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ABSTRACT Despite providing several insights into visual attention and evidence regarding certain brain
states and psychological functions, classifying eye movements is a highly demanding process. Currently,
there are several algorithms to classify eye movement events which use different approaches. However,
to date, only a limited number of studies have assessed these algorithms under specific conditions, such as
those required for surgical training programmes. This study presents an investigation of ten open-source
eye-movement classification algorithms using the Eye Tribe eye-tracker. The algorithms were tested on
the eye-movement records obtained from 23 surgical residents, who performed computer-based surgical
simulation tasks under different hand conditions. The aim was to offer data for the improvement of surgical
training programmes. According to the results, due to the different classification methods and default
threshold values, the ten algorithms produced different results. Considering the fixation duration, the only
common event for all of the investigated algorithms, the binocular-individual threshold (BIT) algorithm
resulted in a different clustering compared to the other algorithms. Based on the other set of common events,
three clusters were determined by eight algorithms (except BIT and event detection (ED)), distinguishing
dispersion-based, velocity-based and modified versions of velocity-based algorithms. Accordingly, it was
concluded that dispersion-based and velocity-based algorithms provided different results. Additionally, as it
individually specifies the threshold values for the eye-movement data, when there is no consensus about the
threshold values to be set, the BIT algorithm can be selected. Especially for such cases like simulation-based
surgical skill-training, the use of individualised threshold values in the BIT algorithm can be more beneficial
in classifying the raw eye data and thus evaluating the individual progress levels of trainees based on their
eye movement behaviours. In conclusion, the threshold values had a critical effect on the algorithm results.
Since default values may not always be suitable for the unique features of different data sets, guidelines
should be developed to indicate how the threshold values are set for each algorithm.

INDEX TERMS Eye-movement classification algorithms, eye-movement events, eye-tracking.

I. INTRODUCTION
Today’s eye-movement tracking technology offers several
benefits, and thus is widely used in various fields, includ-
ing neurology, psychology, ophthalmology, and commercial
areas. Classifying eye movements is crucial for understand-
ing visual attention and providing evidence regarding cer-
tain brain states and psychological functions [1]–[4]. Such
evidence can later be used for diagnoses, treatment and
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training purposes [5]–[9]. Eye-movement classification is
also important for clinical applications related to impor-
tant health conditions and diseases, such as Alzheimer’s
disease [10], [11], HIV-1 infections presenting with eye-
movement dysfunction [12], and schizophrenia [13], [14].
Commercial purposes includeWeb navigation, shopping, and
human-computer interaction [3], [4], [15], [16]. Besides, sev-
eral studies have been undertaken to investigate eye move-
ments in order to support surgical training programmes,
specifically to improve surgical simulations and needle inser-
tion simulations to represent real-life environments, such as
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soft tissues [17]–[21]. These improvements on the techniques
used for surgical simulations have several potential bene-
fits for surgical training programmes in terms of providing
support for skill assessment procedures [22] and helping
candidate surgeons acquire the necessary skills [23]. Addi-
tionally, there is some evidence showing the benefits of better
understanding the eye-movement events of surgical residents
while they are performing surgical tasks in computer-based
simulation environments [24]. The classification of basic
eye-movement events from noisy eye data is essential, partic-
ularly for researchers using eye trackers to record data in their
studies [2], [25]–[27]. Research using static stimuli mostly
focuses on fixations that refer to slow periods when the eye
is nearly still, and saccades that occur when the eye makes
rapid shifting movements between different positions. The
third commonly examined eye movement event is smooth
pursuit, which is tracking of dynamic stimuli, such as moving
objects in a visual scene [28]. This event produces velocities
that are inconsistently handled by algorithms [29]. Therefore,
unlike fixations and saccades, there is no clear classification
of smooth pursuit eye movements, and their analysis depends
on the threshold values of the algorithms used [29].

It is up to researchers whether to manually identify eye-
movement events or use a commercially or freely available
algorithm for such classification. However, the use of clas-
sification algorithms is now accepted as the only practical
solution for this purpose considering the time-consuming
nature of manual assessments [29].

In the literature, there are not many studies that com-
paratively evaluated eye-movement classification algorithms.
Therefore, in this study, different algorithms were tested on
the eye-movement data collected from 23 surgeons while they
were performing four virtual simulation scenarios in a 3D
dynamic and interactive environment under different hand
conditions, namely dominant hand, non-dominant hand, and
both hands.

A. CURRENT EYE-MOVEMENT CLASSIFICATION
ALGORITHMS
Several eye-movement classification algorithms are currently
in use; however, some are not open-source or are only com-
mercially available as part of software suites developed by
companies manufacturing eye-tracking devices, making it
difficult to evaluate them. There are also some machine
learning algorithms used to classify data [30] into eye move-
ment events. However, in this study, for convenience, ten
open-source eye-movement classification algorithms imple-
mented with MATLAB were selected based on the criteria of
being up-to-date and independent of any eye-tracker device
(See Appendix-A) [29].

Eye-movement algorithms classify eye data by consid-
ering different features gathered by eye tracker devices.
There are different types of algorithms, mainly cate-
gorised as velocity-based and dispersion-based, to clas-
sify eye-movement events, such as fixations, saccades,
and smooth pursuits. Velocity-based algorithms include

Velocity Threshold Identification (I-VT), Hidden Markov
Model Identification (I-HMM), and Kalman Filter Identifi-
cation (I-KF), and examples of dispersion-based algorithms
are Dispersion Threshold Identification (I-DT) andMinimum
Spanning Tree Identification (I-MST) [31]. Furthermore,
Velocity and Velocity Threshold Identification (I-VVT) is
the modified version of I-VT to distinguish smooth pursuits
from fixations, and similarly, Velocity and Movement Pat-
tern Identification (I-VMT) utilizes the velocity threshold to
classify saccades and investigates the eye-movement samples
to separate smooth pursuits from fixations. Lastly, Velocity
and Dispersion Threshold Identification (I-VDT), a modified
combination of velocity-based and dispersion-based algo-
rithms, is used for ternary classifications [31].

I-VT is based on the velocity of eye movement to separate
fixation events from saccade events and employs a velocity
threshold to classify fixations and saccades. If the veloc-
ity of a sample is below the threshold, then the algorithm
defines it as a fixation, and if it above the threshold, then
the event is classified as a saccade. This velocity thresh-
old principle is also the basis for other algorithms [31];
for example, I-VVT discriminates between different eye-
movement events through a filter function that eliminates
noisy saccade-like events based on minimum amplitude and
duration values [31]. I-VMT evaluates the movement patterns
to distinguish smooth pursuits from fixations. Such move-
ment patterns are examined in a temporal window, where
the magnitude of movement is computed by analysing the
angles created by each pair of adjacent positional points and
the horizontal coordinate axis. Once the value representing
the magnitude of motion is calculated, the values above the
threshold are marked as smooth pursuits and those below the
threshold as fixations [31].

I-VDT is also used for the classification of fixations, sac-
cades, and smooth pursuits. Similar to the I-VVT and I-VMT
algorithms, I-VDT also separates the saccades first and then
distinguishes smooth pursuits fromfixations using an adapted
I-DT method [31]. Similar to the I-VT algorithm, I-HMM is
based on velocity but it has two additional algorithms: the first
re-classifies fixations and saccades according to probabilis-
tic parameters, and the second updates the parameters [1].
I-KF is a recursive predictor that computes future states by
estimating a series of dynamic system states from noisy
measurements [32]. Since the actual data is usually noisy and
may cause data loss, I-KF minimizes the difference between
the state of the estimated system and that of the real system.
It only requires the previous time step and estimated new
conditions to calculate the estimate of the new event [32].
If the value is less than the set threshold and the minimum
time threshold is met, the event is classified as a fixation,
and if the value is above the threshold, it is considered a
saccade [32].

I-DT, one of the dispersion-based algorithms, is commonly
used to classify eye-movements into fixations and saccades
using the x and y coordinates of the eye and two thresholds,
namely maximum and minimum fixed-time thresholds [1].
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I-MST, another dispersion-based algorithm takes a predeter-
mined number of eye position points to create a MST [33],
which is defined as a spanning tree with the least distance
among all spanning trees in a node set. I-MST breaks MST
into segments and thresholds based on predetermined dis-
tances [33]. The advantage of using an I-MST is that this
algorithm can correctly identify the anchor points if a large
part of the signal is missing. As a result of this property,
I-MST is claimed to be a highly flexible and controllable
eye-movement detection tool [33].

Adaptive event detection (ED) is a velocity-based algo-
rithm that alters the velocity threshold based on the noise
level of the subject. It also distinguishes post-saccadic
releases, also known as ’glissades’, from fixations and sac-
cades [34]. As a different eye-movement, a glissade is a
wobbling movement at the end of saccades. The ED algo-
rithmwas developed to classify fixation, saccade and glissade
eye-movement events and provide graphical representations
of these events [34]. Another velocity-based algorithm is
Binocular-Individual Threshold (BIT) [35], which identi-
fies fixations in the movement data of both eyes based
on individual-specific thresholds. BIT has advantages over
other similar algorithms in that it contains binocular viewing
and uses the information about fixations and co-variations
between the movements of both eyes to identify saccades; it
estimates rather than pre-sets the velocity threshold to iden-
tify fixations and saccades, thus allowing the threshold to vary
between eye-movement directions, tasks, and individuals.
In addition, each record exceeding the threshold value con-
tains stochasticity, which is spontaneous in eye-movements,
and therefore prevents inaccurately labelling events as sac-
cades [35]. Another important feature of BIT is that it is
independent of machine and sampling frequency; thus, it can
be easily adapted to the data from varying eye-trackers with
different sensitivity and sampling frequencies [35].

B. LIMITATIONS OF CURRENT EYE-MOVEMENT
CLASSIFICATION ALGORITHMS
The need for a single algorithm to be used in all systems
and the presence of many algorithms addressing the same
problem imply that eye-movement classification is not a
mundane issue, and assessing the performance of different
algorithms is an important undertaking [29]. Notably, select-
ing the most appropriate algorithm means that a thorough
evaluation method has to be designed [2]. Since this study is
not the first that attempted to evaluate algorithm performance,
it is necessary to consider the benefits and drawbacks of the
previously established methods.

One of the approaches has been to establish an optimal
or rational relationship between stimuli and an individual’s
viewing behaviour. For instance, researchers offered a trial to
the participants in order to look at a single moving target that
jumped a number of times [1]. Given the known number of
jumps, positions, and amplitudes, it is possible to calculate
how an ideal eye-movement behaviour should appear; then,
the gaze data parsed by the algorithms is compared to the

ideal viewing pattern. The use of a higher number of algo-
rithm provides more reliable results [1].

The detection of eye-movement events is not a completely
resolved problem because there is no consensus on how to
evaluate the algorithms. This hinders the further refinement
of algorithms as it is not clear whether the differences are
due to the algorithms being used or the evaluation process
itself [25], [29]. Furthermore, it is not clearly known what
we refer to as an event; for example, there is no theoretically
motivated threshold for the eye to be classified as a saccade
to sufficiently move in a particular direction or to classify
anything under it as another event. Classification algorithms
focus on a rigorous oculomotor definition of fixations and
saccades. Even in the definition of a fully oculomotor eye
movement, it is difficult to identify the end point of the
fixation and the start point of a smooth pursuit. This point is
arbitrary and more or less determined by the sensitivity of the
system. Many algorithms require some form of adjustment
to be made by the researcher, such as minimum fixation
time and saccade speed threshold. If there is an explicit and
theoretically applied threshold, then it will already be coded
as a constant value in the algorithm. However, setting the
thresholds depends on the researcher. It is common knowl-
edge that different parameter values for these algorithms
produce different classification results [29], but there is a
lack of data on the comparative analysis of many algorithms.
Often, a modest assessment is performed while presenting a
new algorithm, but in this process, only a limited number of
algorithms are examined, and the main focus is on the new
algorithm.

C. THRESHOLD VALUES OF EYE-MOVEMENT
CLASSIFICATION ALGORITHMS
The algorithms evaluated in the present study were used with
only slight changes to their default settings. However, an ideal
algorithm does not require the user to set any parameter and
automatically adjusts the thresholds for the comprehensive
categorisation of all samples of the data stream [29]. Certain
parameter values are the same for all algorithms, namely
screen size value (1920 × 1080), distance from the screen
(70 cm), and sampling frequency (60 Hz). In the following
section, all the remaining parameters and threshold values
for each algorithm are listed, and this information is also
presented as a table in Appendix-B. Algorithms use saccade
detection thresholds for classifying saccades and fixations.
The velocity value is computed for each eye position sam-
ple, which is then compared to the threshold value. If the
sampled velocity is less than the threshold, the corresponding
eye-position sample is marked as a fixation; otherwise, it is
marked as a saccade. In other words, if the movement speed
from an eye position to the next is greater than the threshold
value, this means that the eye movement belongs to a saccade
event; otherwise, it indicates a fixation or smooth pursuit.
After this evaluation, another threshold is used to discriminate
between fixation and smooth pursuit events. The fixation
detection threshold sets the value of the speed threshold used
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to distinguish between fixations and smooth pursuits. The
speed of the movement from one eye position to the next
being larger than this value means that the eye movement is
a smooth pursuit; otherwise, it is a fixation.

D. VELOCITY THRESHOLD IDENTIFICATION (I-VT)
The I-VT algorithm uses the saccade detection threshold to
classify saccades and fixations. Thismodel, the velocity value
is computed for each eye position sample, and then compared
to the threshold. If the sampled velocity is less than the
threshold, the corresponding eye-position sample is marked
as a fixation; otherwise, it is marked as a saccade. The default
threshold value is 70◦/s. If the movement speed from one eye
position to the next is below this value, the eye movement
belongs to a fixation event, and if above, it is classified as a
saccade.

E. VELOCITY AND VELOCITY THRESHOLD
IDENTIFICATION (I-VVT)
The I-VVT algorithm uses two threshold parameters; one for
saccade detection and the other for fixation detection. The
former is set to 70◦/s by default and adjusts the value of
the speed threshold used to distinguish between saccades and
fixations. If the movement speed from an eye position to the
next is greater than this value, the eye movement belongs
to a saccade; otherwise, it is a fixation or smooth pursuit.
The second threshold (fixation detection), set to 20◦/s by
default, refers to the speed value to be used to distinguish
between fixations and smooth pursuits. If the speed of the
movement from one eye position to the next is larger than
this value, the eye movement is a smooth pursuit; if smaller,
it is a fixation.

F. VELOCITY AND MOVEMENT PATTERN IDENTIFICATION
(I-VMT)
The I-VMT algorithm uses three threshold parameters: sac-
cade detection threshold, temporary window length, and
range threshold. The saccade detection threshold field on
the I-VT tab adjusts the value of the speed value used to
differentiate between saccades and fixations. This parameter
is set to 70◦/s by default. If the movement speed from an
eye position to the next is greater than this value, it belongs
to a saccade event; otherwise, it is either a fixation or a
smooth pursuit, which should be clarified in the next stage of
classification. The temporary window length field specifies
how much time is needed for dispersion calculation during
data processing. The default value of this parameter is 0.5.
Lastly, the range threshold value sets the threshold for the
distribution of the selected samples in a range of 0 to 1. This
parameter is set to 0.1 by default.

G. DISPERSION THRESHOLD IDENTIFICATION (I-DT)
The I-DT algorithm uses two threshold parameters: disper-
sion duration and dispersion degree. The dispersion duration
threshold specifies how much time is required to calculate
the distribution during data processing. This field sets the

threshold value for the distribution of the selected samples
in degrees. If the distribution is less than the specified value,
it means that a fixation has been detected; otherwise, the eye
movement is a saccade. The default values for this classifica-
tion are 100 ms for the dispersion duration and 1.35◦ for the
dispersion degree.

H. VELOCITY AND DISPERSION THRESHOLD
IDENTIFICATION (I-VDT)
The I-VDT algorithm employs three threshold parameters as
saccade detection, dispersion duration, and dispersion. The
saccade detection threshold on the I-VT tab adjusts the value
of the speed threshold to distinguish between saccades and
fixations. If the movement speed from an eye position to
the next is greater than this value, the eye movement is a
saccade; otherwise, it is either a fixation or a smooth pursuit.
In the latter case, further classification is needed. The saccade
detection threshold is set to 70◦/s by default. The dispersion
duration threshold on the I-DT tab specifies howmuch time is
needed to calculate distribution during data processing. The
default value of this parameter is 100 ms. The dispersion
threshold field on the I-DT tab sets the threshold value for
the distribution of the selected samples in degrees. If the
distribution is less than this value, it means that a fixation
has been detected; otherwise, the eye movement is a saccade.
This parameter is set to 1.35◦ by default.

I. HIDDEN MARKOV MODEL IDENTIFICATION (I-HMM)
The I-HMM algorithm uses three threshold parameters,
namely saccade detection threshold, Viterbi sample size, and
Baum-Welch reiteration. The saccade detection threshold is
identical to the I-VT classifier. The Viterbi sample size spec-
ifies the number of samples used by the classifier as a data
set. If the threshold value is set too high, there is not enough
machine precision to calculate the statistical parameters. The
Baum-Welch iteration specifies the number of iterations to
be used in the Baum-Welch algorithm. The default values are
70◦/s for the saccade detection threshold, 200 for the Viterbi
sample size, and 5 for the Baum-Welch iteration.

J. KALMAN FILTER IDENTIFICATION (I-KF)
The I-KF algorithm uses the three parameters of Chi thresh-
old, sampling window size, and deviation. The value for the
χ2-distribution threshold is set by the Chi threshold field.
If the χ2-distribution values are lower than this threshold,
then a fixation has been detected; if not, it is a saccade.
The sampling window size specifies the number of samples
for which the χ2-distribution is calculated. The deviation
field sets the deviation value between the anticipated and
computed values for the χ2-distribution calculation. The
default parameter values are 15 for the chi-square threshold,
5 samples for the window size, and 1000 for deviation.

K. MINIMUM SPANNING TREE IDENTIFICATION (I-MST)
The I-MST algorithm contains two threshold parameters:
saccade detection threshold and window size. The saccade
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detection threshold adjusts the distance between two adjacent
eye focus positions in degrees. If this distance is less than
the threshold, the eye movement is a fixation, and if higher
than the threshold value, it indicates a saccade. The window
size field sets the number of instances used by the classifier
during data processing. If it is set too high, the sensing time
for the saccades can be significantly increased. Therefore, it is
reasonable to set this value slightly lower than the average
fixation duration. The default values for the saccade detection
threshold and window size parameters are 0.6◦ and 200 sam-
ples, respectively.

L. ADAPTIVE EVENT DETECTION ALGORITHM (ED)
In this study, the default ED values were used, except the
minimum saccade duration that was set at 20 ms because the
algorithm was designed for 1250 Hz of data with high pre-
cision, and the window length (F) did not scale satisfactorily
when using 60 Hz data. Therefore, it was considered to be
more appropriate to increase F to the nearest odd integer (F
= 3). To do this, there was also a need to increase the value
of the minimum saccade duration from 10 to 20 ms.

M. BINOCULAR-INDIVIDUAL THRESHOLD (BIT)
BIT is a parameter-free fixation identification algorithm that
automatically identifies relative and individual specific speed
thresholds by optimally using the statistical properties of the
eye data. To verify the fixations, BIT algorithm uses velocity
thresholds. The advantages of this algorithm is the automatic
identification of the task and individual specific velocity
threshold values and independence from the eye-tracker and
sampling frequency. This algorithm can be used with the data
recorded by various eye tracker devices.

II. MATERIALS AND METHODS
Prior to the study, the ethical approval from the Human
Research Ethics Board of Atilim University was received. All
participants were individually informed about the purpose of
the study, procedures, and length of experiment. Only volun-
teers were recruited for the study, and their verbal and writ-
ten consent was obtained. First, the common eye-movement
events of the above-mentioned 10 algorithms were analysed;
then the results of the classifications were examined to better
understand the commonalities and differences between these
algorithms. The following research questions were investi-
gated:
RQ1. Are there any differences between the ten algorithms

tested?
RQ2. Do the algorithms form different clusters?

A. SCENARIOS
Four different scenarios simulating different surgical proce-
dures in a virtual environment were designed in accordance
with the feedback of expert surgeons from Hacettepe Uni-
versity Medical School with more than 30 years’ experience
in skull base surgery. Their educational evaluations includ-
ing these scenarios also show some encouraging results for

FIGURE 1. Scenarios.

supporting surgical education programmes [23]. Each sce-
nario contained different tasks to be performed to develop
different skills among surgical residents, such as eye-hand
coordination, fast tracking of objects, depth perception, effec-
tive use of surgical instruments, and simultaneous use of both
hands. In this research, different hand conditions were also
tested. The participants were first asked to perform the tasks
using their dominant hand, then with their non-dominant
hand, and finally using both hands. In the first scenario
(Figure 1: A), the participants were expected to catch a red
ball that appeared at random locations in a room displayed on
the screen using a surgical instrument. Once the participants
caught the red ball, the colour of the ball turned green, and the
participants had to move the ball to the cube. The cube also
appeared at random locations within the room. This process
was repeated ten times.

In the second scenario (Figure 1: B), the participants were
asked to use a simulated instrument to touch the red balls that
randomly appeared in one of the blue boxes on the screen.
Once the participants focused on the red ball at the right
angle, the ball exploded. This process was also repeated ten
times. In the third scenario (Figure 1: C), the participants were
expected to find and remove tumour-like objects from a vir-
tual simulation of the human nose model using an endoscopic
instrument. There were ten tumours located in different parts
of the nose model. In the last scenario (Figure 1: D), the par-
ticipants were instructed to continuously follow a moving
object (a white ball) on a fixed path inside the simulated nose
environment. In order to be able to move the white ball on
this path, it was necessary to focus on the ball at a correct
angle and distance by controlling the endoscopic instrument
through a haptic device.

B. DATA COLLECTION PROCESS
Twenty-eight surgical residents (23 male and 5 female) par-
ticipated in this study. However, due to the recording fail-
ure of the eye tracker, the data of five participants was not
recorded, and therefore the analysis was conducted on the
data of 23 participants. In Turkey, after completing 12-year
primary and secondary education, students are accepted to
the medical faculties of universities based on their scores
in the central university entrance examination containing
multiple-choice questions [36]. The undergraduate medical
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education lasts six years, after which medical graduates are
placed, based on the grades from another centralized exam,
in specialisation programmes pre-determined by the Turkish
Ministry of Health [36]. The participants of the present study
were surgical residents enrolled in the specialisation pro-
grammes of neurosurgery and ear-nose-throat (ENT) depart-
ments.

The eye-movement data of the surgical residents was
recorded using Eye Tribe at 60 Hz sampling frequency. This
eye-tracker was chosen as an affordable and potentially valu-
able tool for this research [37]. Previous studies reported
that Eye Tribe significantly differentiated the pupil dilations
caused by mental workload [38]. In addition, this eye tracker
was presented as a promising tool for researchers investi-
gating human factors [38]. To ensure high accuracy in the
eye-movement recordings, the participants were positioned at
a fixed distance (70 cm) from the monitor. At the start of each
experiment, a calibration procedure containing nine targets
was performed for each participant to ensure accuracy. The
data was collected while the participants were performing the
simulated scenarios. Eye Tribe recorded the eye movement
data in the x and y coordinates for the analysis.

A total of four scenarios, one for each surgical operation,
were developed using the Unity platform and C# program-
ming language. In surgical operations, physicians have to
operate with both hands and use different tools at the same
time, meaning that they have to improve their ability to use
their dominant and non-dominant hands simultaneously. The
novelty of this study is that the four scenarios were per-
formed under different hand conditions (dominant hand, non-
dominant hand, and both hands), duringwhich the eye-tracker
recorded all the eye movements. To provide more objectivity,
half of the participants started to perform the tasks using their
dominant hand, and the remaining participants started with
their non-dominant hand. The participants used a Geomagic
Touch haptic device to perform the tasks in the scenarios
under different hand conditions, which provided touch-and-
feel feedback concerning the interactions in the simulated
environment.

Eye Tribe recorded the eye movement data for each sce-
nario and hand condition for 23 participants in the JSON
format [39] as a text document. This data was then con-
verted to the Excel format to be used in the eye-movement
classification algorithms. Since each algorithm had different
input parameters, the data was adjusted to match the specific
requirements of each algorithm. Hence, for each participant,
a new Excel file was created to be used in the BIT and ED
algorithms, including the values for timestamp and the raw x
and y coordinates of the right eye. Since eyes mostly move in
the same direction; i.e. when the left eye moves in a certain
direction, the right eye would alsomove in the same direction,
only the data from the right eye was used in this study.
Considering that the I-DT, I-HMM, I-KF, I-MST, I-VDT,
I-VMT, I-VT and I-VVT algorithms expected input param-
eters in mm, for conversion to mm, the coordinate values
saved in pixels were multiplied by a coefficient value of 0.311

TABLE 1. Algorithms and classified events.

(27 inch monitor with 1920 x1080). Then, these eight algo-
rithms were run with the raw x and y coordinates of the right
eye in mm obtained for each participant. The results obtained
from all algorithms were analysed.

III. RESULTS
To evaluate and compare the different classification methods,
each was considered with respect to several characteristics,
such as the classified eye-movement events, the methods used
for the classification, and the results.

A. ALGORITHMS AND EYE-MOVEMENT EVENTS
As shown in Table 1, the ten algorithms investigated
have some common and specific eye-movement events. For
instance, glissade duration (GD) is only detected by the ED
algorithm whereas the BIT algorithm classifies fixation num-
ber (FN), fixation duration (FD) and saccade number (SN)
events.

The algorithms I-DT, I-HMM, I-KF, I-MST, I-VDT,
I-VMT, I-VT and I-VVT classify FN, FD, SN saccade
duration (SD) and saccade amplitude degree (SAD) events.
Furthermore, the I-VDT, I-VMT and I-VVT algorithms clas-
sify pursuit number (PN), pursuit duration (PD), and pursuit
velocity degree (PVD). FD and SD are the eye-movement
events that the ED algorithm has in common with the other
algorithms. The release dates of the algorithms are presented
in Table 1. According to this information, I-VT, I-HMM,
I-DT and I-MSTwere the initial algorithms proposed by [41],
and later, I-KF, I-VVT, I-VMT, I-VDT [40], ED [42]
and BIT [43] were developed. The investigated algorithms
also have different classification methods; for example,
I-VT, I-KF, I-HMM, ED and BIT are velocity-based while
I-DT and I-MST algorithms are dispersion-based. The I-VVT
and I-VMT algorithms, which are modified versions of the
I-VT velocity-based algorithm, can identify smooth pursuit
eye-movement events. Another algorithm that is able to detect
smooth pursuit events is the I-VDT algorithm, which is a
modified version of the velocity-based and dispersion-based
algorithms.
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TABLE 2. Friedman test results for the first scenario under the
dominant-hand condition.

TABLE 3. Friedman test results for the first scenario under the
non-dominant hand condition.

B. DIFFERENCES BETWEEN THE CLASSIFICATION
RESULTS OF THE ALGORITHMS
All data analysis was carried out using SPSS for Windows
software package (version 23; IBM Corporation, New York,
USA) at the 95% confidence level. Since the normality
assumptions were not satisfied and the sample size was 23,
a non-parametric analysis technique, the Friedman test, was
used [40], which is an alternative to bi-directional variance
analysis for determining the differences between two major
masses [40]. This technique was used to determine the differ-
ences between the classification results of the ten algorithms
for each eye-movement event. According to the results, there
were significant differences for all eye-movement events (p
< 0.001). The mean ranks of the Friedman test for each algo-
rithm and eye-movement event are given for each scenario
in Tables 2 to 13.

C. RESULTS OF HIERARCHICAL CLUSTERING
FD was the only common eye-movement event among all
algorithms (Table 1). A hierarchical clustering method was
applied to provide a better understanding of clustering among
the classification results of the ten algorithms. According to
the results of hierarchical clustering based on themean FD for
all algorithms and hand conditions, two clusters were iden-
tified (Figure 2): Cluster-1 consisting of the BIT algorithm
and Cluster-2 containing the remaining nine algorithms. The
measured mean values of FD for Cluster-1 and Cluster-2 are
given in Table 14.

FIGURE 2. Dendrogram of all algorithms using ward’s linkage method.

TABLE 4. Friedman test results for the first scenario under the both-hand
condition.

TABLE 5. Friedman test results for the second scenario under the
dominant-hand condition.

Since the number of common eye-movement events was
high for all algorithms except BIT and ED (Table 1), these
two algorithms were excluded and the cluster analysis was
repeated with the five common eye-movement events (FN,
FD, SN, SD and SAD) for the remaining eight algorithms
(I-DT, I-HMM, I-KF, I-MST, I-VDT, I-VMT, I-VT and
I-VVT). The results of this analysis revealed three clusters:
Cluster-1 containing I-DT and I-VDT, Cluster-2 consisting
of I-HMM, I-KF, I-MST and I-VT, and Cluster-3 compris-
ing I-VMT and I-VVT. The dendrogram of these clusters is
presented in Figure 3.
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TABLE 6. Friedman test results for the second scenario under the
non-dominant hand condition.

TABLE 7. Friedman test results for the second scenario under the
both-hand condition.

TABLE 8. Friedman test results for the third scenario under the
dominant-hand condition.

TABLE 9. Friedman test results for the third scenario under the
non-dominant hand condition.

IV. DISCUSSION
The results of this study show that as each algorithm uses
different methods of classification, the threshold values are

TABLE 10. Friedman test results for the third scenario under the
both-hand condition.

TABLE 11. Friedman test results for the fourth scenario under the
dominant-hand condition.

TABLE 12. Friedman test results for the fourth scenario under the
non-dominant hand condition.

important and need to be set carefully. In addition, eye track-
ers, computer properties, and algorithm thresholds used in
classification vary. Open-source algorithms should be adapt-
able to work with data obtained from different types of
hardware. Yet, it is challenging, particularly for researchers
without software development background, to obtain, extract
and parse data from different devices to use with open-source
eye-movement classification algorithms.

In order to make the ED algorithm workable, it is
necessary to have experience in software development to
understand the code. Since the algorithm is designed for a
1250 Hz eye-tracker, it needs to be modified for the data
received from eye-trackers operating at different sampling
rates/frequencies. Accordingly, in this study, the code was
adapted to the eye data acquired from Eye Tribe with a 60 Hz
sampling frequency.
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TABLE 13. Friedman test results for the fourth scenario under the
both-hand condition.

TABLE 14. Classification results of the two clusters.

TABLE 15. Classification results of the three clusters.

The mean values obtained from the three clusters of eight
algorithms are given in Table 15. The hierarchical clustering
analysis showed that the three-cluster structure resulted from
the differences in the methods and threshold values of the
algorithms.

The algorithms I-DT, I-HMM, I-KF, I-MST, I-VDT,
I-VMT, I-VT and I-VVT are included in a single soft-
ware package (Appendix-A) that is open-source but
password-protected. The combination of algorithms with dif-
ferent features in a single interface is very useful and provides
great convenience. Researchers can easily use the algorithms
for their data by making the necessary changes through the
interface. This software also allows graphical representation
of the results, thereby offering significant convenience for
researchers that are not experienced in this field. Based on
the results of this study, the following important points can
be highlighted:
• Themost common eye-movement event classified by the
algorithms was FD, followed by FN, FD, SN, SD, and
SAD.

• Different algorithms provided different classification
results due to the methods and threshold values they use.
Despite the significant effect of the threshold values on
the classification results, there is no consensus in the
literature concerning how to decide on the appropriate
value for each algorithm.

• According to hierarchical clustering based on the mean
FD values produced by all ten algorithms, two clusters
were identified: Cluster-1 consisted of the BIT algorithm
and Cluster-2 contained the remaining nine algorithms.
The different results obtained from BIT may result from
the ability of this algorithm to automatically determine
the threshold values based on the provided eye data

FIGURE 3. Dendrogram of eight algorithms using ward’s linkage method.

whereas the default threshold values should be defined
by the researcher for the remaining algorithms.

• As BIT and ED are limited in their classification of
eye-movement events, another hierarchical clustering
analysis was performed by excluding these algorithms.
The results of hierarchical clustering based on the means
of FN, FD, SN, SD, and SAD produced by the remaining
eight algorithms (I-DT, I-HMM, I-KF, I-MST, I-VDT,
I-VMT, I-VT and I-VVT) revealed three clusters:
Cluster-1 consisted of the I-DT algorithm, which is
dispersion-based, and the I-VDT algorithm, a mod-
ified combination of the velocity-based I-VT and
dispersion-based I-DT algorithms. Dispersion-based
algorithms are based on the x and y coordinates of
the eye data for classifying eye-movements into fixa-
tion and saccade events. The I-VDT algorithm differs
from modified velocity-based algorithms (I-VVT and
I-VMT) in that it separates smooth pursuits from fix-
ations by employing a modified dispersion thresh-
old identification method. Therefore, the results of
I-VDT differed from the remaining modified algorithms
(I-VVT and I-VMT) as similarly reported in previous
research [31]. Cluster-2 comprised the I-HMM, I-KF,
I-MST, and I-VT algorithms. Except for the I-MST
algorithm, all the remaining algorithms in this clus-
ter are velocity-based and use the velocity of eye
movements to separate fixation from saccade events.
The I-MST algorithm has the advantage of correctly
identifying the anchor points if a large part of the signal
is missing, a property which makes I-MST a highly flex-
ible and controllable eye-movement detection tool [33].
In addition, this algorithm produces similar results to
velocity-based algorithms probably due to the threshold
values used but the reasons behind this should be further
investigated. The algorithms I-VMT and I-VVT were
included in Cluster-3, with the common property that
they are both modified versions of the velocity-based
algorithm I-VT. These two algorithms first utilize the
velocity threshold for classifying saccades, then inves-
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tigate the eye-movement samples to distinguish smooth
pursuits from fixations. As a result, both of these algo-
rithms are more suitable for dynamic stimuli, such as
video-viewing, where objects are moving [29], [31].

• This study experimentally evaluated open-source eye
movement classification algorithms using the same
dataset collected from the domain of neurosurgery.
There are other studies in the literature that have
investigated different eye movement classification algo-
rithms [1], [29], [34] but none has performed a compar-
ison of the ten algorithms used in this study.

V. CONCLUSION
In this study, the data was recorded and classified while
surgeons performed four different surgical tasks under three
hand conditions, which allowed a comprehensive compar-
ison of the algorithms. Although these ten algorithms are
widely used for classifying eye-movement events in different
domains, there is no experimental study that compared the
differences between them. In addition, the domain of the
current study differs from previous research. To the best
of our knowledge, no other study has been conducted with
surgeons from the field of neurosurgery and ENT to evaluate
eye-movement classification algorithms; thus, the present
contributes to the literature in terms of how to decide on an
appropriate algorithm for eye-movement studies undertaken
in different domains.

The results reveal that, the threshold values critically affect
the classification results of the algorithms. Additionally,
dispersion-based and velocity-based algorithms provided dif-
ferent results. Accordingly, it can be concluded that if the
threshold values are not specified, the use of the BIT algo-
rithm is appropriate for classifying eye-movement events
because this algorithm can individually specify the thresh-
old values for the eye-movement data gathered using an
eye-tracking device.

Furthermore, as it is a skill-based training and requires
individualized training approaches, for the simulation-based
surgical training programs, the use of individualised threshold
values in the BIT algorithm can be more beneficial in clas-
sifying the raw eye data, and thus evaluating the individual
progress levels of trainees based on their eye movement
behaviours. In cases where the default threshold values are
known, the remaining nine algorithms can also be applied.
In conclusion, for a better interpretation of eye research data,
the appropriateness of the algorithms for the specific require-
ments of research should be considered.

The results of this study provided several insights into
the use of eye-movement event classification for training
procedures in a surgical simulation environment. It is con-
sidered that these results can also be implemented for other
domains that aim to investigate human behaviours through
eye movements.

APPENDIX A
Sources of the Evaluated Algorithms

Binocular-Individual Threshold (BIT) Algorithm

TheMATLAB source code of BIT algorithm can be down-
loaded from the webpage

(http://www.bm.ust.hk/mark/faculty-and-staff/
directory/85).

An Adaptive Event Detection (ED) Algorithm
The source code of ED algorithm can be downloaded from

authors’ webpage
( http://www.humlab.lu.se/en/person/MarcusNystrom)
Other Algorithms
The algorithms I-DT, I-HMM, I-KF, I-MST, I-VDT,

I-VMT, I-VT and I-VVT can be downloaded from
(http://cs.txstate.edu/∼ok11/emd_offline.html). However
researchers are expected to send an e-mail to the author
for explaining their research purpose and asking their per-
mission. The author provides a software password and the
algorithms become available for the research purposes.

APPENDIX B
Threshold Values of the Algorithms
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