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Abstract

Introduction: While early diagnostic decision support systems were built around knowledge bases, more recent
systems employ machine learning to consume large amounts of health data. We argue curated knowledge bases
will remain an important component of future diagnostic decision support systems by providing ground truth and
facilitating explainable human-computer interaction, but that prototype development is hampered by the lack of
freely available computable knowledge bases.

Methods: We constructed an open access knowledge base and evaluated its potential in the context of a prototype
decision support system. We developed a modified set-covering algorithm to benchmark the performance of our
knowledge base compared to existing platforms. Testing was based on case reports from selected literature and
medical student preparatory material.

Results: The knowledge base contains over 2000 ICD-10 coded diseases and 450 RX-Norm coded medications, with
over 8000 unique observations encoded as SNOMED or LOINC semantic terms. Using 117 medical cases, we found the
accuracy of the knowledge base and test algorithm to be comparable to established diagnostic tools such as Isabel
and DXplain. Our prototype, as well as DXplain, showed the correct answer as “best suggestion” in 33% of the cases.
While we identified shortcomings during development and evaluation, we found the knowledge base to be a
promising platform for decision support systems.

Conclusion: We built and successfully evaluated an open access knowledge base to facilitate the development of
new medical diagnostic assistants. This knowledge base can be expanded and curated by users and serve as a starting
point to facilitate new technology development and system improvement in many contexts.
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Background
Clinical decision making, a cornerstone of quality health-
care, has been and remains challenging [1]. The earliest
attempts to integrate artificial intelligence (AI) into health-
care were diagnostic decision support systems (DDSS)
[2–4]. DDSS support the diagnostic process by gener-
ating differential diagnoses from provided observa-
tions. The first DDSS were inspired by the reasoning

of human experts and stored medical knowledge in
structured knowledge bases. However, these systems
failed to find wide acceptance [5–7]. Over the past
decades, knowledge-based systems in AI have been
replaced by machine learning (ML) platforms that
learn from large amounts of data. Progress in ML in
healthcare [8, 9] suggests that well-curated medical
knowledge bases are no longer required and we can
rely on analysis of existing medical textbooks, publi-
cations [10, 11] or large scale unstructured patient
data. We argue ML methods and medical knowledge
bases complement each other and that we lack open
source diagnostic knowledge bases to integrate both
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approaches for new DDSS which combine their
strengths.
The envisioned decision support systems would inte-

grate ML-based AI, structured knowledge-based algo-
rithms and heuristics similar to the dual system theory
of human cognition [12] which distinguishes fast and
non-conscious thinking (System 1) and analytical, slow
and conscious (System 2) thinking. ML delivers pattern
recognition that currently drives progress in image and
voice recognition, but these advances don’t translate dir-
ectly to DDSS as “each application requires years of fo-
cused research and a careful, unique construction [13]”.
Knowledge-based systems [2–4] were inspired by the
diagnostic methods taught in medical school, (e.g. Bayes-
ian reasoning). The underlying knowledge base stores
medical information in a structured manner so that a
computer can automatically recommend diagnoses and a
human can understand the differences in these choices.
Not unlike human cognition, ML and knowledge-based
systems have their strengths and weaknesses but likely
perform best in combination.
The diagnostic process is an iterative process, progres-

sing from an initial differential diagnosis based on prior
probabilities of disease to diagnostic closure based on
test results and progress of the disease. DDSS need to
support this incremental nature of the diagnostic process
[1] and challenge clinicians’ reasoning for each step; they
cannot act as a “greek oracle” [14] and simply provide
an answer once without explanation. Isabel [10] and
FindZebra [11], for example, use text mining to search
existing literature but cannot facilitate learning by
explaining results or scaffold iterative queries and
workup routines, functionality demonstrated by recent
knowledge-based systems such as VisualDx [15]. ML ex-
cels in analyzing large amounts of data but the reasoning
is not transparent. Recent approaches [16] provide some
intuition about the overall function of the ML algorithm
but cannot provide a deep understanding of a specific
decision. Likewise, if only small amounts of data are
available, knowledge-based systems can fill the gap.
Knowledge bases can also complement machine learning
approaches by explaining results generated by ML from
a medical perspective.
New prototypes that aim to explore this design space

cannot build on existing medical knowledge bases (KB).
Medical ontologies and the UMLS metathesaurus [17]
standardize the vocabulary but often not the required re-
lationship between medical observations and explana-
tions. Hence, designers of DDSS are forced to build their
own knowledge bases and often end up with purely aca-
demic solutions [18–20]. Textbook knowledge is avail-
able in databases on the internet [21, 22], but the
structured data most algorithms require has historically
been stored in proprietary medical knowledge bases of

the specific DDSS [2–4]. These knowledge bases are not
accessible for building new DDSS, as they are either no
longer maintained [2, 3] or part of a proprietary DDSS
[4, 15, 23]. The design and curation are time-consuming
and costly as they require specialized medical and tech-
nical knowledge [24].
In this paper we present an open access knowledge

base to foster iterative improvement of diagnostic sup-
port and provide a basis for future systems that integrate
ML and knowledge-based systems. A DDSS prototype,
Doknosis, was developed to evaluate the knowledge base
against well described commercial systems. For this re-
port our evaluation is limited to a single algorithm and
medical cases with single disease explanations.

Construction and content
The curated KB holds medical diagnoses and medica-
tions (explanations) with associated observations re-
corded from primary literature and medical texts (such
as [25–30]). The knowledge base was first developed
and targeted for use by medical trainees in Mozambique
and Sub-Saharan Africa [31]. Tropical Medicine and In-
fectious diseases were selected as the initial focuses of
development and testing. The database, containing over
2000 unique diseases and nearly 450 medications at the
time of this report, was then expanded to cover a broad
range of illnesses ranging from medication side effects
to both common and extremely rare medical diseases.
The KB data structure is inspired by the Bayesian

Model of reasoning. This structure, essentially a
key-value dictionary of estimated prior and conditional
probabilities, is the substrate for algorithms developed to
navigate the differential space and explore varied ap-
proaches for inferring and ranking possible diagnoses.
The knowledge base was designed to be (a) machine
readable and readily integrated with existing electronic
health records, (b) simple to extend and update by its
users and (c) based on accepted medical vocabularies
(ontologies).
In order to maintain a scalable and sharable ontology,

the preliminary set of diagnoses (explanations) were re-
corded as preferred semantic terms from ICD-10 (for
clinical diseases) and RxNorm (for medications). Find-
ings (observations) including signs, symptoms, labora-
tory, and imaging results were gathered from primary
data sources and mapped to preferred terms from the
SNOMED-CT and LOINC clinical terminologies within
the UMLS® Metathesaurus® [32]. In general, demograph-
ics and clinical observations were encoded using
SNOMED-CT preferred terms whereas laboratory find-
ings were mapped to LOINC.
For a given ICD-10 diagnosis or common medication

(A) we described the associated observations (B) as
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weighted numerical probabilities based upon the fre-
quency of association of B given A.

P AjBð Þ ¼ P BjAð ÞP Að Þ
P Bð Þ

For instance, if a given disease always presents an as-
sociated observation we would weight that with 1.0, if it
was associated 10% of the time we would use 0.1, and if
that association never occurred, it was encoded with 0.
Negating findings, e.g. gender and specific conditions or
rash and Malaria were encoded as − 1. When only writ-
ten descriptions were available we translated them to a
numerical value as per Additional file 1. Initial mappings
will be refined as public curation is enabled (see
Additional file 2). Prior probabilities P(A) were encoded
for infectious syndromes and preliminarily assigned binary
values based on presence or absence in broad geographic
areas. Other binary relations such as sex, required condi-
tions or related diseases were encoded similarly. We
encoded age distributions by broad groups; infant (0–6
months), child (6months-12 years), adult (13–60 years),
elderly (> 60).
There are currenly 8221 symptoms in the knowledge

base. The most common are ‘fever’(485), ‘headache’(388),
‘nausea’(333) and ‘vomiting’(303).
Figure 1 shows that 28% of diseases are described

by 10 or more symptoms. The most extensively de-
scribed diseases are Sarcoidosis (67), Trypanosomiasis
(56) and Malaria (55). 42% are defined by 5 or less
symptoms and 14% of diseases are described by a sin-
gle symptom. These single symptom diseases are
often self-evident, e.g. contusions or burns. While
they don’t hold dignostic challenges, they are included
for completeness as they may become part of a differ-
ential diagnosis.

Utility and discussion
The relative quality of the knowledge base was measured
by comparing the performance of a simple diagnostic al-
gorithm that draws from this knowledge base. To this
end, we developed a first prototype called Doknosis, an
interactive differential diagnosis application to parse and
visualize the feedback that can be generated using the
current state of the KB. We compared DXplain1 and Isa-
bel2 to Doknosis to evaluate the initial version of the
database as these were reported as the “best” performing
diagnostic support tools in a recent study [33].
In its current state, the knowledge base provided ro-

bust basis for DDSS development and delivered compar-
able results to established DDSS; performing similar to
DXplain and better than Isabel on 117 cases extracted
from respected medical journals. The development of
the DDSS benefitted from the structure of the database
and unearthed several possible improvements such as
the inclusion of synonyms and deprecation.

Doknosis and the set-covering algorithm
Doknosis features a simple user interface to input symp-
toms using auto-completion, and implements a classic
algorithm for finding the best diagnosis for a given set of
symptoms. The algorithm is a modified form of
set-covering [34] and was used to generate lists of expla-
nations for symptoms extracted from 117 medical case
descriptions from trusted journals as shown in Fig. 2.
Formulating the problem of finding the best set of dis-

eases that explain a set of observed symptoms in terms
of set-covering was proposed by Reggia et al. [34]. Each
disease is associated with a set of symptoms, and the
goal is to find the smallest set of diseases for which the
union of associated symptoms contains the observed
symptoms. In the weighted instance, where each
symptom-disease pair gets an association weight, the
set-covering objective changes to finding the smallest set

Fig. 1 The majority of diseases is described by less then 10 symptoms, but there is a long tail to up to 67 symptoms for single disease
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of diseases that maximizes the symptom cover weight.
Hence, this approach can identify multiple overlapping
explanations that contribute to the set of symptoms. A
diagnosis can be either a single medical disease, a medi-
cation side effect, or can contain multiple disease expla-
nations, e.g. HIV and Pneumocystis Pneumonia or
Influenza and side effect of Tamiflu.
The associations between symptoms and diseases in the

database we collected were given a weight w(s,d)∈[0,1]
that for each symptom - disease pair (s,d) reflected their
recorded association fraction (percent/100%). A greedy al-
gorithm is applied where at each step the disease d is
chosen that maximizes m(D∪{d}) −m(D).

Dataset extraction
For validation and comparison, a set of 117 unique med-
ical cases was extracted from published case reports and
medical study aids. Initially, 150 case reports were se-
lected from trusted journals such as the New England
Journal of Medicine (NEJM), The American Journal of
Tropical Medicine (AJTM), and from UWorld question
bank (www.uworld.com) used by students studying for the
United States Medical Licensing Examination (USMLE).

While medical case reports often represent rare or interest-
ing presentations of diseases, medical question banks are
written by board-certified experts and are typically peer-
reviewed for accuracy. We also collected various cases
(OTHER) from further journals. A full overview of the
cases and journals can be found in Additional file 3. A sub-
set of cases were chosen with particular emphasis on febrile
and infectious syndromes given our platform’s history as a
diagnostic aid in Mozambique. Other basic categories were
meant to address the most common presenting syndromes
reported in the medical literature. A list of all used search
terms can be found in Additional file 4.
Three datasets of 50 cases each were created by ran-

domly sampling from these sources. Dataset1 contains
cases from NEJM, Dataset2 from UWorld and Dataset3
was formed from AJTM and OTHER, here with a bias
toward febrile syndromes. For each case within the three
datasets, two evaluators reviewed the medical cases, re-
ports and/or journals to assess the quality of the case
and extract a concise list of demographics, signs, symp-
toms and tests. For the purposes of this work, medica-
tions and multiple disease explanations were excluded.
While performing this task, evaluators were not allowed

Fig. 2 Screenshots of the Doknosis user interface depicting a typical use case and the top 10 explanations for two different options. Up to 20
results can be displayed and are ranked according to their calculated score which grows with the number of related observations. Subfigure (a)
shows the query interface with the symptoms for an ebola patient, (b) shows the resulting list if only North America is selected, and (c) depicts
the results if Africa is included
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to discuss with each other. Evaluators indicated whether
each case was considered rare or common and also indi-
cated whether determining the correct diagnosis for a
trained medical expert under ideal circumstances was
very difficult or average. Thirty-three cases were flagged
for exclusion if there was an unknown diagnosis, or the
diagnosis was not found in ICD-10. Our evaluation con-
sidered only those 117 cases which none of the evalua-
tors had excluded.
Evaluators rated the New England Journal of Medicine

cases as most difficult and categorized 50% of them as
rare cases. The UWorld and AJTM dataset were rated
comparably with 30% rare cases and a slightly higher dif-
ficulty in the UWorld cases. The three datasets and the
estimated difficulty and prevalence of contained cases
are summarized in Table 1.

Evaluation procedure and data analysis
Six medical practitioners entered the abstracted signs or
symptoms into Doknosis, DXplain and Isabel with the
enforcement of auto-complete from the given platform.
Evaluators made notes where auto-complete failed to
match an input term or a clear synonym was unavail-
able. The rank of the correct diagnosis was then re-
corded for each of the cases.
To compare the Doknosis results with the results

obtained with Isabel and DXplain, we grouped the
reported results into Top 1, Top 10 and Top 20. For
example, if an evaluator reported a rank of 3 for a
case this would fall under bucket Top 10. Top n
represents the number of cases in which the right
diagnosis was present in the top n results returned
by the tool. The ranking can be impacted if several
diseases have the same score. Hence, a disease may
by cut-off from the “top-n” despite having the same
likelihood scores as other diseases in the “top-n”. An
overview and the detailed ranking results can be
found in Additional file 5 and Additional file 3. The

utility function used here maps the ranking of the
correct explanation to a score value between 0 and
3. If the correct explanation is shown first (Top1)
the score is 3. Responses in the Top10 result in a score of
2 and Top20 in a score of 1. The score is 0 if the answer is
not shown in the Top20. Score differences were analyzed
using Wilcoxon signed-rank test.

Performance comparison
Doknosis and DXplain performed comparibly but both
provided significantly better results than Isabel (Z = 2.44,
p < 0.014). DXplain outperformed Doknosis on the
NEJM dataset but Doknosis excelled in the tropical dis-
eases. Overall Doknosis performed insignficantly (7%,
p = 0.49) better than DXplain. Table 2 shows the dif-
ferences in ranking results and the resulting score for
the three tools for each dataset and across all data-
sets. More detailed results can be found in Additional
file 5 and Additional file 3.
Despite the use of a rather simple set-covering algo-

rithm, the Doknosis prototype performed comparably to
the accuracy of the established programs in each cat-
egory (top 1, 20). These results could be partly due to a
bias towards diseases from a specific domain but are
surprising given the differences in sophistication.
Doknosis excelled in the category of infectious diseases
and tropical medicine (Dataset3) and showed the quality
of the database and simple parsing algorithm is compar-
able to existing tools in the current core topics. How-
ever, there is significant room for improvement in both
finding the best single explanation and likewise present-
ing the best differential diagnosis.

Platform quality
Doknosis was not developed as a decision support sys-
tem but as means to develop new algorithms and evalu-
ate the quality and completion, build up and curate the
knowledge base. Nevertheless, the development and
evaluation of Doknosis provides insights into the qual-
ities of the current knowledge base as a platform for fu-
ture DDSS prototypes.
A lack of support for synonyms was a major hurdle to

usage of the system. For instance, Doknosis did not
understand Shortness of Breath or SOB but expected
dyspnea in some cases whereas either could be entered
in other cases. This is a direct consequence of the

Table 1 Prevalence and difficulty of the cases selected

Dataset #cases %Very Difficult % Rare

1(NEJM) 24 42% 50%

2(UWorld) 43 33% 30%

3(AJTM+OTHER) 50 26% 30%

Table 2 Comparison of Doknosis in set-covering mode vs. Isabel and DXplain analyzing test cases from the three different datasets

NEJM (24) UWorld (43) AJTM + OTHERS (50) Overall (117)

Top 1 Top 20 Score Top 1 Top 20 Score Top 1 Top 20 Score Top 1 Top 20 Score

Doknosis 8% 50% 1.00 28% 42% 1.07 50% 92% 2.30 33% 65% 1.57

Isabel 4% 50% 0.96 14% 37% 0.86 22% 70% 1.58 15% 54% 1.19

DXplain 21% 58% 1.21 23% 47% 1.09 48% 76% 1.90 33% 62% 1.46
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current structure of the knowledge base and led to work
including synonyms as well as curation to insure use of
preferred terms. We expect more challenges to surface
as more prototypes build on the knowledge base.
While the current database contains more than 2000

unique explanations, there remained missing diseases
and findings discovered during initial testing. Given the
tool’s history, these tended to be rare conditions most
often encountered in the developed world, with better
coverage of infectious and emerging tropical diseases.
Continued validation and updating of relations must be
carried out before the tool can be considered for prospect-
ive clinical testing or public use. The current knowledge
base can be extended through crowd-sourcing and com-
plemented with data generated by machine learning, both
approaches that are underway (see Additional file 2). Like-
wise, knowledge-based algorithms could accompany ma-
chine learning approaches either as a source of ground
truth or as a topical layer that could be used to foster
interaction or improve explainability.

Limitations
This paper is primarily meant to demonstrate the feasi-
bility of mapping associations with preferred terms in
a UMLS based ontology, to act as an open platform for
prototyping DDSS. The knowledge base is still incom-
plete, does not support synonyms, is yet to fully account
for multiple concurrent diseases, and the handling of
negative findings is rudimentary. The current format
does not account for severity of presentation, and cannot
represent typical presentation trajectories. Likewise our
set-covering algorithm, while it does make use of edge
weights has significant drawbacks such as performance,
and the inability to require key findings. Ultimately we
hope the knowledge base will grow and take full advan-
tage of the UMLS structure (and related ontologies) by
utilizing mappings such as synonyms, deprecation and
related terms.

Conclusion
In this article, we discuss the construction and pre-
liminary testing of an open access medical knowledge
base intended to spur the development of digital
medical cognitive assistants. Our first prototype per-
formed comparably to commercial applications, how-
ever in-depth testing revealed both missing diseases
and symptoms, as well as issues with synonym
utilization and redundancy. These topics are being ad-
dressed in revisions to the knowledge base.
For the near future, we propose medical experts

working with technology (human technology teams)
will remain superior to any purely technical interven-
tion. Technology can assist cognitive activities that
are naturally difficult like Bayesian reasoning, make

providers or patients better thinkers, or aid in the
analysis of complex data. Moreover, knowledge-based
systems may be needed to collaborate, explain and
mediate between machine learning algorithms and hu-
man users.

Endnotes
1http://www.DXplain.org/
2http://symptomchecker.isabelhealthcare.com/
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