ2 ∈ Rnu×ny such that K = Φ−1

1 Φ2 is a stable H2 optimal SOF controller, i�
there exists a stabilizing state feedback matrix KSF ∈ Rnu×nx and a positive de�-
nite matrix P = PT ∈ Rnx×nx that gives the optimal solution for the non-convex
optimization problem:

Φ1,Φ2 = arg min
KSF ,P,Φ1,Φ2

trace(ETc PEc) (7.15)

subject to P � 0 (7.16)

M2(P ) +N2 ≺ 0 (7.17)

79



7. Static output feedback control

where N2 is de�ned in (7.18) with the symbol He
{
X
}
indicating XT +X:

N2 := He

{[
I

−KT
SF

] [
Φ1 −Φ2Cc

]}
. (7.18)

Proof. Lemma 7.2 states that the closed-loop system ‖Tw,z‖22 has an upper bound
that is given by trace(ETc PEc) if there exists a matrix P = PT � 0 satisfying the
inequality, (

Ac+BcΦ
−1
1 Φ2Cc

)T
P + P

(
Ac +BcΦ

−1
1 Φ2Cc

)
+
(
C2 +D2Φ−1

1 Φ2Cc
)T (

C2 +D2Φ−1
1 Φ2Cc

)
≺ 0, (7.19)

where controller K has been replaced with Φ−1
1 Φ2. Based on the proof given in

[37], the above expression can be formulated as:[
CTc ΦT2 Φ−T1 I

]
M2(P )

[
Φ−1

1 Φ2Cc
I

]
≺ 0 (7.20)[

I

−CTc ΦT2 Φ−T1

]⊥
M2(P )

[
I

−CTc ΦT2 Φ−T1

]⊥T
≺ 0. (7.21)

According to Lemma 7.1, the above expressions can be shown to be equivalent to,

M2(P ) +He

{[
Z1

Z2

] [
I −Φ−1

1 Φ2Cyx
]}
≺ 0, (7.22)

with the matrices Z1 ∈ Rnu×nu and Z2 ∈ Rnx×nu . Factorizing Z1 gives,

M2(P ) +He

{[
I

Z2Z
−1
1

] [
Z1 −Z1Φ−1

1 Φ2

]}
≺ 0, (7.23)

which is equal to (7.17) with Z1 = Φ1 and KT
SF = −Z2Z

−1
1 . Finally, it can be

shown that pre- and post- multiplying (7.17) with
[
KT
SF I

]
and its transpose,

respectively satis�es: [
KT
SF I

]
M2(P )

[
KSF

I

]
≺ 0 (7.24)

(Ac+BcKSF )TP + P (Ax +BcKSF )

+
(
C2 +D2KSF

)T (
C2 +D2KSF

)
≺ 0. (7.25)

The optimization problem given in (7.15)−(7.17) is non-convex due to the BMI
in (7.17), and thus, an optimal global solution can't be guaranteed. However, if an
initial stable state feedback controller KSF has been chosen, then the problem be-
comes convex and can be solved using standard semi-de�nite programming (SDP)
solvers. The obtained solution will be dependent on the choice of KSF , and it is
thus, often recommended to select KSF as the H2 optimal state feedback gain since
it often tends to give satisfactory solutions [109]. If the �nal result is not considered
acceptable or if a feasible solution can't be found, then it is recommended to try
several di�erent stabilizing state feedback gains using, e.g., the method in [11].
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7.1.2 H∞ optimal control in continuous-time

Let the state-space model of the system be given by

Process :


ẋ(t) = Acx(t) +Bcu(t) + Ecw(t),

z(t) = C∞x(t) +D∞u(t) + E∞w(t),

y(t) = Ccx(t) +Dcw(t).

(7.26)

The H∞ optimal control problem consists of minimizing the H∞ norm of the
closed-loop system from exogenous disturbance signals w(t) to the controlled out-
put signals z(t) [47], [125]. De�ning the closed-loop matrix as

Tw,z :=

[
Acl Bcl
Ccl Dcl

]
(7.27)

with the closed loop matrices:

Acl = Ac +BcKCc, (7.28)

Bcl = Ec +BcKDc, (7.29)

Ccl = C∞ +D∞KCc, (7.30)

Dcl = D∞ +D∞KDc. (7.31)

The objective is to �nd the controller K such that ‖Tw,z‖∞ is minimized. The
H∞ norm has several interpretations regarding performance. One is that it mini-
mizes the peak of the singular value of Tw,z(jω). Alternatively, from a time-domain
interpretation, it can be considered as the worst-case H2 norm [125]:

‖Tw,z‖∞ = max
w(t)6=0

‖z(t)‖2
‖w(t)‖2

(7.32)

Finding an H∞ optimal controller can be di�cult and therefore, in practice, it is
often easier to design a suboptimal one, by obtaining the minimum upper bound
γ that satis�es ‖Tw,z‖∞ < γ. The upper bound γ can be given by the well-known
Bounded real lemma for continuous-time systems.

Lemma 7.4. (Bounded real lemma for continuous-time systems [139]), Tw,z is
asymptotically stable and ‖Tw,z‖∞ < γ i� there exists a symmetric and positive
de�nite matrix P ∈ Rnx×nx such that the following inequality holds:[

ATclP + PAcl + CTclCcl PBcl + CTclDcl

BTclP +DT
clCcl DT

clDcl − γ2I

]
≺ 0 (7.33)

The parametrization for H2 static output feedback (SOF) control that was
introduced in [109] can be extended to a parametrization for the H∞ SOF case as
given in [10] and [37]. De�ning the linear function:

M∞(P, γ) :=

[
I 0 0
Ac Ec Bc

]T [
0 P
P 0

] [
I 0 0
Ac Ec Bc

]
+

[
C∞ E∞ D∞
0 I 0

]T [
I 0
0 −γ2I

] [
C∞ E∞ D∞
0 I 0

]
. (7.34)
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Then, an H∞ optimal solution for K, while ensuring a stable closed-loop system
for (7.27) can be obtained from the following theorem.

Theorem 7.5. There exists an SOF controller K = Φ−1
1 Φ2, where Φ1 ∈ Rnu×nu

Φ2 ∈ Rnu×ny that gives a stable closed-loop system and minimizes γ while achieving
‖Tw,z‖∞ ≤ γ, if there exists matrices K1 ∈ Rnu×nx , K2 ∈ Rnu×nx , and a positive
de�nite matrix P = PT ∈ Rnx×nx that solves the following non-convex optimization
problem:

Φ1,Φ2 = arg min
K1,K2,P,Φ1,Φ2

γ2 (7.35)

subject to P � 0 (7.36)

M∞(P, γ) +N∞ ≺ 0 (7.37)

where N∞ is de�ned in (7.38) with the symbol He
{
X
}
indicating XT +X:

N∞ := He


K1

K2

−I

 [
Φ2Cc Φ2Dc Φ1

] (7.38)

Proof. Similar to the proof in [10], the inequality in (7.33) can be rewritten as:[
I 0 CTc K

T

0 I DT
c K

T

]
M∞(P, γ)

[
I 0 CTc K

T

0 I DT
c K

T

]T
≺ 0. (7.39)

Replacing K with Φ−1
1 Φ2, then according to Lemma 7.1, equation (7.39) is equiv-

alent to

M∞(P, γ) +He


Z1

Z2

Z3

 [
−Φ−1

1 Φ2Cc −Φ−1
1 Φ2Dc I

] ≺ 0, (7.40)

with the matrices Z1 ∈ Rnx×nu , Z2 ∈ Rnx×nu and, Z3 ∈ Rnu×nu . Factorizing Z3

gives,

M∞(P, γ) +He


Z1Z

−1
3

Z2Z
−1
3

I

 [
−Z3Φ−1Φ2Cc −Z3Φ−1

1 Φ2Dc Z3

] ≺ 0.

(7.41)

Finally, de�ning K1 := Z1Z
−1
3 , K2 := Z2Z

−1
3 , and Z3 := −Φ1 gives the expression

in (7.37).

The optimization problem in (7.35)−(7.37) include a BMI, which makes it non-
convex and thus, an optimal global solution can't be guaranteed. By initializing
with some stabilizing state feedback gainsK1 andK2, the problem becomes convex,
and a suboptimal solution can be obtained. The initialization variables K1 and K2

can be interpreted as a suboptimal solution to a convex, full informationH∞ control
problem (with Cc =

[
I 0

]T
and Dc =

[
0 I

]T
) and can, e.g., be obtained using

the method described in [37].
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7.2 Static output feedback control in discrete-time

Consider a system described by the discrete linear time-invariant state-space model,

xk+1 = Adxk +Bduk + Edwk, (7.42)

yk = Cdxk +Ddwk, (7.43)

where xk ∈ Rnx , yk ∈ Rny , uk ∈ Rnu , wk ∈ Rnw are the states, measurements,
inputs, and disturbances, respectively. The SOF control problem is to �nd the
controller K,

uk = Kyk = K
(
Cdxk +Ddwk

)
, (7.44)

such that the closed-loop system

xk+1 =
(
Ad +BdKCd

)
xk +

(
Ed +BdKDd

)
wk (7.45)

is stable and possesses the desired performance characteristics.

7.2.1 H2 optimal control in discrete-time

Let, Dd = 0, then a generalized extension of the system in (7.42) and (7.43) is
given by,

Process :


xk+1 = Adxk +Bduk + Edwk,

zk = C2xk +D2uk,

yk = Cdxk,

(7.46)

where zk ∈ Rnz is the performance output vector. The resulting plant model shown
in Figure 7.1, maps the exogenous disturbance inputs wk ∈ Rnw and the control
inputs uk to the performance output zk and the measured outputs yk.

Let Tw,z represent the closed-loop system for (7.46) that uses the feedback
controller K. The aim is to design the controller K such that Tw,z is internally
stable, and the H2 norm of the signals from wk to zk gets minimized. An upper
bound for the H2 norm of the closed-loop system can be obtained by using the
following lemma [98], [32].

Lemma 7.6. Suppose that the SOF controller K is chosen such that, the closed-
loop system Tw,z is asymptotically stable. Then for a given scalar γ, the inequality
‖Tw,z‖22 < γ2 holds if there exists a positive de�nite matrix P = PT ∈ Rnx×nx such
that:

trace(ETd PEd) < γ2, (7.47)

ATclPAcl − P + CTclCcl ≺ 0, (7.48)

P � 0, (7.49)

where Acl, and Ccl are the closed-loop matrices that are de�ned as

Acl := Ad +BdKCd, (7.50)

Ccl := C2 +D2KCd. (7.51)
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As in the continuous case, Lemma 7.6 implies that the upper bound on ‖Tw,z‖2
can be reduced by minimizing trace(ETd PEd) with respect to K and P while satis-
fying the matrix inequalities in (7.48) and (7.49). Based on the two-step procedure
presented in [98] and [140], a SOF controller that minimizes the upper bound for
‖Tw,z‖2 can be found using the following theorem.

Theorem 7.7. There exists a SOF controller K = Φ−1
1 Φ2, where Φ1 ∈ Rnu×nu ,

Φ2 ∈ Rnu×ny of which Φ1 has to be non-singular that gives a stable closed-loop
system and minimizes the H2 norm, if there exists a stabilizing state feedback gain
KSF ∈ Rnu×nx , a positive de�nite matrix P = PT ∈ Rnx×nx , and matrices,
Z1 ∈ Rnx×nx and Z2 ∈ Rnz×nz that solves the non-convex optimization problem:

Φ1,Φ2 := arg min
KSF ,P,Φ1,Φ2,Z1,Z2

trace(ETd PEd) (7.52)

subject to P � 0 (7.53)

W2 ≺ 0 (7.54)

where

W2 :=


−P ∗ ∗ ∗

ZT1 Ad + ZT1 BdKSF P − Z1 − ZT1 ∗ ∗
ZT2 C2 + ZT2 D2KSF 0 I − Z2 − ZT2 ∗

Φ2Cd − Φ1KSF BTd Z1 DT
2 Z2 −Φ1 − ΦT1

 . (7.55)

Proof. De�ning,

S :=

I 0 0 Φ−1
1 (Φ2C2)T

0 I 0 0
0 0 I 0

 , (7.56)

and multiplying the expression in (7.55) with S from the left and ST from the right
gives:  −P ATclZ1 CTclZ2

ZT1 Acl P − Z1 − ZT1 0
ZT2 Ccl 0 I − Z2 − ZT2

 ≺ 0. (7.57)

Finally, by multiplying (7.57) with
[
I ATcl CTcl

]
from the left and its transpose

from the right side gives

ATclPAcl − P + CTclCcl ≺ 0,

which is equal to (7.48) in Lemma 7.6.

The inequality in (7.54) makes the problem given in (7.52)−(7.54) non-convex.
However, the problem can be made convex if an initial stable state feedback con-
troller KSF has been chosen for the inequality in (7.54).
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7.2. Static output feedback control in discrete-time

7.2.2 H∞ optimal control in discrete-time

Consider the discrete-time LTI system where the performance output vector zk ∈
Rnz has been added to the system in (7.112) and (7.113):

Process :


xk+1 = Adxk +Bduk + Edwk,

zk = C∞xk +D∞uk + E∞wk,

yk = Cdxk +Ddwk.

(7.58)

The H∞ optimal control problem then consists of minimizing the H∞ norm of the
closed-loop system from the exogenous disturbance signals wk to the performance
output signals zk [47], [125]. De�ning the closed-loop matrices,

Acl = Ad +BdKCd, (7.59)

Bcl = Ed +BdKDd, (7.60)

Ccl = C∞ +D∞KCd, (7.61)

Dcl = E∞ +D∞KDd, (7.62)

where K is the static output feedback controller. When a state feedback controller
is used, then KCd, KDd, KCd, and KDd in (7.59)−(7.62) are replaced with the
state feedback gain KSF . If the resulting closed-loop system is de�ned as

Tw,z :=

[
Acl Bcl
Ccl Dcl

]
, (7.63)

then the objective is to �nd the static output feedback controller K such that
‖Tw,z‖∞ is minimized. Next, let's recall the well-known Bounded real lemma for
discrete-time systems.

Lemma 7.8. (Bounded real lemma for discrete-time systems [47]), Tw,z is asymp-
totically stable and ‖Tw,z‖∞ < γ i� there exists a symmetric and positive de�nite
matrix P ∈ Rnx×nx such that the following inequality holds:ATclPAcl − P ATclPBcl CTcl

BTclPAcl BTclPBcl − γ2I DT
cl

Ccl Dcl −I

 ≺ 0. (7.64)

Designing an H∞ optimal controller can be challenging, and therefore it is
common to instead �nd a suboptimal one, by obtaining the minimum upper bound
γ that satis�es ‖Tw,z‖∞ < γ. Based on Lemma 7.1 and Lemma 7.8, an H∞ optimal
solution for K that ensures a stable closed-loop and a minimum upper bound γ for
‖Tw,z‖∞ can be obtained from the following theorem.

Theorem 7.9. There exists a SOF controller K = Φ−1
1 Φ2, where Φ1 ∈ Rnu×nu ,

Φ2 ∈ Rnu×ny of which Φ1 has to be non-singular that gives a stable closed-loop
system and minimizes γ while achieving ‖Tw,z‖∞ ≤ γ, if there exists a stabilizing
state feedback gain KSF ∈ Rnu×nx , a positive de�nite matrix P = PT ∈ Rnx×nx),
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and matrices Z1, Z2 ∈ Rnx×nx that solves the following non-convex optimization
problem:

Φ1,Φ2 := arg min
KSF ,Z1,Z2,P,Φ1,Φ2

γ2 (7.65)

subject to P � 0 (7.66)

W∞ + V∞ ≺ 0 (7.67)

where W∞ is de�ned

W∞ :=


Θ11 ∗ ∗ ∗ ∗
Θ21 Θ22 ∗ ∗ ∗
BTd Z

T
2 BTd Z

T
1 0 ∗ ∗

Θ41 0 D∞ −I ∗
ETd Z

T
2 ETd Z

T
1 0 ET∞ −γ2I

 , (7.68)

with

Θ11 = −P + (Ad +BdKSF )TZT2 + Z2(Ad +BdKSF ),

Θ21 = −ZT2 + Z1(Ad +BdKSF ),

Θ22 = P − Z2 − ZT2 ,
Θ41 = C∞ +D∞KSF ,

and V∞ is given by

V∞ :=


0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗

Φ2Cyx − Φ1KSF 0 −Φ1 − ΦT1 ∗ ∗
0 0 0 0 ∗
0 0 DT

d ΦT2 0 0

 . (7.69)

Proof. Similar to the proof in [94], the expression in (7.67) can be rewritten as

UΦ1V
T + V ΦT1 U

T +W∞ ≺ 0, (7.70)

where V and U are de�ned as

V :=
[
Φ−1

1 Φ2Cd −KSF 0 −I 0 Φ−1
1 Φ2Dd

]T
, (7.71)

U :=
[
0 0 I 0 0

]T
. (7.72)

Choosing the matrices,

V ⊥ =


I 0 0 0
0 I 0 0

Φ−1
1 Φ2Dd 0 0 Φ−1

1 Φ2Cd −KSF

0 0 I 0
I 0 0 I

 , (7.73)

U⊥ =


I 0 0 0
0 I 0 0
0 0 0 0
0 0 I 0
0 0 0 I

 , (7.74)
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whose columns form the null spaces of V , and U , respectively. Then, according to
Lemma 7.1, the expression in (7.70) is equivalent to

ATclZ
T
1 + Z1Acl − P ∗ ∗ ∗
−ZT1 + Z2Acl P − Z2 − ZT2 ∗ ∗

Ccl 0 −I ∗
BTclZ

T
1 BTclZ

T
2 DT

cl −γ2I

 ≺ 0, (7.75)

which is a multiplication of W∞ in (7.70) by V ⊥T on the left and V ⊥ on the
right. Replacing K in (7.59)−(7.62), with Φ−1

1 Φ2, guarantees the stability of the
closed-loop system when using the static output feedback controller. Multiplying
W∞ in (7.70) by U⊥T on the left and U⊥ on the right gives the second condition
in Lemma 7.1 and ensures stability for the system when using the state feedback
controller KSF . The resulting expression is the same as in (7.75), but with KSF

replacing the static output feedback controllers for Acl, Bcl, Ccl, and Dcl. Finally,
multiplying (7.75) with βT on the left and β on the right, where

β :=


I 0 0
Acl Bcl 0
0 0 I
0 I 0

 , (7.76)

results in the Bounded real lemma, given in Lemma 7.8.

The optimization problem in (7.65)−(7.67) requires solving a BMI, which is
NP-hard and thus, di�cult to solve. However, by specifying a stable state feedback
gain KSF , it becomes a convex LMI, from which a local optimum can be found.
The �nal SOF controller can be obtained from K = Φ−1

1 Φ2.

7.3 Static output feedback control with application to PI

control

The proportional integral (PI) controller is, by far the most commonly used con-
troller in the process industries due to its simplicity and robust performance [13].
With progress in numerical methods, new convex optimization methods have been
developed for designing controllers. However, for restricted-order controllers (e.g.,
PI/PID controller) the optimization problems tend to become non-convex in the
controller parameter space. They are usually solved by employing heuristics or
intelligent methods [66], [48]. A loop shaping method was proposed in [73] by spec-
ifying bounds on the phase and gain margins.

In this section, two methods of augmenting the system matrices are proposed for
�nding PI controllers together with a measurement combination H when using the
prescribed formulations for SOF controllers. The two di�erent ways of augmenting
the process are based on whether a PI controller is in its ideal or parallel form is
used.

Although most PI controllers used in commercial implementation are in its ideal
form, the parallel form can often be seen for algorithms that try to compute the
optimal controller parameters. The reason for this is that keeping the variables
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independent is in general advantageous when solving optimization problems. From
a practical perspective, it does not matter which form is used since it is always
possible to switch from one to the other. However, for this application, both forms
can be used, where the �nal controller type depends on how the system matrices
are augmented.

7.3.1 Parallel form

PI controllers in their parallel form can be formulated in either continuous-time or
discrete-time and are given by,

Continuous-time Discrete-time

u(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ, uk = Kpek +Ki

k−1∑
n=0

en. (7.77)

Here, u(t), uk ∈ Rnu represent the control variable, and e(t), ek ∈ Rnu are the error
values. The parameters Kp ∈ Rnu×nu and Ki ∈ Rnu×nu are diagonal matrices,
representing the proportional and integral gains, respectively:

Kp :=

kp,1 0 0

0
. . . 0

0 0 kp,nu

 , Ki :=

ki,1 0 0

0
. . . 0

0 0 ki,nu

 . (7.78)

For discrete-time systems, the sampling time is assumed to be included in Ki, i.e.,
Ki will then vary depending on the sampling time.

When a measurement combination H ∈ Rnu×ny is used, then the error values
are de�ned as e(t) := r(t) −Hy(t), and ek := rk −Hyk, where r(t), rk ∈ Rnu are
the reference inputs, and y(t), yk ∈ Rny are the available measurements. Setting
the reference values to r(t), rk = 0 (using deviation variables), then the error values
become e(t) = −Hy(t) and ek = −Hyk for the continuous-time and discrete-time
case, respectively. The PI controllers in (7.77) can then be expressed as

u(t) = −KpHy(t)−KiH

∫ t

0

y(τ) dτ, uk = −KpHyk −KiH

k−1∑
n=0

yn. (7.79)

To include the integrating (or the summation) states from the PI controllers, the
original state vectors can be replaced by the augmented state vectors x̄(t), x̄k ∈
R(nx+nu):

x̄(t) :=

[
x(t)
q(t)

]
, x̄k :=

[
xk
qk−1

]
, (7.80)

Here, q(t), qk−1 ∈ Rnu are de�ned,

q(t) :=

∫ t

0

KiHy(τ)dτ, qk :=

k∑
n=0

KiHyn, (7.81)
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and thus, the PI controllers can be represented as

u(t) = −
(
KpHy(t) + q(t)

)
, uk = −

(
KpHyk + qk−1

)
. (7.82)

De�ning KPI ∈ R2nu×2nu , and I ∈ R2nu×nu ,

KPI =

[
Kp 0
0 Ki

]
, I =

[
I
I

]
, (7.83)

such that the SOF controller K ∈ R2nu×2nu becomes

K = −KPIIĤ. (7.84)

Then the augmented control input vectors ū(t), ūk ∈ R2nu will be given by the
control laws:

ū(t) = −Ky(t) = −
[
KpHy(t)

KiĤy(t)

]
, ūk = −Kyk = −

[
KpHyk
KiHyk

]
. (7.85)

The closed-loop system for the continuous-time process model in (7.1)−(7.2)
with the PI controllers in (7.82) can be formulated using the augmented model,

¯̇x(t) = Ācx̄(t) + B̄cū(t) + Ēcw(t), (7.86)

y(t) = C̄cx̄(t) +Dcw(t), (7.87)

where the augmented system matrices are:

Āc =

[
Ac Bc
0 0

]
, B̄c =

[
Bc 0
0 I

]
, Ēc =

[
Ec
0

]
, C̄c =

[
Cc 0

]
. (7.88)

Using the proposed control law for ū(t) in (7.85), which is equivalent to

ū(t) = −
[
KpĤCcx(t) +KpHDcwk
KiHCcx(t) +KiĤDcwk

]
, (7.89)

on the augmented process model in (7.86) and (7.87) gives[
ẋ(t)
q̇(t)

]
=

[
Ac −BcKpĤCc Bc

KiHCc 0

] [
x(t)
q(t)

]
+

[
Ec −BcKpHDc

KiHDc

]
w(t). (7.90)

The expression in (7.90) then becomes equivalent to

˙̄x(t) =
(
Āc + B̄cKC̄c

)
x̄(t) +

(
Ēc + B̄cKD̄c

)
w(t), (7.91)

which resembles the closed-loop system seen in (7.4), where the controller K is
given by (7.84).

For a discrete-time system, the augmented state-space model for the process in
(7.42)−(7.43) becomes

x̄k+1 = Ādx̄k + B̄dūk + Ēdwk, (7.92)

yk = C̄dx̄k + D̄dwk, (7.93)
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with the augmented state-space models:

Ād =

[
Ad Bd
0 I

]
, B̄u =

[
Bd 0
0 I

]
, Ēd =

[
Ed
0

]
, C̄d =

[
Cd 0

]
. (7.94)

Inserting ūk = −Kyk in (7.92), where K is the controller in (7.104), and ȳk is the
augmented measurement vector from (7.93), will result in[

xk+1

qk

]
=

[
Ad −BdKpHCd −Bd

KiHCd I

] [
xk
qk−1

]
+

[
Ed −BdHDd

KiHDd

]
wk, (7.95)

which gives the closed-loop system in (7.45) with augmented matrices:

x̄k+1 =
(
Ād + B̄dKC̄d

)
x̄k +

(
Ēd + B̄uKD̄d

)
wk. (7.96)

A measurement combination H that is being controlled by decentralized PI can,
therefore, be formulated as the SOF controller in (7.84) using either the augmented
system matrices in (7.88) for continuous-time systems or the ones in (7.94) for
discrete-time systems.

7.3.2 Ideal form

In their ideal form, PI controllers in continuous-time and discrete-time can be
formulated as

Continuous-time: Discrete-time:

u(t) = Kp

(
e(t) +Ki

∫ t

0

e(τ)dτ
)
, uk = Kp

(
ek +Ki

k−1∑
n=0

en

)
, (7.97)

where the variables have been de�ned for (7.77), with the controller gains given in
(7.78). When a measurement combinationH is controlled using deviation variables,
the PI controllers in (7.97) can be formulated as

u(t) = −Kp

(
Hy(t) +Ki

∫ t

0

Hy(τ)dτ
)
, uk = −Kp

(
Hyk +Ki

k−1∑
n=0

Hyn

)
. (7.98)

From the above formulation, it can be seen that this description is overparameter-
ized, where Kp can be considered as a simple scaling value for H. Therefore, Kp

can be selected to be any non-zero value, e.g., setting Kp = I gives:

u(t) = −
(
Hy(t) +Ki

∫ t

0

Hy(τ)dτ
)
, uk = −

(
Hyk +Ki

k−1∑
n=0

Hyn

)
. (7.99)

De�ning the auxiliary state vectors q(t) ∈ Rnu , qk ∈ Rnu as the integral term
for the summation term in (7.98):

q(t) =

∫ t

0

Hy(τ)dτ, qk =

k∑
n=0

Hyn (7.100)
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such that the PI controllers can be represented as

u(t) = −
(
Hy(t) +Kiq(t)

)
, uk = −

(
Hyk +Kiqk

)
. (7.101)

By introducing the augmented state vectors x̄(t), x̄k ∈ R(nx+nu)

x̄(t) :=

[
x(t)
q(t)

]
, x̄k :=

[
xk
qk−1

]
, (7.102)

the augmented measurement vectors ȳ(t), ȳk ∈ R(ny+nu)

ȳ(t) :=

[
y(t)
q(t)

]
, ȳk :=

[
yk
qk−1

]
, (7.103)

and using the SOF controller K ∈ R2nu×2nu ,

K = −
[
H 0
0 Ki

]
, (7.104)

then the augmented control input vectors ū(t), ūk ∈ R2nu are given by

ū(t) := −Kȳ(t) = −
[
Hy(t)
Kiq(t)

]
, ūk := −Kȳk = −

[
Hyk
Kiqk−1

]
. (7.105)

The closed-loop system for the continuous-time process model in (7.1)−(7.2) with
the PI controllers in (7.101) can be given by the augmented model

¯̇x(t) = Ācx̄(t) + B̄cū(t) + Ēcw(t), (7.106)

ȳ(t) = C̄cx̄(t) + D̄cw(t), (7.107)

where the augmented system matrices are:

Āc =

[
Ac 0
0 0

]
, B̄c =

[
Bc Bc
I 0

]
, Ēc =

[
Ec
0

]
, C̄c =

[
Cc 0
0 I

]
, D̄c =

[
Dc

0

]
. (7.108)

Using the proposed control law for ū(t) in (7.105), which is equivalent to

ū(t) = −
[
HCcx(t) +HDcwk

Kiq(t)

]
, (7.109)

then it can easily be shown that the augmented process model in (7.106) and
(7.107) becomes:[

ẋ(t)
q̇(t)

]
=

[
Ac −BcĤCc −BcKiq(t)

HCc 0

] [
x(t)
q(t)

]
+

[
Ec −BcĤDc

HDc

]
w(t). (7.110)

The expression in (7.110) is equivalent to

˙̄x(t) =
(
Āc + B̄cKC̄c

)
x̄(t) +

(
Ēc + B̄cKD̄c

)
w(t), (7.111)
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which corresponds to a closed-loop system in (7.4) that uses the augmented state-
space model matrices in (7.108) with the PI controller in (7.101).

Similarly, the augmented model for the discrete-time process in (7.42)−(7.43),
can be given by,

x̄k+1 = Ādx̄k + B̄dūk + Ēdwk, (7.112)

ȳk = C̄dx̄k + D̄dwk, (7.113)

with the augmented system matrices:

Ād =

[
Ad 0
0 I

]
, B̄d =

[
Bd Bd
I 0

]
, Ēd =

[
Ed
0

]
, C̄d =

[
Cd 0
0 I

]
, D̄d =

[
Dd

0

]
.

(7.114)

Using the controller from (7.104) with the augmented measurements in (7.103)
such that ūk = −Kȳk, and inserting it in (7.112)−(7.113) gives[

xk+1

qk

]
=

[
Ad −BdHCd −BdKiq(t)

HCd I

] [
xk
qk−1

]
+

[
Ed −BdHDd

HDd

]
wk, (7.115)

which is equivalent to the closed-loop system in (7.45) with augmented matrices:

x̄k+1 =
(
Ād + B̄dKC̄d

)
x̄k +

(
Ēd + B̄dKD̄d

)
wk. (7.116)

Therefore, ideal PI controllers that are controlling a measurement combination
H can be expressed as the SOF controller in (7.104) by using the augmented
system matrices in (7.108) for continuous-time. Alternatively, in case the process
is represented with discrete-time models, then the augmented matrices (7.114) can
be used to formulate the SOF controller as PI controllers in their ideal form.

7.4 Conclusion

In the previous chapter, the dynamic e�ects of using measurement combinations as
CVs were investigated. It was shown that the location of the system zeros, together
with the pole and zero directions are dependent on how the measurement combi-
nations are selected. As a consequence, the interactions and the achievable control
performance will be partly determined by the chosen CVs. However, the behavior
of the resulting closed-loop system will be dependent on both the measurement
combination and the feedback controllers and, thus, ideally, they should be chosen
simultaneously. Therefore, in this chapter, SOF control methods were presented
for both continuous-time and discrete-time systems that either minimizes the H2

norm or the H∞ norm of the resulting closed-loop system. To have the computed
SOF gain include both the feedback controllers and measurement combinations,
methods for augmenting the system matrices were presented. The resulting feed-
back controller will consist of a decentralized PI controller, in its ideal or parallel
form, depending on how the system matrices are augmented.

The proposed augmented system matrices in (7.88), (7.94), (7.108), and (7.114)
di�ers from how state-space models typically are augmented with PI controllers
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[113], [87]. E.g., the length of the augmented control input vectors has been doubled
by separating the e�ects of the proportional and the integral part from each other.
The bene�t of this approach is that it will allow for decoupling the measurement
combination and the controller parameters from each other in the optimization
problem. Therefore, it will signi�cantly reduce the complexity of the optimization
problem, which will be advantageous when the aim is to simultaneously design the
controllers and self-optimizing control variables in the next chapter.
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Chapter 8

Controller design for self-optimizing

control variables

The main focus of self-optimizing control is to select CVs, that often, consists of
linear measurement combinations, such that when controlled at constant set-point
leads to an improvement in the economic steady-state behavior of a process plant.
However, as demonstrated in Chapter 6, the chosen measurement combinations
will also heavily in�uence the dynamic behavior of the resulting closed-loop sys-
tem. Thus, when determining these measurement combinations, it would be advan-
tageous to consider both the steady-state the dynamic behavior for the resulting
plant especially, if the robustness and transient response for the closed-loop system
can be improved without sacri�cing the economic performance.

Typically, the self-optimizing control variables are controlled by the remain-
ing degrees of freedom, once the plant �rst has been stabilized, and all the active
constraints are being controlled. Although it is economically optimal to operate
the plant as close as possible to its active constraints, it is usually necessary to
employ some "back o�" to avoid dynamic and steady-state problems. "Back o�"
is the di�erence between the optimal set-point and the actual set-point that has
been estimated based on the information of the disturbances and the expected con-
trol performance [52], [12]. Therefore, the self-optimizing control variables should
preferably, when subjected to disturbances, drive the process to the new optimal
operating point while minimizing deviations in the active constraints (i.e., reducing
the "back o�") or in other variables with large economic impact. If there are large
deviations from the optimal operation, caused by, e.g., external disturbances, it
would evidently result in an economic loss and could violate some of the operating
constraints. Therefore, both the steady-state (economic) objective and the dynamic
performance of the process should be considered when designing the control system.

The resulting closed-loop system is not just dependent on the measurement
combination, but also on the feedback controllers. In this chapter, several optimiza-
tion problems are presented with the aim to simultaneously obtain a measurement
combination together with the tuning parameters for decentralized PI controllers,
thus making it possible to account for both the dynamic and the steady-state
performance of the resulting control system.
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8.1 PI controllers with measurement combinations

In the previous chapter, four di�erent optimization problems were formulated for
�nding SOF controllers K that were based on the two-step procedures given in
[109], [37], [94], [2], and [98]. For continuous-time systems, Theorem 7.3, and The-
orem 7.5 gave SOF controllers that minimized the H2 norm, or the H∞ norm for
the closed-loop system, respectively. If the process model is given in discrete-time,
then Theorem 7.7 can be used to �nd the H2 optimal SOF controller, whereas
solving the optimization problem in Theorem 7.9 will result in SOF controller that
minimizes the upper bound of the H∞ norm of the closed-loop system. In all these
cases, the resulting SOF controller can be obtained from

K = Φ−1
1 Φ2, (8.1)

where Φ1 and Φ2 are decision variables that will be computed when solving one of
the optimization problems in Theorem 7.3, 7.5, 7.7 or 7.9. In Section 7.3.1, two ap-
proaches were proposed for augmenting the system matrices such that a SOF gain
K could be represented by a measurement combination H that is being controlled
using decentralized PI controllers. Therefore, by replacing the original state-space
models with these augmented matrices, it becomes possible to simultaneously com-
pute the controllers and the self-optimizing control variables when using one of the
SOF techniques from Chapter 7.

8.1.1 Decentralized PI controllers in their parallel form

If the PI controllers are in their parallel form, then the state-space model can be
augmented as in (7.88), or as in (7.94), depending on whether it is in continuous-
time or discrete-time. The resulting SOF controller can then be given as in (7.84):

K = −KPIIH, (8.2)

where KPI and I are de�ned in (7.83). Let X be a diagonal matrix that represents
the inverse of the PI parameters in KPI , i.e., X = K−1

PI . De�ning Φ1 and Φ2 as

Φ1 := X, Φ2 := IH, (8.3)

then the SOF controller in (8.2) will correspond to a measurement combination H
and decentralized PI controllers (in their parallel form) that are given by KPI =
X−1. Hence, for continuous-time systems, Theorem 7.3, and Theorem 7.5 can be
modi�ed as described in the following theorem:

Theorem 8.1. When the continuous-time system model is replaced with the aug-
mented matrices in (7.88), then there exists decentralized PI controllers in their
parallel form and a measurement combination H ∈ Rnu×ny that gives a stable
closed-loop system and minimizes the upper bound of the H2 norm or the H∞
norm, if there exist a diagonal matrix X ∈ R2nu×2nu that is non-singular and a
positive de�nite matrix P = PT ∈ R(nx+nu)×(nx+nu) together with either the stabi-
lizing state feedback gain KSF ∈ R2nu×(nx+nu) for the H2 optimal control problem,
or the matrices K1,K2 ∈ R2nu×(nx+nu) for the H∞ optimal control problem as the

96



8.1. PI controllers with measurement combinations

solution to one of the following non-convex optimization problems:

Continuous-time H2 optimal:

min
KSF ,P,X,H

trace(ĒTd PĒd) (8.4)

subject to

P � 0 (8.5)

X = diag(x1 . . . x2nu) (8.6)

M2 +N2 ≺ 0 (8.7)

Continuous-time H∞ optimal:

min
K1,K2,P,X,H

γ2 (8.8)

subject to

P � 0 (8.9)

X = diag(x1 . . . x2nu) (8.10)

M∞ +N∞ ≺ 0 (8.11)

The matricesM2, N2,M∞, and N∞ are given by (7.14) ,(7.18), (7.34), and (7.38),
respectively, where Φ1 and Φ2 in N2 and N∞ have been replaced by the de�nition
in (8.3).

Proof. The proofs that were given for Theorem 7.3 and Theorem 7.5 ensures that
the closed-loop system with the resulting SOF controller K = X−1IH is stable
and minimizes the upper bound for the H2 norm or the H∞ norm. The parameters
for the decentralized PI controllers can then be obtained from KPI = X−1 as long
as X is a diagonal and a non-singular matrix.

Similarly, Theorem 7.7, and 7.9 can be adapted to �nd a measurement com-
bination H, and discrete-time PI controllers in their parallel form that ensures a
stable closed-loop with an H2, or an H∞ optimal solution.

Theorem 8.2. When the discrete-time system model is replaced with the aug-
mented matrices in (7.94), then there exist decentralized PI controllers in their
parallel form together with a measurement combination H ∈ Rnu×ny that gives a
stable closed-loop system and minimizes the upper bound of the H2 norm or the
H∞ norm, if there exists a stabilizing state feedback gain KSF ∈ R2nu×(nx+nu), a
non-singular diagonal matrix X ∈ Rnu×nu , a positive de�nite matrix P = PT ∈
R(nx+nu)×(nx+nu), and matrices Z1, Z2 ∈ R(nx+nu)×(nx+nu) that solves one of the
following non-convex optimization problems:

Discrete-time H2 optimal:

min
KSF ,Z1,Z2,
P,X,,H

trace(ĒTd PĒd) (8.12)

subject to

P � 0 (8.13)

X = diag(x1 . . . x2nu) (8.14)

W2 ≺ 0 (8.15)

Discrete-time H∞ optimal:

min
KSF ,Z1,Z2
P,X,H

γ2 (8.16)

subject to

P � 0 (8.17)

X = diag(x1 . . . x2nu) (8.18)

W∞ + V∞ ≺ 0 (8.19)

The matricesW2,W∞, and V∞ are given by (7.55), (7.68), and (7.69), respectively,
where Φ1 and Φ2 in W2 and V∞ have been replaced by the de�nition in (8.3).
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Proof. The proofs that were given for Theorem 7.7 and Theorem 7.9 ensures that
the closed-loop system with the resulting SOF controller K = X−1IH is stable
and minimizes an upper bound for the H2 norm or the H∞ norm. The parameters
for the decentralized PI controllers can then be obtained from KPI = X−1 as long
as X is a diagonal and non-singular matrix.

8.1.2 Decentralized PI controllers in their ideal form

When the augmented process models described in (7.108) for continuous-time sys-
tems or (7.114) for discrete-time systems are used, then PI controllers in their ideal
form can be represented by the SOF controller given in (7.104):

K = −
[
H 0
0 Ki

]
. (8.20)

Since the steady-state loss for using Q−1H will be equivalent to H, the SOF con-
troller in (8.20) can be replaced with

K = −
[
Q−1H 0

0 Ki

]
, (8.21)

as long as Q ∈ Rnu×nu is non-singular. Thus, by rede�ning Φ1, and Φ2, such that

Φ1 :=

[
Q 0
0 X1

]
, Φ2 :=

[
H 0
0 X2

]
, (8.22)

where X1, X2 ∈ Rnu×nu are diagonal matrices, of which X1 is non-singular, then
the SOF controller in (8.2) can be expressed as the measurement combination
Ĥ = Q−1H and the PI controller with tuning parameters:

Kp = I, Ki = X−1
1 X2. (8.23)

Theorem 8.3. When the continuous-time system model is replaced with the
augmented matrices in (7.108), then there exists decentralized PI controllers in
their ideal form and a measurement combination H ∈ Rnu×ny that gives a stable
closed-loop system and minimizes the upper bound of the H2 norm or the H∞
norm, if there exists a positive de�nite matrix P = PT ∈ R(nx+nu)×(nx+nu),
a matrix Q ∈ Rnu×nu , and diagonal matrices X1, X2 ∈ Rnu×nu out of which
X1 ,and Q are non-singular. Together with either the stabilizing state feedback
gain KSF ∈ R2nu×(nx+nu) for the H2 optimal control problem or the matrices
K1,K2 ∈ R2nu×(nx+nu) for the H∞ optimal control problem, a SOF controller can
be obtained by solving one of the following non-convex optimization problems:
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Continuous-time H2 optimal:

min
KSF ,X1,X2,

P,Q,H

trace(ĒTc PĒc) (8.24)

subject to

P � 0 (8.25)

X1 = diag(x11
· · ·x1nu) (8.26)

X2 = diag(x21
· · ·x2nu) (8.27)

M2 +N2 ≺ 0 (8.28)

Continuous-time H∞ optimal:

min
K1,K2,X1,X2,

P,Q,H

γ2 (8.29)

subject to

P � 0 (8.30)

X1 = diag(x11
· · ·x1nu) (8.31)

X2 = diag(x21
· · ·x2nu) (8.32)

M∞ +N∞ ≺ 0 (8.33)

The matricesM2, N2,M∞, and N∞ are given by (7.14) ,(7.18), (7.34), and (7.38),
respectively, where Φ1 and Φ2 in N2 and N∞ have been replaced by the de�nition
in (8.22).

Proof. The proofs that were given for Theorem 7.3 and Theorem 7.5 ensures that
the closed-loop system with the resulting SOF controller K (given in (8.21)) is
stable and minimizes the upper bound for the H2 norm or the H∞ norm. The
parameters for the decentralized PI controllers and the measurement combination
can then be obtained fromKp = I,Ki = X−1

1 X2, and Ĥ = Q−1H, respectively.

Alternatively, if the process models are expressed in discrete-time, then The-
orem 7.7, and 7.9 can be modi�ed to �nd a measurement combination Ĥ, and
discrete-time PI controllers in their ideal form that is given by an H2, or an H∞
optimal SOF controller that ensures stability for the closed-loop system.

Theorem 8.4. When the discrete-time system model is replaced with the aug-
mented matrices in (7.94), then there exist decentralized PI controllers in their
ideal form together with a measurement combination H ∈ Rnu×ny that gives a stable
closed-loop system and minimizes the upper bound of the H2 norm or the H∞ norm,
if there exists a stabilizing state feedback gain KSF ∈ R2nu×(nx+nu), a positive def-
inite matrix P = PT ∈ R(nx+nu)×(nx+nu), matrices Z1, Z2 ∈ R(nx+nu)×(nx+nu), a
matrix Q ∈ Rnu×nu , and diagonal matrices X1, X2 ∈ Rnu×nu of which X1 and Q
are non-singular that solves one of the following non-convex optimization problems:

Discrete-time H2 optimal:

min
KSF ,Z1,Z2,
P,Q,,H

trace(ĒTd PĒd) (8.34)

subject to

P � 0 (8.35)

X1 = diag(x11
· · ·x1nu) (8.36)

X2 = diag(x21
· · ·x2nu) (8.37)

W2 ≺ 0 (8.38)

Discrete-time H∞ optimal:

min
KSF ,Z1,Z2,
P,Q,,H

γ2 (8.39)

subject to

P � 0 (8.40)

X1 = diag(x11
· · ·x1nu) (8.41)

X2 = diag(x21
· · ·x2nu) (8.42)

W∞ + V∞ ≺ 0 (8.43)
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The matrices W2, W∞, and V∞ are given by (7.55), (7.68), and (7.69) respectively,
where Φ1, and Φ2 in W2 and V∞ have been replaced by the de�nition in (8.22).

Proof. The proofs that were given for Theorem 7.7 and Theorem 7.9 ensures that
the closed-loop system with the resulting SOF controller K (given in (8.21)) is
stable and minimizes the upper bound for the H2 norm or the H∞ norm. The
parameters for the decentralized PI controllers and the measurement combination
can then be obtained fromKp = I,Ki = X−1

1 X2, and Ĥ = Q−1H, respectively.

8.2 Controlling optimal measurement combinations

The optimization problems, given in Theorem 8.3 and Theorem 8.4 requires solving
a BMI, which is NP-hard and, thus, �nding the globally optimal solution is di�cult.
However, by specifying stable state feedback gains, the BMIs become LMIs, which
turns them into convex optimization problems that can be solved using standard
SDP solvers. An improved solution can be obtained by using an iterative algorithm
to �nd a local optimum, following the procedure described in, e.g., Algorithm 4 for
continuous-time systems.

Algorithm 4 H2 or H∞ optimal control in continuous-time.
Initialize: For k = 0 choose a stabilizing state feedback gain KSF for the H2

control problem, or the stabilizing gainsK1 andK2 for theH∞ control problem.

1: Set k ← k+1 and for the �xed gainKSF , or for the �xed gainsK1 andK2 solve:

Continuous-time H2 optimal:

Jk
1 = min

Φ1,Φ2,P
trace(ĒT

c PĒc)

subject to P � 0

M2 +N2 ≺ 0

Φ2 ∈ Controller constraints

Φ1,Φ2 ∈ SOC constraints

Continuous-time H∞ optimal:

Jk
1 = min

Φ1,Φ2,P
γ2

subject to P � 0

M∞ +N∞ ≺ 0

Φ2 ∈ Controller constraints

Φ1,Φ2 ∈ SOC constraints

2: Fix Φ1 and Φ2 at the values obtained in step 1 and solve the resulting LMI:

Continuous-time H2 optimal:

Jk
2 = min

KSF ,P
trace(ĒT

c PĒc)

subject to P � 0

M2 +N2 ≺ 0

Continuous-time H∞ optimal:

Jk
2 = min

K1,K2,P
γ2

subject to P � 0

M∞ +N∞ ≺ 0

3: If Jk2 − Jk1 < ε stop, else update KSF , or K1 and K2, and repeat step 1 and 2.

Similarly, a local optimum for discrete-time systems can be found by using
the iterative algorithm given in Algorithm 5 after it has been initialized with a
stabilizing state feedback gain. Note that the decision variable Φ2 is available in
both step 1 and step 2 for discrete-time systems, whereas it is only available in step
1 when solving for continuous-time systems. These additional degrees of freedom is
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likely to be bene�cial for Algorithm 5, since having more decision variables allows
more �exibility when searching for the local optimum.

Algorithm 5 H2 or H∞ optimal control in discrete-time.
Initialize: For k = 0 choose a stabilizing state feedback gain KSF .
1: Set k ← k + 1 and for the �xed state feedback gain KSF solve one of:

Discrete-time H2 optimal:

Jk
1 = min

Z1,Z2,
Φ1,Φ2,P

trace(ĒT
d PĒd)

subject to P � 0

W2 ≺ 0

Φ1,Φ2 ∈ Controller constraints

Φ2 ∈ SOC constraints

Discrete-time H∞ optimal:

Jk
1 = min

Z1,Z2,
Φ1,Φ2,P

γ2

subject to P � 0

W∞ + V∞ ≺ 0

Φ1,Φ2 ∈ Controller constraints

Φ2 ∈ SOC constraints

2: Fix Φ1, Z2, and Z2 at the values obtained in step 1 and solve the LMI:

Discrete-time H2 optimal:

Jk
2 = min

KSF ,Φ2,P
trace(ĒT

d PĒd)

subject to P � 0

W2 ≺ 0

Φ2 ∈ Controller constraints

Φ2 ∈ SOC constraints

Discrete-time H∞ optimal:

Jk
2 = min

KSF ,Φ2,P
γ2

subject to P � 0

W∞ + V∞ ≺ 0

Φ2 ∈ Controller constraints

Φ2 ∈ SOC constraints

3: If Jk2 − Jk1 < ε stop, else update KSF and repeat step 1 and 2.

The matrices M2, N2, M∞, and N∞ in Algorithm 4 are given by (7.14), (7.18),
(7.34), and (7.38), respectively, whereas for Algorithm 5 the matricesW2,W∞, and
V∞ are described in (7.55), (7.68), and (7.69), respectively.

To have the resulting controllers consist of decentralized PI controllers, the
process matrices in M2, N2, M∞, and N∞ should be replaced with one of the aug-
mented models in (7.88), or (7.108). Similarly, the augmented matrices in (7.94),
and (7.114) should replace the original state-space models in W2, W∞, and V∞.
Which set of augmented matrices to use, depends on the structure of the PI con-
trollers, where (7.88), and (7.94) corresponds to PI controllers in their parallel form
and (7.108), (7.114) coincides with PI controllers in their ideal form. Furthermore,
the decision variables Φ1, and Φ2 should be replaced accordingly,

Parallel form

Φ1 := X, Φ2 := IH, (8.44)

Ideal form

Φ1 :=

[
Q 0
0 X1

]
, Φ2 :=

[
H 0
0 X2

]
, (8.45)

where X ∈ R2nu×2nu , X1 ∈ Rnu×nu , X2 ∈ Rnu×nu , Q ∈ Rnu×nu , and H ∈ Rnu×ny
become the new decision variables for the optimization problem with I being de-
�ned in (7.83). To ensure that the resulting controllers correspond to decentralized
PI controllers, the variables X, X1, and X2 have to be diagonal matrices, which
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should be included as the controller constraints in Algorithm 4 and Algorithm 5.
The measurement combination H has been separated from the other decision

variables, which provides the possibility of directly incorporating self-optimizing
control (SOC) properties on the resulting closed-loop system by, e.g., using the
null space or the exact local method. If the null space method described in Section
3.1.1 is used, then the expression HF = 0 can simply be included as the SOC
constraints. Unfortunately, using the exact local method is not as straightforward,
since then the optimal measurement combination is restricted by the optimization
problem given in (3.32), and (3.33). However, if there are multiple unconstrained
MVs available (nu > 1), the measurement combination can be multiplied with
a non-singular matrix without increasing the steady-state loss. Therefore, if an
optimal measurement combination Hopt has been obtained a priori by using, e.g.,
(3.37), then the measurement matrices Cc and Dc in (7.2) (or Cd and Dd in (7.43))
can be replaced with CH and DH that are de�ned as:

CH = HoptCc, DH = HoptDc. (8.46)

In this case, the size of the decision variable H in (8.44) and (8.45) goes from
H ∈ Rnu×ny to H ∈ Rnu×nu .

When Algorithm 4 or Algorithm 5 is initialized with stabilizing feedback gains
such that step 1 gives a feasible solution for the �rst iteration, then they will
generate a sequence of non-increasing solutions such that:

Jk+1
1 ≤ Jk2 ≤ Jk1 , ∀k.

Thus, the solution will converge to a local minimum. If one of the described meth-
ods of augmenting the system models have been used, then the �nal controller
parameters can be obtained from:

Parallel form[
Kp 0
0 Ki

]
= X−1, (8.47)

Ideal form[
Kp 0
0 Ki

]
=

[
I 0
0 X−1

1 X2

]
. (8.48)

The �nal measurement combination Ĥ is given by

Ĥ = H, (8.49) Ĥ = Q−1H (8.50)

when using the null space method or alternatively,

Ĥ = HHopt, (8.51) Ĥ = Q−1HHopt (8.52)

when Hopt have been computed a priori using the exact local method.
Next, the e�ectiveness of the two proposed algorithms will be validated by

application to two di�erent distillation column models. The resulting optimization
problems were solved in Matlab, using the YALMIP toolbox [90] together with the
SDP solver MOSEK [99].
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8.2.1 Case study: Binary distillation column

The proposed method was applied to the "column A" distillation column model
[121], described in more detail in Section 4.4. The distillation column uses an LV
con�guration where the two available degrees of freedom are:

u =
[
LR VB

]T
. (8.53)

The objective is to minimize deviations in the top product composition xD and the
bottom product composition xB , which has been set to 99% and 1%, respectively.
These compositions will be controlled indirectly using the temperature measure-
ments Ti(oC) inside the column, where the di�erent stages are denoted with i. The
main disturbances considered are changes in feed �ow rate (F0), feed composition
(xF ), and feed liquid fraction (qF ):

d =
[
F0 xF qF

]T
. (8.54)

The controlled variable cref,1 will be used as a reference for the simulations,
where the distillate composition xD and the bottom composition xB are being
controlled directly. The PI controllers presented in [121] are used for cref,1, which
has been demonstrated to have good disturbance rejection properties.

Table 8.1: Controlled variables and PI parameters.

Controlled variables (CVs) PI Parameters

cref,1 =

[
xD
−xB

]
kp = 26.1, ki = 6.94
kp = 37.5, ki = 11.3

cref,2 =

[
0.037 T12 − 0.645 T30 − 0.657 T31
1.250 T12 − 0.205 T30 − 0.154 T31

]
kp = 0.59, ki = 0.07
kp = 0.73, ki = 0.09

cEL =

[
0.267 T12 − 0.511 T30 − 0.510 T31
1.000 T12 − 0.302 T30 − 0.264 T31

]
kp = 2.12, ki = 0.46
kp = 1.32, ki = 0.29

cNS,1 =

[
0.348 T11 − 0.248 T12 + 0.594 T30 − 0.811 T31
1.000 T11 − 0.755 T12 − 0.146 T30 + 0.182 T31

]
kp = 17.0, ki = 1.66
kp = 19.9, ki = 2.81

cNS,2 =

[
0.080 T11 − 0.007 T12 − 0.032 T14 + 0.301 T30 − 0.406 T31
0.987 T11 − 1.000 T12 + 0.172 T14 − 0.209 T30 + 0.250 T31

]
kp = 36.0, ki = 3.89
kp = 46.2, ki = 10.1

cNS,3 =

[
0.472 T11 − 0.465 T12 + 0.078 T14 − 0.089 T30 + 0.121 T31 − 0.396 T37
0.783 T11 − 0.655 T12 + 0.044 T14 + 0.602 T30 − 0.872 T31 + 1.000 T37

]
kp = 31.1, ki = 10.8
kp = 35.1, ki = 6.17

Exact local method

The selection of controlled variables using indirect control of the compositions for
the distillation column example has previously been investigated in [146]. Based on
the exact local method, a mixed-integer quadratic programming (MIQP) approach
was used to select the best subsets of the available measurements (T1 · · ·T41). This
resulted in the following controlled variable when using three measurements:

cref,2 = Hopt

[
T12 T30 T31

]
, (8.55)

where the optimal measurement combination was given by

Hopt =

[
−0.0369 0.6449 0.6572
−1.2500 0.2051 0.1537

]
.
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To illustrate the ease of controlling cref,2, the author of [146] implemented
two decentralized PI controllers, that were tuned using the SIMC method [123].
However, it should be possible to �nd a di�erent measurement combination Ĥ =
Q−1Hopt together with PI controllers that further improves the transient response,
without a�ecting the steady-state loss.

Using Algorithm 4, PI controllers in their parallel form and a new CV were
found with a measurement combination that satis�es Ĥ = Q−1Hopt. The resulting
CV (denoted cEL) from Algorithm 4 and the other referenced CVs can be seen in
Table 8.1 together with their PI parameters.
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Figure 8.1: Deviations in xD and xB for a +10% �ltered ( 1
25s+1 ) step change in F0

after 1 min and a −20% �ltered ( 1
10s+1 ) step change in qF at 200 min.

Dynamic simulations were performed to demonstrate the improvements in the
transient response when using the newly computed cEL compared to the existing
cref,2 from [146]. The disturbances were a +10% �ltered ( 1

25s+1 ) step change in
F at 1 min and a −20% �ltered ( 1

10s+1 ) step change in qF after 200 min. The
simulation results can be seen in Figure 8.1, which shows a clear improvement in
the transient behavior for the proposed cEL compared to cref,2. Furthermore, both
cEL and cref,2 have the same steady-state loss since their respective xD and xB
converge to the same values.

Null space method

The null space method requires that the number of independent measurements is
greater or equal the sum of the number inputs and disturbances, i.e., ny ≥ nu+nd.
Out of the three disturbances F0, xF and qF , changes in feed �ow F have no steady-
state e�ect on the cost, and thus, four independent measurements are required
to satisfy the null space condition. When more measurements are added, it has
the potential to reduce the e�ect of measurement noise, which can thus, further
decrease the steady-state loss [62]. This often comes at the expense of an increase
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in the complexity of the control structure and can make the controller design more
challenging. However, it also has the potential to further improve the dynamic
response when using one of the proposed algorithms, since extra measurements
will be treated as additional degrees of freedom in the optimization problem.
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Figure 8.2: Deviations in xD and xB for a +20% �ltered ( 1
15s+1 ) step change in xF

after 1 min.

To illustrate this, the following CVs are used,

cNS,1 =H1

[
T11 T12 T30 T31

]T
,

cNS,2 =H2

[
T11 T12 T14 T30 T31

]T
,

cNS,3 =H3

[
T11 T12 T14 T30 T31 T37

]T
,

where the measurements {T11}, {T11, T14}, and {T11, T14, T37} have been added
to the set given in (8.55) for cNS,1, cNS,2, and cNS,3, respectively. Thus, the goal
is to determine the measurement combinations H1, H2, and H3, together with
their controller the parameters. The resulting CVs (cNS,1, cNS,2, and cNS,3) are
computed by solving theH2 optimal control problem for Algorithm 4 when using PI
controllers in their parallel form. The resulting CVs and their controller parameters
are shown in Table 8.1.

As already mentioned, adding measurements to the optimization problems has
the potential to improve the dynamic response, since extra measurements are
treated as additional degrees of freedom in the optimization problem. This is con-
�rmed by the simulation shown in Figure 8.2 and 8.3, where the CVs with more
measurements are able to achieve better disturbance rejection.

More measurements can thus, easily be implemented using the proposed method
to further improve the dynamic performance. However, the increased risks of sensor
failures and the cost of the additional measurements have to be weighed against
the improved dynamic behavior.
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Figure 8.3: Deviations in xD and xB for a −5% �ltered ( 1
25s+1 ) step change in qF

after 1 min.

8.2.2 Case study: Kaibel distillation column

A Kaibel distillation column [71] is a thermally coupled distillation column that
can separate four products using a single condenser and a single reboiler (see Fig-
ure 8.4). To achieve the same four product streams from a single feed stream when
using conventional binary columns, it would require a setup consisting of three dif-
ferent binary columns. A Kaibel distillation column is an extension to the Petlyuk
distillation column [110] and has together with other diving wall columns, to a
great extent been studied in the literature [138]. In comparison to the traditional
con�gurations, the Kaibel column has the potential to give up to 40% reduction in
energy consumption, as well as signi�cantly reducing the capital investment cost
and the physical space required in the process plant. However, the energy savings
are only achieved if the distillation column operates close to its optimal value,
which remains a challenge as it is a highly interactive multivariable system that is
di�cult to control.

The Kaibel column is dived into seven sections, and each section consists of
several stages. For the simulated model, there are a total of 64 stages, as shown in
Figure 8.4, where the stages are numbered with the prefractionator section �rst.
The ternary feed is located between stage 12 and 13 and consists of three compo-
nents with the mole fractions zD, zS1

, and zS2
. Four product streams are drawn o�,

where the light component zD dominates the distillate stream (DF ), component
zS1

and zS2
dominate in the side-streams (S1, and S2) and the remaining heavy

components zB dominates the bottom stream (BF ). For a more detailed description
of the process model and its nominal values, the reader is referred to [80].

The distillate �ow rate (DF ) and bottom �ow rate (BF ) are used to stabilize
the levels in the condenser and the reboiler, respectively. Furthermore, vapor boilup
VB and the vapor split RV will be kept constant as it has been shown to be di�cult
to control in practice. Instead, they will be treated as disturbances. Therefore, the
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Figure 8.4: Kaibel distillation column, adopted from [129].

remaining degrees of freedom u and disturbances d are:

u =
[
RL LR S1 S2

]T
(8.56)

d =
[
VB RV F0 zD zS1

zS2
qF
]T
. (8.57)

For the Kaibel column, the objective is to optimize the product distribution
for given feed rate F0 and boilup rate VB . Assuming equal value of the products
and that only the main components in each product stream are of value, then
the objective is equivalent to minimizing the sum of the impurity �ows. The cost
function J can then be written as [129]:

J = DF (1− xD) + S1(1− xS1) + S2(1− xS2) +BF (1− xB). (8.58)

Control structure design

The control structure design for the Kaibel column model has previously been
studied in [80], [129], and [81]. Most of the work has mainly been focused on the
steady-state operation of the column; however, di�erent control structures was
presented in [81].
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8. Controller design for self-optimizing control variables

Using the temperatures at stages 17, 30, 49, and 59 as the available measure-
ments,

y =
[
T17 T30 T49 T59

]T
, (8.59)

decentralized PI control was designed for the Kaibel column in [81], where the PI
controllers were tuned using the SIMC tuning rules [123]. Controlling the temper-
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Figure 8.5: Temperature changes in the Kaibel column for a step disturbance of
+10% in F0.

atures in (8.59) had been shown to possess good self-optimizing control properties
based on the singular value method [56]. However, due to the high level of process
interactions, it was di�cult to achieve good control performance using only decen-
tralized PI controllers. Therefore, the authors of [81] proposed using an MPC to
better counteract the interactions and obtain less total impurity �ow. These two
control structures will be used for comparison in the dynamic simulation and are
denoted MPC and PI.

The decentralized PI controllers in [81] are controlling each of the measurements
in (8.59) individually. However, since the number of control inputs is equal to the
number of measurements (nu = ny), it is possible to choose a controlled variable
c = Ĥy with any measurement combination Ĥ (assuming Ĥ is invertible) and
still get the same the steady-state loss. This can be demonstrated by selecting
Q = Ĥ, which according to (3.34), gives H = Q−1Ĥ = I. Therefore, for the
same measurements given in (8.59), H∞ optimal PI controllers in their ideal form
together with a new measurement combination was computed using Algorithm 5.
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Figure 8.7: Temperature changes in the Kaibel column for a step disturbance of
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8. Controller design for self-optimizing control variables

This resulted in the following PI parameters,

Kp = I, Ki =


0.0074 0 0 0

0 0.0149 0 0
0 0 0.0073 0
0 0 0 0.0088

 , (8.60)

and the measurement combination given by

Ĥ =


0.0209 −0.0013 −0.0002 −0.0096
0.0171 0.0292 −0.0009 0.0132
−0.0237 0.0274 0.0019 −0.0247

0.0230 0.0052 −0.0270 0.0224

 . (8.61)

The proposed control structure is denoted SOC and should give a better dynamic
performance compared to the decentralized PI controllers in [81].
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Figure 8.8: Impurity �ow (8.58) for a step disturbance of +10% in F0.

Dynamic simulation

Dynamic simulations were performed on the nonlinear model of the Kailbel distilla-
tion column. In the Figures 8.5, 8.6, and 8.7, changes in the controlled temperatures
T17, T30, T49, and T59 are simulated for step changes in the disturbances F0, zS1 , and
RV . Compared to the decentralized PI controllers, there is a signi�cant improve-
ment in the transient response when using the proposed measurement combination
SOC. Furthermore, in the resulting impurity �ows shown in the Figures 8.8, 8.9,
and 8.10, the proposed control structure seems to be on par with the MPC.

These results are particularly interesting, as it would suggest that by properly
selecting controlled variables (measurement combinations) together with well-tuned
PI controllers, it might be possible to compete with a control structure consisting
of an MPC combined with real-time optimization.
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Figure 8.9: Impurity �ow (8.58) for a step disturbance of +20% in zS1
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Figure 8.10: Impurity �ow (8.58) for a step disturbance of +10% in RV .

8.3 Sparse measurement selection

The previous section introduced Algorithm 4, and Algorithm 5 that aimed to �nd
the H2, or the H∞ optimal PI controllers together with the measurement combina-
tion, H by iteratively solving two LMIs. In these two algorithms, the measurement
combination H was be computed using all the available measurements that have
been included in the problem formulation. It was also demonstrated by the case
study in Section 8.2.1 that including more measurements, will improve the dynamic
behavior of for the closed-loop system, at least when using the null space method.
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8. Controller design for self-optimizing control variables

Thus, from a theoretical perspective, using all available measurements would be
optimal as it would provide the optimization problem with the largest number of
decision variable when it searches for the optimum. However, in process plants,
there can be hundreds and sometimes over thousands of measurements available.
Including them all in the measurement combination would clearly be impractical,
as it would lead to unnecessary complex control structures and increase the risk of
getting control complications caused by sensor failures. Instead, the goal would be
to �nd a smaller measurement subset that when used together with the obtained
matrix H and feedback controllers will give a dynamic performance comparable to
using all measurements. Therefore, the problem of �nding the optimal measurement
subset should ideally, also be included when designing the closed-loop system.

In Section 4.3, a convex relaxation approach for �nding measurement subsets
was proposed to deal with the combinatorial nature of the optimization problem.
This method included the column-wise sparsity promoting re-weighted l1 norm,

W k+1
j =

1∑
i|Hk

i,j |+ κ
, (8.62)

where the weights are being updated iteratively with κ being a small positive value
to ensure the update is well-de�ned. These weights, together with the penalty term
λ, can then be included in the objective functions for Algorithm 4, and Algorithm
5 to penalize the number of measurements used in the resulting control structure.

Algorithm 6 shows an example of how the sparsity promoting function can
be incorporated when computing H∞ optimal PI controllers, together with mea-
surement combinations that satisfy the null space condition (HF = 0). Here, it is
assumed that a continuous-time model is being been used that has been augmented
as described in (7.88), which will result in the PI controllers given in (8.47). How-
ever, a similar procedure can be used for both types of PI controllers, that uses
either continuous-time or discrete-time model with one of the H2 norm, or the H∞
norm as the performance measure for the closed-loop system.

By varying the value λ, there will be a trade-o� between the H∞ performance
for the resulting closed-loop system and the number of measurements used. Addi-
tional weights may also be included to penalize certain control structures, e.g., if
some measurement links are unattractive due to high implementation cost. When
the re-weighted l1 norm has been included in the optimization problem, then the
convergence is unknown. However, numerical experiments (e.g., [41], and [7]) indi-
cate that it tends to converge to a local minimum.
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8.3. Sparse measurement selection

Algorithm 6 H∞ optimal PI controller design and sparse measurement selection
for the null space method.
Initialize: For k = 0 choose stabilizing state feedback gains K1 and K2.

1: Set k ← k + 1 and for the �xed state feedback gains Kk
1 and Kk

2 solve:

Jk1 := min
P,X,H

γ2 (8.63)

subject to HF = 0, (8.9), (8.10), and (8.11)

2: Fix Xk, and Hk at the values obtained in step 1 and solve the LMI:

Jk2 := min
K1,K2,P

γ2 (8.64)

subject to (8.9), (8.10), and (8.11)

3: If Jk2 − Jk1 < ε1 proceed to step 4, else repeat step 1 and 2.

4: Set k = 0, and compute W k+1 from (8.62) by using the last Hk that was
calculated from the previous three steps when using all available measurements.

5: For k ← k + 1, �x K1, and K2 at the values obtained in step 2 and solve:

Hk = arg min
P,X,H

γ2 + λ
∑
i,j

W k
j |Hk

i,j | (8.65)

subject to HF = 0, (8.9), (8.10), and (8.11)

6: If ‖Hk−1 −Hk‖ < ε2 go to step 7, else use (8.62) to update W k+1 and repeat
step 5.

7: Remove the measurements that correspond to the zero columns in Hk and for
the reduced measurement subset repeat step 1−3.

To evaluate Algorithm 6, a process model consisting of a Petlyuk distillation
column was used as a case study. Here, the aim was to �nd an optimal subset of
measurement that satis�es the null space condition, together with decentralized
PI controllers. The optimization problems have been formulated by the YALMIP
toolbox [90] in Matlab and solved using the solver MOSEK [99].

8.3.1 Petlyuk distillation column

The Petlyuk distillation column, often referred to as the divided wall column,
o�ers an appealing alternative for separating ternary mixtures. In comparison to
the traditional con�guration, where two columns are used in series, the Petlyuk
column is capable of saving up to 30% in both capital and energy costs according
to [134]. However, despite the potential bene�ts of Petlyuk columns, only a few
implementations exist in the industry due to their operational challenges.

The Petlyuk distillation column consists of six sections as illustrated in Figure
8.11, with the model information seen in Table 8.2. Each section is arranged in the
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8. Controller design for self-optimizing control variables

same column shell with eight stages for each section. The ternary feed is located
between section 1 and 2, where its composition xF consists of the components A, B,
and C with the mole fractions zA, zB , and zC . Three product streams are drawn o�
in the sections 3−6, where the light component A dominates the distillate stream
(DF ), component BF dominates in the side-stream (SF ) and the heavy component
C dominates the bottom stream (BF ). For a more detailed description of the model,
the reader is referred to [4].
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Figure 8.11: Petlyuk distillation column, adopted from [4].

The distillate �ow rate (DF ) and bottom �ow rate (BF ) are used to stabilize
the levels in the condenser and the reboiler, respectively. Furthermore, the vapor
split RV will be kept constant as it is di�cult to use in practice, and [55] found
that good self-optimizing control can still be achieved when RV is �xed.

Therefore, the remaining available degrees of freedom are,

u =
[
LR VB SF RL

]T
(8.66)

corresponding to the re�ux, boilup, side-stream �ow and liquid split, respectively.

For the Petlyuk column, three product speci�cations should be kept during
operation; distillate purity (xA,D), bottom purity (xC,B) and side-stream purity
(xB,S), where xi,j denotes the mole fraction of component i in stream j. The
operational objective is to minimize energy cost (VB) while maintaining the product
purity speci�cations.

114



8.3. Sparse measurement selection

Table 8.2: Data for the Petlyuk column

Column data

Relative volatilities αR =
[
9 3 1

]T
Liquid time constant τL = 0.063 min
Holdup top and bottom MB = MD = 20Mi

Holdup stages Mi = 1 kmol
Boiling points A,B,C TB =

[
299.3 342.15 399.3

]T
K

Antoine's parameters
[
2.86 −1143 −0.349

]
Feed
Flow F0 = 1 kmol/min
Composition zA = zB = zC = 0.33
Liquid fraction qF = 0.477
Product speci�cations xA,D = xB,S = xC,D = 97%± 1%

Measurement delays
Compositions 5 min
Temperatures 1 min

Previous control structures

The control structure design for the Petlyuk column model has previously been
studied by [4], [55] and [152]. Most of the work has mainly been focused on the
steady-state operation of the column. However, decentralized PI controllers were
designed by [4] for CVs consisting of three composition measurements and a linear
combination of temperatures obtained using the null space method. The Petlyuk
column was also investigated by [152]. For the same CVs, the authors proposed
using sparse PI controllers (with partial interactions between the controllers), that
further improved the transient performance. These control structures will be used
for comparison in the dynamic simulations and are denoted cref,D, and cref,S ,
with the subscripts, D and S representing the decentralized and sparse control
structures, respectively.

Indirect Control

Indirect control is when the primary variables are kept close to their desired value
by controlling secondary variables at constant set-points [62]. The proposed control
structures in cref,D and cref,S , both use the measurements of the three product
compositions to keep the products at their targeted values. While this ensures that
the purity speci�cations are kept, the long delays associated with the composition
measurements imposes limitations on the closed-loop performance and makes fast
control di�cult. Therefore, an indirect control structure is proposed, that uses only
the temperature measurements.

Perfect indirect control can be achieved using the null space method assuming,
ny ≥ nd + nu. In this example, only changes in zA, zB , and qF will be considered,
and thus, at least seven independent measurements are required. Using Algorithm
6, two control structures were computed, using 48 (all), and 7 temperature mea-
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Figure 8.12: Deviations in xA,D, xC,B , and xB,S in the Petlyuk column for a step
disturbance of −10% in zA.

surements. These are denoted cind,48, and cind,7, where cind,7 resulted in

cind,7 =

−0.191T4 + 0.044T9 + T19 − 0.004T24 − 0.433T38 + 0.297T41 + 0.066T47

0.267T4 − 0.069T9 − T19 − 0.078T24 + 0.571T38 − 0.329T41 − 0.306T47

−0.535T4 + 0.189T9 + T19 + 0.262T24 − 0.694T38 + 0.443T41 + 0.064T47

0.217T4 + 0.009T9 − 0.869T19 − 0.187T24 + T38 − 0.631T41 − 0.510T47

 ,
with Ti being the temperature at stage i. The PI controllers for cind,7 are given by

Kp =


0.4745 0 0 0

0 0.1908 0 0
0 0 0.1763 0
0 0 0 0.0495

 ,Ki =


0.0035 0 0 0

0 0.1563 0 0
0 0 0.0012 0
0 0 0 0.0007

 .
for the proportional gain and the integral gain, respectively.

Dynamic simulation

Dynamic simulations were performed on the nonlinear model of the Petlyuk distil-
lation column. In the Figures 8.12, 8.13, and 8.14, the proposed cind,48, and cind,7
are compared to cref,D, and cref,S for step disturbances in zA, zB , and qF . Since
the sensitivity matrix F is computed using a local linear model, it causes some
steady-state loss for cind,48 and cind,7. However, there is a signi�cant improvement
in the transient behavior compared to cref,D and cref,S . The steady-state loss can
also easily be removed by, e.g., including an outer loop that adjusts the set-points,
using a slow integral action from the composition measurements. As expected, us-
ing all 48 temperature measurements gives a better response compared to using 7,
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since Algorithm 6 gives a trade-o� between the dynamic performance (H∞ norm)
and the number of measurements used.
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Figure 8.13: Deviations in xA,D, xC,B , and xB,S in the Petlyuk column for a step
disturbance of +10% in zB .
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Figure 8.14: Deviations in xA,D, xC,B , and xB,S in the Petlyuk column for a step
disturbance of +10% in qF .
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8.4 Trade-o� between dynamic and steady-state

performance

The optimal measurement combinations H for the null space method is non-unique
since there is an in�nite number of solutions that satis�es the condition HF = 0.
This �exibility makes it possible to �nd a CV that improves the dynamic behavior
of the closed-loop system while still achieving the optimal economic performance
at steady-state. However, the solutions to the null space method are only opti-
mal under the assumption that there is no measurement noise, which is unrealistic
in practice. Therefore, it is often preferred to use the exact local method instead
when computing the self-optimizing control variables, since it accounts for both the
disturbances and the measurement errors. Unfortunately, the exact local method
doesn't o�er the same �exibility as the null space method when selecting the opti-
mal measurement combinations. Instead, the optimal self-optimizing control vari-
able is found from solving the optimization problem given in (3.32)−(3.33):

min
H

1

2

∥∥∥HY ∥∥∥2

F
(8.67)

subject to HGy = J1/2
uu (8.68)

If an optimal measurement combination that has been obtained using the exact
local method is multiplied with any non-singular matrix Q, it will result in a
di�erent measurement combination Ĥ such that,

Ĥ = Q−1H, (8.69)

where Ĥ will give the same steady-state loss as the original measurement com-
bination H. Therefore, the matrix Q can be used to improve the controllability
of the self-optimizing control variable and hence give a better dynamic perfor-
mance for the resulting closed-loop system, which was previously demonstrated
in Section 8.2.1 and 8.2.2. However, the optimal self-optimizing control variable
is only non-unique if the number of unconstrained MVs available is greater than
one. Furthermore, while Algorithm 4 and 5 can be used to maintain the optimal
steady-state solution, it may be bene�cial to choose a measurement combination
with a larger steady-state loss if it would provide a signi�cant improvement in the
closed-loop performance. That is, if the dynamic improvements resulted in better
disturbance rejection, it could allow for a reduction in the "back o�" applied to
the active constraints, and as a consequence further increase the pro�tability.

Therefore, in this section, an iterative LMI algorithm is proposed that solves a
Pareto optimization problem that gives a trade-o� between minimizing the steady-
state loss and the dynamic performance. Here, the augmented models in (7.108),
or (7.114) are used to get PI controllers in their ideal form since both Q, and H
are included as decision variables for the resulting SOF controller in (8.45). Thus,
it becomes possible to compute them simultaneously, where the choice of H will
impact both the dynamic and steady-state performance, whereas Q can be used to
improve the level of interactions between the CVs.

In Algorithm 7, an iterative procedure is described for �nding PI controllers
and a measurement combination Ĥ that makes a trade-o� between the steady-
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8.4. Trade-o� between dynamic and steady-state performance

state loss and the dynamic behavior. Here, the H∞ norm is used as the dynamic
performance measurement for the closed-loop system with the process models being
given in discrete-time. However, it is also possible to modify the algorithm such
that it uses continuous-time models or such that the H2 norm is minimized instead.
In addition, similar to Algorithm 6, the sparsity promoting weighted l1 norm has
also been included in the objective, and thus, it attempts to solve a multi-objective
optimization problem that includes the steady-state loss, the transient response,
and the number of measurements used.

Algorithm 7 Trade-o� between steady-state loss, dynamic performance, and the
number of measurement used.
Initialize: For k = 0 choose a stabilizing state feedback gain KSF and obtain H

using, e.g., (3.36) for all available measurements.
1: Set k ← k + 1 and compute W k using (8.62).
2: For the �xed KSF , and W k solve the LMI:

Jk
1 = min

Z1,Z2,P
X1,X2,Q,H

γ2 + α
1

2

∥∥∥HY ∥∥∥2

F
+ λ

∑
i,j

W k
j

∥∥∥Hi,j

∥∥∥
1

(8.70)

subject to HGy = J1/2
uu , (8.40), (8.41), (8.42), and (8.43)

3: Update W k using (8.62) with the H obtained from step 2.
4: Fix Q, X1, Z1, and Z2 at the values obtained in step 2 and solve the LMI:

Jk
2 = min

KSF ,P
X2,H

γ2 + α
1

2

∥∥∥HY ∥∥∥2

F
+ λ

∑
i,j

W k
j

∥∥∥Hi,j

∥∥∥
1

(8.71)

subject to HGy = J1/2
uu , (8.40), (8.42), and (8.43)

5: If ‖Hk−1 −Hk‖2 < ε1, and Jk1 − Jk2 < ε2 go to step 6, else update KSF and
repeat step 1 to 5.

6: Remove the measurements that correspond to the zero columns in H.

Varying the values of the scalars α and λ will give di�erent trade-o�s between
the H∞ performance, the steady-state loss, and the number of measurements used.
The �nal controller parameters can be obtained from Kp = I, and Ki = X−1

1 X2,
whereas measurement combination will be given by Ĥ = Q−1H. The convergence
of Algorithm 7 follows the convergence properties of previous algorithms. When
λ = 0. the convergence is monotonically decreasing:

Jk+1
1 ≤ Jk2 ≤ J1

1 , ∀k.

If the re-weighted l1 norm is incorporated (λ is non-zero), then the convergence is
unknown, but the numerical experiments given in, e.g., [41], and [7] indicate that
it tends to converge to a local minimum.

The algorithm was evaluated, on the binary distillation column that has previ-
ously been used as the case study in Section 8.2.1. However, instead of computing
controllers and measurement combinations for a given set of measurements, here,
the goal is to design di�erent control structures that make a trade-o� between the
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steady-state loss, the transient behavior, and the number of measurements used.
These optimization problems were solved in Matlab with the solver MOSEK [99]
after they been formulated with the YALMIP toolbox [90].

8.4.1 Case study: Binary distillation column

The binary distillation column model [121] will be used to evaluate Algorithm 7,
which was also used as a case study in Section 8.2.1. The distillation column has
two unconstrained MVs available that consist of the liquid recycle �ow rate LR and
the vapor boilup rate VB :

u =
[
LR VB

]T
(8.72)

The objective is to minimize deviations in the top product composition xD and
the bottom product composition xB by controlling the temperature measurements
Ti(

oC) inside the column, where the di�erent stages are denoted with i. The main
disturbances considered are changes in feed �ow rate (F0), feed composition (xF )
and feed liquid fraction (qF ):

d =
[
F0 xF qF

]T
. (8.73)

Table 8.3: Controlled variables for the binary distillation column.

Controlled variables (CVs)

cA,4 =

[
−0.970T11 − 0.923T12 − 0.200T30 − 0.297T31

−1.093T11 − 1.040T12 − 0.227T30 − 0.336T31

]

cB,4 =

[
−0.479T11 − 0.479T12 + 1.110T32 + 0.852T33

−0.782T11 − 0.801T12 − 1.265T32 − 1.147T33

]

cA,7 =

[
−0.118T11 − 0.128T12 − 0.123T13 − 0.015T21 + 0.125T28 + 0.139T29 + 0.126T30

−0.204T11 − 0.220T12 − 0.209T13 + 0.090T21 + 0.062T28 + 0.054T29 + 0.030T30

]

cB,7 =

[
−0.272T11 − 0.276T12 − 0.267T13 + 0.251T25 + 0.645T32 + 0.530T33 + 0.416T34

−0.536T11 − 0.528T12 − 0.505T13 + 0.244T25 − 1.055T32 − 0.971T33 − 0.784T34

]

Dynamic and steady-state performance

First, PI controllers and the matrix Q are computed for the optimal measurement
combination when using 4 measurements that have been listed in Table 4.1. Here,
Algorithm 5 is used to optimize the dynamic performance of the closed-loop system
without changing the steady-state loss. The resulting CV is denoted cA,4, and can
be seen in Table 8.3 with its controller parameters given in Table 8.4. However, it
should be possible to �nd a di�erent control structure that still uses 4 measurements
but gives an improvement in the transient response at the expense of the steady-
state loss. Therefore, Algorithm 7 is used to �nd another CV with 4 measurements,
where both the steady-state and dynamic performance have been included in the
optimization problem. The resulting CV should thus, improve the controllability
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8.4. Trade-o� between dynamic and steady-state performance

Table 8.4: Control structures and their dynamic and steady-state performance for
the binary distillation column.

CV 1
2
‖HY ‖2F MV kp ki ‖Tw,z‖∞

cA,4 0.344
LT

VB

1.0
1.0

0.164
0.173

0.144

cB,4 0.383
LT

VB

1.0
1.0

0.601
0.736

0.070

cA,7 0.222
LT

VB

1.0
1.0

0.170
0.206

0.341

cB,7 0.271
LT

VB

1.0
1.0

0.624
0.731

0.066

properties at the expense of an increase in the steady-state loss. Similarly, the
CVs cA,7 and cB,7 are computed when using 7 measurements. The CV cA,7 puts
more emphasis on the steady-state loss (large α), while cB,7 priorities the dynamic
performance of the resulting closed-loop system (small α). All the CVs cA,n, and
cB,n (n de�nes the number of measurements) can be seen in Table 8.3, whereas
their controllers and steady-state loss are shown in Table 8.4. In addition, the
resulting H∞ norms of the closed-loop system (‖Tw,z‖∞) is also given in Table 8.4,
which is used as the measurement of their dynamic performance.

Out of the three disturbances F0, xF , and qF , changes in feed �ow F0 have no
steady-state e�ect on the cost. Therefore, the dynamic performance for changes in
F0 is only considered, as it makes it easier to compare the transient responses. The
simulation for a step change in F0 can be seen in Figure 8.15 and shows that a
better response is achieved for cB,4 compared to cA,4. This is expected since the
measurement combination for cB,4 was computed using Algorithm 7 that makes
a trade-o� between minimizing the H∞ norm and steady-state loss, whereas the
measurement combination for cA,4 had been obtained a priori, where only the
steady-state loss was considered. It is interesting to note that using 7 measure-
ments (cA,7 and cB,7), gives the best and the worst dynamic response depending
on whether the focus lies on minimizing the H∞ norm of the closed-loop system
or the steady-state performance. This would suggest that the dynamic consider-
ations when selecting measurement combinations become more crucial, the more
measurements are used. Furthermore, cB,7 also has the second lowest steady-state
loss, and thus, it can be seen that a small sacri�ce in the steady-state loss might
give a signi�cant improvement in the control performance.
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Figure 8.15: Distillate and bottom compositions changes in the binary distillation
column for a step disturbance of −10% in F0.

8.5 Structured measurements

In the previous section, an algorithm was proposed that aims to �nd the optimal
trade-o� between dynamic and steady-state performance by simultaneously com-
puting the linear measurement combinations and the PI controllers. So far, it has
been assumed that there are no structural constraints on the measurement com-
bination H, i.e., that H is a full matrix. However, as discussed in Chapter 5, in
many practical cases, it can be preferable to impose some structural constraints on
the measurement combination H. The main reasons were to improve the dynamic
controllability, to combine measurements that are of similar type, or to avoid pair-
ing MVs and CVs that are located far apart. Although the dynamic controllability
becomes less of an issue when using, e.g., Algorithm 7, the other two reasons may
still require the use of a structured H. In particular, the second reason could make
it easier to convince operators to implement these types of control structures in
their plants, since combining measurements of similar type give the CVs a more
intuitive meaning.

Contrary to using a full H matrix, the optimal measurement combinations
when structural constraints are imposed can be unique. E.g., if a block diagonal
constraint is used, where only one element is allowed in each column of H, then the
optimal solution is unique when not considering scaling of the matrix H. There-
fore, the relationship between the dynamic and the steady-state performance can
become more signi�cant for structured measurement combinations. To incorporate
structural constraints in the measurement combination, an ADMM algorithm was
proposed in Section 5.2.2 when only considering the steady-state loss. Here, an
augmented Lagrangian associated with the original objective function (HY ) and
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8.5. Structured measurements

the bilinear constraint (H = QĤ) was used to formulate the optimization problem:

min
H,Q,Ĥ

1

2

∥∥∥HY ∥∥∥2

F
+
ρ

2

∥∥∥H −QĤ + Λ
∥∥∥2

F
(8.74)

subject to HGy = J1/2
uu (8.75)

Ĥ ∈ S (8.76)

where Λ is the dual variable and ρ is positive scalar. The above optimization prob-
lem was solved by using the iterative procedure described in (5.53)−(5.55).

Since Algorithm 7 and the ADMM algorithm are both solved iteratively, it be-
comes fairly straightforward to combine them such that is possible to �nd a local
solution that trades-o� the steady-state loss against the dynamic performance for
the resulting closed-loop system. An example of how this can be done is demon-
strated in Algorithm 8, where similar to Algorithm 7 the H∞ norm has been used
to measure the dynamic performance with the resulting PI controllers being given
in their discrete-time ideal form.

Algorithm 8 Trade-o� between steady-state loss and dynamic performance for
structured measurement combinations.
Initialize: For k = 0 choose a stabilizing state feedback gain KSF and a measure-

ment combination matrix Ĥk.
1: Set k ← k + 1, and for the �xed KSF and Ĥk solve the LMI:

Jk
1 = min

Z1,Z2,P
X1,X2,Q,H

γ2 + α
1

2

∥∥∥HY ∥∥∥2

F
+
ρ

2

∥∥∥H −QĤ + Λk
∥∥∥2

F
(8.77)

subject to HGy = J1/2
uu , (8.40), (8.41), (8.42), and (8.43).

2: Fix Q, X1, Z1, and Z2 at the values obtained in step 1 and solve the LMI:

Jk
2 = min

P,X2,Ĥ,H
γ2 + α

1

2

∥∥∥HY ∥∥∥2

F
+
ρ

2

∥∥∥H −QĤ + Λk
∥∥∥2

F
(8.78)

subject to HGy = J1/2
uu , Ĥ ∈ S, (8.40), (8.42), and (8.43).

3: Update Λk+1 = Λk +Hk −QkĤk

4: If ‖Hk−1 −Hk‖2 < ε1, and ‖Hk −QkĤk‖2 < ε2 stop, else repeat step 1 to 4.

The value of the scalar α determines how much the steady-state loss should
be prioritized over the dynamic performance. The �nal controller parameters are
obtained from Kp = I, and Ki = X−1

1 X2, with the measurement combination
given by Ĥ, where S are the structural constraints that have been imposed on Ĥ.

The convergence of Algorithm 8 is not completely known since, for ADMM al-
gorithms, convergence to a globally optimal solution is only guaranteed for convex-
problems. However, for non-convex problems, an ADMM algorithm should converge
as long as ρ has been chosen to be su�ciently large [50]. Thus, if the algorithm has
been initialized with a state feedback gain KSF that gives a feasible solution in
step 1, then with su�ciently large ρ, then Algorithm 8 should converge to a local
minimum.
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8. Controller design for self-optimizing control variables

8.5.1 Case study: Binary distillation column

Here, the binary distillation column model described in Section 8.2.1 will again
be used as a case study to evaluate Algorithm 8. The purpose is to �nd control
structures that give the optimal trade-o� between the steady-state loss and the
dynamic performance when there are structural constraints are imposed on the
measurement combination. The problems were formulated with the YALMIP tool-
box [90] in Matlab and solved using the solver MOSEK [99].

The objective for the distillation column is to minimize the deviations in the top
product composition xD and the bottom product composition xB . The available
inputs u are given by

u =
[
LR VB

]T
, (8.79)

where LR and VB are liquid recycle �ow and the vapor boilup rate, respectively.
The main disturbances consist of changes in feed �ow rate (F0), feed composition
(xF ), and feed liquid fraction (qF ):

d =
[
F0 xF qF

]T
. (8.80)

To evaluate the algorithm, the following set of temperature measurements has been
selected:

y =
[
T5 T7 T10 T18 T20 T30 T33 T35

]T
. (8.81)

Thus, the goal is to �nd PI controllers and measurement combinations H for
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Figure 8.16: Deviations in xD and xB , for a +10% step change in F0 after 10 min.

the measurements in (8.81), where some structural constraints have been imposed
on H. These will be block diagonal constraints, where the four temperature mea-
surements closest to the bottom {T5, T7, T10, T18} will be separated from the four
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Figure 8.17: RGA-number for the CVs: c1 = H1y and c2 = H2y.

measurements at the top of the column {T20, T30, T33, T35}. Two di�erent CVs were
computed c1 = H1y, and c2 = H2y, where c1 puts a higher priority on minimizing
the steady-state loss at the expense of the dynamic performance. Using Algorithm
8, the measurement combination matrix H1 for c1 was given by

H1 =

[
0.000 0.000 0.000 0.000 −0.613 1.220 0.954 0.702
−0.237 −0.357 −0.546 −0.080 0.000 0.000 0.000 0.000

]
with the following PI controllers:

Kp1 = I, Ki1 =

[
0.0836 0

0 0.4390

]
.

The second CV denoted c2, puts more emphasis on the dynamic behavior and
should thus, give a CV with a higher steady-state loss compared to c1. This resulted
in the following measurement combination,

H2 =

[
0.000 0.000 0.000 0.000 −2.363 2.022 1.576 1.159
−0.427 −0.649 −1.012 −0.308 0.000 0.000 0.000 0.000

]
,

where the PI parameters were given by,

Kp2 = I, Ki2 =

[
0.1060 0

0 0.3878

]
.

A simulation of a step change in the feed �ow can be seen in Figure 8.16, where
it can be seen that c2 gives a better response but at the cost of a higher steady-
state loss. In addition, the controllability of the two CVs (c1, and c2) was analyzed
by investigating the RGA [22] with respect to the frequency. However, plotting
the magnitudes of the RGA element (as was done in Section 6.1) can sometimes
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8. Controller design for self-optimizing control variables

be misleading since it doesn't distinguish between positive and negative values.
Instead, the RGA-number will be used, which is given by [125]:

RGA-numnber = ‖RGA− I‖sum. (8.82)

Here, it is preferable to select CVs that have a small RGA-number at the crossover
frequency. The RGA-number for the two CVs can be seen in Figure 8.17 and shows
that c2, which was computed with more emphasis on the dynamic behavior, has a
lower RGA-number for the whole frequency range. Thus, the CV given by c2 is also
likely to be more robust against uncertainties in the dynamic process model, since
the level of interactions are not as sensitive to the closed-loop bandwidth. However,
these improvements in the dynamic performance need to be weighed against the
increase in the steady-state loss to determine whether they are worth it or not.

8.6 Conclusion

In this chapter, the transient behavior when selecting the self-optimizing control
variable has been considered. The main objective has been to �nd measurement
combinations together with PI controllers that minimize the dynamic impact from
disturbances while still achieving an acceptable steady-state economic loss based on
the self-optimizing control conditions. First, an algorithm was proposed that �nds
the controllers and the CVs that optimizes the dynamic performance while still
maintaining the optimal steady-state behavior when using either the null space or
the exact local method. The second algorithm, incorporated the sparsity promoting
weighted l1 norm into the objective function to penalize the number of measure-
ments used. Thus, it searches for a measurement subset and a control structure
that will minimize the dynamic impact disturbances have on the closed-loop sys-
tem while satisfying the null space condition as the self-optimizing control criteria.
The third algorithm that was developed computes the measurement combination
together with PI controllers and gives the optimal trade-o� between dynamic and
steady-state performance. A penalty function can also be included that penalizes
the number of measurement used and attempts to �nd a subset for the desired
trade-o�. In the �nal algorithm, the PI controllers and CVs are computed when
some structural constraints have been imposed on the measurement combinations.
These problems may appear in situations where it is desirable to combine measure-
ments that are of similar type or if the inputs and measurements that are associated
with the same units of the process should be used in the same control loop.

All the proposed algorithms are trying to solve an optimization problem that
includes a BMI, and thus, they are non-convex. The focus of this work has been
on simultaneous control structure and controller design, and not on the solution
of BMIs. Therefore, the use of global optimization solvers for the resulting BMI
problems [43] have not been investigated. Instead, the algorithms use an iterative
procedure to solve the problem. However, several non-trivial examples demonstrate
that good results are found both with respect to the (near) optimality of the steady-
state solution and the control performance of the resulting closed-loop system.

The examples used to evaluate the algorithms consisted of di�erent distilla-
tion column models. Distillation columns are dynamically interactive and often
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ill-conditioned; thus, they work as great case studies for control structure design,
when using the proposed methods. In particular, the Petlyuk and the Kaibel distil-
lation columns are interesting problems, since divided wall columns are known to
be challenging to control when using decentralized strategies, where, e.g., [1] sug-
gested that an MPC should be used to achieve good controllability. However, as
illustrated in Section 8.3.1, and 8.2.2, when using the proposed algorithms, it was
possible to �nd decentralized control structures with comparable performance to an
MPC. Therefore, it seems to indicate that well-tuned decentralized PI controllers
can give comparable results to more advanced control structures if the controlled
variables (measurement combinations) are chosen properly.

It is possible that better performance can be achieved if more advanced con-
troller formulations are used instead of decentralized PI controllers. The main dif-
ference would be how the controller description is included in the formulation of
the augmented system matrices described in Section 7.3. One important require-
ment is that the controllers incorporate some integral action to ensure that the
self-optimizing control criterion is met at steady-state. However, the CVs (mea-
surement combinations) obtained using the proposed methods are likely to have
smaller interactions between each other, compared to measurement combinations
that have been obtained without considering the dynamics. Therefore, using a de-
centralized PI control structure allows for relatively easy retuning of the controllers,
when compared to advanced multi-variable controllers, should future changes in
operating conditions make retuning necessary. Thus, the small potential improve-
ments in performance for more advanced control strategies may not be worth their
additional complexity.
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Chapter 9

Decentralized state estimation

The increasing demands for e�cient operation and pro�tability in the industry
have led to higher demands on the control systems. The control systems that have
been implemented should, ideally, be capable of driving the plant to the new opti-
mal operating point as e�ciently as possible, whenever the plant is being a�ected
by disturbances. In the previous chapters, control structures were designed for the
lower regulatory control layer that were able to achieve near-optimal operation,
both in terms of the economic steady-state and the dynamic performance. These
control structures were computed based on the principles of self-optimizing control,
where the goal was to �nd simple control structures consisting of, e.g., decentralized
PI controllers that give a performance comparable to more complex control struc-
tures. However, for many processes, implementing self-optimizing control on the
lower layer controllers may not su�ce, especially, if the systems are very nonlinear
and there are frequent changes in the active constraints for the optimal opera-
tion. Therefore, it becomes necessary to incorporate some more advanced control
systems in the upper layers, e.g., real-time optimizers (RTO), model predictive
controllers (MPC) and economic MPCs.

To successfully implement such techniques, more frequent information of the
states and disturbances is required [150]. Measuring all the important states and
disturbances is often too expensive and often not possible. Therefore, they need
to be estimated, using appropriate state estimators as, e.g., in [93], and [141]. For
chemical processes and other large-scale systems, using centralized state estimators
are in general not favorable due to the high computational complexity. Instead, it is
preferable to decompose the problem into several subsystems with local estimators,
that uses the locally available measurements [137].

In [40], the concepts of distributed and parallel state estimation was introduced,
where it was concluded that distributed state estimation is a viable option when
estimating the states for complex and large-scale systems. The principle of dis-
tributed or decentralized state estimation is to split the state estimation problem
into several smaller subsystems that are able to produce their own local state es-
timate. By collecting the local estimates and fusing them together, it should be
possible to obtain a new global state vector with better accuracy compared to the
local estimates. Therefore, this chapter will brie�y cover some of the most common
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fusion methods, which will work as the background for the proposed fusion method
that will be presented in Chapter 10.

9.1 Fusion strategies

Consider a discrete system described by a nonlinear dynamic model f(·) and n
di�erent measurement models hj(·):

x(k + 1) = f
(
xj(k), u(k)

)
+ w(k), (9.1)

yj(k) = hj
(
x(k)

)
+ vj(k), (9.2)

where x(k) ∈ Rnx and u(k) ∈ Rnu are the states and inputs, respectively. The
process noise w(k) and the measurement noise vj(k) are uncorrelated zero mean
white Gaussian noise with the respective covariance matrices Qw(k), and Rv,j(k).
Assume that there exists a di�erent local estimator for every measurement model
yj(k) that tries to estimate the same state vector using the model given in (9.1).
The local estimators can be of di�erent type, but they all produce a local estimate
together with a covariance matrix that can be represented by N(x̂j , Pj). The goal
is to fuse together the local estimates to obtain a new covariance matrix and a
global state vector with better accuracy compared to the local state estimates.

9.1.1 Naive Fusion

A state vector and its covariance matrix can be represented as an information vector
and an information matrix, also known as their canonical form [16]. The canonical
form is commonly used in distributed and decentralized state estimation, since
fusing estimates then becomes equivalent to adding the information matrices and
vectors together. The information matrix and information vector are de�ned as:

Ω(k|k) := P (k|k)−1, (9.3)

ξ(k|k) := P (k|k)−1x̂(k|k), (9.4)

where x̂(k|k) is the state estimate, and P (k|k) is its covariance matrix at time k.
The corresponding fused information matrix and information vector can then

be given by

Ω(k|k) =

n∑
j=1

Ωj(k|k) (9.5)

ξ(k|k) =

n∑
j=1

ξj(k|k) (9.6)

where Ωj and ξj are the information matrix and information vector from the jth
subsystem, respectively. The global covariance matrix and state vector can then
simply be obtained from:

P (k|k) = Ω(k|k)−1 (9.7)

x̂(k|k) = P (k|k)ξ(k|k). (9.8)
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The global estimate in (9.8) and its covariance matrix in (9.7) are optimal if there
is no correlation between the local estimates. This assumption rarely holds and
has, therefore, been referred to as the "naive approach" [28]. A typical cause of
correlation is that the local estimates are a�ected by the same process noise, e.g.,
a temperature measured directly and the estimated temperature obtained by an-
other node from a pressure measurement combined with a reaction model will be
correlated [67]. If the cross-correlations are ignored, it will result in overcon�dent
and inconsistent state estimates. This will make the state estimates less accurate
and could even lead to divergence if the result is fed back to local estimators.

9.1.2 State fusion under known correlation

The Bar-Shalom Campo (BC) formula [15] is a well-known method for incorporat-
ing the known cross-correlation when fusing state estimates. After dropping (k|k)
for ease of notation, the BC formula can be given by

PBC = P1 − (P1 − P12)(P1 + P2 − P12 − P21)−1, (9.9)

x̂BC = (P2 − P21)(P1 + P2 − P12 − P21)−1x̂1

+ (P1 − P12)(P1 + P2 − P12 − P21)−1x̂2, (9.10)

where P12 and P21 constitute the cross-correlations. From a maximum likelihood
sense, this formula results in consistent fusion. However, keeping track on and
maintaining these cross-correlations is expensive, especially for large-scale systems.
Instead, di�erent suboptimal strategies are often used, that gives a fused solution
without the need to maintain the cross-correlations.

9.1.3 State fusion under unknown correlation

Several methods exist for fusing estimates with unknown correlations. One of the
most popular methods used is known as covariance intersection (CI) [69]. It deter-
mines the fused estimate by multiplying the information matrices and vectors with
a scalar weight, ω ∈ R[0,1]:

PCI = (ω · Ω1 + (1− ω) · Ω2)−1, (9.11)

x̂CI = PCI(ω · ξ1 + (1− ω) · ξ2). (9.12)

Numerous approaches for determining the weight ω exists, e.g., [29] and [45] but
in general, they attempt to minimize the trace or the determinant of PCI . The CI
method guarantees that the fused estimate is consistent as long as the local esti-
mates are consistent. It does so by overestimating the covariances in all directions,
thus ensuring the fused covariance is larger than for the worst-case cross-correlation
scenario. This is also one of its drawbacks, as it does not necessarily reduce the
estimation error.

Contrary to CI, which attempts to obtain a minimum overestimation of the
intersection region between covariances, the ellipsoidal intersection (EI) [118] and
the largest ellipsoid algorithm (LEA) [18] aim to �nd the maximum ellipsoid inside
the region of the intersection.
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Figure 9.1: Covariance ellipses P1, P2, and P3; the desired ellipse Pdes; and the fused
covariances EI123, EI132, and EI321 when fusing P1, P2, and P3 with ellipsoidal
intersection in di�erent orders.

EI ensures that the uncertainty decreases for the fused estimate (i.e., PEI � P1,
and PEI � P2), and gives a reduction in the estimation error compared to using
CI. It does so by calculating the mutual covariance Pm and the mutual mean xm,
yielding:

PEI = (P−1
1 + P−1

2 − P−1
m )−1, (9.13)

x̂EI = PEI(P
−1
1 x̂1 + P−1

2 x̂2 − P−1
m xm). (9.14)

The EI and LEA methods are similar since they both aim to obtain the maxi-
mum ellipsoid inside the region of the intersection through eigenvalue (or singular
value) decomposition. However, EI uses eigenvalue decomposition to �nd the mu-
tual information (Pm and xm), whereas LEA computes a transformation matrix T
such that,

P̃1 = TP1T
T , (9.15)

P̃2 = TP2T
T , (9.16)

becomes diagonal matrices with P̃1 being equal to the identity matrix. The trans-
formation matrix T can be found by �rst taking the singular value composition
(svd) of P1,

[U1, D1] = svd(P1), (9.17)

and then compute the svd for:

[U2, D2] = svd(D
− 1

2
1 UT1 P2U1D

−T2
1 ). (9.18)

The diagonal matrix P̃2 can then be obtained from

P̃2 = D2 = UT2 D
− 1

2
1 UT1 P2U1D

−T2
1 U2, (9.19)
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whereas P̃1 is given by

P̃1 = UT2 D
− 1

2
1 UT1 P1U1D

−T2
1 U2. (9.20)

Replacing P1 with U1D1U
T
1 in (9.20) gives

P̃1 = UT2 D
− 1

2
1 UT1 U

T
1 D1U1U1D

−T2
1 U2, (9.21)

and because U1 and U2 are unitary matrices, multiplying them by their respective
conjugate transposes yields the identity matrix:

P̃1 = UT2 D
− 1

2
1 D1D

−T2
1 U2, (9.22)

= UT2 U2, (9.23)

= I. (9.24)

Thus, by de�ning the transformation matrix T as

T := UT2 D
− 1

2
1 UT1 , (9.25)

the diagonal matrices P̃1 and P̃2 can be given by (9.15) and (9.16), respectively.
The intersection ellipsoid can then be calculated from,

PLEA = T−1P̃LEAT
−T , (9.26)

where [P̃LEA]j,j = min([P̃1]i,i, [P̃2]j,j).
The similarity between EI and LEA was also addressed in [105]. However, the

fused mean for LEA is not adapted to the fused covariance, which is a signi�cant
di�erence compared to EI.

9.2 State fusion for more than two local estimates

The framework of the three fusion methods (CI, EI, and LEA) have been devised
for fusing two estimates only. When extended to multiple estimates, the general
recommendation is to sequentially apply these fusion methods [33], [89]. However,
as demonstrated in [14] when using CI for three or more estimates, it tends to
overestimate the covariance, and therefore, the minimum overestimate no longer
holds. On the other hand, using a sequential approach for EI, and LEA, may lead
to an underestimate of the uncertainty, that is, result in a covariance that is smaller
than the maximum ellipsoid inside the intersection region as seen in Figure 9.1.
Furthermore, the order of the sequence of which the fusion is done a�ects the �nal
estimates as also illustrated in Figure 9.1, where the three covariances P1, P2, and
P3 end up with a di�erent fused covariance depending on the sequential order.
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9.3 Conclusion

This chapter covered some of the popular approaches for fusing state estimates that
have been computed by di�erent local state estimators. When the cross-correlation
between the local estimates is known, then the Bar-Shalom Campo (BC) formula
can be used to reconstruct a state estimate that is optimal in the sense of maximum
likelihood. However, keeping track of the cross-correlations is di�cult for large-scale
systems, and instead, it is preferable to use fusion methods that don't account for
the correlations between the local estimates.

Naive fusion o�ers a simple and straightforward way of computing a global
state vector, but can give inconsistent estimates and does not necessarily reduce
the estimation error. Covariance intersection (CI) can guarantee consistency for
the fused estimate by multiplying all the local estimates with a scalar weight. The
weights decide to what extent the di�erent local estimates should be emphasized
when they are fused together. However, since these weights are scalars, it means
that every estimate in the local state vectors will be scaled equally, despite that
the accuracy of the di�erent estimates can vary within each state vector. As a
consequence, CI is unlikely going to be able to reduce the estimation error for all
the state estimates. This issue is partly solved when using ellipsoidal intersection
(EI), which improves the accuracy in all direction. Unfortunately, EI is restricted
to fusing two state vectors and requires the use of a sequential approach when
extended to multiple estimates, from which the fusion order will in�uence the �nal
result.

Motivated by the advantages and disadvantages of the above fusion methods, an
alternative approach for computing weights for the local estimates will be presented
in the next chapter. However, instead of having the weights be scalars as in CI, the
proposed fusion method aims to �nd weight matrices that will, similarly to EI, be
able to reduce the estimation error for all estimates, but where the �nal result is
independent of any sequential order.
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Chapter 10

State fusion for partially overlapping

state estimates

The previous chapter covered some of the common state fusion methods when
fusing state estimates that have been obtained using di�erent state estimators.
However, these approaches were restricted to problems that involved fusing only
two estimates that where both trying to estimate the same state vector. Therefore,
they are not particularly well suited for decentralized state estimation in chemical
processes or other large-scale systems, since in general, they would require fusing
several local estimates of di�erent size and with only partially overlapping state
vectors.

Instead, when estimating the states for complex and large-scale systems, the
concepts of distributed and parallel state estimation should be used that was in-
troduced in [40]. Here, information can be shared between all the subsystems or
only with neighboring subsystems. From the shared information, it should be pos-
sible to obtain a global estimate. Two main approaches exist for dealing with the
distributed/decentralized state estimation problem:

One approach is to have every subsystem estimate the entire state vector using
a global model for each local estimator. A global estimate is then received by fusing
all the local estimates in a centralized fusion layer as in [151]. The main drawback
of this approach is that it is a full order problem, and each subsystem must have
access to a full dynamical model of the system. Therefore, this approach is poorly
suited for most chemical processes and other large-scale systems.

In the second approach, the di�erent subsystems compute only a partial esti-
mate using a local model and then transmits the information to its neighbors. This
approach is also referred to as partition-based state estimation [42]. It is in general,
more preferable for large-scale systems as in [137] since it results in low order esti-
mation problems that rely only on local dynamic and measurement models. What
information that is shared between the neighboring subsystems vary depending on
the distributed estimation scheme, but can be the measurements, state estimates,
and corresponding covariances. The main drawback with this method is that it
requires good performance for the communication between the local estimators,
where corrupted information, information delays, and transmission frequency lim-
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10. State fusion for partially overlapping state estimates

itations may cause problems.
Consensus algorithms for distributed state estimation based on Kalman �lters

have recently received much attention [108], [86], [85]. In general, they belong to
the second approach, where each node (local estimator) computes an estimate and
shares it with its neighbors. The estimates by the di�erent nodes converge to the
same state estimate using a consensus algorithm. The Kalman based consensus
�lters have mostly been applied to target tracking [72], where each local estimator
tries to estimate the same state vector. However, a consensus based method for
merging partially overlapping state estimates was also proposed in [128].

One aspect most of the distributed state estimation methods have in common
is that they are typically designed using a top-down approach, i.e., they start with
a global model and then decompose it into smaller subsystems. The local estima-
tors for the decomposed subsystems then often employ the same state estimation
algorithm.

However, a major issue in process control is that most chemical plants, together
with their di�erent units, are unique. Therefore, most models have to be obtained
using empirical modeling, requiring excitation of the process through, e.g., system
identi�cation. These experiments are often time-consuming and expensive since it
interferes with the process operation. As a consequence, the accuracy of the models
varies greatly, where some parts of the process can have very accurate nonlinear
models, while other parts have basic linear models. Thus, using the same estimator
algorithm for every subsystem would be suboptimal. Instead, it would be more
practical to use a bottom-up approach, where each local estimator is independently
designed using a local model and the local measurements. The local estimates can
be sent to a fusion center, from which a more accurate global state estimate can be
recovered. Therefore, in this chapter, a fusion method is proposed that aims to fuse
together several local estimates that are estimating di�erent parts of the process.

10.1 Hierarchical state estimation

Hierarchical state estimation can be done by computing the global information
matrix, and vector from n di�erent subsystems,

Ω(k|k) = Ω(k|k − 1) +

n∑
i=1

(
Ωi(k|k)− Ωi(k|k − 1)

)
, (10.1)

ξ(k|k) = ξ(k|k − 1) +

n∑
i=1

(
ξi(k|k)− ξi(k|k − 1)

)
, (10.2)

where the information matrix, and vector were de�ned in (9.3), and (9.4) respec-
tively. Here, each local estimator is assumed to have the global model available and
tries to estimate the whole state vector using the locally available measurements.
This can essentially be interpreted as having a centralized estimator that computes
a global a priori estimate ξ(k|k − 1), Ω(k|k − 1), and then receives the additional
information containing the measurements from each local estimator. This approach
has been shown by [57] to be equivalent to using a centralized state estimator, but
the requirement of a global model makes it impractical for large-scale systems.
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10.1. Hierarchical state estimation

Instead, a more desirable approach would be to have the local estimators only es-
timate a part of the global state vector and then use a fusion center to reconstruct
a global state estimate.

Let the nonlinear dynamic model of a large-scale process be given by the
discrete-time system:

x(k + 1) = f
(
x(k), u(k)

)
+ w(k), (10.3)

y(k) = h
(
x(k)

)
+ v(k), (10.4)

where x(k) ∈ Rnx and u(k) ∈ Rnu are the states and inputs, respectively. The
process noise w(k) and the measurement noise v(k) are uncorrelated zero mean
white Gaussian noise with the respective covariance matrices Qw(k), and Rv(k).
Decomposing the system into n subsystems of a lower order where index i identi�es
the ith subsystem represented as:

xi(k + 1) = fi
(
xi(k), ui(k), Xi(k)

)
+ wi(k) (10.5)

yi(k) = hi
(
xi(k), Xi(k)

)
+ vi(k) (10.6)

Here the vectorXi(k) represents the states which are shared among the neighboring
subsystems, but for which the model equations are unknown to subsystem i.

Local state

vector, x̂1

Fused state

vector, x̂

Local state

vector, x̂2

Local state

vector, x̂3

Figure 10.1: Fusion of partially overlapping local state estimates.

Each subsystem uses a decentralized state estimator, that can operate indepen-
dently, i.e., it does not require any information from any of the other subsystems.
For the local estimator to operate without the need to communicate with its neigh-
bors, the local model in (10.5) is augmented with integrators that represent the
interacting states Xi(k). Thus, the augmented model for the local estimators be-
comes:

x̄i(k + 1) =

[
xi(k + 1)
Xi(k + 1)

]
=

[
fi(xi(k), ui(k), Xi(k))

Xi(k)

]
(10.7)

It is assumed that the augmented state vector x̄i(k) is observable using the
locally available measurements yi(k). The local estimators can be of di�erent type,
but they all produce a local estimate together with a covariance matrix that can be
represented by N(ˆ̄xi, P̄i). Each of the local estimates ˆ̄xi represents a smaller part
of the global state vector in (9.1) where some parts of the local estimates overlap
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10. State fusion for partially overlapping state estimates

with each other as in Figure 10.1. Therefore, the objective is to collect and fuse
the local estimates together in a fusion center, using a hierarchical decentralized
structure, as shown in Figure 10.2. However, the role of the fusion center is not only
to assemble the global state vector, but also to get a more accurate state estimate.

Fusion center

Estimator 1 Estimator 2 Estimator n· · ·

Ω1

ξ1

Ω2

ξ2

Ω3,···,n−1

ξ3,···,n−1

Ωn

ξn

x̂

Subsystem 1 Subsystem 2 Subsystem n· · ·

y1 y2 yny3,···,n−1

Figure 10.2: The hierarchical decentralized state estimator.

Therefore, instead of having each local estimator compute both the a posteriori
and the a priori estimate of the entire global state vector as in (10.1) and (10.2), it
would be preferable to fuse only the a posteriori information matrices and vectors
directly from the local models:

Ω(k|k) =

n∑
i=1

ΓiΩi(k|k)ΓTi (10.8)

ξ(k|k) =

n∑
i=1

Γiξi(k|k) (10.9)

Here, Γi is a transformation matrix, that maps the local state vectors x̂i(k|k) to
the global state vector x̂(k|k), i.e. x̂i(k|k) = ΓTi x̂(k|k).

Similar, to the "naive" approach given by (9.5) and (9.6), the global estimate
from (10.8) and (10.9) is optimal if there is no correlation between the local esti-
mates. However, as mentioned in Section 9.1.1, this is an unrealistic assumption,
and in most practical cases will result in overcon�dent and inconsistent state esti-
mates. For the proposed hierarchical decentralized state estimator (see Figure 10.2),
consistency will not be a major issue, since the fused estimates have no in�uence
on the local estimates. However, the cross-correlations should still be considered in
order to improve the accuracy of the fused estimate.

10.2 State fusion with unequal state vectors

Compared to fusing state estimates that correspond to the same state vector, re-
search regarding fusing partial overlapping state vectors is fairly limited. A consen-
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10.3. Proposed fusion method

sus based method for fusing the overlapping parts have been proposed in [128]. In
[119], an empirical method was investigated, where the EI method was extended
to deal with partially overlapping state vectors. However, both these methods are
better suited to fully distributed state estimation, where the local estimates are
shared between its neighbors without any fusion center.

A more suitable technique for the desired hierarchical fusion structure was pro-
posed in [104]. There, fusing unequal state vectors is treated as a weighted least
squares (WLS) problem, where the fused state estimate becomes:

x̂WLS = Ke

[
x̂T1 · · · x̂Tn

]T
(10.10)

The gain Ke for unknown cross-correlations can be computed:

Ke = (HTΩWLSΓ)−1HT (ΩWLS)−1. (10.11)

where Γ :=

ΓT1
...

ΓTn

 , and ΩWLS :=

w1Ω1

. . .
wnΩn

 .
The scalar weights ωi can be obtained using, e.g., CI such that ωi ≥ 0, and∑n
i=1 ωi = 1. However, no more information was given on how to compute ωi.

Furthermore, CI is not particularly well suited for dealing with partially overlap-
ping state estimates. For instance, if the goal is to minimize the trace of the fused
covariance, then using larger weights for the local estimates of lower dimensions
would in general, be bene�cial, even if these estimates are inaccurate.

10.3 Proposed fusion method

Motivated by some of the shortcomings when fusing multiple and partially over-
lapping state estimates, a method is proposed that tries to address some of these
issues. The proposed method is inspired by EI [118] and LEA [18], as it tries to
obtain a fused covariance that corresponds to the maximum ellipsoid inside the
region of intersection. Therefore, similar to EI, it does not guarantee consistency
[106] unless the local estimates are weakly correlated [89]. However, instead of us-
ing a sequential approach, the aim is to compute static weight matrices Wi such
that the global state estimate becomes,

x̂ = Ω−1ξ, (10.12)

where,

Ω =

n∑
i=1

ΓiWiΩiW
T
i ΓTi , (10.13)

ξ =

n∑
i=1

ΓiWiΩiW
T
i x̂i. (10.14)

The weightsWi in (10.13), and (10.14) will be obtained by solving two semi-de�nite
programming (SDP) problems.
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10. State fusion for partially overlapping state estimates

Lemma 10.1. [17] An inner ellipsoidal approximation of the intersection for
the ellipsoids Γ1Ω1ΓT1 , ...,ΓnΩnΓTn can be obtained by solving the following linear
matrix inequality (LMI):

max
Z,ti

det(Z) (10.15)

subject to: ti ≥ 0, ∀i (10.16) I 0 ΓiΩ
1
2
i ΓTi Z

0 1− ti 0

ZΓiΩ
1
2
i ΓTi 0 tiI

 � 0, ∀i (10.17)

The approximation of the intersection Ω0 is obtained from:

Ω0 = Z−2. (10.18)

The next step is to �nd weight matrices Wi such that (10.13) becomes equal
(or close) to Ω0. This can be achieved by �nding transformation matrices Ti that
manipulate the orientation of Ωi such that they all align with Ω0.

The singular value composition of Ω0 is given by

[U0, D0] = svd(Ω0), (10.19)

from which, a transformation matrix can be de�ned,

T0 = D
− 1

2
0 UT0 (10.20)

that makes T0Ω0T
T
0 = I. The following transformation matrices can be computed

for i = 1...n:

[Ui, Di] = svd(T0ΓiΩiΓ
T
i T

T
0 ), (10.21)

Ti = UTi D
− 1

2
0 UT0 . (10.22)

The transformation matrices, Ti can be used to bring Ω0 and Ωi within a space
where they have compatible orientations:

Ω̃0 = TiΩ0T
T
i = I, (10.23)

Ω̃i = TiΓiΩiΓ
T
i T

T
i , (10.24)

where Ω̃0 and Ω̃i are diagonal matrices. Next, the goal is to �nd some diagonal
scaling weights W̃i, such that the corresponding ellipsoid when transformed back
to original space becomes:

Ω0 =

n∑
i=1

T−1
i W̃iΩ̃iT

−T
i (10.25)

=

n∑
i=1

T−1
i W̃iTiΓiΩiΓ

T
i T

T
i T
−T
i (10.26)

=

n∑
i=1

T−1
i W̃iTiΓiΩiΓ

T
i . (10.27)
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10.3. Proposed fusion method

Theorem 10.2. The weights W̃i can be obtained by solving:

max
W̃i

det
( n∑
i=1

T−1
i W̃iTiΓiΩiΓ

T
i

)
(10.28)

subject to: W̃i ≥ 0, ∀i (10.29)∥∥∥ n∑
i=1

T−1
i W̃iTi

∥∥∥
2
≤ 1 (10.30)

Proof. From (10.27), (T−1
i W̃iTi) can be considered as a weight matrix that when

multiplied with ΓiΩiΓ
T
i results in:

(T−1
i W̃iTi)ΓiΩiΓ

T
i = ΓiΩiΓ

T
i (T−1

i W̃iTi)
T � 0. (10.31)

The symmetry is due to W̃i, and Ω̃i in (10.25) being diagonal matrices, and the
constraint in (10.29) guarantees positive semi-de�niteness. The upper bound placed
on W̃i through (10.30) ensure that:

n∑
i=1

T−1
i W̃iTiΓiΩiΓ

T
i � Ω0. (10.32)

Therefore, the weights W̃i are optimal if
∑n
i=1 T

−1
i W̃iTi = I, which results in:

n∑
i=1

T−1
i W̃iTiΓiΩiΓ

T
i = Ω0. (10.33)

Remark Ideally, the constraint in (10.30) could be replaced with the expression∑n
i=1 T

−1
i W̃iTi = I. However, due to possible round-o� error and other numerical

issues when computing Ti, it can give poor results. Therefore, the relaxed constraint
in (10.30) is preferred and should result in

∑n
i=1 T

−1
i W̃iTi ≈ I.

Because W̃i are diagonal matrices, (10.25) can be written as

Ω0 =

n∑
i=1

T−1
i W̃

1
2
i Ω̃iW̃

T
2
i T

−T
i , (10.34)

=

n∑
i=1

T−1
i W̃

1
2
i TiΓiΩiΓ

T
i T

T
i W̃

T
2
i T

−T
i . (10.35)

The weights in the original space then become

Wi = ΓTi T
−1
i W̃

1
2
i TiΓi, ∀i. (10.36)

The procedure for computing the weights Wi is summarized in Algorithm 9.
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10. State fusion for partially overlapping state estimates

Algorithm 9 Computation of the fusion weights in hierarchical state estimation.
Initialize: Collect the information matrices Ωi from all the n di�erent local es-

timators together with their transformation matrices Γi that map the local
estimates to the global state vector.

1: Compute the maximum ellipsoid inside the region of intersection Ω0 = Z−2,
where Z is computed by solving problem given in Lemma 10.1:

Z = arg max
Z,ti

det(Z)

subject to: ti ≥ 0, ∀i I 0 ΓiΩ
1
2
i ΓTi Z

0 1− ti 0

ZΓiΩ
1
2
i ΓTi 0 tiI

 � 0, ∀i

2: Calculate the transformation matrices Ti from (10.19) that aligns Ω0 with Ωi
for all i:

Ti = UTi D
− 1

2
0 UT0 ,

where D0, Ui, and Ui is obtain using (10.20)−(10.22):

[U0, D0] = svd(Ω0),

T0 = D
− 1

2
0 UT0 ,

[Ui, Di] = svd(T0ΓiΩiΓ
T
i T

T
0 ).

3: Compute the diagonal weight matrices W̃i by solving the optimization problem
given in (10.28)−(10.30):

W̃i = arg max
W̃i

det
( n∑
i=1

T−1
i W̃iTiΓiΩiΓ

T
i

)
subject to: W̃i ≥ 0, ∀i∥∥∥ n∑

i=1

T−1
i W̃iTi

∥∥∥
2
≤ 1

4: Calculate the weights Wi in their original space from (10.36):

Wi = ΓTi T
−1
i W̃i

1
2TiΓi, ∀i.

The global state estimate can then be obtained from (10.12), (10.13), and
(10.14). Alternatively, (10.10), and (10.11) can be used, where ωiΩi in ΩWLS can
be replaced with WiΩiW

T
i .
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10.4. Case study: Lorenz attractor

An example of a resulting fused covariance ellipse can be seen in Figure 10.3,
together with the original and weighted covariances. The individual covariances get
scaled, so the uncertainty mainly increases in the inaccurate directions. This forces
the fused estimate to put more emphasis on the accurate estimates.
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Figure 10.3: Covariance ellipses P1, P2, and P3; the weighted covariances
P ∗1 = (W1Ω1W

T
1 )−1, P ∗2 = (W2Ω2W

T
2 )−1, P ∗3 = (W3Ω3W

T
3 )−1; and their fused

covariance P ∗ = (W1Ω1W
T
1 +W2Ω2W

T
2 +W3Ω3W

T
3 )−1.

The main drawback with the proposed algorithm is that it requires solving two
SDPs, which can be computational demanding, especially for large-scale systems.
However, unless there are signi�cant changes in the covariance matrices from the
local estimates (due to, e.g., high nonlinearities), updating the weights at every
iteration should not be necessary. Instead, the weights can be kept constant until
the operating conditions in the process changes.

10.4 Case study: Lorenz attractor

Let's consider three estimators, that tries to estimate the states of the Lorenz
attractor, given by the following state-space model:

ẋ1 = −10(x1 − x2) (10.37)

ẋ2 = x1(28− x3)− x2 (10.38)

ẋ3 = x1x2 −
8

3
x3. (10.39)

Each estimator uses the locally available measurements yi, together with an un-
scented Kalman �lter (UKF) [68], where the measurements are given by:

y1 =

[
x1

x2

]
, y2 =

[
x2

x3

]
, y3 =

[
x3

x1

]
.
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10. State fusion for partially overlapping state estimates

The covariance matrices for the process and measurement noise are assumed to
be known and are for i = 1, 2, 3:

Qw,i =

0.52 0 0
0 0.52 0
0 0 0.52

 , Rv,i =

[
0.012 0

0 0.12

]

The Lorenz attractor is simulated for 1000 samples with a step size of 0.01
using a 4th order Runge-Kutta numerical integration. To improve the result, the
estimated states from the local estimators are fused, using a hierarchical structure
as in Figure 10.1, but with all states overlapping. The cross-correlations between
the estimates are assumed to be unknown, and thus, the estimation error for the
fast CI [45], the EI, and the proposed method are compared. The root mean squared
error (RMSE) for the respective estimator and the three fusion methods can be
seen in Table 10.1, where the subscripts of "EI" denote the sequential order the
estimates have been fused.

Table 10.1: RMSE for the Lorenz attractor

RMSE x1 RMSE x2 RMSE x3

Local Estimator 1 0.0101 0.0969 1.7172
Local Estimator 2 1.1101 0.0101 0.0992
Local Estimator 3 0.0968 1.4670 0.0103

Fast CI 0.1315 0.1036 0.0905

EI123 0.0108 0.0101 0.0109
EI132 0.0101 0.0106 0.0107
EI321 0.0110 0.0112 0.0103

Proposed fusion method (updated Wi) 0.0101 0.0101 0.0103
Proposed fusion method (static Wi) 0.0101 0.0101 0.0104

As seen in Table 10.1, all three fusion methods give an overall reduction in the
estimation error compared to the local estimates. However, the proposed method
gives a better result compared to the two other methods, where there is little
improvement when updating the weights at every iteration compared to using the
same (static) weights. It can also be seen that the estimation error for the EI
method depends on the order which the local estimates have been fused in.

10.5 Case study: CSTR and �ash separator

A chemical process consisting of two continuous stirred tank reactors (CSTRs)
and a �ash separator connected in series is considered as seen in Figure 10.4. Pure
material A is fed into the two CSTRs, in which two reactions occur, i.e., A → B
and B → C. The outlet of the second CSTR is fed into the �ash separator at a �ow
rate F2. The overhead of the separator is condensed and passed to a downstream
unit at �ow rate Fr and the bottom product stream is removed at �ow rate F3.
Each tank is equipped with a jacket to heat or cool the tank. The dynamic model
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10.5. Case study: CSTR and �ash separator

obtained via mass and energy balances are the same as in [135], but the �ows and
thus the volumes are assumed to be constant, resulting in:

CSTR 1 (Estimator 1)

ẋA1 =
F10xA10 + FrxAr − F1xA1

ρr1Vr1
− k1e

−E1
RT1 xA1 (10.40)

ẋB1 =
F10(1− xA10) + FrxBr − F1xB1

ρr1Vr1
+ k1e

−E1
RT1 xA1 − k2e

−E2
RT1 xB1 (10.41)

Ṫ1 =
F10T10 + FrT3 − F1T1

ρr1Vr1
− ∆H1

cp
k1e

−E1
RT1 xA1 −

∆H2

cp
k2e

−E2
RT1 xB1 +

Qr1
ρr1cpVr1

(10.42)

CSTR 2 (Estimator 2)

ẋA2 =
F20xA20 + F1xA1 − F2xA2

ρr2Vr2
− k1e

−E1
RT2 xA2 (10.43)

ẋB2 =
F20(1− xA20) + F1xB1 − F2xB2

ρr2Vr2
+ k1e

−E1
RT2 xA2 − k2e

−E2
RT2 xB2 (10.44)

Ṫ2 =
F20T20 + F1T1 − F2T2

ρr2Vr2
− ∆H1

cp
k1e

−E1
RT2 xA2 −

∆H2

cp
k2e

−E2
RT2 xB2 +

Qr2
ρr2cpVr2

(10.45)

Separator (Estimator 3)

ẋA3 =
F2xA2 − (Fp + Fr)xAr − F3xA3

ρsVs
(10.46)

ẋB3 =
F2xB2 − (Fp + Fr)xBr − F3xB3

ρsVs
(10.47)

Ṫ3 =
F2T2 − (Fp + Fr + F3)T3

ρsVs
+

Qs
ρscpVs

(10.48)

with the algebraic equations:

xAr =
αAxA3

x̄3
, xBr =

αBxB3

x̄3
, (10.49)

x̄3 = αAxA3 + αBxB3 + αC(1− xA3 − xB3), (10.50)

and the parameters given in Table 10.2.
The process is split into three local estimators; one for each of the reactors,

and one for the separator. The available measurements yi, and inputs ui for the
estimators are:

y1 =

xA3

xB1

T1

 , y2 =

xA1

xB2

T2

 , y3 =

xA2

xB3

T3

 , u1 = xA10

u2 = xA20

The process and measurement noise are given by:

Qw,i =

0.0052 0 0
0 0.0052 0
0 0 0.12

 , Rv,i =

0.00022 0 0
0 0.00012 0
0 0 0.12
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Qr1
Qr2

Qs

F10 F20

Fr

Fp

F1 F2 F3

Vr1
Vr2

Vs

Figure 10.4: Diagram of two CSTR and a �ash separator, adopted from [135].

for i = 1, 2, 3. All three models are augmented with three states as in (10.7) with
xAi, xBi, and Ti from the previous estimator. The parameters and the steady-state
values are shown in Table 10.2. The process is simulated for 100s with a sampling
time of 0.5s, where the inputs u1 and u2 are varying with two di�erent sinusoidal
signals.

Table 10.2: Parameters for the 2 CSTR and �ash separator

xA1 = 0.923 wt(%) T1 = 315.1 K F1 = 74.5 kg/s
xB1 = 0.074 wt(%) T2 = 315.2 K F10 = 8.3 kg/s
xA2 = 0.919 wt(%) T3 = 314.9 K F2 = 75.0 kg/s
xB2 = 0.081 wt(%) Qr1 = 10.0 kJ/s F20 = 0.5 kg/s
xA3 = 0.806 wt(%) Qr2 = 10.0 kJ/s F3 = 8.0 kg/s
xB3 = 0.184 wt(%) Qs = 10.0 kJ/s Fr = 66.2 kg/s
xA10 = 0.90 wt(%) Vr1 = 89.4 m3 Fp = 0.8 kg/s
xA20 = 0.80 wt(%) Vr2 = 90.0 m3 cp = 25 kJ/kg K
E1/R = −100 K Vs = 3.27 m3 αA = 3.5
E2/R = −150 K k1 = 0.020 1/s αB = 1.1
∆H1 = −40 kJ/kg k2 = 0.018 1/s αC = 0.5
∆H2 = −50 kJ/kg T10, T20 = 315 K ρr1 , ρr1 , ρs = 0.15 kg/m3

The hierarchical decentralized state estimator was implemented for the process,
where a UKF was used for all the local estimators. The same scaling weights
were used during the whole simulation, which had been computed o�ine using the
proposed method. The RMSE for the compositions can be seen in Figure 10.5,
where the result is compared to using (10.10), and (10.11) with the scalar weights,
ω1 = ω2 = ω3 = 1/3.
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Figure 10.5: RMSE for the 2 CSTR and �ash separator process. The dotted blue
line is the absolute estimation error when using the CI method with ω1 = ω2 =
ω3 = 1/3, and the solid red line is the absolute estimation error when using the
proposed method.

10.6 Conclusion

A method for fusing multiple and partially overlapping state estimates with un-
known cross-correlation has been proposed. The resulting algorithm calculates
weight matrices that scales the local estimates, such when fused together gives
a more accurate estimate. The fusion method was evaluated through simulations
of two di�erent case studies. The �rst case study consisted of the Lorenz attractor,
which involved fusing three local estimates that were trying to estimate the same
state vector. The results were compared to using EI and CI and showed a reduction
in the estimation error for the proposed algorithm. Furthermore, the accuracy of
EI depends on which sequential order the local estimates are fused in, which is not
an issue for Algorithm 9 since the weights are computed simultaneously.

In the second example, a decentralized state estimation scheme was imple-
mented on a process that consisted of two reactors and a �ash separator. Three
di�erent local estimators were implemented that only estimated a subset of the
global state vector. The di�erent local estimates where fused together using the
proposed algorithm that resulted in a global state vector with a signi�cant reduc-
tion in the estimation error compared to CI. Here, only CI was used to compare
the results, since EI is not well-suited for the desired hierarchical state estimation

149



10. State fusion for partially overlapping state estimates

structure that includes partially overlapping state vectors.
A centralized estimator should be able to provide more accurate estimates than

the proposed decentralized state estimation method since the correlations between
the subsystems are unknown. However, the decentralized approach is more scalable,
which makes it more favorable for large-scale systems and can signi�cantly reduce
the estimation error compared to using only local estimators.
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Closing remarks
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Chapter 11

Conclusion

After a brief outline of the thesis, together with some introductory information
related to control structure design in Part I, the main contributions for this thesis
are given in Part II, III, and IV.

11.1 Measurement selection in self-optimizing control

Part II starts by providing the reader with the fundamentals of self-optimizing con-
trol, which includes the null space method and the exact local method. These two
methods can be used to �nd the optimal measurement combinations as CVs when
only the steady-state behavior is considered. Next, a brief summary was given of
the existing approaches that search for the optimal subset of measurements when
a measurement combination is used as the self-optimizing control variable. The ex-
isting methods involved solving an MIQP in [149] or using the branch and bound
algorithm that was given in [75]. An alternative to the existing methods was also
proposed, which involved using the re-weighted l1 norm as a convex relaxation to
the otherwise combinatorial optimization problem. The proposed algorithm was
evaluated on a binary distillation column and showed that the re-weighted l1 algo-
rithm, gave a slightly higher loss compared to using the existing methods. However,
by replacing the original combinatorial problem into a convex approximation, it
makes the computational demands less sensitive to the size of the problem. Thus,
for large scale-scale problems, it can be used to reduce initial set of measurements
into a smaller subset, from which one of the existing methods can be used to �nd
the optimal set of measurements. In addition, the re-weighted l1 norm is a lot
more �exible and easier to include in other optimization problems, as was later
demonstrated in Part III of the thesis.

The main contribution for Part II was given in Chapter 5, where the issue of
incorporating structural constraints on the measurement combination was inves-
tigated. Besides �nding the optimal subset of measurements, it is often desirable
to impose a certain structure on the measurement selection matrix, e.g., to have
the input control the measurements that correspond to the same part of the pro-
cess. However, this results in a nonlinear optimization problem that is di�cult
to solve. Here, an ADMM algorithm was proposed, which was shown to be ca-
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pable of �nding good solutions to the problem with little computational e�ort.
The ADMM algorithm was also combined with a branch and bound algorithm to
�nd the optimal set measurements when there are structural constraints imposed
on the measurement selection matrix. The resulting algorithm was evaluated on
several case studies and showed that it was able to �nd better solutions with a
lower loss compared to the other existing methods in [147], [148]. Furthermore, the
proposed algorithm seemed capable of computing solutions that were on par with
the commercial MINLP solver BARON [78], but with a signi�cant reduction in the
computational time.

11.2 Accounting for dynamics in self-optimizing control

The main focus of the thesis is presented in Part III, where the dynamic e�ects of
using measurement combinations as CVs have been considered. First, the impact
measurement combinations have on the system poles, zeros, and their directions are
discussed and illustrated through an example. This discussion highlights that both
the measurement combination and feedback controllers will impact the behavior
of the resulting closed-loop system. Therefore, it is suggested that they should
ideally, be computed simultaneously, where the measurement selection matrix can
be seen as additional tuning parameters that will in�uence both the dynamic and
steady-state performance of the process.

The measurement combination and feedback controllers can be obtained simul-
taneously by solving a static output feedback (SOF) control problem. Therefore,
di�erent approaches for formulating the SOF optimization problem were presented
that are based on the two-step procedure given in [109], [37], [94], [2], and [98]. In
addition, di�erent ways of augmenting the system matrices where proposed, so that
the resulting SOF gain can be transformed into a control structure that consists of
decentralized PI controllers that are controlling measurement combinations as the
CVs.

In the �nal chapter for Part III, several algorithms are proposed for simultane-
ously computing measurement combinations as the self-optimizing control variable
together with the tuning parameters for the decentralized PI controllers. These
algorithms aim to �nd the optimal trade-o� between economic steady-state and
dynamic performance for the resulting control structure. In addition, they can also
incorporate the re-weighted l1 norm to penalize the number of measurements used,
or be combined with the ADMM algorithm to impose structural constraints on
the measurement combination. The proposed algorithms were evaluated on sev-
eral case studies and demonstrated that good results could be found both with
respect to the (near) optimality of the steady-state solution, and the control per-
formance of the resulting closed-loop system. In particular, the case studies for the
divided-wall distillation columns where of great interest, since it has been stated
in the literature that they need a model predictive controller (MPC) to achieve
good dynamic performance [1]. However, simulations show that a control structure
containing decentralized PI controllers and can provide comparable results to an
MPC, as long as the CVs and the tuning parameters for the PI controllers have
been chosen appropriately.
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11.3 Hierarchical decentralized state estimation

The �nal contribution for this thesis is presented in Part IV, where a fusion method
is proposed that is capable of fusing together multiple state vectors that are par-
tially overlapping each other. The resulting fusion algorithm computes di�erent
weight matrices that are used to emphasize the more accurate state estimates.
The proposed algorithm was evaluated on two di�erent case studies and showed a
reduction in the estimation error compared to other existing fusion methods.
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Chapter 12

Future work

In this chapter, some of the potential future research direction will be discussed
for the three main contributions.

12.1 Measurement selection in self-optimizing control

The ADMM algorithm used for incorporating structural constraints on the mea-
surement combinations was the primary contribution in this part of the thesis.
The initial results for the algorithm were promising, but there are still several
areas which could be worth further research.

The convergence of the algorithm is dependent on the initial values of ρ, and
Q, where especially the value of ρ plays a critical role. The algorithm seems to
converge as long as ρ is chosen su�ciently large, however, a proof of its convergence
is still lacking. If a convergence proof was formulated, such that a value of ρ that
guarantees convergence could be determined initially, then there would be no need
to use the proposed procedure for adapting the penalty parameter ρ. This could
potentially further reduce the computational time required to �nd a solution.

The e�ectiveness of the ADMM algorithm was evaluated on di�erent case stud-
ies where it outperformed the other existing methods [147], [148] and the commer-
cial solver BARON [78]. However, whereas the BARON solver is capable of giving
the globally optimal solution, the �nal result for the ADMM algorithm will depend
on how it is initialized, which was also demonstrated in Section 5.3.1. Therefore,
the ADMM algorithm needs to be evaluated on more case studies, with a focus on
large-scale systems to further study its speed and accuracy.

12.2 Accounting for dynamics in self-optimizing control

The proposed method produces a measurement combination and the tuning param-
eters for decentralized PI controllers. However, it is very likely that better perfor-
mance can be achieved if more advanced controller formulations are used, e.g., by
using sparse or centralized PI controllers [116], [117]. Considering that the proposed
method is a quite advanced technique for designing the controllers (and selecting
measurement combination), a strong case can be made for also implementing some
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more advanced and higher order controllers. One important requirement is that
the controllers incorporate some integral action to ensure that the self-optimizing
control criterion is met at steady-state. Therefore, it may be worth investigating
the potential bene�ts of using more advanced control structures, where the desired
controllers don't necessarily have to be limited to PI controllers.

Another potential extension to the presented work would be to include some
additional robustness for the resulting control structure. If there exists a range
of parameters that can be represented by linear models in a polytope, then it
is possible to create what is commonly known in the literature as a polytopic
model [98]. Using the polytopic model, it should be possible to extend the proposed
algorithms such that the designed controllers and CVs guarantee a stable closed-
loop system for the entire parameter space. It is possible to further improve the
dynamic performance by designing the controllers such that their tunings vary for
di�erent points in the polytopic model. However, more interestingly, the same can
also be done for the CVs that consists of measurement combinations.

The self-optimizing control variables are typically, obtained using local models,
which gives suboptimal performance when the process drifts away from its nom-
inal operating point. Letting the CVs vary can, therefore, reduce the loss caused
by nonlinearities in the process. It may also be possible to automatically update
the measurement combinations when there are disturbances present that cause a
change in the active constraints for the optimal operation. This would allow the
CVs and feedback controllers to change such that the plant could operate close to
optimal for multiple active constraint regions.

12.3 Hierarchical decentralized state estimation

The proposed fusion method involves solving two SDPs, which can be computa-
tionally demanding, especially for large-scale systems. Therefore, it would be worth
investigating whether it is possible to replace the two SDP problem with a sim-
pler procedure that could achieve the same or a similar result while reducing the
computational load.

The fused covariance matrix consists of the maximum ellipsoid inside the re-
gion of the intersection for the covariance matrices that was computed by the local
estimators. As a consequence, the fused estimate is not consistent unless the local
estimates are only weakly correlated. Therefore, similar to covariance intersection
(CI), it would be preferable if the resulting covariance matrix instead was given by
the minimum overestimation of the intersection region between the local covari-
ances.

If the computational demands could be reduced and consistency could be guar-
anteed, then it would make the resulting fusion method a lot more widely applicable
for a vast number of di�erent research areas.
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