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Abstract: Classical non-homologous end joining (NHEJ) is a molecular pathway that detects, processes,
and ligates DNA double-strand breaks (DSBs) throughout the cell cycle. Mutations in several NHEJ
genes result in neurological abnormalities and immunodeficiency both in humans and mice. The
NHEJ pathway is required for V(D)J recombination in developing B and T lymphocytes, and for
class switch recombination in mature B cells. The Ku heterodimer formed by Ku70 and Ku80
recognizes DSBs and facilitates the recruitment of accessory factors (e.g., DNA-PKcs, Artemis, Paxx
and Mri/Cyren) and downstream core factor subunits X-ray repair cross-complementing group 4
(XRCC4), XRCC4-like factor (XLF), and DNA ligase 4 (Lig4). Accessory factors might be dispensable
for the process, depending on the genetic background and DNA lesion type. To determine the
physiological role of Mri in DNA repair and development, we introduced a frame-shift mutation
in the Mri gene in mice. We then analyzed the development of Mri-deficient mice as well as wild
type and immunodeficient controls. Mice lacking Mri possessed reduced levels of class switch
recombination in B lymphocytes and slow proliferation of neuronal progenitors when compared to
wild type littermates. Human cell lines lacking Mri were as sensitive to DSBs as the wild type controls.
Overall, we concluded that Mri/Cyren is largely dispensable for DNA repair and mouse development.
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1. Introduction

Non-homologous end-joining (NHEJ) is a molecular pathway that recognizes, processes, and
repairs DNA double-strand breaks (DSBs) throughout the cell cycle [1]. Core NHEJ factors Ku70 and
Ku80 form heterodimer (Ku) that is rapidly associated with the DSB sites facilitating recruitment of
downstream factors including core x-ray cross-complementing 4 (XRCC4) and DNA ligase 4 (Lig4).
XRCC4-like factor (XLF) is also a core factor that binds XRCC4 and stimulates Lig4-dependent DNA
ligation. A number of accessory NHEJ factors are required for specific DNA end processing and DNA
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complex stabilization, in other words, DNA-dependent protein kinase, catalytic subunit (DNA-PKcs),
nuclease Artemis and structural components, a paralogue of XRCC4 and XLF (PAXX), and modulator
of retroviral infection (Mri) [2,3]. Mice lacking Ku70, Ku80, DNA-PKcs, or Artemis possess severe
combined immunodeficient phenotype (SCID), while inactivation of both alleles of the Xlf gene
results in 2–3-fold reduced B and T cell counts [1,4–7]. Mice lacking PAXX or Mri possess no or
very modest phenotype due to functional redundancy with XLF [8–12]. In contrast, mice lacking
either XRCC4 or Lig4 demonstrate p53- and Ku-dependent embryonic lethality, which correlates with
massive neuronal apoptosis in the central nervous system [1,13–17]. Combined inactivation of Xlf
and Dna-pkcs results in p53- and Ku70-dependent perinatal lethality in mice [10,18,19]. Moreover,
deficiency or haploinsufficiency for Trp53 rescues synthetic lethality between Xlf and Paxx [10]. XLF is
also functionally redundant in mouse development with Mri [20], recombination activating gene 2,
RAG2 [21], and a number of DNA damage response (DDR) factors including Ataxia telangiectasia
mutated (ATM) [6], histone H2AX [6,22], mediator of DNA damage checkpoint protein 1 (MDC1) [10],
and p53-binding factor (53BP1) [7,23].

Development of B and T lymphocytes depends on programmed DSBs induced by RAG during the
V(D)J recombination and NHEJ pathway, which is used for error-prone DNA repair [1]. Moreover, mature
B cells replace constant regions of immunoglobulins during the somatic recombination process known
as class switch recombination (CSR), when DSBs are initiated by activation-induced cytidine deaminase
(AID) and Uridine-N-glycosylase (UNG), and NHEJ is used for DNA repair [1,24,25]. Furthermore, the
NHEJ process is required for neurodevelopment by preventing neuronal apoptosis [1,26].

Mri was initially described as an open reading frame at human chromosome 7 (C7orf49), a factor
reversing the resistance to retroviral infection in cell lines [27]. Mri was found to enhance NHEJ [28]
and possess an N-terminal Ku-binding motif (KBM) [29]. Later, Mri/Cyren was suggested to inhibit
NHEJ at telomeres during the S and G2 phases of the cell cycle [30], and finally confirmed to be a
bona fide NHEJ factor, which is functionally redundant with XLF in mouse development including
the V(D)J recombination and development of the central nervous system [20]. However, it was not
clear whether XLF and Mri functionally overlap during the early stages of neurodevelopment (e.g.,
supporting proliferation and self-renewal of neuronal stem cells). Moreover, due to the lack of a viable
mouse model deficient for both XLF and Mri, the impact of Mri on B and T lymphocyte development
in vivo is not fully understood.

Here, we introduced a frame-shift mutation to exon 2 of the murine Mri gene. By interbreeding
heterozygous parents, we obtained Mri−/−, Mri+/−, and Mri+/+ mice at nearly expected ratios.
Mri-deficient mice possessed normal body size and number of B and T lymphocytes; however,
we detected that stimulated primary mature Mri−/− B cells had reduced levels of IgG1, and Mri−/−

neurospheres showed a reduced proliferation rate when compared to the Mri+/+ controls.

2. Materials and Methods

2.1. Mouse Models

All experiments involving mice were performed according to the protocols approved by the
Animal Resources Care Facility of Norwegian University of Science and Technology (NTNU, Trondheim,
Norway). Ung−/− mice were described previously [31]. Mri+/− mice were generated on request and
described here for the first time.

2.2. Generation of Mri+/− Mice

MRI-deficient (M−/−) mice were generated through a CRISPR/Cas9 gene-editing approach in 2017
by Horizon Discovery (Saint Louis, MO, USA) upon request from the Oksenych group (IKOM, Faculty
of Medicine and Health Science, NTNU, Trondheim, Norway). Single-guide RNA (sgRNA) GGG
CTG TCA TCC AAG AGG GGA GG was designed to target exon 2 of the Mri gene in C57BL/6 mice.
The 14 bp deletion resulted in a premature stop codon (Figure 1A). Cas9 and sgRNAs were injected
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into single-cell fertilized embryos, which were then transferred back into pseudopregnant females for
gestation. Live-born pups were screened for indel mutation by DNA sequencing. Homozygous pups
were used for back-crossing with wild type C57BL/6 mice. Heterozygous Mri+/− mice were obtained
from Horizon Discovery.
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Figure 1. Generation of Modulator of retrovirus infection−/− (Mri−/−) mice. (A) Top. Schematic diagram of 

murine Mri locus indicating the frame-shift mutation in the exon 2, induced by the single guide RNA 

(sgRNA) and resulting in a 14 bp deletion. (Bottom) Resulting Mri−/− locus lacking part of the exon 2. 

(B) Top. Polymerase chain reaction (PCR)-based genotyping strategy reveals the Mri WT allele (428 

bp) and Mri null allele (414 bp). (Bottom) WT gene validation PCR revealed the Mri wild type allele 

(234 bp). (C) Analyses of 140 pups born from Mri+/- parents revealed expected genetic distribution of 

Mri+/+ (29), Mri+/− (75), and Mri−/− (36) mice, which is close to the Mendelian distribution 1:2:1. (D) Body 

weight of six to eight week old Mri+/+ mice (n = 6) was not distinguishable from Mri−/− mice (n = 7), p = 

0.4242. (E) The weight of spleens isolated from Mri+/+ (n = 8) and Mri−/− mice (n = 11) was not 

significantly different, p = 0.8551. Spleen size in immunodeficient Dna-pkcs−/− mice (n = 10) was reduced 

Figure 1. Generation of Modulator of retrovirus infection−/− (Mri−/−) mice. (A) Top. Schematic diagram
of murine Mri locus indicating the frame-shift mutation in the exon 2, induced by the single guide
RNA (sgRNA) and resulting in a 14 bp deletion. (Bottom) Resulting Mri−/− locus lacking part of the
exon 2. (B) Top. Polymerase chain reaction (PCR)-based genotyping strategy reveals the Mri WT allele
(428 bp) and Mri null allele (414 bp). (Bottom) WT gene validation PCR revealed the Mri wild type allele
(234 bp). (C) Analyses of 140 pups born from Mri+/- parents revealed expected genetic distribution
of Mri+/+ (29), Mri+/− (75), and Mri−/− (36) mice, which is close to the Mendelian distribution 1:2:1.
(D) Body weight of six to eight week old Mri+/+ mice (n = 6) was not distinguishable from Mri−/− mice
(n = 7), p = 0.4242. (E) The weight of spleens isolated from Mri+/+ (n = 8) and Mri−/− mice (n = 11)
was not significantly different, p = 0.8551. Spleen size in immunodeficient Dna-pkcs−/− mice (n = 10)
was reduced when compared to the Mri+/+ and Mri−/− mice, p < 0.0001. (F) Splenocyte count was not
affected in the Mri−/− mice (n = 11) when compared to the Mri+/+(n = 10), p = 0.7713. A number of
splenocytes in immunodeficient Dna-pkcs−/− mice (n = 6) was significantly reduced when compared
to Mri+/+and Mri−/− mice, p < 0.0001. (G) The weight of thymus from Mri+/+(n = 11) and Mri−/−

(n = 11) mice was similar, p = 0.6796. Thymus size in immunodeficient Dna-pkcs−/− mice (n = 7) was
significantly reduced when compared to Mri+/+and Mri−/− mice, p < 0.0001. (H) The thymocyte count
was nearly identical in Mri+/+(n = 8) and Mri−/− (n = 6) mice, p = 0.5285. A number of thymocytes in
immunodeficient Dna-pkcs−/− mice (n = 6) was significantly reduced when compared to Mri+/+and
Mri−/− mice, p < 0.0001.
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2.3. Mouse Genotyping

Two polymerase chain reactions (PCRs) were designed to determine the mouse genotypes. The
first PCR was performed using TCAGGTCTGCCCTACACTGA and GTGGTGGTGCTTCTCTGTGA
primers, detecting both wild type (428 bp) and null (414 bp) alleles (Figure 1B). The second PCR
performed with TCAGGTCTGCCCTACACTGA and AGAGGGGAGGACCC primers was used to
validate the presence of the WT allele (234 bp, Figure 1B). The PCRs were performed using 50 ng of
genomic DNA extracted from murine tissues (e.g., ears, tails), in a final reaction volume of 25 µL, using
the Taq 2x Master Mix Kit (New England Biolabs® Inc., Ipswich, MA, USA; #M0270L). A 2.5% agarose
gel was used to separate 428 bp and 414 bp PCR products during 18 h at 4 ◦C, 90 V; and 0.7% agarose
gel was used to detect the 234 bp PCR product (75 min, room temperature, 124 V). Genomic DNA
isolated from the Mri+/+ and Mri−/− cells as well as samples with no genomic DNA were used as the
PCR controls (Figure 1B).

2.4. Fluorescence-Activated Cell Sorting, Splenocyte, and Thymocyte Count

Fluorescence-activated cell sorting (FACS) analysis was performed as previously described [11,32].
Briefly, spleens and thymi were isolated from 2-month-old mice, and splenocytes and thymocytes were
counted using Countess™Automated Cell Counter (Invitrogen, Carlsbad, CA, United States); the cell
suspension was spun down and diluted with PBS to obtain a final cell concentration of 2.5 × 107/mL.
The samples of 2.5 × 106 splenocytes or thymocytes were blocked for 15 min at room temperature with
Mouse BD fragment crystallizable (Fc) Block™ (1:50 dilution) (BD Biosciences, Franklin Lakes, NJ, USA;
#553142). The cells were then incubated with fluorochrome-conjugated antibodies (see below) and sorted.

2.5. Class Switch Recombination

Class switch recombination (CSR) from IgM to IgG1 was performed as previously described [11].
Naïve B lymphocytes were purified from spleens of 2-month-old mice using EasySep™mouse B cell
enrichment kit (STEMCELL Technology, Vancouver, Canada; #19854), according to the manufacturers’
instructions. For each CSR assay, 2 × 104 cells/200 µL were used in duplicates. The cells were stimulated
with LPS (lipopolysaccharides, 40 µg/mL; Sigma Aldrich, St. Louis, MO, USA; #437627-5MG) and
IL-4 (Interleukin 4, 20 ng/mL; PeproTech, Stockholm, Sweden; #214-14) for 96 h. Then, the cells were
blocked with Fc receptor antibody (2.4G2) and normal mouse serum (Invitrogen, Carlsbad, CA, USA;
#10410). The cells were washed in PermWash™ (BD Biosciences, NJ, USA; #554723). Intracellular
staining was done using fluorescently tagged anti-mouse antibodies (IgG1-APC) (BioLegend, San
Diego, CA, USA; #406610) and the succeeding wash was performed in PermWash. The cells were
resuspended in 300 µL of CellFix (BD Biosciences, NJ, USA; #340181). Viable CD19+ B lymphocytes
were analyzed for IgG1 expression using FlowJo® (Ashland, Oregon, USA) version 7.6 for Windows.

2.6. Double Strand Break Sensitivity Assay

The DSBs sensitivity assay was performed as previously described [10,32,33]. Human
nearly-haploid HAP1 cells were generated by the Horizon Discovery Group (Waterbeach, Cambridge,
UK, #HZGHC005061c001 and #HZGHC005061c004) and are commercially available. HAP1 cells were
cultured according to the manufacturer’s instructions. Doxorubicin (Selleckchem, Houston, TX, USA;
#S1208), bleomycin (Selleckchem; #S1214), and etoposide (Sigma-Aldrich, St. Louis, MS, USA; #E1383)
were used to induce DSBs, and PrestoBlue™ Cell Viability Reagent (Thermo Fisher, Waltham, MA,
USA; #A13262) was used to estimate cellular metabolism levels. Briefly, 2000 cells per well were seeded
into 96-well plates in 100 µL of Iscove Modified Dulbecco Media (IMDM) medium (day 0). On day 1,
50 µL of the medium was replaced with 50 µL of fresh medium containing doxorubicin, bleomycin,
or etoposide, when indicated. Each experimental condition was performed in triplicates. On day
4, 11 µL of 10× PrestoBlue reagent was added to the wells and incubated for 30 min at 37 ◦C. The
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cellular viability was estimated according to manufacturer’s instructions, using the excitation/emission
wavelengths set at 544/590 nm.

2.7. Brain Isolation and Neural Stem Progenitor Cell Culture

The brain was isolated from postnatal day 1 mouse after the cerebellum was removed. The
isolated brain was mechanically disrupted in the proliferation medium consisting of Dulbecco Modified
Eagle Medium, Nutrient Mixture F12 (DMEM/F12; Thermo Fisher, Waltham, MA, USA; #11330-057),
supplemented with penicillin/streptomycin (Thermo Fisher, Waltham, MA, USA; #15140122), B27
without vitamin A (Thermo Fischer Scientific, Waltham, MA, USA; #12587001), EGF (10 ng/mL;
PeproTrech, Stockholm, Sweden; #AF-100-15), and bFGF (20 ng/mL; PeproTech; #100-18B). Neural
stem progenitor cells (NSPC) form free-floating globular structures referred to as neurospheres. The
neurospheres were formed during incubation at 37 ◦C, 5% CO2 and 95% humidity in order to perform
the proliferation and self-renewal assay [34].

2.8. Neural Stem Progenitor Cell Proliferation and Self-Renewal Assays

Early passage NSPCs (P3–P10) were used throughout all of the NSPC experiments. A PrestoBlue™
Cell Viability Assay was used to investigate the neurosphere proliferation rates, following the
manufacturer’s instructions during each incubation on days 1 to 7. The capacity of neural stem cells to
maintain their multipotency ex vivo was assessed by determining the number and two-dimensional
size of neurospheres [34]. Single NSPCs were plated onto 6-well suspension plates in the proliferation
medium on day 0. During days 8 and 10 in culture, images of the entire wells were captured using an
EVOS microscope. Only areas between 50 and 1500 pixels were included in the analyses.

2.9. Antibodies

The following antibodies were used for FACS. Rat anti-mouse anti-CD16/CD32 (Fc Block, BD
Biosciences, San Jose, CA, USA; #553141, 1:50); anti-CD4-PE-Cy7 (Thermo Scientific, Waltham, MA,
USA, #25-0042-81, 1:100); anti-CD8-PE-Cy5 (BD Biosciences, San Jose, CA, USA, #553034, 1:100);
anti-CD19-PE-Cy7 (Biolegends, San Diego, CA, USA, #115520, 1:100); and hamster anti-mouse
anti-CD3-APC (Biolegends, USA, #100312, 1:100).

3. Results

3.1. Generation of Mri−/− Mice

To investigate the impact of Mri on mouse development, we generated a mouse model with 14 bp
frame-shift deletion in Mri exon 2 on a C57BL/6 background (Figure 1A). Purified sgRNA and Cas9
RNA were introduced to fertilized oocytes, resulting in complete inactivation of the Mri gene. Mri
status (WT, wild type, +/+; heterozygous, +/−; and null, −/−) was confirmed for every experiment by
PCR screening (Figure 1B). Mri+/+, Mri+/−, and Mri−/− mice were born from Mri+/− parents at ratios
close to 1:2:1 (Figure 1C). Thirty-day old Mri−/− mice possessed an average body weight of 15.0 g,
which was slightly lower, but not significantly different from the Mri+/+ controls, with a bodyweight
of 17.5 g, on average (Figure 1D). The lifespan of Mri−/− and Mri+/− mice was monitored for up to 12
months, according to the local regulations. During this time frame, both Mri−/− and Mri+/− mice were
fertile and had no cancer incidence, similar to the Mri+/+ controls.

3.2. Mri−/− Mice Develop Normal Spleens and Thymi

The NHEJ is required for V(D)J recombination in developing B and T lymphocytes, and for
CSR in mature B cells [1]. To determine specific functions of Mri in B and T cell development, we
first analyzed spleens and thymi isolated from Mri-deficient and WT mice. The average weights
of spleens (91 mg) and thymi (69 mg) as well as the average count of splenocytes (121 million) and
thymocytes (173 million) was not affected in Mri−/− mice when compared to Mri+/+ controls (90 mg;
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71 mg; 118 million; 186 million, respectively). These numbers were significantly different from the
immunodeficient controls, Dna-pkcs−/− mice (23 mg; 10 mg; six million; five million, respectively)
(Figure 1E–H). Moreover, the proportions of CD19+ B cells in spleens of six-to eight-week old Mri−/−

mice were on average 60%, which was similar to the proportion of CD19+ in Mri+/+ mice (55%, p =

0.0668), and significantly higher than the background levels detected in immunodeficient Dna-pkcs−/−

controls (p < 0.0001; Figure 2A). The average proportion of CD3+ T splenocytes in Mri−/− mice (21%)
was also similar to the one observed in the Mri+/+ controls (22%, p = 0.8228), and higher than in the
Dna-pkcs−/− controls (1%, p < 0.0001; Figure 2A). Mri+/+ and Mri−/− mice had similar proportions of
CD4+ T cells (p = 0.8876) and CD8+ T cells (p = 0.7026) in the spleens, while proportions of CD4+ and
CD8+ T splenocytes in the Dna-pkcs−/− controls were 4–5-fold reduced (p < 0.0001, Figure 2B). In the
thymi of six- to eight-week old Mri+/+ and Mri−/− mice, the proportions of CD4+, CD8+, and CD4+CD8+

T cells were similar (p > 0.5589), while only background levels were detected in the Dna-pkcs−/− controls
(p < 0.0001, Figure 2C).

3.3. Class Switch Recombination to IgG1 Is Reduced in Mri−/− Mice

To determine whether Mri deficiency affects CSR, we isolated B cells from the spleens of Mri+/+

and Mri−/− mice and stimulated the cells with LPS and IL-4. After 96 h, we detected that average IgG1
levels were 33% in Mri−/− mice, which was significantly lower (p = 0.0031) than in the Mri+/+ controls
(average 39%; Figure 2D). B lymphocytes isolated from Ung−/− mice were used as the negative control
and possessed on average only 2% of IgG1 at the end of the experiment (96 h), which was lower than
in Mri+/+ or Mri−/− mice (p < 0.0001).

3.4. Lack of Mri Results in the Reduced Proliferation Rate of Neuronal Stem Progenitor Cells

Previous studies have shown that single knockout of NHEJ DNA repair genes (e.g., Xrcc4, Lig4,
Ku70) results in impaired nervous system development in mice [1,13,14]. To determine the impact
of Mri on the developing nervous system, we used NSPC isolated from Mri+/+ and Mri−/− mice at
postnatal day 1. We performed four independent experiments using two cell lines from two mice of
each genotype. The average proliferation rate of Mri−/− neurospheres was approximately 35% lower
than that in the WT controls, p = 0.0043 (Figure 3B).

3.5. Normal Self-Renewal Capacity of Mri-Deficient Neuronal Stem Progenitor Cells

To analyze the capacity of NSPCs to maintain the features of stem cells throughout cell divisions
and numerous propagations (self-renewal capacity), we counted the number of neurospheres formed
in cell culture. In four independent experiments, we plated 10,000 single NSPCs and cultured for
eight days. In total, we counted 5123 neurospheres that originated from Mri+/+, and 4608 from Mri−/−

mice. On average, there were 256 neurospheres in each of the 20 Mri+/+ samples analyzed, and 230
neurospheres in each of the 20 Mri−/− samples (p = 0.7254, n.s., Figure 3C). In addition, images of the
neurospheres were collected and the surface was calculated using ImageJ software. Inactivation of
Mri did not affect the average diameter of neurospheres, which was 461 px2 on average in Mri+/+ and
427 px2 in Mri−/− neurospheres, p = 0.4915 (Figure 3D). We concluded that Mri is dispensable for the
self-renewal capacity of NSPC.
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Figure 2. Lymphocyte development in Mri−/− mice. (A) Proportions of T (CD3+) and B (CD19+) cells
in the spleens of Mri+/+(n = 6), Mri−/− (n = 3), and Dna-pkcs-/- (n = 4) mice. Proportions of T and B cells
were similar in Mri+/+and Mri−/− mice, p > 0.0667, and were only background levels in immunodeficient
Dna-pkcs−/− mice, p < 0.0001. (B) Proportions of CD4+ and CD8+ T splenocytes in Mri+/+(n = 6), Mri−/−

(n = 3), and Dna-pkcs−/− (n = 4) mice. Mri−/− mice possessed similar proportions of CD4+ T helper
and CD8+ T cytotoxic cells when compared to Mri+/+ mice, p = 0.8876 and p = 0.7026, respectively.
Only background levels of CD4+ and CD8+ T cells are present in immunodeficient Dna-pkcs−/− spleens,
p < 0.0001. (C) Proportions of CD4+, CD8+, and CD4+CD8+ thymocytes in Mri+/+(n = 6), Mri−/− (n = 3),
and Dna-pkcs−/− (n = 4) mice. Proportions of T cell types in Mri−/− mice were similar to the ones detected
in Mri+/+mice, p > 0.5589, and higher than in Dna-pkcs−/− mice, p < 0.0001. (D) CSR to IgG1 in primary
B splenocytes isolated from the Mri−/− mice (n = 4) was reduced when compared to the cells from the
Mri+/+mice (n = 3), p = 0.0032. CSR to IgG1 was significantly reduced in the Ung−/− B cells (n = 3) when
compared to the Mri+/+ and Mri−/−, p < 0.0001.
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eight days. In total, we counted 5123 neurospheres that originated from Mri+/+, and 4608 from Mri−/− 

mice. On average, there were 256 neurospheres in each of the 20 Mri+/+ samples analyzed, and 230 

Figure 3. Characterization of neurogenesis in Mri−/− mice. For each experiment, four independent
cell lines isolated from two mice were used (n = 8). (A) Neurosphere isolation diagram from Mri+/+

and Mri−/− mice at postnatal day 1. (B) Neurosphere proliferation isolated from the Mri−/− mice was
reduced when compared to the Mri+/+ mice, p = 0.0043. (C) Number of neurospheres formed in
cell culture for eight days. Mri−/− and Mri+/+ neurospheres possessed similar self-renewal capacity,
p = 0.7254. (D) Neurosphere size isolated from Mri−/− and Mri+/+ mice were similar, p = 0.4915. The
surface of neurospheres, pxl. Areas between 50 and 1500 pixels were included in the analyses. Four
independent experiments using two cell lines of each genotype were performed in all experiments
(A–C). p values were calculated using the unpaired t-test. The horizontal bars represent the average.

3.6. Human HAP1 Cells Lacking Mri Possess Normal Levels of Sensitivity to DNA Double-Strand Breaks

Deficiency for XRCC4, LIG4, XLF, or DNA-PKcs results in hypersensitivity to DSBs in human HAP1
cells [10,32,33]. To determine the effect of Mri on DSB sensitivity, we obtained two independent clones
of MRI-deficient HAP1 cells as well as WT and XRCC4-deficient controls. We exposed the HAP1 cells
to DSB-inducing agents bleomycin (0 to 0.4 µM), doxorubicin (0 to 4 nM), and etoposide (0 to 160 nM),
and evaluated the cell viability four days later (Figure 4). We observed no hypersensitivity of HAP1
cells lacking Mri when compared to WT controls. However, cells lacking XRCC4 were hypersensitive
to all indicated compounds, bleomycin, doxorubicin, and etoposide (p < 0.0001, Figure 4).
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Figure 4. Sensitivity to DSBs in Mri-deficient HAP1 cells. Sensitization of WT, two independent
Mri-deficient clones, MRI∆1 and MRI∆2, and XRCC4∆HAP1 cells to bleomycin (A), doxorubicin (B), and
etoposide (C) at indicated concentrations. Results are from the mean (SD) of three repeats. Cell viability
(%) represents the relative proportion of the fluorescence normalized to untreated cells. Comparisons
between every two groups were made using one-way ANOVA, GraphPad Prism 8. WT, MRI∆1, and
MRI∆2 vs. XRCC4∆, p < 0.0001 (****); WT vs. MRI∆1, p = 0.9983 (n.s); WT vs. MRI∆2, p = 0.1295 (n.s);
MRI∆1 vs. MRI∆2, p = 0.1791 (n.s).

4. Discussion

We have generated a new knockout mouse model with 14 bp deletion in exon 2 of the
Mri gene, Mri−/−. While we were characterizing our mouse model, another group reported an
independently-generated Mri-deficient mouse [20], which possessed a similar phenotype. Thus, our
observations are confirmatory to the findings observed by the Sleckman group [20].

The mice lacking Mri were live-born at expected ratios and demonstrated normal growth and
development of lymphoid organs. Mri−/−, Mri+/−, and Mri+/+ mice possessed similar sizes of spleens
and thymi, a similar number of splenocytes and thymocytes, and proportions of B and T cells
(Figure 1). Similar to Mri-deficient mice, Paxx−/− mice did not have a detectable phenotype [8–12].
However, inactivation of other NHEJ factors resulted in a reduced number of B and T cells (Xlf−/−

mice, [4–7,18,21,23]), and block in B and T cell development (e.g., Artemis−/− [35], Dna-pkcs−/− [36],
Ku70-/- [37], Ku80−/− [38]; or even embryonic lethality in Xrcc4−/− [39] and Lig4−/− [40]).

The CSR to IgG1 was reduced in primary B cells isolated from Mri−/− mice when compared to
WT controls (Figure 2), which suggests that Mri is involved in specific DNA repair-mediated event.
Furthermore, we isolated neuronal stem progenitor cells from Mri−/− brains and found that these cells
proliferate slower when compared to Mri+/+ controls. Reduced proliferation rates of Mri-deficient
neuronal stem progenitor cells could be explained, as one option, by lower expression or lack of factors
functionally redundant with Mri in these cell types. Future studies would be required to address this
option. Moreover, future studies may address questions such as neurological defects and cognitive
functions in mice lacking Mri as well as whether the Mri-deficient mice are prone to infections.

In addition, we found that human nearly haploid HAP1 cell lines lacking Mri possessed no
proliferation defect or hypersensitivity to DNA damaging agents such as etoposide, doxorubicin, and
bleomycin (Figure 4). Previously, it was reported that murine embryonic fibroblasts (MEF) lacking Mri
were hypersensitive to ionizing radiation when compared to WT controls, although the sensitivity was
less obvious than in XLF-deficient MEFs [20]. The discrepancy between our and previously published
data could be due to the usage of different cell types, the difference between species as well as distinct
ways to induce DNA damages (e.g., chemicals vs. irradiation). Further studies involving various cell
type models originated from different species, and using various DNA damaging strategies would
deepen our understanding of the specific functions of Mri in DNA repair in mammalian cells. Overall,
we concluded that the lack of Mri has a rather minor effect on murine and human cells.

Combined inactivation of Mri and Xlf [20], however, revealed an important role of Mri in mouse
development, which was overlooked due to its functional redundancy with XLF. Synthetic lethality
between Mri and Xlf complicated studies of genetic interaction between these factors in vivo. There
are several potential ways to overcome this challenge. One option is to use conditional knockouts
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of Xlf or Mri genes. Moreover, there might be another genetic-based approach. Inactivation of
one or two alleles of Trp53 partially rescued synthetic lethality between Xlf and Dna-pkcs [10,18,19]
and Xlf and Paxx [10]. In addition, deficiency or haploinsufficiency for Trp53 rescued embryonic
lethality of Lig4−/− and Xrcc4−/− mice [13,14]. Inactivation of the Atm gene rescued embryonic
lethality of Lig4−/− mice [41]. Finally, inactivation of both alleles of Ku80 rescued embryonic
lethality of Lig4−/− mice [17], and inactivation of Ku70 rescued synthetic lethality between Xlf
and Dna-pkcs [19]. Based on these data, one can speculate that inactivation of Trp53, Atm, Ku70,
or Ku80 will rescue synthetic lethality between Xlf and Mri. Moreover, given the critical roles of
Ku70 and Ku80 in the initiation of classical NHEJ, one could propose that mice lacking all known
NHEJ factors (e.g., Ku70−/−Ku80−/−Dna-pkcs−/−Artemis−/−Xlf−/−Paxx−/−Mri−/−Xrcc4−/−Lig4−/−) will be
viable, indistinguishable from Ku-deficient mice, and serve as a suitable in vivo model to investigate
alternative end-joining, A-EJ.

5. Conclusions

A new Mri-deficient mouse model was generated. Mri-deficient mice possessed normal body
size and number of B and T lymphocytes; however, Mri is required for an efficient class switch
recombination process in mature B cells. Mri−/− neurospheres showed a reduced proliferation rate, but
similar self-renewal capacity when compared to the Mri+/+ controls.
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ATM Ataxia-telangiectasia mutated
CSR Class switch recombination
DDR DNA damage response
DNA-PKcs DNA-dependent protein kinase
DSBs DNA double-strand breaks
GFAP Glial fibrillary acid protein
HAP1 A near-haploid human cell line derived from KBM-7 cell line
IL-4 Interleukin 4
Lig4 DNA ligase IV
LPS Lipopolysaccharides
Mri Modulator of retroviral infection
NHEJ Non-homologous end-joining
NSPC Neuronal stem progenitor cells
PAXX Paralogue of XRCC4 and XLF
PCR Polymerase chain reaction
XLF XRCC4-like factor
XRCC4 X-ray repair cross-complementing protein 4
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