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NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET 
DET MEDISINSKE FAKULTET 

Integrerte metoder for motivoppdaging i genomiske regioner 

Proteiner utgjør en stor gruppe makromolekyler som er essensielle for alt liv. 
De fungerer blant annet som byggeklosser i celler eller som enzymer som katalyserer 
kjemiske reaksjoner. Nye proteiner lages kontinuerlig i levende celler, og oppskriftene 
på alle de forskjellige proteinene som en organisme trenger er beskrevet i gener som 
er kodet i organismens DNA. Prosessen med å lage et nytt protein består av to trinn. 
I det første trinnet (transkripsjon) lages en kopi av gensekvensen i RNA, og denne 
kopien blir så benyttet i det neste trinnet (translasjon) som en mal for å sette sammen 
kjeden av aminosyrer som danner det ferdige proteinet. Ettersom forskjellige typer 
proteiner brukes i ulike sammenhenger og i ulike celle-typer, må prosessen med å lage 
nye proteiner være nøye regulert. Det første trinnet er hovedsakelig regulert av 
transkripsjonsfaktorer som gjenkjenner og binder seg til bestemte sekvensmønstre i 
DNA, gjerne lokalisert i områder som ligger foran genene. Transkripsjonsfaktorer 
hjelper til med å rekruttere transkripsjonsmaskineriet til starten av genet og starte 
transkripsjonsprosessen. Men noen faktorer spiller en motsatt rolle og kan nedregulere 
gener ved å forhindre at transkripsjon finner sted. Ulike typer av transkripsjons-
faktorer regulerer forskjellige gener, og for å få et fullstendig bilde av hvordan genene 
reguleres er det viktig å finne ut av hva slags sekvensmønster hver transkripsjons-
faktor gjenkjenner (bindingsmotivet) og hvor de binder i genomet (bindingssetene). 
 Å avdekke bindingsmotiver og bindingsseter ved hjelp av eksperimentelle 
metoder kan være både tidkrevende og dyrt, og det har derfor vært stor interesse for å 
utvikle dataprogrammer som kan predikere dette automatisk ut fra DNA-sekvenser. 
Hundrevis av dataprogrammer har blitt utviklet til dette formålet, og de kan grovt 
deles inn i to klasser: motivskanning-verktøy benytter seg av modeller av allerede 
kjente bindingsmotiver for å finne nye potensielle bindingsseter i sekvensene. Såkalte 
de novo motivoppdagingsmetoder er derimot i stand til å finne nye bindingsmotiver 
og bindingsseter ved å søke etter overrepresenterte sekvensmønstre i sett av DNA-
sekvenser som er antatt å inneholde bindingsseter for samme transkripsjonsfaktor. 
 Uavhengige evalueringer av slike motivoppdagingsverktøy (inkludert en 
evaluering vi selv har foretatt og beskrevet i den første artikkelen i avhandlingen) har 
dessverre vist at disse metodene ikke alltid fungerer så bra som man kunne håpe på. 
En viktig grunn til dette er at de fleste metodene bare baserer seg på informasjonen 
som ligger i selve DNA-sekvensen, men det er mange andre forhold som også kan 
påvirke om en transkripsjonsfaktor faktisk er i stand til å binde til DNAet og utføre 
sin regulatoriske oppgave. 
 Nye metoder som har kommet de siste årene har vist at det er mulig å oppnå 
bedre resultater ved å ta hensyn til andre typer av informasjon i tillegg til DNA-
sekvensen, som for eksempel informasjon om hvilke områder av genomet som er 
konservert sammenlignet med beslektede organismer, hvilke områder som har en 
åpen kromatinstruktur i forskjellige celle-typer og hvilke transkripsjonsfaktorer som 
er kjent å samarbeide med hverandre. Vi har derfor utviklet et nytt motivoppdagings-
verktøy (beskrevet i de to siste artiklene) som kan brukes til å integrere mange ulike 
typer informasjon i denne prosessen på en generell og fleksibel måte. 



Kandidat: Kjetil Klepper
Institutt: Institutt for kreftforskning og molekylærmedisin
Veileder: Finn Drabløs
Finansieringskilder: Forskningsrådets program for funksjonell genomforskning 
(FUGE) og ELIXIR.no 

Ovennevnte avhandling er funnet verdig til å forsvares offentlig
for graden PhD i medisinsk teknologi. 

Disputas finner sted i Auditoriet, Medisinsk Teknisk Forskningssenter, 
tirsdag 21. mai 2013, kl. 12:15. 

      



i 

 

 

Recipes for all the proteins that are needed by an organism are described in its genes 
which are encoded in DNA. In order to create a new protein, a copy of the DNA recipe 
must first be transcribed into RNA and this transcript is subsequently translated into 
protein. Since different proteins are used in different cell-types and at different times, 
the process of creating new proteins must be tightly regulated. The first step in this 
process is mainly regulated by transcription factors which bind to specific sequence 
patterns in the DNA and help recruit the transcriptional apparatus to the start of the gene 
and initiate transcription. An important step in elucidating the gene regulatory networks 
of an organism is thus to determine which sequence pattern each transcription factor 
binds to (the binding motif) and also the sites where they bind. 

Although such motifs and binding sites are best determined experimentally, 
computational tools for motif discovery seem to offer a convenient, fast and cost-
effective alternative to experimental methods. Hundreds of software programs have 
therefore been developed for this purpose. These tools can broadly be divided into two 
classes: motif scanning tools rely on predefined models of binding motifs and search 
sequences for matches to these motifs in order to identify potential binding sites. 
De novo motif discovery methods, on the other hand, aim to find new motifs and 
binding sites without such prior knowledge by looking for overrepresented patterns in 
sequences believed to be regulated by common factors.  

However, independent assessment studies of computational motif discovery tools have 
shown that the performance of these methods is limited, especially with respect to 
predicting functionally active binding sites in real genomic sequences. One reason for 
this is that most of these tools only base their predictions on information in the DNA 
sequence itself, but many other aspects besides the presence of a binding motif can 
influence whether a transcription factor will actually be able to bind and exert its 
regulatory function, including for instance the local chromatin conformation around the 
binding site or the presence of cooperative factors binding nearby. 

More recent approaches have demonstrated that binding site predictions can be 
improved by also considering additional information related to e.g. phylogenetic 
conservation, nucleosome occupancy, DNase hypersensitive sites, epigenetic features, 
gene expression and transcription factor interactions. To this end we have developed a 
new software workbench which is able to integrate additional information from a 
variety of sources into the motif discovery process in a coherent and flexible way. 
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This is truly an exciting time to be a bioinformatician!  

When I first started my PhD (admittedly far too many years ago), I could barely 
envision the possibilities that would lie ahead. Back then there wasn’t really much 
annotation data available besides the genome sequences themselves, and when I came 
up with the idea for the PriorsEditor tool (which would eventually develop into 
MotifLab), I could only hope that enough extra data would become available in the 
future so that the tool would actually prove useful. To my great excitement, more and 
more data tracks were published as time progressed, and by the time I was finally 
finished writing the software, it could already be used for numerous applications. 

There are many people that deserve to be acknowledged as my PhD now comes to an 
end. I want to thank my colleagues at NTNU, and especially the co-authors of my first 
paper, for scientific collaboration and social company. I also want to thank all the 
people that came to me for assistance with bioinformatics analyses during the years I 
worked at the national bioinformatics help desk. Their needs identified shortcomings in 
my software which helped to improve it considerably.  

Most of all I want to thank my supervisor Finn Drabløs. Not the least for providing me 
the opportunity to do a PhD in the first place, but more importantly for not giving up on 
me when the first few years proved somewhat fruitless, but rather entrusting me with 
more time so that I was eventually able to complete a PhD project that I can feel 
proud of.  

 

 
       Kjetil Klepper 
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CRM cis-regulatory module 
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PCR polymerase chain reaction 
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Pol II (RNA) polymerase II 

PPV positive predictive value 

PWM position weight matrix 

RNA ribonucleic acid 
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TFBS transcription factor binding site 
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Proteins and genes 

Proteins are a diverse class of macromolecules that are essential for all life. Some 
proteins have a structural function and are used as building blocks in the body, 
for instance keratin which is the key component in skin, hair and nails. Others are 
involved in communication and cell signalling, such as the hormone insulin. A very 
important group of proteins are those that act as enzymes to catalyse chemical reactions. 
Hardly any process occurs in a cell without enzymes being involved in some way. 
Enzymes break down molecules and construct new ones, they move around chemical 
groups from one molecule to another to change their functional properties, and they 
extract energy from nutrients. Each enzyme has its own specific function that it executes 
in a controlled way. Complex organisms have tens of thousands of different types of 
proteins, and new proteins are synthesized continuously in all living cells. 

Although proteins vary significantly in size, shape and complexity, they are all built up 
in the same basic way. A protein is essentially just a string of amino acids that are 
linked together in a long chain, and this chain folds up into a functional three-
dimensional structure. There are 20 standard types of proteinogenic amino acids, and 
the order in which they are incorporated into the chain decides the final shape and 
functional properties of the protein. A protein can consist of anywhere between a few 
dozen to several thousand amino acids. The synthesis of new proteins are, of course, 
also carried out by enzymes, but in order to produce all the different kinds of proteins 
correctly, the organism must have access to some sort of descriptions on how to 
construct them. The recipes for all the proteins that are needed by an organism can be 
found in its genes which are encoded in DNA. 

DNA (deoxyribonucleic acid) is another macromolecule which is fundamental to all 
living beings. Similar to proteins, DNA consists of a long chain of smaller molecules 
connected together, but in DNA these molecules are nucleotides rather than amino 
acids. A single nucleotide is made up of a nucleobase (or simply base) connected to a 
pentose sugar (in DNA this sugar is deoxyribose) which in turn is connected to a 
phosphate group at the 5' carbon atom. Four different types of nucleobases are found in 
DNA: adenine, cytosine, guanine and thymine, abbreviated A, C, G and T respectively 
(Figure 1). The phosphate groups enable linking between the nucleotides by connecting 
to the 3' carbon atom in one sugar molecule and the 5' carbon in the next. This ordered 
linking arrangement gives the DNA chain a sense of direction. The chain of repeated 
sugar-phosphate groups is called the “backbone” and is similar throughout the 
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molecule, so the actual information carried by the DNA is encoded in the specific 
arrangement of the bases connected to this backbone. By chaining nucleotides together, 
a single DNA molecule can grow to contain several hundred millions of nucleotides. 
Since DNA is always synthesized by attaching new nucleotides to the 3' carbon of the 
previous nucleotide, it is customary to label the 3'-end as the “tail end” of 
the DNA molecule and read DNA sequences from the 5'-end towards the 3'-end, 
e.g. 5'-CATCGTCTGTTCAGA-3'. The 5'-end is also often called the upstream end 
and the 3'-end is called the downstream end. 

Unlike proteins, the DNA chain is not normally folded up into a complex three-
dimensional structure determined by its nucleotide sequence. Rather, a single chain of 
DNA, called a strand, is linked to another strand of DNA to form double-stranded DNA. 
In this structure, every base from one strand is paired up with a base on the other strand 
in a way reminiscent of a zipper. Adenines are always paired with thymines and 
cytosines are paired with guanines, and so these pairs are called complementary base 
pairs. Because of this complementarity, the nucleotide sequence of one strand can 
always be deduced from the sequence on the other strand. The backbones of the two 
strands run in opposite directions of each other, and one strand is called the direct 
strand while the opposite strand is called the reverse strand. In addition, these two 
strands twist around a central axis with a full revolution once every 10.4 base pairs, 
so the final shape of the DNA molecule is that of a double helix (Figure 2)[1]. 

 

Figure 1: Left: Diagrams of the four nucleobases found in DNA plus uracil 
which is found in RNA. Right: Adenines (in green) on one strand form base 
pairs with thymines (red) on the opposite strand and cytosines (blue) pair up 
with guanines (yellow). The sugar-phosphate backbones of the two strands are 
shown in grey.  (Images adapted from Wikipedia). 
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The connections between cytosine and guanine bases are made up of three hydrogen 
bonds, and these connections are somewhat stronger than the connections between 
adenines and thymines which only consist of two hydrogen bonds. Even so, since 
hydrogen bonds are among the weakest chemical bonds, the two strands of a DNA 
molecule can easily be separated and rejoined by enzymes that need to access the 
genetic information. 

The way that DNA molecules encode recipes for proteins is called the genetic code. 
According to this code, each of the 20 different amino acids is represented by a 
nucleotide triplet called a codon. A sequence of such triplet codons in the DNA can thus 
encode the sequence of amino acids that make up a protein. For example, the codon 
“ATG” corresponds to the amino acid methionine and the triplet “AAG” corresponds to 
lysine, so the DNA sequence “ATGAAGAAG” would encode for an amino acid chain 
consisting of one methionine followed by two lysines. Since there are four different 
nucleotides there are 43 = 64 possible triplet codons, which is much more than what is 
required to cover all amino acids. The genetic code therefore allows for some 
redundancy, and most amino acids can be represented by several different codons. 
Cysteine, for instance, can be encoded by both “TGT” and “TGC”, and other amino 
acids have three, four or even six codons. The three codons “TAA”, “TAG” and “TGA” 
do not correspond to any amino acids, and these so-called “stop codons” are used to 
signal the end of the protein recipe. 

 

Figure 2: The two complementary DNA strands twist around a central axis to 
form a double helix. The backbones of the two strands are closer together on one 
side of the helix than the other, and this gives rise to two grooves of different 
sizes where the major groove is about twice as wide as the minor groove.  

Image on the right is reprinted from Journal of the American Society for Mass Spectrometry, volume 18 issue 7,  
E.S. Baker & M.T. Bowers, "B-DNA Helix Stability in a Solvent-Free Environment", pp 1188-1195, Copyright (2007), 
with permission from Elsevier/The American Society for Mass Spectrometry. 
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The portion of a DNA molecule which encodes a protein is called a gene (although one 
gene can potentially encode several related proteins and some genes encode information 
used to create other things than proteins). Since DNA molecules can be rather long, they 
can contain several genes at different locations, and genes can reside on both the direct 
and reverse strand. In many organisms, the genetic information is split across several 
DNA molecules, each of which is called a chromosome, and the total genetic 
information in all chromosomes taken together makes up an organism’s genome. 
The human genome, for example, consists of 23 pairs of chromosomes, with one copy 
of each chromosome inherited from each parent. The haploid human genome (counting 
only one copy of each chromosome) spans more than 3 billion base pairs and contains 
an estimated number of 20,000–25,000 genes [2]. Only a very small percentage of the 
human genome consists of protein-coding genes, however. The rest – which is called 
non-coding DNA – serve other purposes and can, for instance, be involved in gene 
regulation or be important for chromosome structure and integrity.  

The process of creating a protein based on a gene is called “expressing the gene” and it 
involves two steps. In the first step, called transcription, a copy of the gene is made in 
RNA. RNA (ribonucleic acid) is similar to DNA except that it contains a different type 
of sugar in its backbone (ribose rather than deoxyribose), it uses a nucleotide called 
uracil instead of thymine, and the transcribed copy is single-stranded. The RNA 
molecule is used as a messenger to pass the protein recipe over to complex molecular 
machines called ribosomes which use the RNA as a template to synthesize proteins. 
This second step is known as translation. 

In eukaryotes, the newly transcribed messenger RNA (mRNA) molecule is subjected to 
additional processing before it is transported out of the cell nucleus to the ribosomes 
which reside in the cytosol. First, the 5' end of the mRNA strand is capped with a GTP 
nucleotide (a guanosine with three phosphate groups) which is connected at its 5' carbon 
rather than the usual 3' connection. At the other end of the mRNA strand, a long chain 
of adenines, called a poly-A tail, is attached. These modifications protect the mRNA 
molecule from being degraded by other enzymes and they are also important for 
regulating the export of the mRNA out of the nucleus and for proper translation of the 
mRNA by the ribosomes. In addition, eukaryotic genes may contain segments that are 
not part of the protein recipes. These segments, known as introns, are cut out of the 
mRNA molecule, and the remaining parts, called exons, are spliced together to form the 
mature messenger RNA. Sometimes, one or more of these exons can also be cut from 
the mRNA in a process known as “alternative splicing”. As a result, the same gene can 
give rise to several different protein recipes. A gene can also have multiple transcription 
start sites (TSS). These alternative TSSs can be located relatively close to each other 
and just result in a slight variation at the start of the transcript or they could be located 
far apart and potentially initiate transcription at different exons [3]. 
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When a single cell divides, it copies its entire DNA so that the two resulting daughter 
cells each receive an identical copy of the organism’s entire genome. Consequently, all 
cells in an organism contain the same genetic information, and the difference between 
cells of different tissues (muscle cells, skin cells, brain cells, blood cells etc.) lies not in 
which genes they contain but in which genes the cells express. For example, all cells in 
the human body have the gene for insulin, but this gene is only expressed in a special 
type of cells in the pancreas. Other genes are only expressed at certain times during the 
life of an organism, for instance at the blastula stage of early embryonic development 
[4]. Even single-celled organisms need to adapt their gene expression levels in response 
to changes in their environment. Because proper gene expression is so crucial for the 
development and functioning of all organisms, it needs to be tightly regulated. 
Gene regulation can occur at both the transcriptional and translational stage; however, in 
this thesis I will focus on transcriptional regulation. 

 

Gene transcription 

Gene transcription is performed by a complex containing an enzyme called RNA 
polymerase. Prokaryotes have only one type of RNA polymerase whereas eukaryotes 
have several which are used for different kinds of genes. The polymerase used to 
transcribe protein-coding genes is called Polymerase II (or just Pol II or RNAP II). 
The transcription process itself can be divided into three main stages: initiation, 
elongation and termination.  

In the initiation stage, the RNA polymerase binds to the DNA molecule immediately 
upstream of the transcription start site of the gene. Once bound, the RNA polymerase 
unwinds a short stretch of the DNA (about 10–20 base pairs) and separates the two 
strands to create a small “transcription bubble”. The RNA polymerase then proceeds by 
synthesizing a short strand of RNA nucleotides which pairs with one of the DNA 
strands. The DNA strand that is complementary to the RNA strand is called the template 
strand (or antisense strand) whereas the unpaired DNA strand that has the same base 
sequence as the resulting RNA strand is called the coding strand (or sense strand). 

After the initiation stage, transcription can either be prematurely aborted (resulting in 
just a tiny RNA fragment) or proceed to the elongation stage. In this second stage, the 
RNA polymerase travels along the template strand in a 3' to 5' direction, unwinding and 
separating the DNA strands as it passes. New nucleotides that are complementary to the 
template strand are incorporated into the growing RNA strand at its 3' end. Only a short 
segment at this end of the RNA strand is paired with the template strand at any time, 
and as the RNA polymerase moves downstream along the gene, the RNA strand peels 
off in the other direction and the DNA behind the polymerase is rewound to form a 
double helix again. 
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When the full gene has been transcribed, the RNA polymerase encounters a termination 
signal in the DNA sequence which causes the newly synthesized RNA strand to be 
released and the RNA polymerase to disassociate from the DNA molecule, thus ending 
transcription. 

The placement and orientation of the RNA polymerase on the DNA molecule 
determines where transcription starts and in which direction it proceeds, so it is 
important that the enzyme is placed correctly during the initiation stage. The minimal 
DNA region that is required to bind the RNA polymerase is called the core promoter. 
In prokaryotes, the core promoter commonly consists of two sequence elements located 
at approximately 10 bp and 35 bp upstream of the transcription start site [5, 6]. The -10 
element is also called the “Pribnow box” and has the sequence motif “TATAAT” 
whereas the -35 element has the motif “TTGACA” (on the coding strand). These 
sequence elements are recognized and bound by a sigma factor which forms a complex 
with the RNA polymerase and facilitates proper positioning. In eukaryotes the situation 
is much more complicated, and several different proteins are required to guide the 
polymerase to the promoter and perform other functions necessary for transcription 
initiation. These proteins, which for Pol II include TFIIA, TFIIB, TFIID, TFIIE, TFIIF, 
and TFIIH, are called general transcription factors and they combine with the 
polymerase to form the transcription preinitiation complex (PIC). The architecture of 
the core promoter is also much more diverse in eukaryotes compared to prokaryotes. 
The first eukaryotic core promoter element that was identified was the “TATA-box” 
which is usually located about 25 to 30 bp upstream of the TSS. The TATA-box has the 
consensus sequence “TATAAA” and is recognized by the TATA-binding protein (TBP) 
which is a subunit of TFIID. Only a small percentage of eukaryotic genes have TATA-
boxes in their core promoters, however. Other common core promoter elements include 
the Initiator element (Inr) with sequence motif “YYANWYY1”, the downstream 
promoter element (DPE) with motif “RGWYV”, the TFIIB recognition element (BRE) 
with motif “SSRCGCC” and the motif ten element (MTE) with motif 
“CSARCSSAACGS” [7-9]. These elements can usually be found at specific locations 
relative to the TSS, and the promoter of any given gene may contain all, some or none 
of these motifs. The composition of the core promoter and sequence variation within 
promoter elements can influence the affinity of the polymerase complex towards the 
promoter and hence the rate by which the polymerase binds and initiates transcription. 
Even so, the basal transcription complex by itself is normally only capable of driving 
low levels of transcription. 

 

                                                 

1 The sequence motifs are notated with IUPAC symbols for degenerate bases as described in Table 1 on page 32. 
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Transcription factors 

In both prokaryotes and eukaryotes, additional DNA-binding proteins called regulatory 
or sequence-specific transcription factors (TFs) are required to increase the rate of 
transcription beyond basal levels or to repress transcription altogether. Every gene is 
usually under regulation by several such transcription factors which can be active at 
different times or in different cell types. For example, some TFs are activated by 
external signals or changes in the environment (such as the presence of a specific 
hormone or nutrient or a change in body temperature) and allows cells to express genes 
that are needed in response to such conditions [10, 11]. A single type of transcription 
factor can potentially also regulate many different genes, which implies that there is a 
many-to-many relationship between genes and transcription factors. 

Transcription factors can act as either activators or repressors. Activators increase the 
probability of transcription by assisting in the recruitment of the preinitiation complex 
to the core promoter or by helping the RNA polymerase escape the promoter and 
proceed with elongation [12, 13]. Repressors, on the other hand, can hinder 
transcription by blocking the binding of the preinitiation complex or interfering with 
other activators that are required for transcription [14]. Some estimates claim that more 
than 8–10% of the genes in the human genome could potentially encode for 
transcription factors [15, 16], which would imply that at least a few thousand different 
TFs are involved in gene regulation in higher organisms. Since transcription factors are 
themselves proteins which are encoded by genes, they are also responsible for 
regulating the expression of other TFs and sometimes even their own expression. 
Hence, transcription factors are fundamental components of complex regulatory 
networks that allow for precise positive and negative control over the spatial and 
temporal expression of genes. 

Large proteins are typically composed of several independent structural domains which 
serve distinct functions. Transcription factors commonly have a DNA-binding domain 
(also called “cis-acting domain”) and an activation/repression domain (or “trans-acting 
domain). Many TFs also have a dimerization domain which allows it to form homo- or 
heterodimer complexes with other factors. Such dimerization might be necessary for 
some TFs in order to obtain a functional structure. The activation domain allows the TF 
to interact with other factors and to influence the basal transcription complex, often via 
binding to additional co-activators (or co-repressors) such as the mediator complex 
[17]. The DNA-binding domain, on the other hand, allows the TF to bind to particular 
locations on the DNA molecule. Most transcription factors recognize specific DNA 
sequence patterns that they bind to, and such patterns are called “binding motifs”. 
A binding motif is usually rather short, about 6–12 bp [18]. For example, the 
transcription factor c-Myc binds to the motif “CACGTG” (which is a rather common 
binding motif also known as the “E-box”) and the factor NF-AT binds to “GGAAA”. 
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Most TFs recognize their motifs in a DNA sequence by inserting their binding domain 
into the major groove of the double helix. Here, each distinct sequence pattern of base 
pairs display a unique signature of methyl groups, hydrogen atoms and hydrogen donors 
and acceptors which can connect with the right transcription factor through electrostatic 
and Van der Waals forces [19]. Not all bases within the binding motif need to be in 
contact with the TF, however, and for some positions the interaction between the bases 
and the TF might be weaker than others. Hence, some sequence variation is often 
allowed in the binding motif as long as the overall interaction is strong enough to 
support binding, and transcription factors can normally bind to several slightly different 
sequence patterns, albeit with varying affinity [20].  

Although there are several thousand different TFs, most of them rely on a small number 
of common mechanisms in order to bind to the DNA. This allows transcription factors 
to be grouped into families and subclasses thereof based on similarities in their 
DNA-binding domains [16, 21]. 

Some of the major transcription factor families are (Figure 3): 

 Helix-turn-helix (HTH) 

The helix-turn-helix binding domain consists of two alpha-helices at 
approximately right angles to each other joined by a short strand of amino 
acids. One of the helices (the “recognition helix”) is inserted into the major 
groove of the DNA where it makes contact with the nucleotide sequence 
while the other helix helps to position the recognition helix and stabilize 
the interaction. Notable subclasses of this family include the 
homeodomain, which in addition to the regular HTH contains a third helix, 
and the winged-HTH which also consists of three helices but have 
additional beta-sheets as well (“wings”). 

 
 Basic leucine zippers (b-ZIP) 

B-ZIP factors are long alpha-helices where the C-terminals contain an 
amphipathic leucine zipper dimerization domain consisting of heptad 
repeats of amino acids with a leucine residue at every seventh position. 
The structure of the alpha-helix is such that these hydrophobic leucines all 
end up on the same side whereas the other side of the helix contains 
hydrophilic residues. The hydrophobic leucine region allows two B-ZIP 
factors to “zip together” as homo- or hetero-dimers in the shape of a Y. 
The loose N-terminal ends contain basic regions which bind to the DNA 
molecule in the major groove. Homodimers bind to a motif which consists 
of two half-sites arranged as a palindrome, whereas heterodimers can bind 
any combination of half-sites. 
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 Basic helix-loop-helix (bHLH) 

The basic helix-loop-helix domain is structurally similar to the basic 
leucine zipper, except that each monomer consists of not one, but two 
alpha helices which are connected by an unstructured loop region. 
The loop provides more flexibility with respect to DNA binding. The C-
terminal alpha helix contains a zipper-like dimerization region which 
allows for formation of homo- or heterodimers when binding to other 
bHLH-factors, and the N-terminal alpha helix contains a basic region 
which can interact with the DNA when inserted into the major groove. 
Transcription factors in the bHLH-family typically bind to the previously 
mentioned E-box motif, although there are exceptions. 
 

 Zinc fingers 

The family of transcription factors labelled as zinc fingers is the most 
diverse of those mentioned here, but a common feature is that their binding 
domain is made up of a short stretch of amino acids which is folded into a 
compact structure stabilized by coordination with a zinc ion (Zn2+). 
The most common subclass is the Cys2His2 zinc finger which consists of a 
two-stranded antiparallel beta sheet and an alpha helix. A zinc ion makes 
contact with the side chains of two cysteine residues in the beta sheet and 
two histidine residues in the helix. As per usual, the alpha helix facilitates 
motif recognition by binding to the major groove in the DNA. Each zinc 
finger typically binds to a 3 bp sequence motif, and transcription factors 
can contain multiple tandem zinc fingers which interact with successive 
3 bp groups in the DNA sequence in order to increase the length and 
specificity of the binding motif and provide stronger interaction with the 
DNA. Another important subclass is called Cys4 because the zinc ion 
makes contact with four cysteine residues. Whereas Cys2His2 transcription 
factors usually contain three or more zinc fingers and bind as monomers, 
Cys4 factors generally only contain two fingers but bind as homo- or 
heterodimers. The binding motif of homodimeric Cys4 factors are made up 
of two inverted repeats. 

 

The majority of TFs bind to the DNA by inserting one or more alpha helices into the 
major groove, but there are also factors that make contact in other ways, for instance via 
beta-strand or loop regions instead of helices or by interacting with the minor groove or 
sugar-phosphate backbone [22, 23].  
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The occurrence of a binding motif in a DNA sequence where a TF binds is called a 
binding site (TFBS) or sometimes also a response element. Since many of the TFs that 
regulate a gene need to come in direct or indirect contact with the transcription 
complex, their binding sites are often located in the vicinity of the gene’s core promoter, 
for instance in the region immediately upstream of the core promoter – called the 
proximal promoter – or in the 5'UTR downstream of the transcription start site  
(Figure 4). However, binding sites can also reside within enhancer and silencer regions 
(binding activators and repressors respectively) that might be located thousands of bases 
away from the TSS of the genes they regulate in either direction, and even within other 
genes or on different chromosomes [24]. The TFs binding to such distal regulatory 
elements can be brought in contact with the transcription complex at the promoter 
through “DNA looping” [25]. Because the DNA double helix is flexible and can be bent 
back on itself, regions that are seemingly far apart in the DNA sequence can actually be 
located close to each other in three-dimensional space (Figure 5). Genes that are located 
next to each other in the genome need not have the same expression profile, however, so 
it is crucial that enhancers only interact with their target genes and not with other genes 

 

Figure 3: Illustration of transcription factors from four major families binding to DNA. 
a) Helix-turn-helix. b) Basic leucine zipper. c) Basic helix-loop-helix. d) Zinc finger. 
Images from: Luscombe NM, Austin SE, Berman HM and Thornton JM (2000) "An overview of the structures of protein-DNA 
complexes", Genome Biology 1(1). Published by BioMed Central. Used with permission. 

a)                                                         b)  

 

 

c)                                                         d)  
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that might be located nearby. To prevent enhancer regions from influencing the wrong 
genes, regulatory elements known as insulators can block the interaction between an 
enhancer and a promoter when it occurs somewhere between them. In vertebrates this 
blocking is mediated primarily by the CTCF-factor which binds to the insulator 
element, whereas invertebrates have several factors that can act at insulators [26-28]. 

Transcription factors do not usually operate alone but work in combination with 
other TFs and co-factors in order to achieve the required regulatory control. 
This combinatorial approach increases the number of possible configurations and allows 
a comparatively small number of TFs to control a large number of genes under various 
circumstances. Groups of binding motifs for co-operating TFs that appear together in 
the DNA sequence are called “composite motifs” or cis-regulatory modules (CRM). 
Two different and complementary models have been proposed to explain how such 
modules might function. For CRMs adhering to the “enhanceosome model”, the relative 
position and orientation of all the binding sites are strictly defined, so that when the 
target factors bind to their respective sites, they will be arranged in such a way that they 
can easily form a higher-order protein complex. All the target factors thus have to bind 
simultaneously for this complex to form, and if just a single factor is missing, 
the resulting complex might not be functional. The composition of “billboard model” 
CRMs is more flexible, and only a subset of the binding sites in the module might be 
occupied at any given time. The regulatory apparatus will read the “messages” 
conveyed by the bound transcription factors and interpret this information in a context-
dependent manner [29, 30].  

 

Figure 4: Illustration of a segment of DNA containing a gene and its upstream 
regulatory elements. This gene has two introns that do not contain protein coding 
information, and these will be spliced out of the transcript to form the mature 
mRNA which only consists of the three exon regions illustrated with boxes. 
However, the actual coding DNA sequence (CDS) shown in black starts in the 
middle of the first exon, so the beginning of the transcript contains a 5' 
untranslated region (5'UTR) shown in purple. Also, the stop codon which marks 
the end of the protein recipe is located in the middle of the last exon, so the 
transcript contains another untranslated region at the 3' end (3'UTR). 
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CRMs with similar configurations can appear within regulatory regions of different 
genes and thereby coordinate regulation of genes that should be expressed together [31, 
32]. A single gene can also be regulated by many CRMs which function in different 
contexts. A classic example of this is the even-skipped (eve) gene in Drosophila 
melanogaster which is expressed in seven distinct stripes along the anterior-posterior 
axis of the early embryo. The spatial expression of this gene is controlled by five 
CRMs, each one responsible for driving expression in one or two stripes [33].  

Regulatory regions such as promoters and enhancers are responsible for integrating 
signals conveyed by all the bound transcription factors and translate this information 
into appropriate regulatory responses. Complex behaviour will naturally require more 
regulatory DNA, and it has been shown that genes which must react to more signals 
tend to have longer promoter regions than genes which respond to fewer signals [34]. 
Probably for the same reason, genomes of complex multicellular organisms seem to 
overall contain much more regulatory DNA (and also a higher proportion of genes 
encoding for regulatory proteins) than genomes of simpler organisms, even though the 
number of genes itself might not be substantially greater [35]. 

  

 

Figure 5: Illustration of the transcription preinitiation complex assembling at 
the promoter of a gene. The RNA polymerase is shown in red, general 
transcription factors in green, sequence-specific transcription factors binding to 
the proximal promoter and distal enhancers in yellow and co-factors in blue. 
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Chromatin organisation and epigenetic regulation 

The total length of all the chromosomes within a single cell in eukaryotic organisms can 
amount to several meters, but all this DNA has to fit inside the cell nucleus which is just 
a few micrometres wide. An efficient and dynamic packaging strategy is thus needed in 
order to condense the DNA but still allow the transcriptional machinery easy access to 
genes that need to be expressed.  

The packing of the genome is organised in a hierarchical fashion with each level 
attaining a more dense structure of the DNA. This is accomplished through the use of 
proteins which function as a sort of scaffold that the DNA attaches to. The DNA 
together with all the bound proteins (those involved in packing but also transcription 
factors and others) are collectively referred to as chromatin. Two forms of chromatin 
have traditionally been recognized on the basis of staining patterns visible under a 
microscope. The loosely packed euchromatin comprises regions of the genome that are 
actively used by the cell, whereas regions that are not needed are packed into much 
denser heterochromatin [36]. More recent research has suggested that there could be as 
many as five principal types of chromatin, and these may again be further divided into 
additional subtypes [37]. 

At the most fundamental level of chromatin organisation, 147 bp long stretches of the 
DNA double helix are wrapped 1.67 turns around globular octamer proteins consisting 
of the core histone proteins H2A, H2B, H3 and H4 (two of each) into complexes called 
nucleosomes. This arrangement is repeated along the DNA molecule like “beads on a 
string” with adjacent nucleosomes separated by 10–80 bp of unbound linker DNA. 
This conformation results in about 5- to 10-fold compaction of the DNA (Figure 6). 
Further compaction (about 50-fold) is facilitated by a fifth histone protein, linker 
histone H1, which binds to the outside of the nucleosome where the DNA enters and 
exits, and this is involved in linking together nucleosomes into a denser 30 nm wide 
fibre. Higher organisational levels can condense the DNA around thousand-fold during 
interphase and as much as ten-thousand-fold during mitosis [38]. 

Some of the five histone protein types mentioned above exist in different variants that 
can alter the physical properties of the nucleosomes, and these are utilized at specific 
times or at particular places in the genome. For example, the histone H2A has a variant 
named H2A.Z which makes the nucleosome core bind the DNA more tightly than usual, 
and this variant is frequently incorporated into nucleosomes located near the 5'-end of 
both active and inactive genes [39, 40]. On the other hand, variant H3.3 of histone H3 is 
incorporated throughout transcribed genes and also within regulatory sequences [41]. 
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In addition to exchanging histone variants, the properties of nucleosomes can also be 
altered through covalent histone modifications. Histone proteins, especially H3 and H4, 
have unstructured N-terminal tails (and also C-terminal tail for H2A) that protrude from 
the nucleosomes, and these can undergo post-translational modification at specific 
residues, such as acetylation of lysines, mono- or di- methylation of lysines and 
arginines and tri-methylation of lysines, phosphorylation of serines and threonines, and 
also ubiquitination, SUMOylation, citrullination, and ADP-ribosylation [42]. These 
modifications can be introduced by some enzymes, like histone methyltransferases 
(HTM) and histone acetyltransferases (HAT), and removed by others, such as histone 
demethylases and histone deacetylases (HDAC). 

  

 

 

Figure 6: Left: The DNA double helix is wrapped around globular histone 
octamers to form nucleosomes which facilitate further condensation of the 
chromatin fiber. Right: Close-up view of a nucleosome with the DNA shown in 
grey and histones with protruding N-terminal tails in colour. Residues that can be 
modified by methylation or acetylation are indicated.  

Image on the left reprinted by permission from Macmillan Publishers Ltd: Nature; G. Felsenfeld & M. Groudine (2003) 
"Controlling the double helix", Nature, 421(6921):448-53. Copyright 2003. 
Image on the right is from L. Cui & J. Miao (2010) “Chromatin-mediated epigenetic regulation in the malaria parasite 
Plasmodium falciparum”, Eukaryotic Cell, 9(8):1138-49. Published by American Society for Microbiology. Used with 
permission.  
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Hypoacetylation of histones has traditionally been associated with the more densely 
packed heterochromatin whereas hyperacetylation has been associated with more open 
chromatin conformations. The situation is not always so simple, however, since 
acetylation can be associated with both active and repressed portions of the DNA [43]. 
The same is true for methylation. For example, the modifications H3K4me3 
(tri-methylation of lysine (K) residue 4 in histone H3), H3K9me1 and H3K27me1 are 
commonly found in promoter regions of active genes whereas H3K9me2 and 
H3K27me3 are linked to gene repression [44, 45]. It has been hypothesized that such 
covalent modifications form a “histone code” which is read and interpreted by various 
enzymes that specifically recognize and bind to these modified histones. This includes, 
among others, ATP-dependent chromatin remodelling complexes that can move around 
nucleosomes, evict them or incorporate new nucleosomes [42, 46]. 

Distinct histone marks and combinations of marks are frequently found in relation to 
genomic elements that serve specific functions [41, 47-49]. The H3K4me3 mark, as 
mentioned before, is abundant within promoter regions of active genes, but mono-
methylation of the same residue (H3K4me1) is more common in enhancer regions [50]. 
Active regulatory regions are also marked by acetylations at H3K27 and H3K9. 
Gene bodies of transcribed genes, on the other hand, are marked by H3K36me3 and 
H4K20me1, whereas genes repressed by Polycomb group proteins are marked by 
H3K27me3. This repressive mark can also be found together with the active mark 
H3K4me3 in so-called “bivalent promoters” which are associated with genes that are 
currently silent but are poised for rapid activation at a later time [51]. Histone 
modifications can therefore be important in determining how the different parts of a 
genome should be interpreted, and simply by examining the “chromatin state” [52] of a 
region we can obtain clues to the role of the underlying DNA sequence (Figure 7). 

The organisation of DNA into chromatin constitutes an additional level of gene 
regulation which controls access to the DNA sequence itself. Before the basal 
transcription complex can bind to the core promoter of a gene and initiate transcription, 
the chromatin conformation in the region must be relaxed and any nucleosomes 
blocking the core promoter must be evicted. The presence of nucleosomes and 
condensed chromatin can also prevent binding by regular transcription factors. 
However, some “pioneer factors” are able to bind to condensed regions, and they can 
open up the chromatin for subsequent binding by other factors as well, either by 
disrupting the local configuration of nucleosomes themselves or by recruiting histone 
acetyltransferases or other remodelling complexes [53, 54]. Conversely, some 
repressing TFs can recruit histone deacetylases to remove acetylations which leads to 
compaction of the chromatin [14]. 
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Also nucleotides in the DNA sequence itself can be covalently modified. The most 
common DNA modification in vertebrates is methylation of the fifth carbon in cytosines 
(5meC). In humans, this mark is introduced by DNA methyltransferases (DNMT) which 
specifically target cytosines that are followed by a guanine in the DNA sequence 
(“CpG-sites”). Because methylated cytosines often spontaneously deaminate into 
thymines and these are not always correctly repaired by the DNA-repair apparatus, such 

 

Figure 7: This figure shows the “chromatin states” of nine human cell-types in five 
100 Kbp regions. The states were derived by combining information about eight 
histone modification marks plus data on CTCF-binding.  
      Colour codes: Red=active promoter, pink=weak promoter, purple=inactive or 
poised promoter, orange=strong enhancer, yellow=weak enhancer, green=transcribed 
region, light green=weakly transcribed, blue=insulator, dark grey=polycomb-
repressed, light grey=heterochromatin or repressed/copy number variation. 
      Transcribed genes annotated in the Ensembl database are indicated in black.
Based on the chromatin state alone it is possible to predict the start of gene regions 
and the direction of transcription. Note, however, that some of the promoters appear 
to be bi-directional and control transcription of genes extending outwards in both 
directions. In the fourth region, for instance, it appears that there could be a gene 
extending to the left of the active promoter region (although no such transcript is 
currently annotated in Ensembl). Notice also how the insulator elements in blue can 
delimit chromatin domains with different histone modification profiles. 
      This epigenetic map can give us information on the activity of genes in different 
cells. For example, in the top region, the third gene appears to be suppressed (packed 
in heterochromatin) in the first 3–4 cell-types but is transcribed (at least weakly) in 
the remaining ones. Similar tendencies can be seen for the middle gene in the bottom 
region which is only active in 2–3 cell-types but is marked as “poised” in the rest. 
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CpG-sites are much less frequent than other dinucleotides [55]. The majority of the 
remaining CpGs in humans are methylated [56], except within so-called “CpG-islands”, 
which are regions with high GC-content and a surprisingly high number of CpG-sites 
[57, 58]. CpG-islands are often found in promoter regions of genes, and methylation in 
these promoter regions is linked to gene repression [59]. Some repressive factors, like 
MeCP2, will only bind to methylated binding sites [60] whereas other factors might not 
be able to bind to their target sites if these are methylated [61]. Methylation of CpG-
sites can also lead to gene activation, for instance in a reported case where a methylation 
within an insulator element would prohibit binding of the CTCF-factor and thereby 
allow an enhancer to activate transcription of the nearby Igf2 gene [62]. 

The various histone variants, histone modifications and DNA modifications together 
constitute what is called the “epigenetic code”. Whereas the DNA sequence itself is 
always the same in all the cells of an organism, the epigenetic information on top of the 
genome can vary between cells of different types. This additional level of regulation is 
thus very important in cellular differentiation, since it can control which genes and 
regulatory elements that are accessible for use by the different cell types [63, 64]. 

 

Regulation of different classes of genes 

Genes in higher eukaryotes can be divided into three major classes based on their 
expression profiles across cell-types and developmental stages, and it has been 
suggested that the genes within each class share similar fundamental modes of 
regulation, at least to some extent [65]. 

Type I ) Tissue-specific genes 

Tissue-specific genes are genes that are only expressed in a single tissue, 
or at most a few tissues, in terminally differentiated adult cells. The core 
promoters of these genes generally have low GC-content and often have 
a TATA-box and an Inr-element which constrain the placement of the 
transcriptional complex. The transcription start sites for these genes thus 
tend to be sharply defined. The position of the TSS is usually occupied 
by a nucleosome which has to be moved out of the way before 
transcription can commence, and the nucleosomes in the region are 
disorderly positioned. The promoters of active genes are marked by 
H3K27ac, H3K4me2 and H3K4me3 (but the latter is only present 
downstream of the TSS). Tissue-specific genes tend to be predominantly 
regulated by CRMs in the proximal promoter region. 
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Type II )  Housekeeping genes 

Housekeeping genes encode for proteins that are required for normal 
functioning and maintenance in all cells, such as those involved in DNA 
replication and repair and in cellular metabolism. These genes are thus 
ubiquitously expressed across all cell types. Promoters of housekeeping 
genes are characterized by an open chromatin conformation, and the 
region around the TSS is devoid of nucleosomes, which means that they 
can readily be bound by the transcription complex. In fact, even for 
inactive genes the polymerase might already be recruited to the core 
promoter, just waiting for the appropriate signal to initiate transcription 
[66]. The nucleosomes on either side of the nucleosome-free region in 
the promoter have a very ordered configuration and they are marked by 
H3K4me3, H3K4me2 and H3K27ac. The genes are typically also under 
regulation be a few nearby enhancers which are marked by H3K4me1. 
The promoters have high GC-content and are characterized by a single 
short CpG-island which overlaps the TSS (but only in vertebrates as 
invertebrates do not have CpG-islands). They do not contain TATA-
boxes but are rather associated with weaker motifs with more flexible 
positioning. The placement of the polymerase in the promoter is 
therefore not strictly defined, and these genes tend to exhibit a rather 
broad distribution of TSSs.  
 

Type III )   Developmentally regulated genes 

These genes are involved in multicellular development and 
differentiation, and their expression is precisely coordinated across 
different cells in a tissue or anatomical structure. This is the most diverse 
class when it comes to regulation, and the genes are usually regulated by 
multiple long-range enhancers in addition to the promoter. 
The promoters have high GC-content and many long CpG-islands 
(in vertebrates) which often extend into the gene body itself, and the 
whole gene body is also marked by H3K4me3 (unlike housekeeping 
genes which only have this mark in the promoter region). 
Developmentally regulated genes that are not needed tend to be silenced 
by Polycomb group proteins which deposit H3K27me3 marks throughout 
the gene and promoter regions. There are also many “poised” genes 
which have bivalent promoters displaying both activating and repressing 
histone marks. The genes in this class have a sharper TSS-distribution 
than the housekeeping genes, and the promoters tend to have an Inr-
element which also often occurs in combination with a DPE. 
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Post-transcriptional regulation 

Proper gene regulation is crucial for controlling the amount of active proteins of 
different types in the cell. Although this thesis will only focus on gene regulation at the 
transcriptional level, it is important to keep in mind that regulation can also occur at 
later stages. For example, genes can be regulated post-transcriptionally by microRNA 
(miRNA) [67, 68]. MicroRNAs are short RNA molecules that are transcribed from the 
genome in the same way as mRNA, but they are not translated into proteins. Rather, 
miRNAs can suppress target mRNAs by binding to complementary sites in these 
transcripts. Depending on the level of complementarity between the miRNA and the 
binding site, the target mRNA will either be cleaved directly or translation of the mRNA 
will be repressed. These miRNAs can thus regulate the amount of transcribed mRNA 
that will be available for translation into proteins.  

Even after gene translation is completed, the resulting protein products might have to be 
post-translationally modified in order to be fully functional. This will often involve the 
addition of e.g. phosphate groups to the protein which can change the conformation of 
the protein and convert it from an inactive to an active state [69]. Proteins may also 
have to form complexes with other proteins in order to be useful, and it would then be 
possible to regulate the formation and activity of the whole complex simply by 
regulating just one of its components [70]. Finally, proteins that are no longer needed 
can be tagged for destruction and degraded [71]. 
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Determining the binding motifs of transcription factors and identifying the sites where 
the factors bind in the genome is an important step towards unravelling the complex 
gene regulatory networks of an organism. This chapter summarizes some of the most 
popular methods for experimental characterization of transcription factor binding. 

 

Electrophoretic mobility shift assay (EMSA) 

Electrophoretic mobility shift assay (also called gel shift assay or band shift assay) is 
perhaps the simplest method for detecting protein-DNA interactions [72]. It is based on 
gel electrophoresis, which is a technique that can be used to separate molecules such as 
DNA, RNA and proteins by size or electric charge. The method can analyse short 
fragments of DNA ranging in length from a few dozen to a few hundred bases. 
The DNA fragment is first amplified to create a large number of identical copies. 
One portion of this is kept as a control while the rest is allowed to interact with proteins 
that could potentially bind to the DNA. To perform the assay, a mixture containing 
agarose or polyacrylamide is prepared and poured into a box where it solidifies into a 
gel. The control DNA is poured into a small well at one end of the gel and the 
DNA-protein mixture is poured into another. Next, an electric current is applied to the 
gel to create an electric field. The negative pole is located close to the wells while the 
positive pole is one the other side of the box. Since DNA molecules are negatively 
charged due to the phosphates in the backbone, they will start to travel through the gel 
towards the positive pole. Bigger molecules will encounter more resistance in the gel 
and will therefore travel slower than smaller molecules. After a period of time, the 
current is turned off and the location of the DNA in the two lanes is determined. 
Molecules that have travelled at the same speed will end up in the same location and 
form bands in the gel. If the DNA has been tagged with a radioactive marker such as 
P-32, these bands can be visualized by exposing the gel to an X-ray sensitive film 
(or fluorescent tags can be used instead). If the DNA was not bound by the proteins, 
the DNA fragments in both lanes will have travelled the same distance and the two 
resulting bands will be aligned. However, if the proteins did bind to the DNA, the large 
DNA-protein complexes will have travelled shorter than the unbound DNA and the two 
bands will be shifted relative to each other as illustrated in Figure 8. A variation of the 
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basic method, called supershift assay, induces a more prominent band shift by attaching 
an antibody to the protein to create a larger complex which moves even slower [73]. 

The EMSA method can show that a DNA fragment has been bound by a protein, but it 
is not able to pinpoint the exact location of the binding site within a long DNA 
sequence. However, it is possible to narrow down the region by running several 
experiments with increasingly smaller DNA fragments or by selectively mutating 
positions in the DNA sequence and see if this disrupts protein binding.  

DNase footprinting 

DNase footprinting [74] is somewhat similar to EMSA in that it also relies on gel 
electrophoresis and can be used to analyse protein binding to DNA fragments up to a 
few hundred base pairs in length. But unlike EMSA, this method is able determine the 
exact location and base sequence of the binding site within a larger DNA fragment. 
DNase footprinting is based on a method for sequencing DNA proposed by Maxam and 
Gilbert [75] which proceeds as follows: First, the DNA fragment to be analysed is 
amplified and the copies are labelled with a P-32 radioactive tag (or fluorescent tag) at 
the 5' end. The DNA is then divided into four batches, and each batch is treated with a 
different set of chemicals which cause the DNA fragments to degrade and break up into 
smaller pieces. The various chemicals used will introduce breaks after a specific type of 
nucleotide in each batch (A, C, G and T respectively). The chemical reactions are only 

 

Figure 8: EMSA assay. Tagged DNA fragments mixed with proteins are 
deposited in one well while a control mixture with only tagged DNA fragments 
is deposited in a second well. When a current is applied to the gel, the DNA 
molecules will begin to travel towards the positive pole which is located on the 
far side. If the protein in question has bound to the DNA, the fragments in that 
lane will have travelled a shorter distance than the fragments in the control lane.  
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allowed to continue for a brief period of time before they are stopped, so the fragments 
will just be broken into two pieces on average. The exact locations were these breaks 
will happen will be arbitrary and vary from fragment to fragment, but they will always 
occur after a known base type depending on the batch. If all goes well, the batches will 
contain tagged fragments of all possible lengths ranging from one single nucleotide to 
the full length of the original DNA fragment. Next, each batch is loaded into a well in a 
gel and the fragments are separated by electrophoresis. This will give rise to several 
bands in each lane, corresponding to the number of times the nucleotide appears in the 
sequence. As always, shorter DNA fragments will travel longer, and this makes it easy 
to deduce the DNA sequence from the resulting band patterns as shown in Figure 9.  

For the footprinting assay, an additional batch of 5'-tagged DNA fragments is prepared 
and mixed with proteins that could potentially bind to the DNA. This mixture is treated 
with the endonuclease enzyme DNase I which under the right conditions will cleave 
DNA at any position (albeit with some bias). Again, this enzymatic reaction is stopped 
after a short time so that each fragment is cleaved just once on average. The crux of the 
method is that the DNase enzyme is unable to cleave the DNA at positions which are 
bound by a protein. Thus, if protein-binding has occurred, the batch will contain 
5'-tagged fragments of all sizes except for fragments that end within the protein binding 
site. Any bound proteins are removed from the DNA before the fragments are separated 
by gel electrophoresis in an additional lane alongside the four sequencing lanes 
described earlier (all the batches should be run simultaneously on the gel). If no proteins 
bound to the DNA, the lane for the DNA fragments treated with DNase will contain 
bands wherever there are bands in any of the other sequencing lanes. But if binding did 
take place, the lane will contain a small stretch devoid of bands – called a footprint – 
corresponding to the location of the bound protein (see bottom lane in Figure 9).  

The footprinting method is able to simultaneously detect several binding sites within the 
analysed DNA sequence (corresponding to multiple footprints), but if different types of 
proteins are tested at the same time it is not possible to determine which protein bound 
to which site.  

 
Methods based on chromatin immunoprecipitation 

EMSA and DNase footprinting are relatively simple and do not require a lot of 
resources, but they are somewhat limited in that they can only be used to analyse small 
isolated DNA fragments. In recent years, methods based on chromatin 
immunoprecipitation (ChIP) have gained a lot of popularity since they can be applied to 
detect protein binding in vivo across whole genomes in a single experiment [76-78]. 
Various approaches have been proposed, but the initial steps are mostly the same for all 
the methods (Figure 10).  
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First, DNA and proteins are allowed to interact either in vivo or in vitro, and any 
proteins that might have bound to the DNA are cross-linked with formaldehyde. 
This introduces covalent bonds between the DNA and the proteins and ensures that the 
proteins do not fall off during subsequent steps in the analysis. The DNA, which could 
be in the form of whole chromosomes, is cut into smaller fragments of about 200–1000 
bp using endonucleases or through sonication (employing sound waves to forcefully 
vibrate the DNA until it breaks). Anti-bodies that are specific to proteins of interest are 
then used to precipitate the DNA-protein complexes. The anti-bodies are pre-attached to 
either magnetic beads, which allow the complexes to be fished out using a magnet, or to 
beads of agarose or sepharose which allow the complexes to be separated from the rest 
of the solution by centrifugation. Any unbound DNA is washed away before the 
formaldehyde cross-links are reversed through heating. The bound proteins are removed 
by enzymatic digestion and the recovered DNA is purified. This results in a pool of 
DNA which is enriched for fragments bound by the transcription factor. 

The final step is to determine the genomic location of these DNA fragments, and this 
can be done in several ways. In the approach known as ChIP-chip [79] the fragments 

 

Figure 9: DNAse footprinting assay. The DNA is deposited in wells on the right 
side and the DNA fragments travel towards the positive pole on left side. The top four 
lanes are sequencing lanes where the DNA fragments have been cleaved after a 
specific base. Going from left to right, the first of the bands is found in the G-lane, 
and this means that the sequence starts with a “G”. The next band is in the T-lane and 
corresponds to fragments with the sequence “GT”. The third band is found in the 
A-lane and corresponds to “GTA” fragments, etc. Hence, by examining the location 
of the bands from left to right we are able to deduce the specific nucleotide sequence 
as shown beneath the figure. The two lanes at the bottom contain fragments cleaved 
by DNase. The first of these is a control lane with fragments cleaved at every 
position. The last lane contains DNA fragments that have been bound by proteins, 
and this lane clearly shows that a segment corresponding to the sequence 
“CCCTATAGGG” has been protected from cleavage. 

 

 

GTACGCTATAGCTAGATCGCTATAGCTCCCTATAGGGATAGCTAC 

Footprint 

A 
C 
G 
T 

Control 
Treated 
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are separated into single-stranded DNA which are tagged with a fluorescent dye and 
hybridized to a microarray. A microarray is basically just a small glass plate with 
thousands of tiny spots, each containing single-stranded DNA probes with known 
sequence composition. For instance, in a “genome-wide tiling array” each spot 
corresponds to a small part of a genome (typically 25–100 bp), and all the spots together 
cover the whole genomic sequence (or at least the interesting parts). The fluorescent-
labelled fragments from the ChIP-sample bind to complementary probes on the 
microarray, and by measuring the light emitted from each spot, the amount of bound 
DNA can be determined. Often, a control sample containing total fragmented DNA 
(not enriched by ChIP) is tagged with a different colour dye and hybridized together 
with the ChIP-sample on the same microarray in order to correct for experimental bias. 

New high-throughput DNA sequencing techniques have made it possible to sequence all 
the bound DNA fragments directly and map them to a genome to determine their 
locations. This approach is called ChIP-seq [44]. Although the DNA fragments can be a 
few hundred bp long, typically only the first ~25 bp of each fragment is sequenced since 
this is usually enough to uniquely determine its genomic location. If a histogram 
showing the number of sequencing reads mapping to each genomic position is created, 
regions bound by a TF will exhibit a characteristic peak (or rather two peaks slightly 
offset from each other corresponding to reads mapping to the direct and reverse 
strands). Many software tools have been designed to identify such peaks corresponding 
to potential TFBS [80]. 

 

Figure 10: Steps involved in methods based on ChIP. After the TF-bound DNA 
fragments have been extracted by immunoprecipitation, they can either be labelled 
and hybridized to a microarray (ChIP-chip) or sequenced directly (ChIP-seq).   
(Image adapted from Wikipedia) 
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Because the DNA fragments retrieved by chromatin immunoprecipitation are relatively 
long, the traditional ChIP-chip and ChIP-seq methods do not have very high resolution 
and are typically only able to identify the location of a TFBS to within a few hundred 
bases. However, a newly proposed extension of the ChIP-seq method called ChIP-exo 
claim to be able to pinpoint the binding sites with single-base precision [81]. After the 
binding and fragmentation steps have been carried out as usual, the DNA is treated with 
lambda exonuclease which digests the fragments in a strand-specific 5'-to-3' direction. 
The exonuclease will eat away at the 5'-ends until it reaches a fixed distance from the 
bound protein while leaving the 3'-ends intact. When the sequence reads from these 
fragments are mapped to the genome, all the reads will align and result in a sharp, 
narrow peak corresponding to the exact location of the binding site. This is in contrast to 
the standard ChIP-seq method where different fragments for the same TFBS can have 
different 5'-ends, thus resulting in a much broader peak. 

One limitation of ChIP-based methods is that specific antibodies must be available for 
the transcription factors one wishes to analyse, and this will not always be the case. 
Other problems include false positive predictions caused by unspecific binding (because 
a protein happened to be close to some parts of the DNA when it was cross-linked) or 
indirect binding where the TF of interest did not bind the DNA directly but rather bound 
to another protein which in turn bound to the DNA. The bioinformatics steps of these 
methods are not without challenges either. Especially the peak-calling process for 
ChIP-seq can be far from trivial [82, 83].  

ChIP-based methods are not only used to locate binding sites for transcription factors 
but are also popular for determining genomic distributions of other DNA-binding 
proteins, such as nucleosomes that exhibit particular histone modifications [44, 49]. 

 

DamID 

DNA adenine methyltransferase identification (DamID) is another method that can be 
used to determine genome-wide in vivo binding of transcription factors or other DNA-
binding proteins in eukaryotic cells [84, 85]. The method requires that the TF to be 
studied is first fused to an enzyme from E. coli called Dam. Dam is a methyltransferase 
which attaches a methyl group to the N6 nitrogen of adenines within the specific 
sequence pattern GATC. When the TF–Dam fusion protein binds to a motif recognized 
by the transcription factor, the tethered Dam will start to methylate any GATC patterns 
found in the vicinity of the binding site up to a few thousand bases away. Since natural 
methylation of adenines is rare in eukaryotes, the presence of a large number of such 
modified nucleotides within a region can be taken as an indication of a nearby TFBS. 
To identify the methylated regions, the DNA is treated with the restriction endonuclease 
DpnI which cleaves DNA only at methylated GATC sites. Specially designed adapter 
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sequences are ligated to the ends of the resulting DNA fragments before the DNA is 
treated with yet another restriction endonuclease (DpnII) which cleaves DNA at non-
methylated GATCs. This ensures that only fragments associated with methylated 
GATCs have adapters. A PCR step is performed to selectively amplify these methylated 
fragments using primers that are complementary to the adapter sequences. The genomic 
locations of these fragments can then be determined by hybridization to microarrays. 
It should be noted that the transcription factor in the TF–Dam fusion protein does not 
have to be bound to a TFBS for the Dam enzyme to work. Some non-specific 
methylation by diffuse TF–Dams will always occur, and it is important to correct for 
these background methylation levels to avoid too many false positive predictions. 
The same experiment should therefore be repeated using pure Dam rather than fusion 
proteins as a control, and the fragments from the two experiments should be tagged with 
different coloured fluorescent dyes and hybridized to the same microarray. This allows 
the ratio between TF-targeted methylation and background levels to be determined. 

One advantage of the DamID method is that no antibody for the TF is needed, so it can 
be used to analyse any TF that can be fused with Dam. Also, the method does not 
require a large number of cells, and introduction of the Dam enzyme does not 
noticeably interfere with normal cell functioning. The resolution achieved with DamID 
is somewhat limited, however, and the location of a binding site can only be determined 
to within a few thousand base pairs, which is much worse than ChIP-seq.  

 

SELEX 

The invention of the method now popularly known as SELEX (systematic evolution of 
ligands by exponential enrichment) or in vitro selection is usually attributed to two 
independent research groups that both published papers based on similar principles in 
August 1990 [86, 87] (although related ideas had been proposed earlier [88]). 
The SELEX process is inspired by natural evolution whereby a pool of initially random 
DNA oligonucleotides are “evolved” through generations and the “fittest” individuals in 
each generation (i.e. the DNA sequences that bind the TF strongest) are selected and 
may produce offspring (identical or near-identical copies) for the next generation. 

The full assay proceeds as follows: 

1) An initial library of random DNA oligonucleotides is created, typically 
consisting of about 1013 to 1015 sequences with a size of 20–100 bp.  

2) The DNA pool is incubated together with transcription factors of a selected 
type. Some of the DNA sequences will hopefully bind the TFs, but probably 
only weakly in the first rounds.  
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3) The bound complexes are separated from the unbound complexes 
(“selection step”). This is usually done by affinity chromatography. 

4) The bound DNA is subsequently released and the sequences are amplified 
by PCR to create a new DNA pool for the next iteration (“reproduction 
step”). 

5) Steps 2–4 are repeated as necessary until the DNA pool has converged to 
relatively few unique sequences that have the highest affinity and specificity 
for the target TF. 

6) After the final iteration cycle, a representative number of DNA oligos are 
sequenced to determine the binding motif for the TF. The proportion of each 
unique sequence in this sample will reflect its binding affinity for the TF. 

 

The selection criteria in step 3 can be made more stringent with each iteration to retain 
DNA sequences with progressively higher binding affinity to the target TF. This can be 
done by reducing the concentration of the TF or by changing the binding and washing 
conditions (buffer composition, volume, incubation time, etc.). The initial random DNA 
pool will probably not contain all possible sequence motifs, and the sequences that have 
the highest affinity to the TF might not even be present in the initial pool. So, to 
increase the chance of finding the optimal binding sequences, some variation can be 
introduced to the sequences in the reproduction step, either by modification or 
mutagenesis (for instance by using error-prone PCR for amplification).  

Since the SELEX method relies on artificial, randomly generated DNA sequences, 
it cannot be used to discover actual binding sites in genomic DNA. On the other hand, 
it is a good method for inferring the binding motif for a transcription factor and 
determining its preference towards different sequences.  

 

Protein-binding microarrays 

Protein-binding microarrays [89-91] are microarrays where the probes consist of 
double-stranded DNA sequences. When transcription factors are added to the 
microarray, they will bind to probes containing their binding motifs. By tagging the TFs 
with fluorescent dyes, the amount of TFs bound to each spot on the microarray can be 
measured. The probes can contain a range of artificial sequences (typically 10 bp in 
each spot) which together cover all possible sequence combinations and allows the 
binding affinity of the TF to any sequence to be determined [20, 92]. Alternatively, 
genome-wide tiling-arrays can be used to detect possible binding sites across whole 
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genomes in a single experiment [93]. Since this method is purely in vitro, it is not 
affected by chromatin conditions and can find sites that are difficult to detect with 
condition-dependent ChIP-based methods because they are rarely used in vivo.  



29 

 

 

Performing the necessary experiments in a wet lab is the only way to know for sure that 
a transcription factor has bound to DNA, to determine the exact location and sequence 
of the binding site, to identify the nature of the bound TF (if it is not already known), 
and to assess the regulatory impact of the binding event. However, such experiments 
can be both expensive and time-consuming, especially in earlier times when they had to 
be conducted manually, one binding site at a time. As a result there has been great 
interest in using computers to analyse DNA sequences, and this has led to a wave of 
motif discovery programs aimed at predicting motifs and binding sites computationally.  

Recent years have seen a rapid growth in throughput for experimental methods, and it is 
now possible to analyse binding events for a TF in complete genomes in a matter of 
days. Although large-scale experimental projects, such as ENCODE [94], aspire to 
identify all binding sites in the human genome by systematically mapping sites for a 
large number of transcription factors across several cell lines, it will still take some time 
before this work is completed. And besides, these high-throughput experimental 
methods produce such huge amounts of data that it is absolutely necessary to use 
computers to do the analysis anyway. With the advent of next-generation sequencing, 
genomes for new organisms are being sequenced at an unprecedented rate, and these 
genomes are predominantly annotated with the use of bioinformatics tools in automated 
pipelines. It is therefore safe to say that computational motif discovery is more 
important and relevant now than ever before. 

 

Computational methods for motif discovery can be divided into two main classes: 

1) Methods that predict possible binding sites in a DNA sequence based on 
prior knowledge of the motif that a TF binds to (this approach is called 
motif scanning) 

2) Methods that do not have such knowledge and must simultaneously 
discover both the motif itself and the corresponding binding sites (this is 
often referred to as de novo or ab initio motif discovery). 
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Motif representation 

Whether binding sites are detected experimentally of predicted computationally, 
computer programs need some way to represent the binding motif with a model which 
can be used to distinguish sequence patterns that a transcription factor might bind from 
those it will not bind. An ideal motif model should be both sensitive and precise. 
That is, the model should cover as many actual binding sequences as possible, while at 
the same time not match too many spurious sequences. One possible model would be to 
just use a list of known unique binding sequences directly. This model would perhaps 
seem ideal because it would match all known binding patterns and none other. However, 
a major drawback with such a model is that it would not be able to generalize to other 
unseen sequences that could also bind the TF, so the actual sensitivity of the model can 
be less than perceived. This is especially true if the model was created from a limited 
number of TFBSs which might not fully reflect the sequence variation of the actual 
binding motif. Many other ways of modelling binding motifs have been proposed, with 
the most popular models being consensus sequences and matrices. 

 

Consensus sequence

The simplest and most compact motif model is the “consensus sequence” whereby a set 
of binding sequences is represented with a single sequence pattern. This consensus 
sequence can be constructed in several ways. One could, for instance, use the binding 
sequence which occurs most often in the set as the consensus or create an altogether 
new sequence based on the most frequent nucleotide in each position (note that such a 
sequence might not be present in the original set). Since this model is just a single 
sequence, it is by nature very strict and it might not even cover all the binding sites that 
went into creating it. To allow the model to generalize to other resembling binding 
sequences, one can decide that the model should implicitly include all sequences that 
deviate from the consensus in a fixed number of positions, usually a single position for 
short motifs and two or more for longer motifs. When a consensus model is used in this 
way, it is often referred to as a “mismatch model” [95]. A mismatch model does not 
usually impose any constraints on which positions are allowed to vary, and this can 
make the model overly promiscuous. A motif of length N with m mismatches will cover 

 sequence variants, so a motif of length 8, for example, will match 25 
sequence variants if one mismatch is tolerated and as many as 277 sequence variants 
when allowing up to two mismatches. 

Although most transcription factors usually tolerate some sequence variation in their 
binding sites, the nature and location of the variation can have great impact on the 
binding ability of a factor. Some nucleotides within a binding site might not actually be 
in physical contact with the TF at all, so it does not really matter what types of 
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nucleotides occur in these positions. For other positions the TF might have absolute 
demands regarding the nucleotide type, and any deviation from the preferred type might 
abolish binding altogether. Finally, there could be positions where one of several 
different nucleotide types are acceptable to the TF, but the strength of the binding may 
vary depending on the particular nucleotide. 

A more descriptive way to model binding motifs is with degenerate consensus 
sequences where each position can contain either a specific nucleotide or one of two or 
more alternative nucleotides. The International Union of Pure and Applied Chemistry 
(IUPAC) has defined a standard set of symbols to refer to ambiguous nucleotides [96], 
and these are listed in Table 1. Using the IUPAC symbols, the two binding sequences 
“TGACTA” and “TGCGTA”, which differ in the middle two positions, can be 
represented by the degenerate consensus “TGMSTA” (where “M” means “either A or 
C” and “S” means “either C or G”). This motif would also generalize to match two 
additional sequences, “TGAGTA” and “TGCCTA”, which may or may not be able to 
bind the same TF. 

A straightforward way to derive an IUPAC consensus sequence would be to represent 
each position with the most specific symbol covering all nucleotides encountered in that 
position across the binding sites. Although this would result in a sensitive model, 
it might not be very precise and neither does it reflect well the relative frequencies of 
nucleotides in each position. For example, if 9 out of 10 binding sites have a “T” in one 
position but the last sequence has a “C”, this variability would then be modelled by the 
double-degenerate symbol “Y”. However, this symbol would intuitively suggest that the 
two nucleotides are equally likely to appear in this position, which is clearly not the 
case. As an alternative approach, Cavener [97] proposed assigning unambiguous 
symbols (A,C,G,T) to positions where a single nucleotide occurs in more than half of 
the sequences and more than twice as often as the second most frequent nucleotide. 
If no single nucleotide satisfied this condition, then a double-degenerate symbol 
(Y,R,M,K,S,W) could be used if the combined frequency of the two most frequent 
nucleotides exceeded 75%. If neither of these rules applied, the position would be 
assigned the symbol “N”. These rules have later been extended with an additional rule 
dictating the use of triple-degenerate symbols (B,D,H,V) in cases where three different 
nucleotides appear in a position and the criteria for a more specific symbol are not met. 
Several other strategies for assigning consensus symbols have been suggested as well 
[98]. 

Degenerate consensus sequences can alternatively be represented as regular 
expressions. For example, the IUPAC consensus sequence “TGAYCV” can be written 
as “TGA[CT]C[ACG]” using POSIX notation where the brackets group together 
alternative nucleotides for a position. Regular expressions have additional advantages as 
well, since they can easily model optional insertions and variable gaps in motifs. 
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Variable gaps are a common feature of TFs that bind as dimers. For these TFs, each 
monomer part binds to one half-site and the full binding motif consists of two such half-
sites which, depending on the structural flexibility of the dimer, might be separated by a 
fixed or variable number of nucleotides. For example, the regular expression 
“TACN{2,4}GTA” describes a binding motif consisting of two palindromic “TAC” 
half-sites separated by a variable gap between 2 and 4 bp long.  

 

Matrix model

Whereas the consensus sequence model only provides information about the most 
frequent base (or bases) in each position, the matrix model holds information regarding 
the relative preference for each of the four base types. For a motif of length  this 
information is stored in a  numerical matrix where each of the four rows 
corresponds to one of the base types and the columns correspond to positions in the 
motif. 

Stormo et al. [99] used a perceptron learning algorithm to determine the matrix values 
that would allow the model to optimally discriminate between a set of positive 
sequences (containing binding sites) and a set of negative sequences (without binding 
sites). However, when a set of binding sites are known, a more straightforward way of 
assigning the values is normally employed. The most basic matrix model is the 

Symbol Represents Interpretation Complement

Table 1: IUPAC nucleotide symbols 
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position count matrix (PCM) where the value for a base  in position  in the motif is 
simply set to the number of times that base appears in position  among all the known 
binding sites. If we normalize a PCM by dividing the base count values with the number 
of binding sites, we get a position frequency matrix (PFM) instead. Staden [100] further 
log-transformed these frequency values to arrive at a position weight matrix (PWM)1. 
If the probability  of observing the base  at any position in a genome is known, we 
can create an alternative weight matrix which takes these background probabilities into 
account by using the log-ratio of the frequency of the base from the binding sites  

compared to the background frequency: . Assuming that each position in the 

motif contribute independently and additively to the binding energy of the TF (and 
assuming also that the frequencies obtained from the set of known TFBS are not 
biased), it can be shown that these log-ratio weights are optimal in the sense that they 
maximize the probability of binding to all TFBS [101, 102]. 

Given a PFM we can calculate the information content [103] of position in the motif 
with the following equation: 

 

Information content (IC) is inversely related to the concept of entropy, which is a 
measure of the uncertainty associated with a random variable [104]. In fact, the formula 
for entropy is just the negative of the second term in the equation above. Information 
content and entropy are often measured in number of bits, where one bit is the amount 
of information required to distinguish between two equally likely outcomes. If we know 
from the PFM that “T” is the only base that can appear in position  within a binding 
site, then there is no uncertainty and the entropy for that position is 0 bits (and the IC is 
2 bits). If we know that both “A” and “T” are equally likely to appear, the entropy is 1.0 
because we are missing one bit of information in order to uniquely specify the actual 
base. If all four bases have equal probability, the entropy would reach its maximum of 
2.0 (and IC would be 0). Thus, the more conserved a position is the more information it 
contains and the entropy (uncertainty) will be lower. Conversely, positions that allow 
more variation have more uncertainty and hence less information content. By summing 
up the IC for each position we get the total information content of the motif.  

                                                 

1 To avoid taking the logarithm of zero, a small value called a pseudocount is usually added to all entries 
in the frequency matrix as described on page 38. 
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To account for skewed background probabilities, a generalization of the previous 
equation, called relative entropy or Kullback-Leibler divergence [105], can be used 
instead: 

 

This equation is exactly the same as the previous one for the special case when all bases 
have equal background probabilities (  for all ’s). The Kullback-Leibler 
divergence is equivalent to a log-likelihood ratio measuring the degree of disagreement 
between the base frequencies from the motif and the background frequencies. 

The information content of a motif is directly related to the number of times the motif is 
expected to occur within a random sequence. This expected frequency is given by the 
formula: . So, for example, a non-degenerate 6 bp motif (which has an IC of 
6×2 = 12) is expected to occur once in every 212 = 46 = 4096 bp. It should be noted, 
however, that the matrix model itself does not actually discriminate between matching 
and non-matching sequences. Rather, the matrix can be used to calculate a match score 
towards a sequence which reflects the free energy of binding to the sequence relative to 
a random background [106].  

Schneider and Stephens introduced an intuitive graphical way of representing binding 
motifs which they called “sequence logos” [107]. In a sequence logo, each position is 
drawn as a stack of base letters on top of each other. The letters are sorted according 
to base frequency, with the most frequent base for the position appearing on top. 
The height of each base letter in the stack is proportional to its relative frequency, so if 
e.g. the base “A” occurs twice as often as “T” in a position, the height of the “A” letter 
will be twice the height of “T”. Finally, the whole stack is scaled according to the IC-
content for that position. Positions that have high conservation among the binding sites 
will thus have taller stacks than positions which allow for greater variation. An example 
of a sequence logo is shown in Figure 11e.  

 

Higher order models

A potential limitation with the traditional consensus and matrix models is that they 
assume that all the positions within the binding motif are independent, which implies 
that the probability of observing a specific base in a certain position is not influenced by 
which bases occur in other positions. Although this seems to be a reasonable assumption 
in most cases (see e.g. references in [102]) it is not valid in general [102, 108, 109], 
and several higher-order models have therefore been proposed to capture more complex 
relationships within motifs. 
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The strongest dependence relationships often seem to be between adjacent positions in 
motifs [110], and one simple representation that is able to model such relationships is a 
dinucleotide matrix with 16 rows and  columns where the value in each cell 
reflects the probability of observing a specific pair of nucleotides starting in a position 
[111]. The dinucleotide matrix can be viewed as an example of an inhomogeneous first-
order Markov model. In a Markov model representation, the probability of observing a 

2    0    7    0    0    0    0    5 
0    0    1    4    2    1    8    0 
0    8    8    2    5    0    0    3 
6    0    8    1    0    7    0    0 

b) 

 0.250   0.000   0.875   0.000   0.000   0.000   0.000   0.625 
 0.000   0.000   0.125   0.500   0.250   0.125   1.000   0.000 
 0.000   1.000   0.000   0.375   0.750   0.000   0.000   0.375 
 0.750   0.000   0.000   0.125   0.000   0.875   0.000   0.000 

c) 

 0.000  -3.258   1.224  -3.258  -3.258  -3.258  -3.258   0.892 
-3.258  -3.258  -0.655   0.673   0.000  -0.655   1.357  -3.258 
-3.258   1.357  -3.258   0.392   1.072  -3.258  -3.258   0.392 
 1.072  -3.258  -3.258  -0.655  -3.258   1.224  -3.258  -3.258 

d) 

e) 

 

2 bits  1 bit 
a) 
   1: TGACGTCA 
   2: TGACCTCG 
   3: TGACGCCA 
   4: TGCGCTCA 
   5: TGACGTCG 
   6: AGAGGTCA 
   7: TGATGTCG 
   8: AGAGGTCA 

      AGAGGTCA    Consensus based on the most frequent binding sequence 
      TGACGTCA    Consensus based on the most frequent base in each position 
      TGASGTCR    IUPAC consensus sequence 

 Figure 11: Different motif representations. a) Eight binding sites have been 
aligned, and shown beneath are three alternative consensus models for the 
binding motif. b)  The four rows of this position count matrix (PCM) show 
respectively the number of A, C, G and T’s in each of the positions. 
c) The position frequency matrix (PFM) was created by normalizing the PCM 
based on the number of binding sites. d) A log-transformed weight matrix. 
Positive values indicate that the base have a higher frequency in the binding sites 
compared to a background. e) Sequence logo representation of the motif. 
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specific base in a position will be dependent on the contents of the  positions that 
precedes it (for a model of order  With homogeneous Markov models, the 
probabilities are not dependent on the specific location of the position in question, but 
with inhomogeneous models the probabilities can vary from position to position. 
For example, in a homogeneous model the probability that a “G” will be followed by a 
“C” might be 30% irrespective of the location of these bases, while for an 
inhomogeneous model a “G” in the second position of a binding motif can have a 40% 
probability of being followed by a “C” in the third position whereas a “G” in the 
seventh position can have a 25% probability of being followed by a “C” in the eight 
position. If some positions in the motif are independent while others are dependent on 
preceding positions, a variable-order Markov model can be used. Dependencies that 
involve positions located further apart from each other can be modelled using e.g. 
Bayesian networks [112, 113] or other variations on Markov models such as permuted 
Markov models [114].  

Sharon et al. [115] proposed modelling motifs in a very general way as a set of features 
where each feature would be associated with a weight reflecting the importance of that 
feature for the TF–DNA interaction. The overall strength of a potential binding site 
could then be calculated by summing up the weighted contributions of all features that 
were present in the site. A feature can be as simple as saying that “there should be a ‘C’ 
in position 3 (with a weight of 0.6)”, or they can capture dependencies between 
positions by saying e.g. “there should be a ‘C’ in position 3 and a ‘G’ in position 8 (with 
a weight of 0.2)”. Features can thus be used to model the same single or combined 
nucleotide probabilities as the previously mentioned motif models, but features can also 
represent more general global properties of a motif, for example that “the motif should 
be palindromic” or that “the total GC-content should be greater than 60%”.  

Even though higher-order motif models have been shown to improve the precision of 
binding site discovery, they have not gained much popularity. One reason for this is that 
higher-order models require more training data to fit all their parameters, and this was a 
problem before the advent of high-throughput experimental methods when the number 
of known binding sites for each transcription factor was still limited. Higher-order 
models also have a tendency to overfit the training data, which is especially problematic 
if the data is noisy. Thus, the simpler models based on consensus sequences and 

 matrices are still the most widely used ways of representing motifs. On the 
other hand, homogeneous higher-order Markov models have been very popular for 
representing background distributions that model the probabilities of observing specific 
bases and combinations of bases in the sequence outside of binding sites.  
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Motif scanning 

Over the years, binding motifs for a large number of transcription factors have been 
experimentally determined and published (see e.g. [116]), and motif models have been 
collected into publicly available databases such as TRANSFAC [117], JASPAR [118], 
ScerTF [119], SCPD [120], YEASTRACT [121], RegulonDB [122] and PRODORIC 
[123] to name just a few. Using such existing motif models, it is relatively easy (at least 
in theory) to match these against sequences in order to predict new potential binding 
sites, and a host of motif scanning tools have been developed for this purpose. 

The motif scanning process itself is relatively straightforward: given a sequence of 
length  and a motif of length , the motif is aligned with the sequence at every 
position from 1 to ) and a match score for each position is calculated. Sites 
starting at positions that score above or equal to some decided cutoff threshold are 
considered good matches to the model and thus potential binding sites for the 
corresponding transcription factor (Figure 12). Matches to the opposite strand can be 
considered by reverse complementing either the model or the sequence.  

For consensus sequence models, the match score could simply be the number of 
positions in the motif that match the aligned positions in the sequence. The cutoff 
threshold would then typically be set to  (corresponding to 100% match) or “ ” 
if  mismatches are tolerated. An alternative scoring scheme could be used for IUPAC 
models whereby matches to degenerate positions in the motif are assigned lower scores. 
For example, matches to A, C, G and T could receive a normal score of 1.0 for that 
position, matches to double-degenerate symbols (Y,R,K,M,S,W) could receive a score 
of 0.5, matches to triple-degenerate symbols e.g. 0.33, and matches to the “N” symbol 
would not result in additional points since this will always be matched anyway [124]. 

 

 

Figure 12: Motif scanning. The match score to the motif “CACRTG” at each position 
is illustrated with bars above the sequence. Positions that score higher than the selected 
threshold indicated by the pink dashed line are considered matches. This sequence 
contains two such matching sites, the first one with binding sequence “CACGTG” and 
the second with binding sequence “CACATG”.    
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To calculate a match score for a matrix model, one would combine the matrix values for 
the bases that match the sequence in each position. In other words, if the sequence 
contains the base  at aligned position  relative to the motif start, one would use the 
value  from the matrix for that position. Harr et al. [125] proposed two different 
ways to combine the values across all positions: either summing up the values and 
dividing by the motif length (arithmetic mean score) or multiplying all the values 
together. Since they used matrices that had been normalized by dividing the values with 
the highest value in each column, both of these approaches would lead to a maximum 
score of 1.0 for the best matching sequence. If the matrix is a regular PFM, the 
frequency values can be interpreted as probabilities of observing the different bases in 
different positions according to the motif model, and multiplying the values for the 
matching bases would then result in a score which corresponds to the joint probability 
that the sequence matches the motif at the aligned position. Multiplying across values 
from a PFM is equivalent to summing across the log-transformed values of a PWM. If a 
background-corrected log-ratio PWM is used, a positive sum score would imply that the 
sequence segment under consideration is more likely to be a match to the motif than a 
match to the background (and vice versa for negative scores). 

If a PFM has a value of zero for a matching base, this will always lead to a total score of 
zero if the values are multiplied (or equivalently a value of if log-transformed 
frequencies are added up). The aligned sequence segment will then never be considered 
a potential match to the motif, even if all the other positions in the site receive the 
highest possible scores. Although this could be a biologically valid conclusion (since the 
presence of the wrong base in a position might block TF binding), such a result is 
usually considered to be too strict. If the motif model is based on a limited number of 
TFBS, the reason for the zero entry in the model could simply be that none of the 
candidate sites happened to contain that particular base in that position, not because it is 
incompatible with TF binding. So, to correct for potential small sample bias and allow 
all sequences a chance of being considered a match, a small value called a pseudocount 
is usually added to each value in the matrix to ensure that none of the entries are zero 
[126].  

The most important consideration when performing motif scanning is choosing a 
sensible cutoff threshold for the match score, since this will directly affect the 
sensitivity and precision of the search. Selecting a high threshold will lead to fewer 
matches, but this could potentially mean that we miss out on some true binding sites. 
On the other hand, setting the threshold too low could result in a lot of false positive 
predictions.  

Many motif scanning programs convert the raw match score to a relative match score 

using the formula:   , where   and   are 
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the highest and lowest obtainable scores according to the model. An intuitive choice for 
a cutoff threshold would then be to select some high relative value such as e.g. 85% or 
90% to ensure that predicted sites have a high degree of similarity to the motif model. 
Although this is a fairly common, such thresholds will always be somewhat arbitrary. 
Staden chose a different approach where he calculated the match score towards all the 
binding sites that went into creating a matrix and then used the lowest of these values as 
the threshold to ensure that all known binding sequences would be classified as matches 
[100]. This would assign individual cutoff thresholds to different matrices, which could 
potentially be more beneficial than using the same threshold for all. However, if there is 
much variation in the binding sites the threshold would have to be set rather low, and 
this would lead to many false predictions. Some have attempted to derive thresholds 
that could in some sense be considered optimal for discriminating between binding sites 
and the background [119, 127, 128]. For example, the motif scanning program MATCH 
[129] comes with a choice of three different pre-calculated thresholds for each matrix in 
the TRANSFAC database: a sensitive threshold to minimise the false negative rate 
(minFN), a strict threshold to minimise the false positive rate (minFP) and a threshold to 
minimise the sum of both of these errors (minSUM). To decide the “minFN” threshold 
they generated potential binding sequences by sampling from the PFM and chose a 
cutoff value that would recognize at least 90% of these sequences. For the “minFP” 
threshold they scanned sequences taken from the second exons of genes (which are not 
expected to contain functional TFBS) and chose the lowest cutoff value for which no 
matches were found. Another feature of the MATCH program is that it operates with 
two separate thresholds to fine-tune the selection of sites. First, a match score is 
calculated for the “core” of the motif, which is defined as the five consecutive bases 
within the motif that have the highest combined IC-content. Only if the core region 
scores above a required “core threshold” does the program proceed to calculate a score 
for the entire motif and compares this to a second “matrix threshold”.  

In addition to calculating a raw match score, some motif scanning programs can also 
assess the statistical significance of this score by estimating how likely it would be that 
a match with such a high score could occur in the sequence simply by chance [130-132]. 
These programs will usually allow the cutoff threshold to be applied to the p-value 
rather than the raw match score. Some methods can even make use of higher-order 
background models to improve discrimination between binding motifs and background 
sequence [133, 134]. 

 

De novo motif discovery 

Searching for binding sites without any prior knowledge of the binding motif can be 
likened to searching for the proverbial needle in the haystack – except that in this 
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scenario the needle itself would also be made of hay. That is to say, since both the 
binding sites and the rest of the DNA sequence are made up of the same four 
nucleotides, there is really not much that distinguishes a binding motif from the 
surrounding background. Nevertheless, the task is not completely impossible and many 
different strategies have been proposed to solve the problem. 

Nearly all de novo motif discovery methods are based on the same basic principle: if a 
set of sequences are expected to bind the same transcription factor, they should all 
contain the same binding motif. It should therefore be possible to identify this motif by 
searching for a short pattern that is common to all of these sequences (see example in 
Figure 13). The first motif discovery program to operate in this way was created by 
Korn et al. in 1977 [135], and this program has since been followed by several hundred 
other methods [95]. 

The set of input sequences can be selected in several ways. One popular choice is to 
analyse promoter sequences from co-expressed genes, i.e. genes that have similar 
expression patterns. The motivation behind this is that genes that are expressed in the 
same way might also be regulated in the same way by the same transcription factors. 
Another possibility is to consider orthologous promoter sequences, which are promoter 

 

Figure 13: de novo motif discovery. The pattern “CACGTG” (with some
variation) shown in red is found in 7 out of the 8 target sequences and the
“AAGAA” pattern in green is found in all of them. These two patterns are
therefore good candidates for being binding motifs for common regulators.
However, the “AAGAA” motif is not unique to the target dataset but is also
frequent in a background set based on randomly selected sequences.   

SEQUENCE_01: TGATGGCCATATCACGTGTGCAAGGTTCAGTCCGCGTGAAGAACCCGTATTGGTTA

SEQUENCE_02: GATAGAATTAAGAACCTCCACATGTAGTTGTAAGTCCCTTATAGATGACACACTGA

SEQUENCE_03: CTATTGTATCACGTGAGGCCGCGTTCTATGATAGAAGAAGCTCCTCTCTGTTTATT

SEQUENCE_04: CCCGCCTTCAAAGTCCTAAGTGCACCTAAGAATTGGGGGTCACGTGTTGAGCTTTA

SEQUENCE_05: TTAAGTCACGATTATTCCATTCTGTACCACTTCATAAGAAACTTCTGGGTGGAGGT

SEQUENCE_06: AGAGCGAAAGAATGCCCGGCCTCAGACAATGTGGCTCACGTGAAGGGATTGATTAC

SEQUENCE_07: TCATATCTCCGAGTGTTACAGGTGGCACGTAAAGAATGCCTCTTGACCAGCCCTGT

SEQUENCE_08: CGAGTATATGCGGAGGCACGTGCGAACTTGTCTTGTCTCTCAAGAAGTTTCTAGTA

BACKGROUND_01: TTACGTGGAATAACAACACGGTCGAAGAAAGGACATACGAGCTGGTACGGGTCCGT

BACKGROUND_02: GCAAAGTGCTTATTATTCCAGCACGGACGTGCATTACCAAAAGAACACTGGGCATT

BACKGROUND_03: TATCATGTTCTGAGCCAAGAATATTAACTACGCAGTCGGGACCTCCCTGCTGGATA

BACKGROUND_04: ATGATAGGACGGGGACACGTGTCCCTTGATGGATCGAAGAAATAAGAAGTTGATAT

BACKGROUND_05: GGTTAATTTCCCTTCTACTAGGGTGGGTTCCTCGGGGGCAGATATGAGTGCTGTGA

BACKGROUND_06: CACAATACTTGATGAGCTTAAGAAAGAGGCGGAGGCGAGAACTTGCCTCCAGCACA

BACKGROUND_07: GATTTAAACAAGAATCACTTAGGAGGTGAGATGCTTCTGGAGTGGTCTAGGTGACC

BACKGROUND_08: GGACTGTTGAGTAAGTCACGAACCATCGTTCTGGTGCTTAAAGAAAGGTGCCGTAG
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sequences for the same gene from different species. This assumes, of course, that the 
gene is regulated by the same factors in all of these species. One final option is to use 
sequences that have been shown to bind the same transcription factor through 
experimental methods such as ChIP, protein-binding microarrays or EMSA.  

Although simple enough in principle, there are some immediate concerns with this basic 
approach. First of all, the binding patterns may not be identical in all the input 
sequences, so a motif discovery program should take this into account and allow for 
some variation in the motif. Second, some of the input sequences might have been 
wrongfully assumed to be bound by the transcription factor, when in fact they are 
regulated by other means and do not contain the target binding motif at all. Forcing the 
motif discovery program to predict a binding site in every sequence can thus introduce 
unnecessary noise in the motif model. It is therefore common among methods to allow 
some sequences to lack a binding site, but require for instance that at least k of the input 
sequences should contain one (the number k is called quorum). The biggest concern, 
however, is that since the DNA alphabet is so small and the patterns considered are 
short, the probability of observing any such pattern within a longer sequence is 
relatively high. For example, in a 1000 bp long uniformly random DNA sequence, every 
5 bp sequence pattern is expected to occur about once on average simply by chance, and 
a 6 bp pattern with one allowed mismatch would occur between four and five times. 
A set of sequences is therefore likely to contain many similarities that are not related to 
the target binding motif. To further complicate matters, genomes are not random and 
they can contain a lot of repeat elements, such as transposons and satellite repeats 
[136]. Repeat elements are sequence patterns that occur many times throughout a 
genome, and they can easily be mistaken for a common transcription factor binding 
motif if they appear often in the input sequences [137]. Because of this, it is often 
recommended to mask out such repeat regions in the sequences to avoid misleading the 
motif discovery program [138]. Another way to alleviate the problem with common 
sequence patterns is to compare the occurrence frequency of each pattern in the input 
sequences to the number of times they occur in a separate set of negative sequences that 
are not expected to contain the target binding motif. The true motif should presumably 
be present in most of the input sequences but few or none of the negative sequences 
[139-142]. Instead of an explicit negative dataset, one could also use a Markov 
background model from which the expected frequency of each sequence pattern can be 
calculated [143]. Patterns that are statistically over-represented in the input sequences 
compared to their expected frequency would then be good candidates for the actual 
target motif. Different statistics can be employed to assess the level of significance of 
over-representation, such as z-score [144-147], binomial test [148, 149] or Fisher’s 
exact test [142, 150, 151].  

The next challenge to consider is how one should proceed to identify the best candidate 
pattern(s). One possibility is to enumerate all  patterns of a given length  and count 
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how many times each of these patterns appear in the input sequences compared to their 
expected frequencies. Closely resembling matches to each pattern could also be 
considered to account for variability in the binding motif. Alternatively, one can 
enumerate patterns containing IUPAC degenerate symbols [143]. This kind of search 
can be done exhaustively as long as the motif length is small, and the optimal solution is 
then guaranteed to be found. However, since the number of patterns to go through 
grows exponentially with the motif size, this approach is infeasible for longer motifs.  

Improvements in speed can be achieved by not enumerating all possible patterns but 
only those that are actually present in the input sequences (with possible mismatches) 
[152], by using efficient data structures (such as suffix-trees) to organize the data [146, 
153, 154], or by pruning parts of the search-space that are not likely to contain 
promising solutions [155, 156]. 

Another popular approach is to search through different binding site alignments. 
One binding site is selected from each sequence, and the chosen sites are compared to 
see how similar they are, using either information content or log-likelihood ratio as a 
measure of similarity. If we want to analyse  sequences, each of length  to find a 
binding motif of size , the total number of possible site alignments would be 

, and this is only considering one strand. An exhaustive search through all 
of these alignments would normally be out of the question (finding the optimal solution 
is actually NP-hard [157, 158]), so some heuristic search procedure is usually 
employed. For instance, the method CONSENSUS [159] starts off by making an 
exhaustive search through all pairwise site alignments in the first two sequences only. 
An initial set of  matrices, built from each site in the first sequence 
combined with its best match in the second sequence, is used to iteratively search the 
remaining sequences in a greedy fashion. For each one of the initial matrices, the best 
matching site is found in the third sequence, and the matrix is updated by incorporating 
this new site. The process is repeated with each new sequence until all sequences have 
been covered. In the end, the matrices with the highest information content represent the 
best site alignments and are thus the best candidates for the binding motif. In order for 
this method to work well, the target motif should have strong matches in the first few 
sequences so that the search is not misled. To increase the chance of that happening, the 
method should preferably be run several times with different ordering of the sequences, 
and this is done by default in the most recent version of CONSENSUS. 

Expectation-Maximization (EM) is a search heuristic that was first used for motif 
discovery by Lawrence and Reilly [160] but has since been widely adopted by other 
methods, including MEME [161], Improbizer [162] and PhyME [163]. Unlike the 
greedy CONSENSUS method, which incorporates new sites one sequence at a time, 
EM begins with an initial (possibly random) selection of candidate sites from all 
sequences (one from each). These sites are used to build a matrix model for the motif 
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and a separate model for the background is derived from the frequencies of bases in 
sequence positions that are not covered by these sites. If we postulate that an observed 
sequence contains a binding motif at a known position, it is easy to calculate the 
probability that this sequence could have been generated by the models. Using Bayes’ 
rule, we can also calculate the likelihood that each position in the observed sequence 
could contain the motif. It should be noted that the position with the highest such 
likelihood need not correspond to the site that actually went into creating the motif 
model. An updated model is then created based on all possible sites, but each site is 
weighted by the likelihood that a site would start in that position (and similarly for the 
background). The process is repeated several times until the model converges. 
Even though the initial motif model will probably have very low information content, 
the model will improve with each iteration because sites that better match the model 
will be given more weight when the model is updated. 

One problem with EM is that it is a deterministic hill climbing algorithm which can get 
stuck in local maxima in the search space and fail to find the globally optimal solution. 
It is therefore advisable to run the algorithm several times with varying initial 
configurations in order to explore more of the search space. An alternative approach 
would be to use a stochastic hill climbing heuristic instead, and this is done by the 
Gibbs sampler method [164]. Like EM, the Gibbs sampler starts by selecting one 
candidate site from each input sequence to create and initial matrix model and then 
updates this model over several iterations. In each iteration, one of the sequences is 
chosen (in a fixed order or at random) and a matrix model is created based on the 
candidate sites from all the other sequences. The matrix, together with a background 
model, are used to calculate a match score for each position in the sequence that was 
held out, and these scores are converted into a probability distribution from which a new 
candidate site for the sequence is sampled. Thus, the Gibbs sampler exchanges the 
current candidate site from the sequence with a new site which is chosen at random, but 
sites that represent better matches to the current model are more likely to be selected. 
Unlike EM, this stochastic approach does not necessarily converge, so the algorithm is 
commonly stopped after a fixed number of iterations or when a solution has been found 
that is deemed to be good enough. Gibbs sampling is one of the most popular search 
heuristics for motif discovery and is used by methods such as AlignACE [165], 
ANN-Spec [166], BioProspector [167], MotifSampler [168], PRIORITY [169] and 
SeSiMCMC [170].  

Lots of other heuristic search procedures have been applied to the motif discovery 
problem as well, including simulated annealing [137, 171], ant colony optimization 
[172], particle swarm optimization [173, 174], use of genetic algorithms to evolve site 
alignments [175-178] or to evolve the motif model directly [179-181]. Some methods 
treat the motif discovery problem in terms of graph-theory where each -mer word in 
the input sequences is represented as a node in a graph and nodes that correspond to 
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similar words are connected with edges. The problem of discovering common patterns 
in a set of sequences is then equivalent to finding cliques or high-density subgraphs 
[182-184]. 

Another approach to motif discovery, which is radically different from the ones 
previously mentioned, does not rely on sequences containing common motifs at all, but 
rather attempts to infer the binding motif for a transcription factor directly based on the 
known three-dimensional protein-structure of the TF and the contacts it makes with the 
DNA molecule when it binds [185, 186]. 

 

Module discovery 

Many motif discovery programs are able to return multiple motif predictions for the 
same dataset. Enumerative methods, for example, can return the  most significant 
motifs encountered, and alignment-based methods can perform motif discovery first 
once to identify the most significant motif in the dataset and then mask out the binding 
sites for this motif and repeat the process in order to find the second most significant 
motif, etc. Nevertheless, the motifs returned by these methods are discovered 
independently of each other, and their binding sites might not even be located in the 
same sequences. 

However, there are also several module discovery programs available that specifically 
aim to discover combinations of motifs for transcription factors that might work 
cooperatively to regulate genes (“composite motifs”) [187, 188]. Some of these module 
discovery methods extend the basic strategy used by de novo motif discovery programs 
of searching for patterns that occur in several sequences, but instead of looking for 
binding sites for a single transcription factor they look for groups of co-occurring sites 
for multiple factors [189-193]. Other methods identify potential modules by looking for 
dense clusters of binding sites located within relatively short sequence regions. 
The program MSCAN [194], for example, slides a window of user-defined width across 
the sequence and estimates the combined statistical significance of all predicted TFBS 
that fall within the window. If the calculated p-value is below some preselected 
threshold, the binding sites in the window are considered to constitute a regulatory 
module. Another popular approach is to model the sequences with a (hierarchical) 
mixture model or hidden Markov model with two top-level states representing modules 
and background respectively. The task is then to find the chain of state-transitions that is 
most likely to generate the input sequence. In the process, each position in the sequence 
will be tagged as either belonging to the module state or not [195-198]. 

The distinction between scanning (searching for modules with known composition) and 
de novo discovery is less clear for module discovery than for single motif discovery. 
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On one hand there are methods that can search sequences for occurrences of strictly 
defined modules, for example a binding site for the transcription factor AP-1 followed 
by a binding site for Ets within 10 to 15 bp. At the other end of the spectrum are 
methods that can identify new modules given no other input than a set of sequences. 
In between these extremes we find methods that rely on varying amounts of prior 
information. For example, many module discovery methods require a library of single 
motif models (usually a collection of PWMs) to be provided which they can use to 
identify candidate binding sites for single transcription factors. These methods are 
called “motif aware” [188]. If such methods are given a very small motif collection as 
input, the composition of the target module will basically be pre-determined, and the 
methods are then reduced to mere module scanning methods. However, if they are 
provided with a large motif collection they will also have to discover which of these 
candidate motifs are involved in modules and which are not. Methods that do not rely 
on predefined motif libraries are called “motif blind”, but some of these might still 
require some supervision to guide them, for instance in the form of a training set of 
sequences containing known module instances [199]. 

 

Ensemble methods 

No single motif discovery method is perfect and all methods can make mistakes, either 
by failing to identify a true motif or by falsely predicting a pattern to be a motif. 
Different methods will frequently return differing predictions when run on the same 
dataset. Even the same method can give varying results if it is run multiple times with 
different parameter settings (or even with identical settings if the method is based on a 
stochastic algorithm). It can therefore be instructive to try out several methods and 
compare their predictions to see if they are in agreement. As long as the methods do not 
all make the same mistakes, it should also be possible to take the results from an 
ensemble of methods and combine them into potentially more reliable predictions based 
on consensus.  

One way to combine results from multiple tools is with a simple voting scheme: if at 
least N of the methods in the ensemble predict the same motif or binding site, that 
prediction is considered to be reliable. On the other hand, if too few methods predict the 
motif, it is regarded as a false prediction. Alternatively, one can just say that the motif 
that got the highest number of votes is the best candidate. It is also possible to use a 
slightly more advanced approach where each method’s vote is assigned a weight based 
on our confidence in the method. Variations on the voting scheme are employed by e.g. 
CEA [200], EMD [201] and MotifVoter [202].  

The voting approach is based on the assumption that motifs which are found by a small 
minority of methods are more likely to represent spurious predictions. However, these 
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could of course also be true motifs that are missed by the majority, especially if the 
methods in question have different focus. Some ensemble methods deliberately employ 
a diverse set of motif discovery tools to increase the sensitivity of the search. 
For example, the SCOPE tool uses an ensemble of three methods that each covers a 
distinct part of the search space: the first method (BEAM) searches for non-degenerate 
motifs, the second method (PRISM) searches for short degenerate motifs, and the third 
method (SPACER) searches for long, highly degenerate motifs with gaps [203]. 

 

Evaluating the performance of computational methods 

A very important question is of course: how well do these computational motif 
discovery methods work in practice? To what extent can we rely on the predictions that 
these programs make? 

To evaluate the performance of a motif discovery program, we can test it on a dataset 
where we already know the correct answer. The predictions output by the program can 
then be compared with the answer to see if they are in agreement. Test datasets can 
consist of real genomic sequences where the locations of binding sites have been 
determined by experimental procedures, or they can be artificial datasets where a 
selected target motif has been planted somewhere in real or randomly generated 
background sequences. 

One big problem with using real data is that genomic sequences tend to be under-
annotated, which means that the sequences are likely to contain additional binding sites 
that we are currently unaware of. If a motif discovery program finds and reports these 
sites instead of the ones we know, it will be unfairly penalised because its predictions 
will then (incorrectly) be regarded as false. 

With artificial datasets we can have full control over all the parameters, such as the size 
and degeneracy of the motif, the number and locations of planted sites, the length and 
composition of the background and the number of sequences in the dataset. 
By adjusting these parameters it is possible to tune the signal-to-noise ratio and 
influence the difficultness of the dataset [204]. Artificial datasets are used in the classic 
“ -motif challenge problem” where a fixed binding pattern of length  is planted in 
a number of synthetic sequences, but in each sequence this pattern is mutated in exactly 

 randomly selected positions to introduce variability [182]. Such datasets are very 
useful to assess the pattern-finding capabilities of motif discovery methods and see how 
much noise they will tolerate before they fail to identify the target motif. However, 
target sites that are constructed in this way will not necessarily reflect the true 
variability of a normal TF binding motif, so the problem is not directly equivalent to 
finding real motifs in real sequences. Another limitation with artificial datasets is that 
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any subtle signals in the flanking sequence around a binding site that could potentially 
influence its functionality will inevitably be absent. Real datasets where the genomic 
locations of the sequences are known also have the advantage that motif discovery 
programs can potentially utilize additional annotation data or information related to 
these sequences if they are able, such as e.g. the distance to the nearest gene start, the 
conservation level of each position in the sequence or the presence of DNase 
hypersensitive sites, nucleosomes and other epigenetic marks. 

A compromise between real and artificial datasets is to use “semi-artificial” datasets 
where real binding sites are flanked by random background sequences. This will ensure 
that the target motif has the characteristics that would be expected of a real motif and 
that no other binding sites are present to confuse motif discovery programs. And if the 
genomic locations of the target sites are known, it will still be possible to utilize the 
additional information mentioned above. 

Some datasets gain popularity and are frequently used when testing programs. The most 
famous benchmark compilation for motif discovery assessment is probably the one 
published by Tompa et al. [205]. They created 52 datasets (plus 4 negative control sets) 
based on real binding sites retrieved from the TRANSFAC database. Each dataset 
contained binding sites for one specific transcription factor and each one was issued in 
three different versions: a “real” version consisting of the actual promoter sequence 
containing the binding site, a semi-artificial version called “Markov” where the flanking 
sequence around the binding sites was replaced by a new sequence randomly generated 
according to a third-order Markov model, and a “generic” version where the binding site 
was planted in a different randomly chosen promoter sequence from the same genome. 
Swapping the backgrounds in the “generic” datasets meant that the sequences in each 
dataset were less likely to contain common binding sites for other transcription factors 
besides the target factor. 

Sandve et al. [206] used machine learning to analyse these datasets in order to estimate 
an upper bound on the performance that could reasonably be expected by motif 
discovery programs. They found that in many cases the datasets suggested by Tompa 
were too hard, and it would actually be impossible to discriminate the binding sites from 
the background using traditional motif discovery procedures. They therefore proposed a 
new improved benchmark suite with 50 datasets (also based on data from TRANSFAC) 
where they made sure that it would be at least theoretically possible for programs to 
identify the target sites. In addition they made a second harder benchmark consisting of 
25 cases that could not be “solved” using the standard motif models (mismatch model, 
IUPAC and matrix model) but would require motif discovery programs to employ more 
advanced representation models. 
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To complement the benchmark by Tompa et al., which was based on eukaryotic binding 
sites, Hu et al. [200] created a prokaryotic benchmark suite with binding sites for 
Escherichia coli taken from the RegulonDB database. This benchmark consists of two 
collections of datasets. In the first collection (with 62 datasets) the sequences are full 
intergenic regions with a single known target binding site in each. In the second 
collection (70 datasets) the binding sites are surrounded by a fixed number of flanking 
bases ranging from 20 to 800 bp on either side. 

Quest et al. published a tool called the “Motif Tool Assessment Platform” (MTAP) that 
can be used to automatically create benchmark datasets with selected properties and 
evaluate motif discovery methods on these datasets [207]. The binding sites used for the 
datasets come from many different databases. 

Module discovery programs have often been tested on two datasets published by 
Wasserman and Fickett [31] and Krivan and Wasserman [32] which contain regulatory 
modules driving tissue-specific gene expression in muscle and liver cells respectively. 
However, the modules in these datasets are heterogeneous so they are not ideal for 
testing programs that require the same set of motifs to appear in all sequences.  

Another frequently used dataset for module discovery consists of modules implicated to 
be involved in the anterior-posterior segmentation of the Drosophila blastoderm [208]. 
Ivan et al. [209] used these modules along with additional data from the REDfly 
database [210] to create 33 benchmark datasets in a fashion similar to the “generic” 
datasets introduced by Tompa. The annotated modules were taken out of their original 
context and placed inside other sequences from the non-coding part of the Drosophila 
genome. Each new background sequence, which was confined to be ten times the size of 
the planted module, was required to have a GC-content similar to the native context of 
the module. A similar approach was employed in a benchmark study by Su et al. [211]. 

 

Evaluating binding site predictions 

The strictest form of evaluation is to compare the binding site predictions made by a 
program to the known correct answer at the nucleotide level. If a program correctly 
predicts that a nucleotide is part of a binding site, this is called a true positive prediction 
(TP). A nucleotide correctly predicted as not being part of a binding site is a true 
negative (TN). If a nucleotide is predicted as lying within a binding site when in reality 
it is not, this is called a false positive prediction (FP) or Type I error. A missed binding 
site position, on the other hand, is called a false negative (FN) or Type II error. 
The number of TP, TN, FP and FN predictions serves as basis for several common 
performance measures which are listed in Table 2. 
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Sensitivity (Sn), also known as recall, is a measure of the fraction of binding site 
positions that have been correctly predicted by a program. It is found by dividing the 
true positive predictions (TP) by the total number of true sites (the ones correctly 
predicted (TP) and the ones missed (FN)). A motif discovery method that displays high 
sensitivity is less likely to miss out on true binding sites (commit type II errors). 
This measure should never be used as the sole indicator of a program’s performance, 
however, since it is possible for a method to obtain a perfect sensitivity score simply by 
predicting all nucleotides as lying within binding sites. 

Sensitivity is thus commonly considered in conjunction with other performance 
measures, such as for instance specificity (Sp). Specificity is analogous to sensitivity 
except that it applies to non-binding site nucleotides. It is the number of nucleotides 
correctly predicted as background divided by the total number of true background 
nucleotides. However, the usefulness of the specificity measure is somewhat limited in 
relation to motif discovery since the size of the background is usually significantly 
larger than the binding sites in common benchmark datasets. As long as a method does 
not make too many or too large binding site predictions, the TN-score will dominate the 
expression and the specificity score will tend to always be near perfect. 

A more informative measure then is the positive predictive value (PPV), also called 
precision, which is the proportion of binding site predictions made by a program that 
actually correspond to real binding sites. Methods that score high according to PPV are 
less likely to make spurious binding site predictions (commit type I errors). 

Measure Formula

Table 2: Common performance measures 
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While sensitivity is the fraction of correctly predicted binding sites in relation to all true 
sites and PPV is the fraction of correctly predicted sites in relation to all predicted sites, 
the performance coefficient (PC), also known as phi-score or Jaccard index, captures 
aspects of both of these measures. PC is the number of correctly predicted sites divided 
by the union of true and predicted sites. A more straightforward combination of 
sensitivity and PPV is the average site performance measure (ASP), which is simply the 
arithmetic mean of Sn and PPV. The related F-measure is the harmonic mean of Sn and 
PPV. The F-measure is equal to ASP when the values for Sn and PPV are identical, but 
if Sn and PPV are different (e.g if one is high but the other is low) then the score for the 
F-measure will be closer to the smallest of these values.  

Each of the statistical performance measures mentioned so far are based on only two or 
three out of the four parameters TP, TN, FP and FN. They are thus aimed at measuring 
particular aspects of a programs performance, and it is often possible to design a motif 
discovery program so that it optimizes one or more of these metrics at the expense of 
others. For instance, programs can generally obtain high sensitivity scores by making 
numerous binding site predictions (which could be detrimental to the PPV score if many 
of these are false) or obtain high specificity scores by being more conservative and 
make fewer predictions (which could give low sensitivity scores). 

One measure that combines all four parameters is accuracy. Accuracy is simply the 
fraction of total nucleotides that are correctly classified, either as binding site or 
background. Although this measure provides a more overall view, the result can still be 
biased if the number of binding site nucleotides in a sequence is skewed compared to 
the number of background nucleotides, which is commonly the case for motif discovery 
benchmark datasets. So, like specificity, the accuracy measure has somewhat limited use 
since it has a tendency to give an exaggerated impression of performance. 

Another measure that combines all four variables but also accounts for differences in 
the number of binding site and background nucleotides is the correlation coefficient 
(CC). CC is a measure of the overall agreement between the predicted and the true 
instances. A CC score of 1.0 means that the predictions made by a program is in perfect 
agreement with the true binding sites, while a score of -1.0 would imply the complete 
opposite (that a program has predicted all true binding sites as background and all the 
background as binding sites). A CC score close to zero implies that there is no statistical 
correlation between the predictions made by a program and the location of true binding 
sites. Such a score would be expected if the predictions were based purely on random 
guessing. 

Nucleotide level evaluation can sometimes be considered too strict, since it can severely 
penalize predictions that are even the slightest bit off target even though the predictions 
themselves mostly overlap with true sites. For example, if a dataset contains binding 
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sites for a motif of length 12 bp that has a highly conserved core of 6 bp but more 
variable flanks and a motif discovery program only predicts this middle core as the 
motif, the sensitivity can never reach higher than 0.5, even if the locations of all the 
sites were essentially correctly predicted. 

An alternative to nucleotide level scoring is site level scoring where one does not 
consider whether each individual nucleotide is predicted correctly or not, but rather 
whether the location of a predicted site overlaps to some degree with a true binding site. 
A predicted TFBS is considered a true positive at the site level if it overlaps a true TFBS 
with more than e.g. 25%. A prediction which does not overlap a true site (or has too 
little overlap) is considered a false positive prediction, while a true binding site that is 
not sufficiently overlapped by a prediction is a false negative. It is not intuitive to define 
what should constitute a true negative prediction at the site level. Hence, measures that 
are based on TN, such as specificity, accuracy and correlation coefficient, are normally 
undefined in this case. 
 

Evaluating motif predictions 

Another way to evaluate a motif discovery program is to compare the predicted motifs 
directly to the target motifs to see how similar they are [212]. An advantage with this 
approach is that it can also be used in cases where we do not know the exact locations of 
the binding sites within the sequences but we know the binding motif of the target TF, 
such as for datasets compiled from sequences shown to be bound by the same TF 
through ChIP-seq experiments or similar means. 

To assess the similarity of the predicted and target motifs, the two motifs are aligned 
and compared position by position to calculate a total similarity score. A simple way to 
align the motifs is just to slide one motif along the other and select the relative offset 
which results in the best match, but more advanced algorithms that also allow for gaps 
in the alignment, such as Needleman-Wunsch [213] or Smith-Waterman [214], can also 
be used. Both orientations should be considered when determining the optimal 
alignment. 

If the motifs are represented by consensus sequences, it is rather straightforward to see 
how many of the positions that match up, but if the motifs are represented by matrices 
we have to compare these column by column. Several metrics have been suggested for 
pairwise column comparison, including Euclidean distance, Pearson’s correlation, 
Pearson’s chi-squared test, average log-likelihood ratio, (symmetric) Kullback-Leibler 
divergence and Fisher-Irwin exact test. There are also many published tools available 
specifically for comparing motifs, such as STAMP [215], MATLIGN [216], TOMTOM 
[217] and T-Reg Comparator [218]. 
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Problems and limitations with traditional sequence-based approaches 

The field of computational motif discovery has traditionally focused mainly on the 
algorithmic and statistical challenges related to finding significant patterns in sequences. 
Since the search-space tends to grow exponentially for longer motifs or larger sequence 
sets, clever search heuristics must be employed to render the problem tractable. Also, 
good statistical models for representing motifs and background sequences are necessary 
to avoid problems with low-complexity regions and other spurious similarities. 
These are, of course, important issues to deal with and also very interesting areas to 
research in their own right. However, with respect to discovering functional binding 
sites, a purely sequence-based method has fundamental limits, and there are very good 
reasons for rather approaching the problem from a more biological point of view and try 
to incorporate more knowledge from this domain.  

For example, assuming a set of co-expressed genes are indeed all regulated by the same 
TFs binding to the promoters (which is rarely the case), the next issue which must be 
resolved before one can proceed with motif discovery is to select which sequence 
regions to analyse, keeping in mind that binding sites can potentially be located both 
upstream and downstream of the transcription start site. For organisms with small 
genomes, such as bacteria and yeast, this is not that big a problem. Since their intergenic 
regions tend to be short, it is feasible to analyse the full upstream sequence extending all 
the way up to the end of the preceding gene. However, for humans and other organisms 
with larger genomes the closest upstream gene can be located tens of thousands of bases 
away, and it is difficult to determine the actual size of the promoter from the sequence 
alone. To ensure that the target sites are indeed included in the sequences, it is not 
uncommon to analyse rather arbitrarily large regions, but this will of course make the 
search harder for motif discovery programs. To further complicate matters, the genes in 
question could have alternative transcription start sites that might be located far apart, 
and it is by no means certain that the considered start sites are in fact the ones that are 
used in the given context [3]. These issues can potentially be resolved by considering 
additional biologically relevant data. For instance, information about chromatin 
accessibility and epigenetic marks can provide clues to the size and location of regions 
with potential regulatory roles, and data from CAGE-experiments can indicate the 
particular transcription start site which might be used under a specific condition [219]. 

A fundamental problem with sequence-based approaches, however, is that the mere 
presence of a potential binding motif in a sequence does not necessarily imply that it 
represents a functional binding site in vivo [124]. This is particularly important to keep 
in mind when performing motif scanning with known motif models, since even the best 
possible match to a model does not guarantee that the site will actually be bound by the 
TF. In fact, according to the “futility theorem” put forth by Wasserman and Sandelin, 
the vast majority of motif hits produced by scanning procedures are likely to represent 
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false predictions [220]. This might in some cases be attributed to bad or incomplete 
motif models that tend to produce and excessive number of hits. The popular motif 
database TRANSFAC, for example, contain many half-site motif models that only cover 
a part of the full motif that is actually required for binding. One of these motifs, a half-
site for heat shock factor (HSF) with consensus sequence “aGAAn”, has an information 
content of only 5.24, which implies that this motif is expected to occur by chance once 
in every 38 bp in a random sequence. However, the full binding motif for the heat shock 
factor (which binds as a trimer upon activation) is actually composed of three such sites 
located in tandem (where each sub-site can have any orientation). Even if a motif model 
covers the full binding motif for a single factor, this factor could be dependent on 
forming complexes with other factors nearby in order to bind in a stable way. On the 
other hand, transcription factors can also be blocked from binding as a result of steric 
hindrance caused by other non-interacting factors that bind too close to their own target 
sites. The activity at a particular binding motif instance in the DNA will thus depend on 
the context, and while a binding motif can be bound by a TF in one place, this might not 
be the case for other locations containing the motif, even if the sequence pattern itself is 
exactly the same. This context-dependency will, of course, also involve the chromatin 
conformation, since this dictates the general accessibility of different regions in the 
DNA. Last but not least, no matter how accessible a binding site is, it cannot be bound 
by its associated factor unless that factor is actually expressed in the cell and is present 
in an activated state which makes it suitable for binding. And even if the TF is able to 
bind, this single event in itself might not necessarily be sufficient to influence the target 
gene. In fact, in a genome-wide study of TF binding in yeast, the authors estimated that 
only about half of the observed binding events actually resulted in a change in gene 
expression [221]. Hence, relying on additional information related to the state of the 
cells under investigation is necessary for determining whether a particular instance of a 
binding motif in the DNA sequence might actually correspond to an active and 
functional binding site under given conditions. 

 

Utilizing additional information 

As bioinformaticians have come to realize the inherent limitations of merely 
considering the primary DNA sequence when searching for functional motifs, more and 
more methods have been published which aim to incorporate other types of information 
into the motif discovery process as well. 

Many motif discovery tools rely on information about evolutionary conservation as 
indicative evidence of functional elements. This is based on the knowledge that species 
evolve through the accumulation of base mutations and other alterations in their 
genomes. Some of these mutations can be beneficial for the affected individual while 
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others can be detrimental. Still others might be neutral and have no noticeable effect on 
the phenotype at all. Over time, beneficial and neutral mutations are allowed to spread 
throughout the population whereas detrimental mutations will be eradicated as a result 
of natural selection. Since most mutations that occur within functional genomic regions 
(including regulatory sites) are likely to be disruptive, these have less chance of being 
propagated to future generations compared to mutations outside of functional elements. 
Thus, if we use a global alignment program to align orthologous promoter sequences 
from two or more related species and then measure the cross-species variation in each 
position, we would expect functional binding sites to stand out as blocks of highly 
conserved positions (“phylogenetic footprints”) separated by background sequence 
segments with higher variation (Figure 14) [222]. In order for this phylogenetic 
footprinting approach to work satisfactory, the species considered should be closely 
enough related to contain the same TFBSs but still divergent enough so that the 
surrounding sequence has had time to evolve. A similar approach called “phylogenetic 
shadowing” can be used for species that are very closely related provided that sequences 
from enough genomes are available to expose the evolutionary constraints on different 
positions [223].  

It can sometimes happen that a binding site disappears from one location but its 
regulatory function is taken over by an equivalent site nearby [224]. If the position of a 
binding site has changed between species, it will be difficult to detect it through global 
sequence alignment procedures. However, such sites can still be found by local 
alignment methods which are normally used for motif discovery. To further highlight 
the important functional similarities between the sequences (as opposed to similarities 
just resulting from genomes being evolutionary close), Blanchette and Tompa included 
information about the phylogenetic relationship between the sequences as input to their 
motif discovery program FootPrinter [225]. Several other methods have also been 
developed which exploit phylogenetic conservation to identify binding sites (see e.g. 

 

 

 

Figure 14: Phylogenetic footprinting. The figure shows an alignment 
of orthologous promoter sequences from five related yeast species.  
The conservation level of each position is indicated with black bars 
above the sequences. The highly conserved “footprint” regions marked 
with purple boxes are likely to represent functional binding sites. 
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references in [226, 227]). Conservation can be a very useful source of additional 
information when searching for motifs, since conserved sites in promoter regions are 
very likely to correspond to functional binding sites. However, this type of information 
will of course not be able to identify sites that are species-specific and therefore not 
present in other organisms. 

Chromatin conformation is an important determinant of transcription factor binding, and 
it has been demonstrated that nucleosome occupancy is lower at functional TFBS 
compared to non-functional TFBS with the same motifs [228]. Narlikar et al. 
incorporated information about nucleosome occupancy when searching for novel motifs 
with their Gibbs-sampling based program PRIORITY [229]. Standard Gibbs-sampling 
methods work by calculating a posterior score for each sequence position based on their 
match to the current motif and background models, and these models are updated 
iteratively. The PRIORITY method modulates these scores by taking into account a 
prior probability that each individual position could contain an active binding site. 
Such position-specific priors, or positional priors, can be used to represent many kinds 
of sequence-related information. In addition to creating positional priors based on 
nucleosome occupancy, the authors of PRIORITY have also tried out priors based on 
binding motif features for TFs of different structural classes [169], information about 
DNA duplex stability [230] and phylogenetic conservation [231]. 

Because of the simplicity and general applicability of positional priors, similar 
functionality has been incorporated into many other motif discovery methods as well. 
Bailey et al. added support for positional priors in a recent version of their popular 
MEME tool and demonstrated its utility with a conservation-based prior [232]. 
Carvalho and Oliveira extended their combinatorial motif discovery algorithm 
RISOTTO by post-processing its output with a greedy procedure utilizing positional 
priors. The new method was named GRISOTTO [233]. Tang et al. tested their 
BayesMD method with positional priors based on conservation and local sequence 
complexity [234]. Qi et al. used priors based on ChIP-chip data to improve the spatial 
resolution of genome-wide TFBS predictions in yeast with their Joint Binding 
Deconvolution (JBD) method [235]. The ChIPMunk method developed by Kulakovskiy 
et al. was designed to use ChIP-seq peak profiles as positional priors [236].  

The use of positional priors is not limited to de novo motif discovery; they can also be 
employed in conjunction with motif scanning methods. Lähdesmäki et al. combined 
PWM matching with additional evidence in the form of positional priors in their 
ProbTF tool [237]. They also proposed ways to combine evidence from multiple data 
sources – including conservation, regulatory potential [238, 239], nucleosome 
positioning, CpG-islands, ChIP-chip binding data and DNase hypersensitive sites – into 
a unified probabilistic framework. Information about DNase hypersensitive sites 
(DNase HS) has traditionally been considered somewhat of a “gold standard” for 
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identifying potential regulatory regions [240]. As previously mentioned in the chapter 
on experimental methods, DNase I is an enzyme that will cleave DNA relatively 
indiscriminately as long as it can access the DNA, but the presence of transcription 
factors and other bound proteins (including nucleosomes) will prohibit cleavage. 
Hypersensitivity to DNase cleavage is therefore a hallmark of open and accessible 
chromatin. The creators of the MEME suite updated their FIMO motif scanning tool 
[132] to make use of positional priors and tested it with priors based on both DNase HS 
and the four histone modification marks H3K4me1, H3K4me3, H3K9ac and H3K27ac 
[241]. Incorporating any of these features lead to improvements over standard PWM 
scanning, but the greatest gain was achieved with a combination of both DNase HS and 
either of the two histone marks H3K4me3 and H3K27ac. 

Ramsey et al. trained linear classifiers based on PWM match scores plus one or two 
additional features. They found that information about “acetylation valleys” (regions 
with low acetylation in between regions enriched in acetylation) was particularly 
predictive of functional binding sites [242]. Such valleys are likely to represent 
nucleosome-depleted regions in open chromatin areas. 

Pique-Regi et al. integrated information about cell- or tissue-specific experimental data 
(DNase HS and histone modifications) with general genomic information related to 
conservation and distance to nearest TSS in their CENTIPEDE algorithm. This data was 
combined with motif discovery based on 756 known and 49 novel motifs to produce a 
genome-wide map of TFBS in human lymphoblastoid cell lines [243]. 

The most ambitious effort to date with respect to integrating sequence-related features is 
probably the General Binding Preference (GBP) predictor by Ernst et al. [244]. 
They used logistic regression to train a classifier to discriminate between transcription 
factor binding sites and background sequence based on a linear combination of 29 
features related to conservation, melting temperature, GC-content, CpG-islands, repeat 
regions, gene regions (including exons, introns, CDS, 5'UTR and 3'UTR), distance to 
TSS, DNase HS, histone methylations, H2A.Z, CTCF-binding and RNA polymerase II 
binding. Using this classifier they generated GBP scores for every position in the entire 
human genome and found that GBP was a good indicator of TFBSs, either by itself, 
or better yet, in combination with known motif models. 

Module discovery programs and other methods predicting general regulatory regions 
can, of course, also benefit from incorporating additional information. One of the first 
module discovery methods to consider extra information was Stubb, which allowed 
orthologous sequences to be included as input to highlight conserved binding sites 
[198]. More recently, information about chromatin and epigenetics has been employed 
by tools such as CIS [245], Chromia [246], Combinatorial CRM decoder (CCD) [247] 
and i-cisTarget [248]. 
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Even if a TF binds to a motif in the DNA, this binding event by itself might not have 
any regulatory effect, and genome-wide motif scanning will always produce many non-
functional hits. However, motifs that are common to promoter sequences of genes 
shown to have similar differential expression are more likely to play an active role in 
this regulation. Most motif discovery programs only consider gene expression 
information in an implicit qualitative sense, but some methods include quantitative data 
about the expression level of each individual gene. Methods like REDUCE [249], 
Motif Regressor [250] and MARA [251] correlate these gene expression values with the 
presence of discovered binding sites to infer which motifs or combination of motifs are 
most likely to produce the observed behaviour. The MARA method can also incorporate 
additional evidence for each TFBS in its computational model, including the binding 
sites’ conservation and position relative to the TSS.  
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Determining the location of transcription factor binding sites in the genome is an 
important step in elucidating the gene regulatory networks of an organism, and 
computational tools for motif discovery can offer a convenient, fast and cost-effective 
alternative to experimental methods. Although hundreds of motif discovery programs 
have been published, independent assessment studies have shown that the performance 
of such methods on datasets based on real genomic sequences is limited. This has 
previously been demonstrated by benchmarking of single motif discovery methods and 
has here been shown also for the discovery of composite motifs (paper I). 

One reason for the limited performance is that most of these tools only base their 
predictions on information in the DNA sequence itself, but many other factors besides 
the presence of a binding motif will influence whether a transcription factor will 
actually be able to bind and exert its function. More recent tools have demonstrated that 
incorporating additional information, related to e.g. epigenetics, into the motif discovery 
process can improve the ability of computational methods to predict functional binding 
sites. As newly developed high-throughput experimental methods are now generating 
genome-wide data on various genomic features at an unprecedented rate, many of these 
could be relevant to consider with respect to motif prediction. 

The aim of this project has hence been twofold: 

1) To identify sources of data that can potentially be utilized to improve 
computational motif discovery (described in this thesis) 
 
 

2) To make it easier for researchers to take advantage of such data by developing 
new software tools that can integrate various forms of information into the motif 
discovery process in a coherent and flexible way (paper II and III). 
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The need for improved motif discovery approaches 

Bioinformaticians developing motif discovery tools usually report on favourable 
performances in their own publications. However, independent assessment studies, such 
as the seminal benchmark paper by Tompa et al. [205], tend to give less optimistic 
reviews of these tools, especially when analysing genomic sequences from higher 
organisms. Although the low performance in these independent studies can partly be 
attributed to the design of the datasets used and the stringency of the evaluation process, 
it is clear that there is still room for improvement with respect to computational motif 
discovery. In a benchmark study conducted by our own research group, we assembled 
datasets in such a way that it would be at least theoretically possible, from a machine 
learning perspective, to discriminate the target binding motifs from the background 
sequence. Nevertheless, the measured performances of two popular motif discovery 
methods on these benchmark datasets were still very low [206]. 

Later on, we conducted a companion assessment study of composite motif discovery 
methods which also demonstrated room for improvement (paper I). Most of the tools 
included in that study relied on a first step to scan the sequences with a provided motif 
collection to find a set of candidate binding sites, and then they proceeded to search 
through these candidates in order to identify potential modules. If the methods were 
only given the target motifs as input, most of them performed relatively well (at least on 
some datasets). However, when we diluted the motif collections by adding increasing 
numbers of decoy motifs, the performance dropped considerably for most methods 
since the target signal would then be drowned in noise (see Figures 5 and 6 in paper I). 
These results are more encouraging if we look at the situation in reverse, however. 
That is, if we start out with a noisy or hard dataset, it should be possible to increase the 
chance of identifying the correct motifs if we are able to reduce the noise and narrow 
down the search space. This can be done by incorporating additional knowledge into the 
motif discovery process. Since both of our benchmark suites are based on real genomic 
sequences rather than ones which are synthetically created, they are suitable for 
evaluating methods that are able to integrate information related to genomic features 
such as conservation level or epigenetics. 
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The motif discovery pipeline 

Any strategy which aims to improve motif discovery by integration of additional 
information is closely linked to the structure of the motif discovery process itself. 
This includes both the discovery pipeline, as well as the data that are used in the 
pipeline. The process of discovering motifs and binding sites computationally can be 
broadly divided into four steps: 

 

1. Selecting which sequences to analyse 
For de novo motif discovery this will usually involve selecting sequences that 
have a high likelihood of being regulated by the same transcription factors, such 
as segments bound by the same TF according to ChIP experiments, orthologous 
regulatory sequences from related species, genes for proteins that are involved in 
the same processes, genes that are co-expressed (and hence potentially 
co-regulated) or even a combination of the aforementioned. An issue to keep in 
mind when analysing co-expressed genes is that genes can have several 
alternative promoters, and the canonical start sites which are annotated in gene 
databases might not be the ones which were used for the transcripts expressed in 
a particular experiment. One must also choose the exact sequence region to 
consider for the analysis; i.e. how many bases to include upstream or 
downstream of the TSS. Longer sequences will be more likely to contain the 
target motifs, but they will also introduce more noise and make it harder for the 
motif discovery method. Finally, some methods depend on a second negative 
dataset to use for comparison and sequences to include in this set might also 
have to be decided on. 
 

2. Pre-processing 
After the selected sequences have been obtained, they might require some pre-
processing before commencing with motif discovery, for example to clean them 
up by masking low-complexity regions or other repeats. If additional types of 
information are to be incorporated into the motif discovery process, this data 
might also have to be processed at this stage. 
 

3. Motif discovery 
When the sequences and additional data are ready, they can be passed on to a 
motif discovery or motif scanning program for analysis. Multiple programs can 
optionally be run on the same data or the same program can be run several times 
with different parameter settings to broaden the scope of the search. 
 

4. Post-processing and validation  
In the final step of a typical pipeline, the results obtained in the motif discovery 
step are post-processed and validated to remove potentially false predictions. 
This could e.g. involve assessing the statistical significance of the predictions, 
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comparison of all predicted motifs to remove duplicates or to cluster similar 
predictions together, or comparing predictions to libraries of known 
transcription factor motifs.  

The four steps are not always strictly separated or executed in a distinct order. 
Most motif discovery programs perform some form of assessment or validation of their 
own predictions before reporting the results, and some also do their own pre-processing. 
The pre- and post-processing steps can optionally be left out, and it is also possible to 
go back and forth to repeat steps in the pipeline. For example, some methods predict 
multiple motifs by cycling through the pre-processing and motif discovery steps; after a 
first motif is predicted, the binding sites for this motif are masked from the sequences to 
avoid predicting the same motif over again in a second motif discovery step. 
The “iterated clustering” approach by Abul et al. repeatedly cycles through all four of 
these steps [252]; based on an initial run-through of the first three steps, post-processing 
is performed to evaluate the predicted motifs and cluster the sequences into more 
coherent groups based on which motifs they contain. The motif discovery process is 
then repeated separately on each cluster before all predicted motifs are compared once 
again and the sequences re-assigned to new clusters. 

 

Information levels in data for motif discovery 

Information about sequences in a dataset can be represented at several levels: 

1. Nucleotide level 
This level represents information about a single position in a sequence, such as 
the specific nucleotide at that position or the conservation level of that position 
across different species. 

2. Site level 
Information related to continuous stretches of nucleotides within a sequence. 
For instance that a specific region in the sequence encodes a gene or binds a 
transcription factor.  

3. Inter-site level 
Information about how sites within a sequence relate to each other. For example 
that transcription factors binding to two adjacent sites can interact with each 
other. 
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4. Sequence level 
Information related to a single sequence in the dataset. For example that a 
sequence is the promoter of a gene, that this gene has a certain expression level 
in a given tissue or that the protein encoded by that gene has a specific function. 

5. Inter-sequence level  
Information about how two or more sequences in the dataset relate to each other. 
For example that two sequences are actually orthologous promoters from two 
different species or that one sequence contains a distal enhancer which is 
brought in contact with a promoter represented by a second sequence. 

6. Dataset level  
Information about the dataset as a whole, for instance that all the sequences are 
related to genes which show similar expression patterns, are related to the same 
pathway or are believed to contain binding motifs for the same transcription 
factors. 
 

Additional data can in principle be used in all steps of the motif discovery pipeline, 
while contributing information into this process at multiple levels. Therefore many 
different data sources are relevant as additional data. 

Useful data sources 

The remainder of this chapter summarizes various forms of information that can 
potentially be utilized to improve motif discovery. Some of these are features which are 
able to pinpoint almost exactly the location of a TFBS. Others are indicative of larger 
regions that could play a role in regulation and they can therefore be used to narrow 
down the sequence search space. Most of the entries listed have already been proven 
useful by others, while a few might be considered somewhat speculative. Some of the 
features, like SNP variation, are not necessarily predictive of regulatory regions by 
themselves, but since they can influence whether a particular TF will be able to bind to 
a site or not, it may be relevant to at least take them into consideration when analysing 
sequences. 

 

Phylogenetic conservation

Since genomic regions that have been evolutionary conserved across large phylogenetic 
distances are likely to represent important elements, conservation within regulatory 
regions can be taken as a potential indicator of functional TFBS [253]. Conserved 
regions can be identified through global alignment of orthologous sequences or by 
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searching for common motifs in such sequences (local alignment). However, 
information on nucleotide resolution conservation levels for many organisms is also 
available as pre-computed tracks made from global alignments of genomes from several 
species [254]. Such tracks can e.g. be used as positional priors to guide motif discovery 
programs towards finding conserved sites or it can be used in a post-processing step to 
filter predicted TFBS that are not conserved. 

 

Nucleosome occupancy

The presence of nucleosomes can obstruct DNA and prevent transcription factors from 
accessing their target sites. Because of this, there seems to be some correlation between 
nucleosome positions and location of TFBS [255]. It is believed that the positioning of 
nucleosomes is, at least to some degree, facilitated by a “nucleosome positioning 
signal” in the DNA sequence itself consisting of specific patterns of periodically 
repeating dinucleotides. Many attempts have therefore been made at predicting the 
locations of nucleosomes computationally based on this signal [228, 256, 257]. 
However, the specific placement of nucleosomes is also influenced by many other 
factors and can vary between cell-types [258]. It has been shown, for example, that the 
presence of the insulator protein and transcription factor CTCF can serve as an anchor 
for positioning nearby nucleosomes [259]. In addition to computational predictions, 
data on experimentally mapped nucleosomes is also available for some organisms and 
cell-types (e.g. [260, 261]). 

 

Histone modifications and chromatin state

The role of all the possible histone modifications and their interplay is not yet fully 
understood, but at least some modifications have been linked to accessible chromatin 
and active regulatory regions (e.g. H3K4me1/2/3). Histone modifications can thus 
potentially be used to determine the location and activity of regulatory regions in 
different cell-types (Figure 7), and the absence of any modification marks at all can 
perhaps be interpreted as a sign of nucleosome-free regions that could be readily bound 
by transcription factors [44]. 

 

DNA modifications and CpG islands

DNA modifications involve covalent attachment of additional chemical groups to the 
standard nucleotides. The most common such modification (at least in vertebrates) is the 
addition of a methyl group to the fifth carbon in cytosine, but other modifications are 
also found to various extents in different organisms, including 5-hydroxy-
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methylcytosine, N6-methyladenosine and 7-methylguanosine. These modifications do 
not alter the genetic information contained in the sequence itself or the ability of 
nucleotides to form Watson–Crick base pairs, but they play an important role in the 
epigenetic regulation of genes, including genomic imprinting and X chromosome 
inactivation [262]. Methylation of cytosines within a binding site can block some TFs 
from binding, whereas other TFs will only bind to methylated sites [60, 61]. 
Tissue-specific genome-wide tracks of DNA methylation are now becoming available 
thanks to experimental techniques such as bisulfite sequencing [263], Methyl-Seq [264] 
and MeDIP-chip/seq [265]. In humans, most CpG-sites are methylated except within 
so-called CpG-islands which are commonly associated with promoter regions of 
especially house-keeping genes [266]. Consequently, many TSS prediction tools rely on 
CpG-islands as a feature to identify potential promoter regions [267, 268].  

 

Physical properties of the DNA double helix

The genomic information is encoded in the specific sequence of the four nucleotides in 
the DNA, and one of the benefits of the DNA double helix as an information carrier is 
that the molecule itself remains relatively stable regardless of the sequence contents. 
Hence, any base mutations introduced in the sequence will not affect the overall 
integrity of the DNA molecule. However, specific sequence patterns can influence the 
local shape and physical properties of the double helix by altering the angle, distance 
and forces between adjacent and opposite bases [269]. This will determine properties 
such as melting temperature, duplex free energy, bending stiffness, etc. which could in 
turn influence the ability of transcription factors to bind [230, 244]. It has been 
demonstrated, for example, that AT-rich stretches devoid of TpA-dinucleotides will 
result in a local narrowing of the minor groove and produce an elevated negative 
electrostatic potential which could serve as an unspecific binding motif for transcription 
factors containing positively charged arginines in their binding domain [270]. 
Physical properties can also be exploited for general promoter prediction [271, 272]. 

 

Repeat regions

Repeat regions are abundant in genomes and they come in two main types: transposable 
elements (transposons) and tandem repeats. The latter consists of short sequence 
patterns that are repeated several times directly after each other. The length of the 
patterns range from 2–6 bp in short tandem repeats (microsatellites) up to 60 bp for 
so-called minisatellites. It is believed that such repeats are introduced as a result of 
slippage or other errors arising during DNA replication. Transposable elements, on the 
other hand, are sequence segments that are able to move from one place in the genome 
to another, either by cutting themselves out and reinserting themselves elsewhere or by 
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first producing an RNA copy which is subsequently reverse transcribed into DNA and 
inserted in a new place. This second mechanisms will result in additional copies of the 
transposon and increase the size of the host genome. In humans, for example, 
a  bp long transposable element called Alu exists in more than a million copies and 
single-handedly comprises about 10% of the genome [273]. All in all, approximately 
half of the human genome consists of repeats [136]. Repeated elements are also the 
main reason why some seemingly simple organisms have disproportionately large 
genomes. Many transposons are believed to be of viral origin, and since new genomic 
insertions tend to be disruptive to the host, such elements are usually silenced, for 
instance by packing them in dense heterochromatin.  

For a long time, repeat regions were considered to be mostly “junk DNA”, and they are 
often masked from the sequences before performing motif discovery since such repeats 
could introduce spurious but statistically significant similarities between the sequences 
which can overshadow the true motifs. However, there are numerous examples 
demonstrating that some repeat regions do in fact play a role in gene regulation and that 
transposable elements containing TF binding motifs could be an important mechanism 
for propagating regulatory modules and for bringing different genes under coordinated 
control by the same factors [274-276]. It is believed, for example, that transposable 
elements are responsible for large parts of the c-Myc and p53 regulatory networks [277, 
278]. Hence, if one has verified that a transcription factor has bound to a site located 
within in a certain repeat element in one place, there is a chance that this factor could 
also be functional in other regions containing the same repeat type. 

 

DNase hypersensitive sites

Hypersensitivity to cleavage by DNase or micrococcal nuclease is a hallmark of open 
and accessible chromatin, and hypersensitive sites can serve as an indication of active 
regulatory elements like promoters and enhancers under given conditions. Although 
detection of DNase HS sites traditionally involved a lot of work, recent high-throughput 
experimental methods have enabled efficient mapping of hypersensitive sites at 
genome-wide levels [279, 280]. Regions defined as DNase HS sites typically range 
from about 100 bp up to a few thousand bp and are characterized by high levels of 
cleavage throughout the region. To identify individual TFBS one has to analyse the 
region further with other experimental or computational methods. One such method, 
called “digital genomic footprinting” aims to find TFBS at single nucleotide resolution 
by looking for short protected footprints in the cleavage pattern within a DNase HS 
region [281]. DNase HS sites are condition-specific, but can to some degree generalize 
to other conditions as well, especially for genes that are expressed in many cell-types 
[282]. 
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Another method to detect regions with an open chromatin conformation is called FAIRE 
(formaldehyde-assisted isolation of regulatory elements) [283]. This technique works 
somewhat similarly to ChIP in that formaldehyde is used to crosslink proteins to DNA. 
The crosslinked chromatin is sheared into smaller fragments and the protein-bound 
DNA fragments are separated from unbound DNA using phenol-chloroform extraction. 
Since histones are the most abundant proteins in chromatin, the organic phase of the 
separated mixture will be dominated by nucleosomes whereas nucleosome-free DNA 
will be enriched in the aqueous phase. Open chromatin regions identified by FAIRE 
show a substantial overlap with DNase HS regions. However, compared to DNase HS, 
FAIRE seems to be more sensitive to detecting distal regulatory elements and less 
sensitive to promoter regions [284]. 

 

ChIP seq/chip/PET/exo

ChIP-seq and related techniques that can map protein-DNA binding events on a 
genome-wide scale were described earlier in the chapter on experimental methods. 
These techniques provide evidence that a specific transcription factor has bound to a 
region of the DNA (although the binding itself could have been indirect via another 
protein). The regions returned by most of these methods tend to be in the order of a few 
hundred to a few thousand bases, but computational methods can narrow down the 
regions further to identify the individual binding sites. ChIP data can provide a starting 
point for selecting sets of sequences to analyse with de novo motif discovery methods, 
and the raw data signal itself can be used as positional priors. ChIP data can also be 
considered as a form of validation for binding sites for the target factor discovered by 
motif scanning. Although ChIP data is TF-specific, regions identified by one ChIP 
experiment can be taken as an indication that there could be binding sites for additional 
factors nearby as well. 

 

TFBS position relative to genomic features

Many transcription factors display a clear positional preference of binding in relation to 
e.g. the transcription start site, and some TFs might even have different functions 
depending on where they bind [285, 286]. Information about the preferred binding 
location of a given TF can thus be used to filter out potentially spurious motif 
occurrences that lie outside of this area. When analysing related sequences, such as 
promoters from co-regulated genes, the tendency of a motif to occur at the same relative 
position in multiple sequences can also be considered supporting evidence that the motif 
could be significant for this dataset. Several motif discovery methods already consider 
information about the positional distribution of binding sites [287-289]. 
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TF–TF interactions and locations of other known TFBS

Over the years, numerous binding sites from various organisms have been individually 
validated and published by experimental biologists. Many of these sites have also been 
included in central annotation databases like TRANSFAC [117] and ORegAnno [290]. 
Although this knowledge is valuable enough in itself, it can also be used to predict 
additional sites computationally. For example, if a region with a validated binding site 
from one species is conserved in the genome of a related species, it is likely that an 
equivalent functional site could also exist in that species. Furthermore, if one has 
already identified a single binding site, there is a high chance that there could be other 
functional sites nearby, since binding sites tend to occur in clusters. If, in addition, a 
nearby predicted TFBS binds a factor which is known to interact with the factor binding 
to the previously validated site, this fact could be considered supporting evidence for 
the predicted site [124, 221]. Many databases focusing on transcriptional regulation 
contain data about TF–TF interactions, and such information can also be found in more 
general protein-interaction databases (see e.g. [291] for a list). 

 

CAGE data

Cap analysis of gene expression (CAGE) is a high-throughput experimental method 
than can determine transcription start sites on a genome-wide scale by isolating and 
sequencing short sequence tags originating from the 5' end of mRNA transcripts [219]. 
The primary use of CAGE data is to identify the particular start sites, and hence also 
alternative promoters, that are used by genes under various conditions. The shape of the 
distribution of mapped tags (sharp versus broad) can also serve as an indication of the 
general class the gene belongs to (tissue-specific, house-keeping, etc.) [3]. In addition, 
normalized tag frequencies can be used as a measure of gene expression levels. 
The original CAGE method worked by cleaving off the first 20 bp from the 5' end of all 
mRNA transcripts isolated from a cell and concatenating these into longer fragments 
that were sequenced. The individual 20 bp tag components could later be recovered 
from these sequences and mapped back to the genome. Newer sequencing technology 
has allowed the tags to be sequenced directly without having to construct larger 
concatamers [292]. Since the 5' ends of the tags correspond to the start of the transcripts, 
the CAGE method allows TSS usage to be determined with high sensitivity. 

 

Gene expression

The expression levels of genes in various tissues or in response to specific treatments 
can be measured by many different means, including e.g. microarrays or high-
throughput sequencing of RNA transcripts. Gene expression data is commonly used to 
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identify groups of co-expressed genes that could potentially be regulated by the same 
transcription factors. Most motif discovery programs do not use this information any 
further, but some methods explicitly incorporate quantitative gene expression levels into 
their computational model and relate this to the presence of potential binding motifs 
[249-251]. In addition to the target genes, the expression levels (and hence tissue-
specificity) of the transcription factors themselves are also important to consider, since a 
TF is obviously not able to regulate any genes unless it is actually expressed itself in the 
same tissues. 

 

Genomic variation

Although all members of the same species share the same basic genome, there are still 
minor but significant variations in the DNA sequences between individuals. 
These variations can come in the form of single base mutations (which are called single 
nucleotide polymorphisms or SNPs if they are somewhat common in the population) or 
as genomic insertions, deletions and duplications (e.g. copy number variations). 
Since transcription factors bind to specific DNA motifs, variation in the sequence within 
regulatory regions can influence the ability of TFs to bind. It is therefore prudent to 
keep in mind that the standard reference genomes that are normally employed for 
bioinformatics analyses will be slightly different from the genomes of cells used in 
biological experiments. This is especially important to consider when performing 
analyses in relation to e.g. cancer and other genetically linked disorders which are 
directly caused by disruptive variations which might not exist in the reference genome 
(see e.g. [293] for an example of a disorder caused by a SNP within a TFBS). 
Several  public databases exist which provide information about SNPs and other 
common genetic variations, and some of these even have specific focus on variations 
affecting regulatory elements [294]. If single nucleotide variations from a large number 
of individuals are known, this information could potentially also be used to identify 
“conserved” TFBS with an approach similar to phylogenetic shadowing [295].  

 

Gene ontology

Gene ontology (GO) is an effort to systematize knowledge about genes and gene 
products by describing each gene with terms from a controlled and hierarchically 
organized vocabulary [296]. Each GO term has a unique identifier, and many tools have 
been developed to identify terms that are significantly associated with a set of genes 
(e.g. [297, 298]). Gene ontology can for instance be used prior to de novo motif 
discovery to cluster sequences into potentially more coherent subgroups based on 
common terms, or it can provide information about which general class the genes 
belong to (house-keeping, tissue-specific, etc.) which could in turn dictate how to best 
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proceed with the analyses. GO can also be used to predict possible roles of TFs or as a 
form of validation after motifs have been discovered [299]. For example, if one has 
identified an overrepresented motif in promoters of genes expressed in brain tissue and 
the TF binding to that motif is described with the GO-term “brain development 
(GO:0007420)”, this is a good indication that the discovered binding sites could indeed 
be functional in this context.  

 

3D chromatin structure and nuclear localisation

Bioinformaticians working on motif discovery tend to view the DNA sequence as a 
simple linear string, but in reality chromosomes fold into complex three-dimensional 
structures within the cell nucleus. Each chromosome generally occupies its own 
territory, but some confined movement is still possible, and it has been shown that 
nuclear localization affects gene activity. A prevailing hypothesis is that transcription 
only takes place in a few select foci called “transcription factories” and that genes loop 
out of their chromosomal territories and relocate to these foci upon activation [300, 
301]. Such looping is also involved in bringing promoter regions in contact with long-
range enhancers [302]. On the other hand, portions of the genome located in proximity 
to the nuclear lamina tend to be associated with inactive heterochromatin [303]. 
The three-dimensional structure of chromosomes and interactions between different 
parts of the genome can be determined with experimental methods such as Chromosome 
Conformation Capture (3C) [304] and extensions thereof [305]. 
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The original project plan to create an improved motif discovery workbench involved 
developing stand-alone tools for each of the four pipeline steps described in the 
previous chapter (i.e., selecting sequences, pre-processing, motif discovery and post-
processing). These tools could then alternatively be used individually or in combination, 
similar to the design of other modular analyses workbenches like RSAT [306] and 
MotifSuite [134] 

The initial effort to create a tool for the first step – a program which could group input 
sequences into more homogeneous clusters based on sequence similarities – was 
eventually abandoned as it became clear that it did not work satisfactory on real 
biological sequences but only on artificial data. This software tool was consequently 
never published. 

Since positional priors had previously been shown to be a convenient way of 
representing sequence-related information [169, 229-231], further research focused on a 
program for the second pre-processing step which could be used to manually construct 
priors tracks by combining information about various features. The initial idea was just 
to create a web service tool where the user could assign individual weights to a fixed set 
of predefined features, and the final priors track would then simply be a linear 
combination of these features. However, this approach soon seemed too constrained, 
and it was rather decided on a more flexible solution whereby the user would stepwise 
build up a priors track by applying various operations to a set of features selected from a 
larger library. These operations could both be used to manipulate the contents of a single 
track and to combine information from multiple tracks. The application of the 
operations could also be limited to certain parts of the sequences by specifying 
conditions that had to be satisfied. To allow the program to be incorporated as a 
component in automated analysis pipelines, a simple protocol language was conceived 
in which the steps required to construct the priors track could be described. This way the 
program would be able to repeat these steps automatically without further user 
interaction. The developed software tool was eventually published as PriorsEditor 
(paper II). 

Originally, PriorsEditor was only envisioned as a pre-processing tool, and the 
constructed priors track would have to be output to a file which could subsequently be 
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provided as input to a motif discovery program in the next step of the pipeline. 
However, as PriorsEditor was already equipped with a graphical user interface and the 
ability to visualize feature data tracks, the program would also be suited to visualize the 
locations of predicted binding sites relative to other genomic features after motif 
discovery. Since it could also read and write many common data formats, it seemed 
relatively easy to implement new functionality which would allow PriorsEditor to just 
pass the sequence data and positional priors track off to another motif discovery 
program which could be run in the background. When the motif discovery program had 
finished, PriorsEditor would simply read the results back again and present it visually to 
the user. As this would add tremendous value to the tool, the ability to perform motif 
discovery and also motif scanning in this way was included already in the first 
published version of PriorsEditor. 

It was soon realized that the whole motif discovery pipeline could be incorporated into 
PriorsEditor by exploiting the functionality provided by operations and protocols to 
control the execution of individual data processing steps. The processing itself could 
either be performed by internal operations or in collaboration with external programs for 
more advanced tasks.  

The three feature data types included in PriorsEditor – DNA Sequence Datasets, 
Numeric Datasets and Region Datasets – could already represent information related 
to the first two information levels described earlier, and these were later supplemented 
with additional types that could hold information about higher levels. For example, a 
data type to model regulatory Modules (composite motifs) was introduced to represent 
this specific type of inter-site relationship (level 3), and the Motif data type was 
extended to allow for annotation of known interaction partners. Operations were also 
included to support de novo module discovery and module scanning. Information 
related to individual sequences (level 4) could be represented with the new Map data 
type or more generally with Text Variables, whereas inter-sequence information 
(level 5) could to some extent be modelled with Collections and Partitions which group 
together related sequences. 

Other types of functionality were also added to enhance PriorsEditor. One of the 
primary new inclusions was the ability to use machine learning to train classifier objects 
(Priors Generators) which could generate positional priors automatically based on a 
selected set of features. Several different Analyses were also introduced for the post-
processing step to validate predicted motifs and binding sites or to calculate various 
statistics from the data. The results from these analyses could be presented as nicely 
formatted reports with tables and figures. Finally, a few convenient tools were added 
which could take advantage of the graphical user interface for interactive data 
exploration. 
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In the end, what had originally started out as a small pre-processing tool with narrow 
focus had grown to become a general and full-featured workbench for motif discovery. 
To reflect this fact, the PriorsEditor name was eventually abandoned and the program 
renamed as MotifLab (paper III). 

 

Practical examples 

A guiding principle behind MotifLab is that it should be easy to do the standard tasks 
related to motif discovery and scanning – such as obtaining sequences, obtaining motifs 
and running a motif discovery program on this data – but it should also be relatively 
easy to perform more advanced data processing and analyses which would normally 
require writing custom scripts in some general programming language. 

This section includes a selection of protocol examples demonstrating how MotifLab can 
be used to solve a few practical problems related to motif discovery. It should be noted 
that it is not required for users to know the syntax of the protocol language in order to 
do the analyses, as the steps can be performed one by one by simply selecting the 
operations to execute from menus in MotifLab’s graphical user interface. 

Each line of a protocol contains a single command, and the first word of the command 
is the name of the operation to perform1 (see Table A1 in the appendix for a list of 
available operations). If the results returned by the operation should be assigned to a 
new data object, the name of that data object is written before the command and is 
followed by an assignment operator in the form of an equals sign. 

The protocols here are coloured according to the same default scheme which is used by 
MotifLab’s own internal protocol editor: operations are in red, general data types are in 
orange whereas names of specific data objects are in blue, names of analyses and also 
general data formats (for input and output) are in orange, names of external programs 
are in green, double quoted text strings are also in green and numeric constants are 
coloured in pink. 

The first protocol example demonstrates how motif scanning can be performed with the 
help of an external program. When this protocol is executed, MotifLab will ask the user 
to define which sequence regions to perform the analyses on (unless they are defined 
already). MotifLab will then obtain the DNA sequence data for these regions, load a 

                                                 

1 MotifLab requires that the full command is written on a single line, but because of limitations on page 
width in this document, the longest commands in the protocol examples have here been divided across 
multiple lines. Each new command line is marked with a line number.  
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collection of motifs from the TRANSFAC Public database and perform motif scanning 
using the program SimpleScanner. The predicted binding sites (with at least 90% match 
to the motifs) are returned in a new track called “TFBS”. 

 

The “new” operation in the first line will create a new DNA Sequence Dataset object 
based on data obtained from a track called “DNA”. Data sources for this track and 
several other commonly used tracks are preconfigured in MotifLab, and additional 
tracks can easily be added from e.g. UCSC Genome Browser [307] or DAS servers 
[308]. Each track can have several separate data sources for different organisms and 
genome builds, so even if your sequences come from different genomes, MotifLab will 
automatically use the correct data source for each individual sequence. 

One data track which is available for many species is “Conservation”, and the next 
example demonstrates how this information can be used to perform a simple form of 
phylogenetic footprinting by filtering out predicted sites in the TFBS track that are not 
conserved. 

 

Here, a condition is imposed on the “filter” operation in the second line (introduced by 
the keyword “where”), so that the operation is only applied to TFBS where the average 
value of the Conservation track within the TFBS region is less than some specified 
cutoff. Some motif models, especially from the TRANSFAC database, have a core 
region with high information content which is flanked by more variable positions, 
so only a fraction of the positions in the motif are actually under evolutionary pressure. 
A more advanced condition that takes this into consideration is “where region’s 
weighted average Conservation < 0.2”, which will weigh the conservation value 
in each position with the information content of the motif in that position before taking 
the average. 

Protocol 1: Motif scanning 
1 
2 
3 

DNA = new DNA Sequence Dataset(DataTrack:DNA) 
Motifs = new Motif Collection(Collection:TRANSFAC Public) 
TFBS = motifScanning on DNA with SimpleScanner { 
    Motif Collection = Motifs, 
    Threshold type = "Percentage", 
    Threshold = 90 
  } 

Protocol 2: “Phylogenetic footprinting” 
1 
2 

Conservation = new Numeric Dataset(DataTrack:Conservation) 
TFBSconserved= filter TFBS where region’s average Conservation < 0.2 
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The filter operation is one of the most useful operations, since it can be employed in the 
post-processing step to remove potentially false binding site predictions. The next 
protocol uses this operation to remove TFBS that are outside of DNase hypersensitive 
regions (and are thus likely to reside within more condensed chromatin). 

 

It is also possible to filter out predicted sites that are not supported by ChIP-seq data. 
If the ChIP-seq track contains regions for several different TFs, the challenge is to link 
ChIP-seq peak regions for each individual TF (which can have type names like 
“CEBPB” and “c-Fos”) to the corresponding binding sites for the TF (which normally 
have types named after motif identifiers). In the protocol below, this issue is resolved by 
renaming the ChIP-seq regions so that their new type names contain lists of identifiers 
for the corresponding motifs. This is accomplished with the “type-replace” transform 
operation which relies on a Text Variable containing the replacements to be made in 
‹KEY VALUE› format. In the subsequent filtering step, TFBS that do not overlap with 
ChIP-seq peak regions of a matching type is removed. 

 

If we know that some TFs will only be functional if they bind within a certain distance 
to the TSS, we can used this information to filter out predicted motif occurrences 
outside of the preferred locations for each individual TF.  

In Protocol 5 below, the preferred binding regions will be defined with the help of two 
Numeric Maps. A Numeric Map is a data object which can associate each motif, module 
or sequence with an individual numeric value. Here we use one Motif Numeric Map to 
specify the minimum preferred distance to the TSS for each motif and a second map to 
specify the maximum distance. The first two lines in the protocol define the preferred 

Protocol 3: Filter TFBS predictions outside of DNase HS regions 
1 
2 

DNaseHS = new Region Dataset(DataTrack:DNaseHS_peaks) 
TFBS_within_DNaseHS = filter TFBS where not region overlaps DNaseHS 

Protocol 4: Filter TFBS predictions not supported by ChIP-seq peaks 
1 
2 
 
 
 
 
 

3 
4 

ChIP_seq_peak = new Region Dataset(DataTrack:TFBS_ChIP-Seq) 
ChIP_seq_map = new Text Variable( 
     "CEBPB=>M00109 M00117", 
     "c-Fos=>M00517 M00924 M00926", 
     "c-Jun=>M00517", 
      ... 
  ) 
transform ChIP_seq_peak with type-replace(ChIP_seq_map) 
TFBS_supported_by_ChIP_seq = filter TFBS where not region overlaps 
                                    type-matching ChIP_seq_peak 
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binding region of MOTIF1 as being between 40 to 90 bp upstream of the TSS whereas 
the preferred region of MOTIF2 is between 20 to 50 bp (other motifs are allowed to 
reside up to 1 Kbp away in either direction). In the third line, a new numeric track called 
“position” is set up where the value in each position of the track reflects its distance 
from the TSS. 

One nice thing about the Map data type is that whenever a Map is used as an argument 
for an operation, the specific argument value will depend on the context when the 
operation executes. Here, for example, we have two Motif Numeric Maps as arguments 
to the filter operation in the fourth line. For every region this operation is applied to, 
the operation will first check which motif the region corresponds to and then use the 
value for that motif from the map. To satisfy the condition of the filter operation, 
the value of the position track at the start of the region (which equals the distance from 
the TSS) must be within the range set up by the two maps, and this range will thus 
depend on the specific motif in question. If we had used Sequence Numeric Maps as 
arguments instead of Motif Numeric Maps, the operation would have first determined 
which sequence it was applied to and then looked up a value for that sequence in the 
map. In that case, the motifs would have to be within a different region with respect to 
each sequence, but each region would then apply to all motifs regardless of their type.  

 

Since MotifLab allows motifs to be annotated with information about known interaction 
partners, this information can be used to filter potentially spurious motif occurrences 
that do not have binding sites for any known partners nearby, as shown in Protocol 6.  

 

The other TFBS must here lie between 0 to 16 bp away. The reason for writing the 
condition this way rather than using the perhaps more intuitive command “filter TFBS 
where region’s distance to closest interaction partner > 16”, is to force the motifs to be 
non-overlapping (as overlapping sites by definition have negative distances).  

Protocol 5: Filtering motifs outside of the TF’s preferred binding location 
1 
2 
 

3 
4  

minDistance = new Motif Numeric Map(MOTIF1=40, MOTIF2=20, -1000) 
maxDistance = new Motif Numeric Map(MOTIF1=90, MOTIF2=50,  1000) 
 
position = distance upstream from transcription start site 
TFBS_location = filter TFBS where not region’s startValue position   
                                      in minDistance to maxDistance 

 

Protocol 6: Filter TFBS predictions that do not have another TFBS for a known 
interaction partner nearby 
1 
 
TFBS_interacting = filter TFBS where not region’s distance to 
                   any interaction partner in 0 to 16 
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We could have used Motif Numeric Maps instead of constant numbers to define the 
distance range, and the range would then have been determined by the motif of the 
target site; e.g. MOTIF1 could have required that interaction partners bind within 5 to 
8 bp, whereas partners for MOTIF2 should bind within 9 to 12 bp. It is not possible to 
define individual distances for specific pairs of motifs with this approach, for instance 
that the distance between MOTIF1 and MOTIF2 should be within 5 to 8 bp, but if 
MOTIF1 partners up with MOTIF3 the distance should be between 8 to 10 bp. 
However, such constraints can be specified if we instead use the Module data type to 
model and search for composite motifs.    

The last example of TFBS filtering demonstrates how more complex conditions can be 
defined by combining multiple individual conditions with Boolean operators (and/or). 
Such compound conditions can be nested to arbitrary levels by grouping conditions 
together with parentheses. Protocol 7 employs a compound condition to filter out 
binding sites that overlap with methylated CpG-sites, but only if it is known that the 
corresponding TF is unable to bind to methylated sites. In this particular example, 
a collection containing motifs for TFs known to be blocked by methylation is defined 
manually, but it would also be possible to include this information as a user-defined 
property of Motif objects and derive the collection automatically from this property. 

 

One issue which has to be resolved when analysing promoters regions of genes is to 
decide on the size of the sequence region to analyse relative to the TSS. Often, the size 
is chosen rather arbitrarily, but it is common to at least limit the region so that it does 
not overlap with any upstream genes or downstream coding regions. The following 
protocol will define such promoter regions by first creating a 1 bp region at the location 
of the TSS in each sequence and then extending these regions in both directions until 
they encounter either an upstream gene or a downstream CDS. If there are no annotated 
upstream genes or downstream CDS for a sequence, the promoter region will simply 
extend to the edge of the sequence. 

Protocol 7: Filter TFBS that are inactive when methylated 
1 
2 
 

3 
 

Blocked_by_methylation = new Motif Collection(MOTIF1, MOTIF2) 
meCpG = new Region Dataset(DataTrack:CpG_methylation_K562) 
 
filter TFBS where region’s type in Blocked_by_methylation  
              and region overlaps meCpG 
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A more sensible way to determine the span of the promoter regions would be to look at 
histone modifications in the vicinity of the TSS. The “chromatin state” track 
(see Figure 7) divides the whole genome into consecutive 200 bp regions and assigns 
each region a state based on information about different histone modifications in the 
region.  

The example in Protocol 9 defines a primary regulatory region associated with each 
sequence by identifying segments of continuous 200 bp regions labelled as promoters 
(either active or weak but not poised) or enhancers (strong or weak) and then picks out 
one of these segments which lies closest to the TSS. The protocol first obtains 
chromatin state data for a specific cell type (here K562) and removes all 200 bp regions 
not associated with promoters/enhancers. Next, the remaining regions that lie directly 
next to each other are merged into larger segments, and each segment is assigned a 
score based on its minimum distance to the TSS. Finally, the protocol determines which 
such score is the smallest within each sequence and removes all segments that do not 
have this particular score. (The “statistic” operation in line 7 returns a Sequence 
Numeric Map which is used as an argument in the condition on line 8). 

 

Protocol 8: Delimiting the span of promoter regions 
1 
2 
3 
4 
5 
 

Genes = new Region Dataset(DataTrack:EnsemblGenes) 
CDS   = new Region Dataset(DataTrack:CCDS) 
Distance_to_TSS = distance upstream from transcription start site 
Promoter = convert Distance_to_TSS to region where Distance_to_TSS=0 
extend Promoter upstream until inside Genes, 
                downstream until inside CDS 

 

Protocol 9: Determining the span of promoter regions based on chromatin state 
1 
2 
 
 
 
 
 
 
 

3 
 

4 
5 
6 
7 
8 

ChromatinState = new Region Dataset(DataTrack:ChromatinState_K562) 
active_states = new Text Variable( 
     "1 Active Promoter", 
     "2 Weak Promoter", 
     "4 Strong Enhancer", 
     "5 Strong Enhancer", 
     "6 Weak Enhancer", 
     "7 Weak Enhancer" 
  ) 
RegulatoryRegions = filter ChromatinState where not region’s type  
                                          in set active_states 
merge RegulatoryRegions closer than 1 
Distance_to_TSS = distance upstream from transcription start site 
set RegulatoryRegions[score] to minimum Distance_to_TSS 
minScore = statistic "minimum score" in RegulatoryRegions 
Promoter = filter RegulatoryRegions where region’s score > minScore 
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Creating and using positional priors to guide motif discovery is one of the primary 
applications of MotifLab. Many data tracks, including e.g. Conservation or ChIP-seq 
tracks, can be used directly as positional priors since higher values in these tracks 
correlate well with the presence of functional binding sites (even though the tracks do 
not really contain probability values in a strict statistical sense).  

Lines 1–4 in Protocol 10 loads a track containing the raw ChIP-seq signal data for the 
transcription factor GATA-1 in the K562 cell line and performs some normalization 
before using the track to guide the de novo motif discovery program ChIPMunk. 

 

The rest of the protocol (from line 5 onwards) demonstrates how MotifLab’s operations 
can be used to manually create more elaborate priors tracks with specific search focus. 
Assuming that ChIPMunk was able to identify binding sites for the GATA-1 motif in the 
first part of the protocol, the rest of the protocol will set up a new priors track which 
focuses on discovering additional motifs in the vicinity of the GATA-1 sites. 
These motifs could potentially be bound by factors interacting with GATA-1. 

Protocol 10: Creating and using positional priors to guide motif discovery 
1 
2 
 
3 
4 
 
 
 
 
 
 
 
5 
6 
7 
8 
9 

10 
 

11 
12 
13 

ChIP_Seq = new Numeric Dataset(DataTrack:ChIPseqSignalK562bGata1) 
normalize ChIP_Seq from range [0,sequence.max]  
                     to range [0.001,sequence.max] 
normalize ChIP_Seq sequence sum to one 
[TFBS,Motifs] = motifDiscovery on DNA with ChIPMunk { 
       Model = "Peak", 
       Min motif size = 7, 
       Max motif size = 25, 
       Occurrences = "OOPS", 
       Peaks = ChIP_Seq 
  } motif-prefix="ChIPMunk" 
 
TFBS_vicinity = extend TFBS by 60 
convert TFBS_vicinity to numeric with value = 1.0 
Conservation = new Numeric Dataset(DataTrack:Conservation) 
increase TFBS_vicinity by Conservation where TFBS_vicinity > 0 
set TFBS_vicinity to 0 where inside TFBS 
normalize TFBS_vicinity from range [0,sequence.max]  
                          to range [0.001,sequence.max] 
normalize TFBS_vicinity sequence sum to one 
mask DNA with "N" where inside TFBS 
[TFBS_partner,Motifs_partner] = motifDiscovery on DNA with ChIPMunk { 
       Model = "Peak", 
       Min motif size = 7, 
       Max motif size = 25, 
       Occurrences = "OOPS", 
       Peaks = TFBS_vicinity 
  } motif-prefix="ChIPMunk" 
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The protocol first defines a “neighbourhood” region around the GATA-1 sites (in the 
TFBS track) by extending these TFBS by 60 bp in both directions (line 5). Next, it 
converts this Region Dataset into a Numeric Dataset, since positional priors must be 
represented by this data type. Other types of information can also be included to 
fine-tune the priors in these neighbourhoods. E.g. lines 7–8 adjust the priors track by 
assigning higher values to more conserved positions. To make sure that the motif 
discovery program does not simply rediscover the GATA-1 motif all over again, we set 
the value of the positional priors track to zero within the TFBS regions discovered 
earlier (and to make absolutely certain we also mask the DNA sequence itself within 
these sites). 

 

The final protocol example in this chapter demonstrates how the “analyze” operation 
can be used to identify motifs that are significantly overrepresented in a set of sequences 
(see also Table A2 in the appendix for other types of analyses this operation can 
perform). 

After performing motif scanning in the same way as described earlier (lines 1–4), 
the protocol loads a third-order background model based on DNA sequence composition 
in human promoter sequences (“EPD_human_3”) and uses this model to generate a new 
artificial DNA track to use as control sequences. (The “new” operation in line 6 does not 
actually create any new sequences; it just creates a new track for the existing sequence 
regions). The protocol then performs motif scanning in this artificial sequence track 
using the same parameter settings as before and derives a new Motif Numeric Map 
based on the occurrence frequency of each motif in this track. 

The map object containing the expected frequencies is provided as an argument to the 
“count motif occurrences” analysis which counts the number of times each motif type 
occurs in the original TFBS track and compares these counts to the expected motif 
frequencies estimated from the control sequences. 

The motifs that are statistically overrepresented (at an initial significance threshold of 
0.05 which is subsequently Bonferroni-corrected) are extracted from the resulting 
Analysis object as a new Motif Collection, and the analysis results for these motifs are 
presented in a table which is output to a HTML-document.  
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The operations provided by MotifLab offer general and flexible means to process and 
analyse datasets, and it is often possible to solve the same problem in several different 
ways. The few protocol examples presented here merely scratch the surface of 
MotifLab’s capabilities. Additional examples demonstrating more advanced analyses 
and applications on real biological data are included in paper III. 

  

Protocol 11: Identifying overrepresented motifs in a set of sequences 
1 
2 
3 
4 
 
 
 
 
5 
6 
7 
 
 
 
 
8 
 
 
9 
 
 
 
 
 
 

10 
 
 

11 

DNA = new DNA Sequence Dataset(DataTrack:DNA) 
Motifs = new Motif Collection(Collection:TRANSFAC Public) 
cutoff = new Numeric Variable(90) 
TFBS = motifScanning on DNA with SimpleScanner { 
    Motif Collection = Motifs, 
    Threshold type = "Percentage", 
    Threshold = cutoff 
  } 
BGmodel = new Background Model(Model:EPD_human_3) 
DNA_control = new DNA Sequence Dataset(BGmodel) 
TFBS_control = motifScanning on DNA_control with SimpleScanner { 
    Motif Collection = Motifs, 
    Threshold type = "Percentage", 
    Threshold = cutoff 
  } 
ExpectedFrequencies = new Motif Numeric Map(Track:TFBS_control, 
                                            Property=Frequency 
                                            ) 
CountAnalysis = analyze count motif occurrences { 
    Motif track = TFBS, 
    Motifs = Motifs, 
    Background frequencies = ExpectedFrequencies, 
    Significance threshold = 0.05, 
    Bonferroni correction = "All motifs" 
 } 
Overrepresented_Motifs = extract "overrepresented"  
                         from CountAnalysis as Motif Collection 
 
output CountAnalysis in HTML format { 
    Include = Overrepresented_Motifs, 
    Sort by = "p-value", 
    Logos = "New images" 
 } 
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Traditional motif discovery approaches have been limited in their ability to predict 
functional binding sites for transcription factors because they only rely on information 
in the DNA sequence itself and fail to take into consideration the biological state of the 
cell. However, a lot of additional data is now available which can be integrated into the 
motif discovery process to improve the performance, such as information about 
phylogenetic conservation, nucleosome occupancy, DNase hypersensitive sites, 
epigenetic features, gene expression and TF–TF interactions, to name just a few. 
To this end, a new motif discovery workbench – called MotifLab – was developed 
which aims to make it easier for researchers to take advantage of different types of data 
in combination with existing or novel motif discovery tools.  

Users of MotifLab are not limited to exploiting data related to a fixed or predefined set 
of features; nor does the program require that users themselves obtain all the data for the 
sequence regions they want to analyse. Rather, data sources for feature tracks from 
various organisms can easily be configured so that MotifLab will be able to download 
the requested data automatically. Data is modelled by a few general data types that can 
represent information on many different levels, and this means that MotifLab should 
also be able to integrate new types of relevant information that might be introduced in 
the future. In addition, the wide range of operations provided by MotifLab allows users 
to manipulate the data to suit their own needs. 

Many aspects of MotifLab can still be improved, however. In particular, better support 
for Gene Ontology has high priority, as has tools which would make it easier for users 
to configure their own external programs for use with MotifLab. Another important 
issue that warrants further focus is the ability to determine, preferably automatically, 
exactly which alternative promoter and distal enhancer regions that are involved in 
regulating a gene under specific conditions. This will require integration of several 
types of data, including e.g. CAGE to determine the active TSS, DNase HS or 
epigenetic data to determine the span of the regulatory regions and chromatin 
conformation data to determine which regions are interacting. 

In the past few years, high-throughput experimental methods have been introduced that 
are able to efficiently map binding events for transcription factors on a genome-wide 
scale, and this has led some to question the continued relevance of computational motif 
discovery tools. With a couple of thousand transcription factors estimated in the human 
genome alone, it will still take time before binding sites for all of these are identified, 
however. To complicate matters, many of these factors are currently unknown or are 
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difficult to map with existing technologies. In addition, transcription factors can bind 
different sites in different cell-types or under different conditions (both normal and 
diseased), and it is unlikely that binding site profiles for every transcription factor will 
be determined experimentally for all possible conditions any time soon. Rather, there 
might be binding profiles available for a few conditions and binding under other 
conditions will have to be inferred computationally by integrating information about 
e.g. DNase hypersensitivity and chromatin states under these conditions. In this respect, 
computational tools like MotifLab will perhaps prove even more valuable in the future. 
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Table A1: List of operations in MotifLab 

analyze Performs one of the analyses listed in Table A2 

apply Applies sliding window functions to Numeric Datasets to smooth the 
data or to detect peaks, valleys and edges within the track 

collate Creates a new analysis object by collating results from multiple analyses
combine_numeric Combines multiple Numeric Datasets into one track based on either the 

minimum, maximum, average, sum or product of the values from all 
datasets for each position 

combine_regions Combines regions from multiple Region Datasets into one track 
convert Converts a Numeric Dataset into a Region Dataset or vice versa 
copy Creates an identical copy of an existing data object 
count Counts the number of regions that overlap with a sliding window along 

the sequence 
decrease Subtraction operator. Decreases the value(s) of a numeric data object by 

a specified amount 
delete Deletes data objects 
difference Compares one data object to another of the same type and reports the 

differences between them 
discriminate Converts a regular positional priors track into a discriminative prior 
distance Returns a new Numeric Dataset where the value of each position is 

determined by its distance to a specified feature 
divide Division operator. Divides the value(s) of a numeric data object by a 

specified amount 
ensemblePrediction Performs ensemble prediction with a selected method to combine results 

from multiple motif discovery programs into potentially more reliable 
predictions 

execute Runs an external data processing program  
extend Extends the size of regions in a Region Dataset in one or both directions 
extract Extracts an individual value or property from a data object 
filter Removes regions that satisfy a given condition 
increase Addition operator. Increases the value(s) of a numeric data object by a 

specified amount 
interpolate Fills in values missing between discrete non-zero points in a Numeric 

Dataset 
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mask Masks bases in a DNA sequence using either upper- or lowercase, a 
single specified letter or random bases sampled from a background 
model 

merge Merges regions that overlap or lie close to each other in the sequence 
moduleDiscovery Performs de novo module discovery with a selected method to discover 

new cis-regulatory modules in a set of sequences 
moduleScanning Scans DNA sequences for matches to a set of known modules 
motifDiscovery Performs de novo motif discovery with a selected method to discover 

new motifs and binding sites in a set of sequences 
motifScanning Scans DNA sequences for matches to a set of known motifs 
multiply Multiplication operator. Multiplies the value(s) of a numeric data object 

by a specified amount 
new Creates a new data object according to specifications 
normalize Rescales the values of a data object from one range to another 
output Outputs data objects to text documents in selected data formats 
physical Estimates different physical properties of the DNA double helix based 

on the sequence composition within a sliding window 
plant Randomly inserts sites for up to 5 selected motifs or a single module in 

a set of sequences. Returns the updated DNA sequence and a Region 
Dataset containing the implanted sites 

predict Creates a new positional priors track using a trained Priors Generator 
prompt Asks the user to provide a value for a data object via an interactive 

prompt 
prune Removes duplicate regions (identical or similar) from a Region Dataset 
rank Ranks data objects based on entries in Numeric Maps, numeric Analysis 

columns or internal numeric properties 
score Scans sequences with a single motif or collection of motifs and returns a 

Numeric Dataset containing the (highest) match score for each position 
search Searches DNA sequences for matches to regular expressions, motif 

consensus patterns or tandem repeats (direct or inverted) 
set Assignment operator. Sets the value(s) of a numeric data object to a new 

specified value 
statistic Calculates a statistic (such as maximum or average value in a track) for 

each sequence in a dataset 
threshold Assigns all entries in a data object that are equal to or above a specified 

threshold a new value and those below a second value 
transform Transforms each numeric value in a data object according to a selected 

mathematical function 
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Table A2: List of analyses that can be performed with the “analyze” operation 

benchmark Evaluates the performance of motif discovery 
programs by comparing tracks with predicted TFBS 
against a target track containing the correct answer 

compare collections Compares two collection objects to see if they have 
any entries in common 

compare motif/region occurrences Counts the number of times each motif or region 
type appears in one set of sequences and compares 
this to counts in a second set of sequences. 
Statistical tests can be used to assess whether some 
motifs/regions are more frequent in one of the sets 

compare motif track to numeric track Calculates min/max/average statistics for the 
numeric track across all binding sites for each motif 

compare region datasets Compares two region datasets and calculates 
statistics based on their overlap 

count motif/module/region occurrences Counts the number of times each motif, module or 
region type appears in a track. For motif tracks it is 
also possible to assess the statistical significance by 
comparing the number of occurrences to an 
expected frequency 

evaluate prior Evaluates the capabilities of Numeric Datasets to be 
used as positional priors for predicting target 
regions 

GC-content Calculates GC-content statistics for DNA sequences 
motif collection statistics Calculates statistics related to motif size, IC-content 

and GC-content for all motifs in a given collection 
motif position distribution Analyses the positional distribution of each motif in 

a track to see if they tend to be located in the same 
place in different sequences 

motif regression Performs regression analysis of motif scores against 
gene expression (or other sequence related values) 

motif similarity Compares a selected motif to all other motifs using 
various similarity metrics 

numeric dataset distribution Calculates distribution statistics for a Numeric 
Dataset or compares the distribution of values inside 
versus outside specific regions 

numeric map correlation Compares two Numeric Maps to determine if the 
values for corresponding entries are correlated 

numeric map distribution Calculates distribution statistics for the values in a 
Numeric Map 

region dataset coverage Calculates the fraction of each sequence which is 
covered by specific regions 

single motif regression Similar to the “motif regression” analysis but this 
gives more detailed results for a single motif 
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Abstract
Background: Computational discovery of regulatory elements is an important area of
bioinformatics research and more than a hundred motif discovery methods have been published.
Traditionally, most of these methods have addressed the problem of single motif discovery –
discovering binding motifs for individual transcription factors. In higher organisms, however,
transcription factors usually act in combination with nearby bound factors to induce specific
regulatory behaviours. Hence, recent focus has shifted from single motifs to the discovery of sets
of motifs bound by multiple cooperating transcription factors, so called composite motifs or cis-
regulatory modules. Given the large number and diversity of methods available, independent
assessment of methods becomes important. Although there have been several benchmark studies
of single motif discovery, no similar studies have previously been conducted concerning composite
motif discovery.

Results: We have developed a benchmarking framework for composite motif discovery and used
it to evaluate the performance of eight published module discovery tools. Benchmark datasets were
constructed based on real genomic sequences containing experimentally verified regulatory
modules, and the module discovery programs were asked to predict both the locations of these
modules and to specify the single motifs involved. To aid the programs in their search, we provided
position weight matrices corresponding to the binding motifs of the transcription factors involved.
In addition, selections of decoy matrices were mixed with the genuine matrices on one dataset to
test the response of programs to varying levels of noise.

Conclusion: Although some of the methods tested tended to score somewhat better than others
overall, there were still large variations between individual datasets and no single method
performed consistently better than the rest in all situations. The variation in performance on
individual datasets also shows that the new benchmark datasets represents a suitable variety of
challenges to most methods for module discovery.
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Background
A key step in the process of gene regulation is the binding
of transcription factors to specific cis-regulatory regions of
the genome, usually located in the proximal promoter
upstream of target genes or in distal enhancer regions
[1,2]. Each transcription factor recognizes and binds to a
more or less distinct nucleotide pattern – a motif – thereby
regulating the expression of the nearby gene. Determining
the location and specificity of each transcription factor
binding site in the genome is thus an important prerequi-
site for reconstructing the gene regulatory network of an
organism.

Since establishing these binding sites experimentally is a
rather laborious process, much effort has been made to
develop methods that can automatically discover such
binding sites and motifs directly from genomic sequence
data. More than a hundred methods have already been
proposed [3], and new methods are published nearly
every month. There is a large diversity in the algorithms
and models used, and the field has not yet reached agree-
ment on the optimal approach. Most methods search for
short, statistically overrepresented patterns in a set of
sequences believed to be enriched in binding sites for par-
ticular transcription factors, such as promoter sequences
from coregulated genes or orthologous genes in distantly
related species.

In higher organism, however, transcription factors seldom
function in isolation, but act in concert with nearby
bound factors in a combinatorial manner to induce spe-
cific regulatory behaviours. A set of binding motifs associ-
ated with a cooperating set of transcription factors is
called a composite motif or cis-regulatory module. In recent
years, the field of computational motif discovery has
therefore shifted from the detection of single motifs
towards the discovery of entire regulatory modules.

The diversity of approaches to module discovery is even
greater than for single motif discovery, and methods vary
widely in what they expect as input and what they provide
as output. For instance, methods like Co-Bind [4],
LOGOS [5] and CisModule [6] expect only a set of coreg-
ulated or orthologous promoter sequences as input and
are able to infer both the location and the structure of
modules with few prior assumptions regarding their
nature. These programs infer an internal model that
includes a representation of each individual transcription
factor binding motif as well as constraints on the distances
between them. On the other hand, programs such as LRA
[7] and Hexdiff [8] demand as input a collection of
already known module sites to serve as training data. The
known positive sites are used along with negative
sequence examples to build a model representation which
can then be compared to new sequences in order to iden-

tify novel module instances. Searching for new matches to
a previously defined model might be considered a special
case of module discovery and is often referred to as mod-
ule scanning. Programs that specialize in searching for
modules this way without inferring the models them-
selves include ModuleInspector [9] and ModuleScanner
[10]. The general problem of module discovery, however,
usually involves inferring both a model representation of
the modules and to find their locations in the sequences.

Most module discovery methods require users to supply a
set of candidate single motif models in the form of IUPAC
consensus strings or position weight matrices (PWM)
[11]. These are used to discover putative transcription fac-
tor binding sites in the sequences, and the programs then
search for significant combinations of such binding sites
to report as modules.

What constitutes a significant combination varies
between methods. MSCAN [12], for instance, searches for
regions within sequences that have unusually high densi-
ties of binding sites, more so than would be expected from
chance alone. The types of the binding motifs are irrele-
vant, however, and each potential module instance is ana-
lyzed independently from the rest. Other tools, like
ModuleSearcher [10], Composite Module Analyst [13]
and CREME [14], search for specific combinations of
motifs that co-occur multiple times in regulatory regions
of related genes.

With an increasing number of programs available, both
for single and composite motif discovery, there is a grow-
ing need among end users for reliable and unbiased infor-
mation regarding the comparative merits of different
approaches. A few independent investigations have been
undertaken to assess the performance of selected single
motif discovery methods, for instance by Sze et al. [15]
and Hu et al. [16]. The most comprehensive benchmark
study to date was carried out by Tompa et al. and included
thirteen of the most popular single motif discovery meth-
ods [17]. The authors of this study also provided a web
service to enable new methods to be assessed and com-
pared to the original methods using the same datasets.

However, in spite of the increased interest in regulatory
modules, we are not aware of any similar independent
benchmarking efforts that have been undertaken with
respect to composite motif discovery.

Results
We have developed a framework for assessing and com-
paring the performance of methods for the discovery of
composite motifs. Sequence sets containing real, experi-
mentally verified modules are made available for down-
load through our web service, and users can test programs
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of their own choice on these datasets and submit the
results back to the web service to get the predictions eval-
uated. Results are presented both as tabulated values and
in graphical format, and performances of different meth-
ods can be compared. Since most module discovery tools
require users to input candidate motifs, each sequence
dataset is supplemented by a set of PWMs capable of
detecting the binding sites involved in the modules. To
test how programs respond to varying levels of noise in
the PWM sets, we created extended PWM sets for one of
our datasets where the genuine matrices were mixed with
various decoy matrices.

Scoring predictions
We adopted a simple and general definition of a module:
a module is a cis-regulatory element consisting of a collec-
tion of single binding sites for transcription factors. A
module is thus characterized by only two aspects in our
framework: its location in a sequence and its composition,
that is, the set of transcription factor binding motifs
involved. A module's location is further defined as the
smallest contiguous sequence segment encompassing all
the single binding sites in the module, including also the
intervening bases. For our purpose, the composition of a
module is represented by a set of PWM identifiers. Differ-
ent modules that share the same composition are said to
belong to the same module class. Module class definitions
may also be limited by structural constraints. These are
rules governing, among others, the strand bias, order and
distances between the transcription factor binding sites of
modules of the same class. Since it requires a substantial
effort to determine these constraints experimentally, this
kind of information is available for a very limited number
of classes. Few methods also report such module con-
straints explicitly. Consequently, we have chosen not to
consider this aspect of modules further in our framework,
at least for the time being.

Module discovery programs are requested to predict both
the location of modules and to identify the motifs
involved by naming the proper PWMs. However, not all
programs are able to perform both these tasks. The
MCAST program [18], for instance, only reports the loca-
tion of predicted modules, even though it uses a set of
PWMs to detect single binding sites internally. On the
other hand, programs that discover single motifs de novo
without relying on pre-constructed matrices have, of
course, no way of correctly naming the motifs involved.
Methods like that of Perco et al. [19] and GCMD [20]
identify modules by looking for groups of PWMs whose
binding sites consistently appear together in multiple
sequences, but disregard any further information about
the precise position of these sites. Hence, such programs
only report the composition of modules but not their
location. By assessing the location and composition

aspects of modules separately, our framework can equally
well be used with programs that predict only one or the
other.

To measure prediction accuracy of methods with respect
to module location, we have used the nucleotide-level corre-
lation coefficient (nCC). This statistic has been widely used
before, among others, for coding region identification and
gene structure prediction [21]. It was also adopted by
Tompa et al. to evaluate binding site predictions in their
single motif discovery benchmark study. The value of nCC
lies in the range -1 to +1. A score of +1 indicates that a pre-
diction is coincident with the correct answer; whereas a
score of -1 means that the prediction is exactly the inverse
of the correct answer. Random predictions will generally
result in nCC-values close to zero.

Here, TP is the number of nucleotides in a sequence that
are correctly predicted by a program as belonging to a
module, while TN is the number of nucleotides correctly
identified as background. FN is the number of true mod-
ule nucleotides incorrectly classified as background, and
FP is the number of background nucleotides incorrectly
classified as belonging to a module.

A similar statistic, the motif-level correlation coefficient
(mCC), was used to evaluate prediction accuracy with
respect to module composition. The definition of mCC
follows that of nCC, except that instead of counting the
number of nucleotides, we count the number of single
motifs (or PWMs) correctly or incorrectly classified as
being part of a module or not. Hence, for mCC, TP is the
number of PWMs correctly identified as constituents of
the module, while FP is the number of PWMs incorrectly
predicted as being part of a module. Note that the correla-
tion statistics, as defined here, are only applicable when
both the datasets and the predictions made by a program
contain a combination of module and non-module
instances, if not, the divisor will be zero and the value of
the statistic will be undefined. Consequently, the mCC-
score is only informative when the set of PWMs supplied
to a module discovery program contains false positives,
i.e. additional matrices besides those that are actually
involved in the modules. Final scores for each dataset are
obtained by summing up TP, FP, TN and FN over all
sequences before calculating the correlation scores. If no
module predictions are made on a set of sequences, the
resulting scores for nCC and mCC are assigned a value of
zero rather than being left undefined. In addition to CC
scores, several other statistics mentioned in [17] such as
sensitivity, specificity, positive predictive value, performance

nCC
TP TN FN FP

TP FN TN FP TP FP TN FN
= ⋅ − ⋅

+ + + +( )( )( )( )
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coefficient (phi-score) and average site performance are cal-
culated for both nucleotide- and motif-level.

Datasets
We compiled three datasets from sequences containing
experimentally verified regulatory modules. The first and
the last two datasets have different characteristics and
were chosen to complement each other to test methods
under different conditions.

Our main dataset was based on annotated composite
motifs from the TRANSCompel database [22]. The mod-
ules selected for this dataset are small, each consisting of
exactly two single binding sites for different transcription
factors (TFs), but we specifically chose modules that had
multiple similar instances in several sequences. Sequences
containing modules from the same class were grouped
together producing ten sequence sets named after their
constituent single motifs as shown in Table 1. Each of the
sequences in a set contained at least one copy of the mod-
ule with the same two motifs, but the order, orientation
and distance between the TFBS could vary between
sequences. Separate PWM collections, with matrices for
the two single motifs involved, were constructed for each
of the sequence sets. All in all there were eleven distinct
single TF binding motifs in our full TRANSCompel data-
set, and PWMs representing these motifs were collected
from the companion TRANSFAC database [22]. Since
TRANSFAC often contains several different PWMs for
each motif, we grouped all the matrices corresponding to
a particular motif into an equivalence set, essentially treat-
ing these PWMs as if they were one and the same with
respect to prediction and scoring. In addition to the
TRANSFAC matrix sets, we also constructed eleven custom
matrices that were specifically tailored to the particular
motifs and binding sites present in the sequences (see
Methods). Assessment of module discovery programs on
the TRANSCompel dataset was conducted using both the

TRANSFAC sets and the customized PWM sets independ-
ently. The motivation for using two different PWM sets
was to test the stability of methods and examine how the
specific representations used for single motifs might influ-
ence the ability of methods to find the correct modules.

The two last datasets were based on combinations of TFBS
found in the regulatory regions of genes specifically
expressed in liver [23] and muscle [7] cells. The modules
here are usually larger compared to the TRANSCompel
modules, containing up to nine binding sites for four dif-
ferent motifs in the liver regulatory regions and up to eight
sites for five motifs in the muscle regions. PWMs for these
motifs were taken from the respective publications. The
composition of the modules in these two datasets is vari-
able; modules can contain multiple binding sites for the
same motifs and not all motifs are present in every mod-
ule.

While most programs require candidate PWMs to be
entered, this can pose a problem for users who might not
always know in advance the kind of modules that should
be present in a sequence or which transcription factors
that might bind. It could be the case, for instance, that a
researcher has only a set of promoters from a coregulated
set of genes and is interested in identifying the hitherto
unknown module that controls the common expression
of these genes. A popular strategy then is to employ an
excessive set of PWMs which, hopefully, also includes the
appropriate matrices. An extreme, but not unlikely, sce-
nario would be to use all the matrices available from a
published compilation like TRANSFAC (774 matrices in
release 9.4) or Jaspar [24] (123 core matrices). Although
this approach will inevitably lead to lots of false positive
PWM matches that might thwart the module discovery
process, good module discovery tools should nonetheless
be able to report the true module instances without simul-
taneously predicting too many spurious occurrences.

Table 1: Datasets

Sequence set Sequences Modules Total size (bp) Module size, min-max (avg)

AP1-Ets 16 17 14860 14 – 99 (27)
AP1-NFAT 8 11 6893 14 – 19 (16)
AP1-NF B 7 8 6532 18 – 135 (53)
CEBP-NF B 8 8 7308 44 – 118 (84)
Ebox-Ets 4 6 3489 16 – 50 (25)
Ets-AML 5 5 4053 13 – 30 (19)
IRF-NF B 6 6 5344 23 – 71 (43)
NF B-HMGIY 6 7 5393 10 – 32 (13)
PU1-IRF 5 5 4530 12 – 14 (13)
Sp1-Ets 7 8 5787 16 – 117 (37)
Liver 12 14 11943 26 – 176 (112)
Muscle 24 24 20427 14 – 294 (120)

A brief overview of the ten TRANSCompel sequence sets and the liver and muscle datasets used in the assessment. Further information can be 
found in Additional File 1.
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To simulate these conditions and test methods' response
to noisy PWM sets, each PWM set under the TRANSCom-
pel dataset was issued in multiple versions with progres-
sively more decoy matrices added to the set of true
annotated motifs. Decoy matrices were randomly sam-
pled from the complete TRANSFAC compilation after
removing the matrices corresponding to the true motifs
for a sequence set. Decoy sets are available at 50%, 75%,
90%, 95% and 99% levels, where the percentage number
relates the amount of decoy matrices in the set. Thus, a
custom PWM set at the 90% level includes 2 genuine
matrices and 18 decoy matrices. The number of decoy
matrices in the TRANSFAC PWM sets varies with each
module class but is always higher than for the custom sets
at the same percentage level. Information on the exact
number of PWMs in each set is available in Additional File
1. The 99% sets include as decoys all of the matrices from
TRANSFAC which do not correspond to the correct
motifs. They are called "99%" for consistency, although
the actual percentage of decoys ranges between 95% and
99% depending on the module class. To avert artefacts
stemming from possibly biased selections of decoys, all
decoy sets (except at the 99% level) consist of ten inde-
pendently sampled decoy collections, and the final corre-
lation statistics for a decoy level are calculated by
averaging prediction scores made from using each collec-
tion in turn. This also means that variation due to any sto-
chastic nature of algorithms will be averaged over ten
independent runs.

Benchmark of module discovery methods
Using our assessment framework, we benchmarked eight
published methods for module discovery: CisModule [6],
Cister [25], Cluster-Buster [26], Composite Module Analyst
(CMA) [13], MCAST [18], ModuleSearcher [10], MSCAN
[12] and Stubb [27]. See Table 2 for brief descriptions of
each of these methods. CisModule, CMA and Module-
Searcher process all the sequences in a dataset simultane-
ously and look for instances of similar modules across
multiple sequences. The other methods examine the
sequences individually, although Stubb considers multi-
ple instances of similar modules within the same
sequence. Except for MCAST, which does not report mod-
ule composition, all the programs report both the loca-
tion and composition of modules. CisModule, however,
predicts modules de novo without relying on supplied
PWM sets and so does not name the single motifs
involved the way we require. Hence, motif-level scores
were not calculated for MCAST and CisModule. Cluster-
Buster and MCAST report the full module segments, while
the rest of the methods list the positions of the PWM hits
in the modules. In these cases we extracted the start posi-
tion of the first reported binding site and the end position
of the last binding site and used these as the boundaries
of a module prediction.

We generally relied on default parameter settings for all
programs. However, since choosing the proper parameter
values can sometimes prove crucial for a method's per-
formance, we decided to provide the programs with a few
general clues where applicable; specifically, that the size of
modules should not exceed 200 bp (300 bp in the muscle
dataset) and that the modules should consist of exactly
two single binding sites for different TFs in the TRANS-
Compel dataset but possibly up to ten binding sites for
four and five different TFs on the liver and muscle sets
respectively. Furthermore, binding sites could potentially
overlap and the composition of the modules in liver and
muscle sets should be allowed to vary between sequences.

Figures 1a and 1b show the resulting nucleotide-level cor-
relation scores on each sequence set in the TRANSCompel
dataset when methods were supplied with TRANSFAC
matrices and custom matrices respectively. The scores vary
widely between individual sequence sets but are generally
fairly well correlated between methods, so that most
methods tend to get high (or low) scores on the same sets.
The notable exception is CisModule which performs
poorly on all sequence sets. The correlation suggests that
some sequence sets are inherently more easy (or difficult)
to tackle than others. Scores for CEBP-NF B and IRF-
NF B are the highest overall. The reasons why these sets
are generally easy to predict might be that their modules
are quite long and the matrices representing the single
binding motifs have high information content (see Table
3 and Additional File 1). Conversely, the short size of the
modules and the low information content of PWMs for
AP1-NFAT would make this a hard sequence set. We also
calculated combined scores for the whole TRANSCompel
dataset which are shown in the inset legends of Figure 1
and graphically in Figure 2. These combined scores were
obtained by summing up TP, TN, FP, FN over all sequence
sets when calculating the score measures. The highest
combined nCC scores achieved were 0.388 with the
TRANSFAC matrices (MSCAN) and 0.38 with custom
matrices (MCAST). The average performances across all
methods were also about the same with the two PWM
sets. Some methods performed quite differently depend-
ing on the PWMs, however. For instance, MCAST scored
much better using custom matrices than with TRANSFAC
matrices, while MSCAN and Cluster-Buster did a better
with job with TRANSFAC. The rank order of methods is
thus somewhat altered between the two cases. Still, some
tendencies remain: CMA, Cluster-Buster, MCAST, Mod-
uleSearcher and MSCAN occupy the top five positions in
both cases, followed by Cister and Stubb and then finally
CisModule which consistently scored lowest.

Figure 3 shows the results of mixing the PWM sets with an
equal proportion of decoy matrices. The addition of decoy
PWMs leads to a drop in score values for almost all meth-



BMC Bioinformatics 2008, 9:123 http://www.biomedcentral.com/1471-2105/9/123

Page 6 of 16
(page number not for citation purposes)

Table 2: Description of module discovery tools

CisModule CisModule models the structure of sequences with a two-level hierarchical mixture-model and uses a 
Bayesian approach with Gibbs sampling to simultaneously infer the modules, TFBSs and PWMs based on their 
joint posterior distribution, which is the probability of a model given the input sequence set. At the first level, 
sequences are viewed as a mixture of module instances and background. At the second level, modules are 
modelled as a mixture of motifs and inter-module background. Parameters of the model include the widths 
and representations (PWMs) of single motifs and parameters related to distances between modules and 
between TFBS within modules. From a random initialization, CisModule iteratively cycles through steps of 
parameter update and module-motif detection. New parameter values are sampled from their conditional 
posterior distributions based on the currently predicted modules and motifs, and new predictions of modules 
and TFBSs are then sampled based on these updated parameter values. Positions in the sequences where the 
marginal posterior probability of being sampled within modules was greater than 0.5 were output as module 
predictions.

Cister Given a set of PWMs and parameters specifying the expected number of motifs in modules, the expected 
distances between motifs in modules and the expected distance between modules, Cister builds a Hidden 
Markov Model (HMM) with three basic states: motif, intra-module background and inter-module background. 
Transition probabilities between these states follow geometric distributions according to the expected values 
input by the user. In the motif state, one of the PWMs is chosen uniformly at random and used to decide the 
probabilities of outputting nucleotides. Background-state emission probabilities are estimated from a sliding 
window centered on the current base in the query sequence. From this HMM, the posterior probability that 
each base in the input sequence was generated from a module state as opposed to the inter-module state can 
be calculated. Predicted modules are defined to occur at local maxima of this posterior probability curve 
where the value is at least 0.5 and no larger value is observed within 1200 bp.

Cluster-Buster Cluster-Buster is developed by the same group that made Cister and is designed to search for clusters of pre-
specified motifs in nucleotide sequences. Like Cister, Cluster-Buster constructs a HMM-model based on the 
user-supplied PWMs, an expected distance between motifs in clusters and background distributions estimated 
from the input sequence over sliding windows. Log likelihood ratios are used to determine whether a 
sequence is more likely to be generated by a "cluster-model" or a "background-model". Cluster-Buster uses a 
linear time heuristic to rapidly estimate log likelihood ratios for all subsequences of the input sequence and 
outputs those subsequences with ratios above a specified threshold that do not overlap with other higher 
scoring subsequences.

Composite Module Analyst (CMA) The promoter model in CMA is expressed as a Boolean combination of one or more composite modules (CM), 
each of which consist of a set of single, independent motifs as well as pairs of motifs that must obey certain 
constraints on distance and orientation. Given a candidate promoter model, the method searches for 
potential matches to the CMs in the sequences, and a final promoter score is calculated after the presence or 
absence of each CM is established. CMA employs a Genetic Algorithm to search for the promoter model 
which best discriminates between a set of positive (co-regulated) and a set of negative sequences. The fitness 
function is based on a linear combination of several properties of the distribution of the promoter scores and 
of the individual CM scores in the two sequence sets.

MCAST MCAST builds a HMM-model consisting of an intra-module state, an inter-module state and motif-states based 
on the supplied PWMs. The score for a motif-state is called a p-score and is the negative logarithm of the p-
value of a log-odds score based on the probability of a segment in the target sequence being generated either 
by the PWM or a fixed, user-specified zero-order Markov background model. MCAST forbids transitions into 
motif-states that result in p-scores lower than some chosen threshold. Some state transitions are associated 
with certain costs. For instance, entering the inter-module state from a motif-state incurs a large one-time 
penalty while cycling through the intra-module state incurs smaller penalties for each nucleotide emitted. The 
Viterbi algorithm is used to find the highest scoring path through the HMM with respect to the input 
sequence, classifying each position in the sequence as either belonging to a module or to the background. 
Potential module segments are scored according to the number of motifs in the module and the p-scores of 
these motifs and are penalized by the number of intra-module background bases. Finally, modules are ranked 
according to the estimated E-values of these scores.

ModuleSearcher Given a list of PWM hits with match scores for putative TFBSs in a sequence set, ModuleSearcher finds the 
module model (set of k PWMs) that best fits the sequences. The score of a module model is calculated as the 
sum of scores over all sequences, and the score function for a single sequence is based on the best scoring set 
of TFBSs in the sequence that corresponds to the PWMs in the module model. To be considered a valid TFBS 
set the binding sites must all lie within a short window, and the user can choose to ignore TFBS sets with 
overlapping binding sites or penalize sets that lack sites for some PWMs. An A*-algorithm (or alternatively a 
Genetic Algorithm) is employed to search the space of possible subsets of k motifs from the full PWM library 
in order to find the highest scoring module model.

MSCAN MSCAN discovers modules by evaluating the combined statistical significance of sets of potential non-
overlapping TF binding sites in a sliding window along the input sequence. PWMs are compared against each 
position within the window to obtain match scores, and p-values are calculated as the probability of obtaining 
similar or higher scores at a specific position in a random sequence with nucleotide distribution similar to the 
distribution in the window. MSCAN proceeds by calculating significance scores for all combinations of up to k 
binding sites in the window and then selects the optimal combination (the one with the lowest score). A 
prediction is output if a final p-value computed from this score is less than some user-specified threshold.
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ods. The drop is greater for the TRANSFAC PWMs, pre-
sumably because these sets contain more genuine
matrices and therefore also more decoys. Contrary to
expectation, some methods actually score slightly better
on certain sequence sets when decoys are in use. Examples
are Cister on Ets-AML and Stubb on Ebox-Ets with custom
matrices. One explanation for this could be that these
methods make use of decoy motifs that just happen to
have a high degree of overlap with genuine modules. To
examine whether the modules are predicted with the cor-
rect motifs or not, we can look at the corresponding motif-
level correlation scores as shown in Figure 4. The generally
high mCC scores obtained for IRF-NF B support the
notion that this is an easy sequence set, while the diffi-
culty for most methods in selecting the correct motifs for

CEBP-NF B explains the higher drop seen in nCC for this
set when decoys were added. CMA and ModuleSearcher
are by far the best methods at predicting the correct com-
position of modules with both TRANSFAC and custom
PWMs as input, although CMA does perform notably
poor on two specific sequence sets. The mCC score for the
third best method, Cluster-Buster, is less than half of that
of ModuleSearcher.

Figures 5 and 6 show score tendencies as increasingly
more decoys are added to the PWM sets. The nucleotide-
level performances of CMA and ModuleSearcher are only
slightly affected by the larger amounts of decoys, whereas
the scores for the other methods steadily decline. At the
motif-level we clearly see a division into two groups with

Nucleotide-level correlation scores on the TRANSCompel datasetFigure 1
Nucleotide-level correlation scores on the TRANSCompel dataset. The graphs show nCC scores for each of the ten 
sequence sets in the TRANSCompel dataset when methods are supplied with TRANSFAC PWM sets (a) and custom matrices 
(b).
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Stubb The HMM used by Stubb consists of motif states based on supplied PWMs and a single background state based 
on a kth-order Markov model with probability distribution estimated from a sliding window. The scoring 
function is the log likelihood ratio that the sequence within a limited window was more likely generated by the 
full model than with a HMM consisting of only the background state. Unlike the other HMM methods 
presented here, the transition probabilities between states in Stubb are not based on user-input expectancies, 
but are estimated from the sequence using the Baum-Welch algorithm. This procedure finds the set of 
transition probabilities that maximizes the scoring function. If Stubb finds that some motifs are highly 
correlated with respect to order, it can make use of correlated transition probabilities. This means that the 
probability of entering a specific motif state will dependent on which previous motif was output. Stubb can 
also utilize phylogenetic comparisons between sequences from multiple species to highlight potentially 
regulatory modules.

The table contains short descriptions of the eight methods included in the assessment. All methods except for CisModule rely on supplied PWMs 
and consider matches on both strands, usually with equal probability (however, Stubb can estimate strand biases for all PWMs in a preprocessing 
step). Not all methods are able to consider overlapping single binding sites, which do occur in a few modules.

Table 2: Description of module discovery tools (Continued)
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CMA and ModuleSearcher performing significantly better
than the rest. Additional graphs detailing the effects of
added noise with respect to each individual sequence set
and the variations due to different decoy selections can be
found at our web site.

Results for the liver and muscle datasets are shown in Fig-
ures 7 and 8. For these datasets we supplied only four

liver- and five muscle-PWMs respectively, and no decoy
matrices were used. Since the modules in these datasets do
not necessarily include binding sites for all of these motifs
however, we could calculate motif-level scores by treating
the PWMs for the missing motifs as false instances. All
methods, except CisModule, did a better job on locating
the modules in the liver dataset than in the TRANSCom-
pel dataset. Cluster-Buster scored highest, but Stubb

Table 3: Correlations between dataset properties and nCC scores

TRANSFAC PWMs Custom PWMs

Average nCC Highest nCC Average nCC Highest nCC

Number of sequences -0.23 -0.16 -0.23 -0.05
Length of shortest sequence 0.30 0.18 0.30 0.13
Average sequence length 0.40 0.33 0.42 0.43
Total sequence set length -0.19 -0.12 -0.18 -0.02
Number of module instances -0.38 -0.32 -0.40 -0.19
Size of smallest module 0.61 0.69 0.67 0.73
Size of largest module 0.26 0.34 0.19 0.35
Average module size 0.60 0.68 0.59 0.70
Module size standard deviation 0.23 0.29 0.13 0.29
IC-content (lowest) 0.46 0.45 0.73 0.47
IC-content (total) 0.75 0.73 0.78 0.54
Module/background-ratio 0.53 0.61 0.51 0.63

We conducted a simple correlation analysis to examine which properties of the TRANSCompel sequence sets and PWMs correlated best with the 
highest and average nCC scores obtained by the methods on these sets. "IC-content (lowest)" is the information content (IC) of the PWM with the 
lowest IC of the two involved in each sequence set. The information content of a PWM is inversely related to the amount of variability in the 
binding patterns from which the PWM is constructed [38]. PWMs with higher information content are more specific and match only sites with a 
high degree of similarity to the consensus motif. "IC-content (total)" is the sum of IC-contents for the two motifs (for TRANSFAC PWMs we used 
the PWM with the highest IC in each equivalence set to represent the motif). The three highest values are highlighted in each column. The 
properties that seem to correlate best with methods' performances are the minimum and average size of modules (in basepairs) and the total IC-
content, which would imply that module discovery is harder for datasets containing short and degenerate modules.

Combined performance scores on the full TRANSCompel datasetFigure 2
Combined performance scores on the full TRANSCompel dataset. Combined nucleotide-level scores obtained for 
different performance measures when using TRANSFAC PWM sets (a) and custom matrices (b).
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showed the largest improvement in nCC score. The motif-
level scores, on the other hand, were not very high, which
can most likely be attributed to overprediction of motifs

in the case of CMA and underprediction for MSCAN.
Results on the muscle dataset display the same main ten-
dencies as the other two datasets, but for the first time,

Motif-level correlation scores with 50% noise in the PWM setsFigure 4
Motif-level correlation scores with 50% noise in the PWM sets. The graphs show mCC scores when using TRANSFAC 
PWM sets (a) and custom matrices (b) with an equal proportion of decoy matrices added. Each value represents the average 
score over ten runs with different decoy selections.
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Nucleotide-level correlation scores with 50% noise in the PWM setsFigure 3
Nucleotide-level correlation scores with 50% noise in the PWM sets. The graphs show nCC scores when using 
TRANSFAC PWM sets (a) and custom matrices (b) with an equal proportion of decoy matrices added. Each value represents 
the average score over ten runs with different decoy selections.
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CisModule obtains an nCC score above zero and actually
bypasses one the other methods.

Discussion
Objective benchmarking efforts are important for provid-
ing unbiased reviews of published methods and for estab-

lishing the methodological frontier with respect to
bioinformatics techniques. In this study we wanted to
explore benchmarking in the context of module discovery
and to investigate related design issues such as dataset
construction and performance evaluation.

Motif-level correlation scores at different noise levelsFigure 6
Motif-level correlation scores at different noise levels. Plot of mCC scores at increasing noise levels when methods are 
supplied with TRANSFAC PWM sets (a) and custom matrices (b). Scores shown are averages over all sequence sets and decoy 
selections at each noise level.
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Nucleotide-level correlation scores at different noise levelsFigure 5
Nucleotide-level correlation scores at different noise levels. Plot of nCC scores at increasing noise levels when meth-
ods are supplied with TRANSFAC PWM sets (a) and custom matrices (b). Scores shown are averages over all sequence sets 
and decoy selections at each noise level. MCAST was unable to function properly with very large PWM sets and was therefore 
assigned a score of zero at the 99% level.
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Benchmarking of tools for composite motif discovery is
harder than benchmarking of single motif discovery tools,
since the former methods are more diverse with respect to
input requirements and the type of predictions they make.
We have aimed at creating a simple and general frame-
work that can be used with a wide range of methods. Nev-
ertheless, we do not provide every kind of information

that programs might ask for, and not all module discovery
tools can be fairly assessed with our system.

To construct the benchmark datasets we relied on real
genomic sequences containing experimentally verified
modules, rather than creating synthetic datasets with fab-
ricated and planted modules. The motivation for only

Performances on the muscle datasetFigure 8
Performances on the muscle dataset. Scores obtained on the muscle dataset for different performance measures at 
nucleotide-level (a) and motif-level (b).
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Performances on the liver datasetFigure 7
Performances on the liver dataset. Scores obtained on the liver dataset for different performance measures at nucleotide-
level (a) and motif-level (b).
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using real data was to avoid introducing artificial bias
related to the composition and constraints of modules.
Good benchmark datasets should be diverse enough to
discriminate the behaviour of different methods, when
possible, and provide them with a wide range of realistic
challenges. For module discovery these challenges could
include discovering modules with few or many single
motifs, tightly clustered or widely spaced motifs and mod-
ules with highly conserved or degenerate binding sites.
Ideally, benchmark datasets should also be novel to the
methods tested. Currently the amount of experimental
data available is too limited to achieve all of these goals.
The particular dataset we have constructed based on
TRANSCompel data is novel in terms of performance test-
ing. The modules in TRANSCompel are short, however,
and to include larger modules we were forced to rely on a
few well-known datasets from liver and muscle regulatory
regions that have been used extensively in the past for test-
ing and possibly for designing and developing module
discovery methods. Some methods might therefore be
intrinsically biased to perform well on these sets. It is con-
spicuous, for instance, that CisModule – which was tested
with muscle data in its original publication – scored com-
parably well to the other methods on our muscle set, yet
close to zero on both the TRANSCompel and liver data-
sets.

We chose the correlation coefficient as our main statistic for
evaluating and comparing module discovery methods
because it captures aspects of two of the most commonly
used performance measures – sensitivity and specificity –
into a single score value. However, since different statistics
often favour different methods, it is prudent to consider
several measures to get a better comprehension of each
method's qualities. The sensitivity measure (Sn), for
instance, tells us to what extent a method's predictions
include the true module instances. At the nucleotide level,
MCAST seems overall to be the most sensitive method
among those tested here, while CMA shows high sensitiv-
ity on the TRANSCompel dataset. Yet, to achieve these
high sensitivity scores the methods at the same time make
a lot of false positive predictions, as can be seen from the
lower positive predictive values (PPV). MSCAN and Module-
Searcher, on the other hand, generally have the highest
nucleotide-level PPV scores, which tells us that the posi-
tive predictions made by these two programs are more
trustworthy than predictions made by the other programs.

PWMs from the TRANSFAC database were used to repre-
sent both the true motifs and the decoys for the TRANS-
Compel dataset. A potential problem when using
TRANSFAC is that many of the matrices are quite similar
to each other [28]. This is partly due to some TFs being
represented by several PWMs, but also because different
TFs might bind to similar-looking motifs. As a result,

module discovery programs can be unduly penalized for
selecting an incorrect PWM at the motif level, even though
the predicted PWM is very similar to the target. We have
tried to remedy this situation by grouping together PWMs
that correspond to the same TFs and consider these as the
same motif with respect to scoring. However, there might
still be other matrices in the decoy sets that can match
with the annotated binding sites.

Since we are using real genomic sequences, some of the
predicted modules that we label as false positives can in
fact represent unannotated true positives, and so the
actual performance of methods might very well be better
than indicated, especially at high noise levels.

It should be noted that while the annotated length of a TF
motif may vary from binding site to binding site, the
length of a standard PWM is fixed, and PWMs do not
always match the locations of their corresponding bind-
ing sites precisely. Perfect nCC scores can therefore be dif-
ficult or even impossible to obtain. The nCC score also
drops fast if a method predicts a larger module region
than what is annotated, even though the target module is
correctly covered by the predicted region. This can
severely penalize methods that tend to predict large mod-
ule regions, especially on the TRANSCompel dataset
where most modules are rather short.

Some programs can utilize additional information to
strengthen confidence in predictions and improve their
performance. For instance, Stubb is a sensitive method
and the predictions it makes usually include the correct
modules, especially when using large PWM sets; yet, its
CC-scores are generally low because it simultaneously pre-
dicts a lot of false positives. Stubb can employ a phyloge-
netic footprinting [29] strategy to filter out many of these
false predictions, but it requires that orthologous
sequences from related species are supplied along with the
regular sequences. However, in order to make the tests as
comparable as possible, we have not made such addi-
tional information available to the programs in our
benchmark test, unless the type of information can be
expected to be readily obtained for any dataset.

Caution should thus always be taken when interpreting
score values, since the reported scores might not accu-
rately reflect the optimal capabilities of the methods. Also,
we have run the programs using mostly their default
parameter settings. We are fully aware that adjusting the
parameters can greatly affect the performance of a pro-
gram, however, selecting the most appropriate parameter
values be can be tricky and running methods with default
settings is probably closer to typical usage.
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It is inherently difficult to conduct an assessment that is
fair to all methods. Even the most minute design choice
can influence the outcome if it unintentionally favours
some methods over others. For instance, limiting the size
of input sequences will be beneficial for most module dis-
covery tools since it improves the signal-to-noise ratio. On
the other hand, using too short sequences can disadvan-
tage methods that require substantial amounts of data in
order to derive elaborate background models. The best
solution, then, is to try to balance the scales by subjecting
methods to several different situations with datasets
exhibiting a range of characteristics. This will make it
harder still to declare a winner, since it will inevitably lead
to even greater variation in the results. Then again, the
purpose of benchmarks tests need not be to identify a sin-
gle program that can be recommended for all needs, but
rather to determine how different methods behave under
different conditions, thus enabling us to select the most
appropriate tool to use in specific situations.

The results from our assessment of eight published mod-
ule discovery tools show that the top scoring method does
vary a lot between datasets. On the TRANSCompel data-
set, for instance, all methods save Stubb and CisModule
score better than the others on at least one sequence set.
But there is also a tendency for some methods to perform
consistently better or worse across several datasets. Cis-
Module performed poorly on most sequence sets, Cister
and Stubb usually scored somewhere in the middle, while
CMA, ModuleSearcher, MSCAN and Cluster-Buster were
often found among the top scoring methods on each set.
CMA and ModuleSearcher were clearly best at identifying
the correct motif types involved in the modules, and they
were also the only methods capable of coping with large
and noisy PWM sets. The other PWM-reliant methods
appear to be more suited for detecting modules with some
prior expected composition than for discovering com-
pletely new and uncharacterized modules.

There was some variation when using custom PWMs as
opposed to TRANSFAC PWM sets. The average perform-
ance over all methods on the whole TRANSCompel data-
set was about the same in both cases, but there were a lot
of local differences between sequence sets. The most
extreme example can be seen on the Ebox-Ets sequence set
where MSCAN scores highest of all with TRANSFAC
matrices, yet completely fails to find any true modules
with custom matrices. The average deviation in scores
when using either PWM set was about 0.11 and the effect
could go both ways. MCAST was the only method which
almost consistently scored better with one set, namely
custom matrices.

Conclusion
While improvements can still be made to our systems, we
have taken a first step towards developing a comprehen-
sive testing workbench for composite motif discovery
tools. The assessment system is based on two established
datasets for module discovery plus a novel dataset we con-
structed from TRANSCompel module annotations. The
performance of methods on our novel set is comparable
to the previous two, demonstrating its utility as a bench-
mark set. Together these datasets challenge methods to
discover modules with different characteristics and vary-
ing levels of difficulty.

Not surprisingly, trying to discover composite motifs de
novo proves to be much more challenging than relying on
PWMs as an aid to detect potential single binding sites.
With large and noisy PWM sets, however, it becomes cru-
cial to consider multiple instances of conserved motif
combinations in order to identify true modules. In gen-
eral, our study shows that there are still advances to be
made in computational module discovery.

Methods
TRANSCompel dataset
Our main dataset was based on modules annotated in the
TRANSCompel database [22], which is one of very few
databases that contain entries for composite elements
whose combinatorial binding effects have been verified
through biological experiments. It comes in both a profes-
sional licensed version and a smaller public version. Our
dataset was selected from TRANSCompel Professional
version 9.4 which contains 421 annotated module sites
from 152 different module classes. The largest modules
registered in TRANSCompel are triplets (34 entries) with
the remaining being pairs of binding sites (387 entries).
To ensure a minimum of support for each module class,
we considered only classes that had at least five annotated
module sites. Unfortunately, this requirement excluded
all triplets and left us with only pairs. After further discard-
ing a few modules that were too weak to be detected with
stringent PWM-thresholds, we ended up with ten
sequence sets encompassing 81 module binding sites in
63 different sequences. The longest module spanned 135
bp with the average being 33 bp. The binding sequences
of modules are specified in TRANSCompel by using
uppercase letters to indicate bases of the constituent single
motifs and lowercase letters for the intra-module back-
ground. We used the supplied references to the EMBL
database [30] to obtain additional sequence bases flank-
ing these module sites but set an upper limit of 1000 bp
on the length of the sequences used. Most of the
sequences were from human or mouse but also some
other mammalian and a few viral sequences were
included. Each sequence set was constructed around mod-
ules of one particular class made up of two single motifs
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from the following set of eleven: AML, AP-1, C/EBP, E-
box, Ets, IRF, HMGIY, NF-AT, NF- B, Sp1 and PU.1. The
sequence sets contained between 4 and 16 sequences and
the sequences themselves ranged in length from 294 to
1000 bp (average 884 bp). All sequences contained at
least one module instance, but sometimes up to three, of
the designated class. Some sequences also included anno-
tated modules of other classes. This will usually not be a
problem at low noise-levels, because the other modules
will only interfere if the set of PWMs supplied to a pro-
gram contains decoy matrices corresponding to the motifs
involved in these modules. As the noise-level approaches
99%, however, this will inevitably happen because the
PWM sets then include the complete TRANSFAC collec-
tion. Since we use real genomic data, there is also always
a possibility that additional unknown modules are
present in the sequences. Even so, for a particular
sequence set, only module sites corresponding to the des-
ignated class of that set were considered true positives.

Although the TRANSCompel database itself does not pro-
vide matrix representations for the motifs involved in
modules, its companion database TRANSFAC does [22].
Unfortunately, there is not a one-to-one correspondence
between transcription factors and matrices in TRANSFAC,
and a single factor (or family of factors that recognize the
same motif) can be represented by several different
PWMs. Instead of selecting just one canonical PWM to use
for each motif, we collected all matrices related to a spe-
cific motif and treated the whole set as an equivalence
class. Thus, a motif can be represented by either one of the
PWMs in the corresponding set, and predicted binding
sites in the sequences are considered to be instances of the
same motif even if the binding sites are predicted by dif-
ferent PWMs from the equivalence set.

As an alternative to these TRANSFAC sets, we also con-
structed custom PWMs for the eleven motifs involved in
our module classes. For each motif we extracted the corre-
sponding annotated binding sites plus four flanking bases
on each side from our sequences and used MEME [31] to
align them and infer a PWM model for the motif. Con-
structing matrices from the same binding sites they will
later on be used to detect introduces a circularity which
will probably make these sites easier to find than if the
PWMs had been constructed from independent
sequences. This was intentional, however. Since the pur-
pose of our study was to assess the methods' abilities to
find significant combinations of binding sites rather than
individual sites, we wanted the individual sites to be easily
detectable. To verify that the annotated single binding
sites in the TRANSCompel dataset were indeed detectable
by our matrices, we used an algorithm from the "TFBS"
package [32] to match the PWMs against the sequences.
Of the 81 single binding sites in the dataset, all but ten

could be detected with an 85% relative cut-off threshold.
When we lowered the cut-off to 75%, all sites could be
detected. Single binding sites were considered to be
detected if a predicted match to the corresponding PWM
overlapped with the annotated binding site. For the
TRANSFAC matrices, we regarded it as sufficient if any one
of the matrices in the equivalence set made a prediction
that overlapped with the annotated site.

Liver and muscle datasets
The liver dataset was based on a set of regulatory regions
used as a positive training set to develop a model of liver
specific regulation in the paper by Krivan and Wasserman
[23]. Sequence data as well as PWM models of four TFs
implied in liver specific regulation (C/EBP, HNF-1, HNF-
3 and HNF-4) was downloaded from their supplementary
web site [33]. After inspection of the sequence annota-
tions, we discarded from further consideration those reg-
ulatory regions that only contained a single TFBS and also
smaller annotated regions that were completely over-
lapped by larger regions. Furthermore, we ignored a small
set of TFs that only had one binding site each in the whole
dataset. This left us with regulatory regions consisting of
two or more binding sites for the four TFs previously men-
tioned. The start position of the first TFBS and the end
position of the last TFBS in each region were used as mod-
ule boundaries, and the modules thus obtained varied in
length from 26 to 176 bp with and average of 112 bp.
Long sequences were cropped to a maximum of 1000 bp.
The resulting dataset after curation consisted of 14 mod-
ules in 12 sequences with 51 binding sites for 4 different
TFs. Eight of the sequences were human, two were from
rat and the last two from mouse and chicken.

For the muscle dataset we selected a subset of the regula-
tory regions from the paper by Wasserman and Fickett [7]
obtained from their web site [34]. Five motifs (Mef-2, Myf,
Sp1, SRF and Tef) were reported as important in muscle
regulation, and PWMs for these motifs were downloaded
from the same site. We chose regions that had at least two
annotated binding sites for motifs in this set and used the
first and last binding site in the regions to delimit the
modules. Since most of the sequences at the website were
excerpts and rather short, we tried to extend them where
possible by obtaining the original sequences from EMBL,
though limiting the sequences to a maximum of 1000 bp
as usual. The final muscle dataset used contained 24
sequences with one module in each and a total of 84 TFBS
for 5 motifs. The smallest module spanned 14 bp and the
longest 294 bp (average 120 bp). 10 sequences were from
the mouse genome, 6 from human, 5 from rat, 2 from
chicken and 1 from cow.

Further statistics on the datasets and PWMs used are sum-
marized in Table 1 and Additional File 1.
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Running the programs
Most of the methods tested could be run directly from the
input sequences and a set of PWMs. Both CMA and Mod-
uleSearcher, however, rely on separate programs to match
the PWMs against the sequences in a preprocessing step.
For ModuleSearcher we used the program MotifScanner
since both of these methods are part of the Toucan tools
suite for regulatory sequence analysis [35]. MotifScanner
was run with a third order background model based on
vertebrate promoter sequences, which was also available
with Toucan. CMA comes bundled with Match [36] for
PWM scanning. Match utilizes two different threshold val-
ues which should be individually fitted for each specific
PWM. Preconstructed cut-off profiles for TRANSFAC
matrices are available for different conditions, for instance
to minimize either the false positive or false negative dis-
covery rate or to minimize the sum of these two rates. As
suggested in the CMA publication, we used cut-off profiles
designed to minimize the false negative discovery rate.
Similar cut-off profiles for the liver, muscle and custom
matrices were estimated according to the procedure
described for Match [36]. For each PWM we generated
50000 random oligos by sampling from the PWM distri-
bution. The PWM was then scored against these oligos
with Match, and a cut-off threshold was chosen so that
90% of the oligos obtained a match score above this
threshold. Since CMA is based on a discriminative model,
it also requires a set of negative sequences along with the
positive dataset. As negative data we selected 1000 bp pro-
moter segments from 50 random housekeeping genes that
were part of the default negative gene set included with
the method's web service [37].

Availability and requirements
The web service for assessing composite motif discovery
tools, as well as all the results from our benchmark test, is
available at http://tare.medisin.ntnu.no/composite.
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bp, base pair; FN, false negative; FP, false positive; HMM,
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PPV, positive predictive value (defined as TP/(TP + FP));
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ABSTRACT

Summary: Computational methods designed to discover
transcription factor binding sites in DNA sequences often have a
tendency to make a lot of false predictions. One way to improve
accuracy in motif discovery is to rely on positional priors to focus
the search to parts of a sequence that are considered more likely to
contain functional binding sites. We present here a program called
PriorsEditor that can be used to create such positional priors tracks
based on a combination of several features, including phylogenetic
conservation, nucleosome occupancy, histone modifications,
physical properties of the DNA helix and many more.
Availability: PriorsEditor is available as a web start application and
downloadable archive from http://tare.medisin.ntnu.no/priorseditor
(requires Java 1.6). The web site also provides tutorials, screenshots
and example protocol scripts.
Contact: kjetil.klepper@ntnu.no
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1 INTRODUCTION
Computational discovery of transcription factor binding sites in
DNA sequences is a challenging problem that has attracted a lot
of research in the bioinformatics community. So far more than a
hundred methods have been proposed to target this problem (Sandve
and Drabløs, 2006) and the number of publications on the topic is
steadily increasing.

There are two general approaches for discovering potential
transcription factor binding sites with computational tools. One is
to examine regulatory regions associated with a group of genes that
are believed to be regulated by the same factors and search for
patterns that occur in all or most of these sequences. This approach,
often referred to as de novo motif discovery, can be used when we
have no prior expectations as to what the binding motifs might look
like. One concern with this approach, however, is that it might be
necessary to consider rather long sequence regions to ensure that the
target sites are indeed covered. Since binding motifs for transcription
factors are usually short and often allow for some degeneracy, the
resulting signal-to-noise ratio can be quite low, making it difficult to
properly discriminate motifs from background. Another problematic
issue is that DNA sequences inherently contain a lot of repeating
patterns, such as tandem repeats and transposable elements, which

∗To whom correspondence should be addressed.

can draw focus away from the target binding motifs when searching
for similarities between sequences.

The other general motif discovery approach, called motif
scanning, searches for sequence matches to previously defined
models of binding motifs, for instance in the form of position weight
matrices (PWMs; Stormo, 2000). The main drawback with motif
scanning is that it tends to result in an overwhelming number of false
positive predictions. According to the ‘futility theorem’ put forward
by Wasserman and Sandelin (2004), a genome-wide scan with a
typical PWM could incur in the order of 1000 false hits per functional
binding site, which would make such an approach practically
infeasible for accurate determination of binding sites. The problem
here lies not so much in the predicted binding patterns themselves,
since many of these would readily be bound by transcription factors
in vitro. In vivo, however, most such binding sites would be non-
functional, perhaps because the chromatin conformation around the
sites precludes access to the DNA (Segal et al., 2006) or because the
target factors require the cooperative binding of additional factors
nearby to properly exert their regulatory function (Ravasi et al.,
2010).

One way to improve accuracy in motif discovery is to try
to narrow down the sequence search space as much as possible
beforehand, for instance, by masking out portions of the sequences
that resemble known repeats or considering only sequence regions
that are conserved between related species (Duret and Bucher,
1997). Kolbe et al. (2004) introduced a measure they called
‘Regulatory Potential’ which combines phylogenetic conservation
with distinctive hexamer frequency profiles to identify possible
regulatory regions. This measure calculates a score for each position
along the sequence, and regions receiving higher scores are deemed
more likely to have a regulatory role. Regulatory Potential can
be considered as an example of a ‘positional prior’ since each
position is associated with an a priori probability of possessing
some specific property. Positional priors can be used as an aid
in motif discovery by assigning high prior values to regions that
we consider more likely to contain functional binding sites and
then focus the search on these regions. Besides conservation and
oligonucleotide frequencies, other features that can be relevant for
assigning prior values include: localized physical properties of the
DNA double helix, distance from transcription start site or other
binding sites, ChIP-chip and ChIP-seq data, and potentially tissue-
specific epigenetic factors such as the presence of nucleosomes
and associated histone modifications. Many of the aforementioned
features have previously been applied and shown to improve the
performance of motif discovery by themselves (see e.g. Bellora
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Fig. 1. The top left panel in this screenshot shows examples of some of the features that can be used as a basis to create positional priors. These features are
visualized as data tracks in the main panel for a selected set of sequences. The bottom-most track contains predicted matches to TRANSFAC and JASPAR
motifs in regions with non-zero RegulatoryPotential7X scores.

et al., 2007; Segal et al., 2006; Whitington et al., 2009), and it
has also been demonstrated that further gain can be achieved by
integrating information about multiple features (see e.g. Ernst et al.,
2010; Lähdesmäki et al., 2008).

We present here a program called PriorsEditor, which allows users
to easily construct positional priors tracks by combining various
types of information and utilize these priors to potentially improve
the motif discovery process (Fig. 1).

2 SOFTWARE DESCRIPTION
The first step in constructing a priors track with PriorsEditor is to
specify the genomic coordinates for a set of sequences one wishes
to analyze. Next, data for various features can be imported to
annotate these genomic segments. PriorsEditor supports three types
of feature data. The first type, numeric data, associates a numeric
value with each position in the sequence and can be used to represent
features such as phylogenetic conservation scores, DNA melting
temperatures and nucleosome-positioning preferences. Numeric
data tracks are also used to hold the final positional priors. The
second feature type, region data, can be used to refer to continuous

stretches of the DNA sequence that share some unifying properties
which distinguish them from the surrounding sequence. Different
regions are allowed to overlap, and regions can also be assigned
values for various attributes, including type designations, score
values and strand orientations. Features best represented as regions
include genes, exons, repeat regions, CpG-islands and transcription
factor binding sites. The last feature type, DNA sequence data,
represents the DNA sequence itself in single-letter code. DNA
sequence data can be passed on to motif discovery programs for
further analysis, and it can also be used to estimate various physical
properties of the DNA double helix, such as GC content, bendability
and duplex-free energy. Additional feature data can be obtained from
web servers such as the UCSC Genome Browser (Rhead et al., 2010)
or be loaded from local files.

Once the data for the desired features have been loaded, the data
tracks can be manipulated, compared and combined to create a
priors track using a selection of available operations. These include
operations to extend regions by a number of bases upstream and/or
downstream, merge overlapping regions or regions within close
proximity, filter out regions, normalize data tracks, smooth numeric
data with sliding window functions, interpolate sparsely sampled
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data, weight numeric data tracks by a constant value or position-
wise by another track, combine several numeric tracks into one
using either the sum or the minimum or maximum value of all
the tracks at each position and several more. It is also possible to
specify conditions for the operations so that they are only applied
to positions or regions that satisfy the condition. For example, to
design a priors track that will focus the search toward conserved
regions within close proximity of other binding sites, one could
start off with a phylogenetic conservation track, then load a track
containing previously verified binding sites from the ORegAnno
database (Griffith et al., 2008), extend these sites by a number of
bases on either side and lower the prior values outside these extended
sites.

After a priors track has been constructed, there are several ways
to make use of this new data. The most straightforward way is to
provide it as input to a motif discovery program that supports such
additional information, for instance, PRIORITY (Narlikar et al.,
2006) or MEME version 4.2+ (Bailey et al., 2010). Unfortunately,
not many motif discovery programs are able to incorporate priors
directly, so an alternative is to mask sequence regions that have low
priors by replacing the original base letters with Xs or Ns since
most motif discovery tools will simply ignore positions containing
unknown bases when searching for motifs. Apart from being used
to narrow down the sequence search space, priors information can
also be applied to post-process results after motif discovery has been
carried out, for instance, by filtering out predicted binding sites that
lie in areas with low priors or adjusting the prediction scores of these
sites based on the priors they overlap.

Positional priors tracks and masked sequences can be exported
for use with external tools, but it is also possible to perform motif
discovery from within PriorsEditor itself by using operations to
launch locally installed programs. To facilitate motif scanning,
PWM collections from TRANSFAC Public (Matys et al., 2006) and
JASPAR (Portales-Casamar et al., 2010) have been included, and
users can also import their own PWMs or define new collections
based on subsets of the available PWMs.

Constructing priors tracks and performing motif discovery
analyses can be tedious, especially when it involves many datasets
and requires several steps to complete. If a user discovers a good
combination of features to use for priors, it may be desirable
to repeat the same procedure to analyze other sequence sets as
well. PriorsEditor allows such repetitive tasks to be automatized
through the use of protocol scripts. Protocol scripts describe a list
of operations to be performed along with any specific parameter
settings that apply for these operations. They can be programmed
manually in a simple command language or be constructed using a
‘macro recording’ function which logs all operations the user carries
out while in recording mode. With protocol scripts these same series
of operations can be automatically applied to new sequence sets

simply by the click of a button. These scripts can also be set up so
that users can provide values for certain settings during the course
of an execution, enabling users to select for instance a different
background model or PWM threshold value to use in the new
analysis.

By providing a protocol script describing the operations to be
performed along with a file specifying the target sequences, it is
possible to run PriorsEditor from a command-line interface instead
of starting up the normal graphical interface. This allows the
construction and use of positional priors to be incorporated into
a batch-processing pipeline.
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Abstract

Background: Traditional methods for computational motif discovery often suffer from poor performance. In
particular, methods that search for sequence matches to known binding motifs tend to predict many
non-functional binding sites because they fail to take into consideration the biological state of the cell. In recent
years, genome-wide studies have generated a lot of data that has the potential to improve our ability to identify
functional motifs and binding sites, such as information about chromatin accessibility and epigenetic states in
different cell types. However, it is not always trivial to make use of this data in combination with existing motif
discovery tools, especially for researchers who are not skilled in bioinformatics programming.

Results: Here we present MotifLab, a general workbench for analysing regulatory sequence regions and
discovering transcription factor binding sites and cis-regulatory modules. MotifLab supports comprehensive motif
discovery and analysis by allowing users to integrate several popular motif discovery tools as well as different kinds
of additional information, including phylogenetic conservation, epigenetic marks, DNase hypersensitive sites,
ChIP-Seq data, positional binding preferences of transcription factors, transcription factor interactions and gene
expression. MotifLab offers several data-processing operations that can be used to create, manipulate and analyse
data objects, and complete analysis workflows can be constructed and automatically executed within MotifLab,
including graphical presentation of the results.

Conclusions: We have developed MotifLab as a flexible workbench for motif analysis in a genomic context. The
flexibility and effectiveness of this workbench has been demonstrated on selected test cases, in particular two
previously published benchmark data sets for single motifs and modules, and a realistic example of genes
responding to treatment with forskolin. MotifLab is freely available at http://www.motiflab.org.

Background
Computational motif discovery for transcription factor
binding sites is a challenging research problem that has
been studied for many years, but we are still missing
approaches that can ensure generally good performance.
For transcription factors with known binding motifs,
scanning sequences for matches to motif models can
identify potential binding sites, but the performance is
often strongly degraded by a high content of false posi-
tive predictions; predicted sites that do not correspond
to actual transcription factor binding events [1]. De novo
motif discovery, i.e. discovery of potentially novel motifs

from a set of DNA sequences, can work well for input
sequences with high motif content, like from ChIP-Seq
experiments. However, it is often less successful on more
general sequence sets, based for example on regulatory
regions for co-regulated genes [2].
It is a commonly used approach to not rely on predic-

tions of just a single method, but to run several motif
discovery methods on the same dataset and compare the
results. The motivation is, of course, that although one
individual method might be mistaken in a single case,
any motif predicted by several different methods is prob-
ably more likely to be correct. Tools such as Melina [3]
and Tmod [4] provide users the opportunity of running
and comparing results for several methods within a uni-
fied interface, and ensemble methods, like EMD [5] and
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MotifVoter [6], can take predictions from multiple methods
as input and automatically derive a consensus. Still, the
reason why motif discovery is so difficult in the first place
is that binding motifs are often rather short and can vary
substantially between binding sites. This makes them hard
to discover with de novo motif discovery methods since
the signal-to-noise ratio can be quite low when searching
for motifs embedded in long background sequences. How-
ever, transcription factors seldom operate alone but work
in concert with other transcription factors and co-factors
in order to achieve the required regulatory control. Hence,
groups of motifs for co-operating factors will often occur
in close proximity to each other in the DNA sequence,
and such “composite motifs”, or cis-regulatory modules
(CRM), can provide a stronger signal than individual
motifs. Several module discovery methods have therefore
been proposed to search for such motif groups [7].
A fundamental limitation with the traditional motif and

module discovery approaches is that they only rely on in-
formation in the DNA sequence itself, but the mere pres-
ence of a binding motif does not necessarily imply that it
is a functional binding site. Other conditions, such as for
instance chromatin accessibility, DNA-methylation or
even the distance to the transcription start site, can also
influence the ability of transcription factors to bind and
exert their regulatory function. Many binding sites may
also function in a cell- or tissue-dependent manner, and a
site which is active in one cell-type might well be inactive
in others.
Recent advances in high-throughput experimental

methods and large-scale genome annotation efforts, such
as the ENCODE project [8], have led to an avalanche of
data which is now available to researchers. ChIP-Seq
data, for instance, can provide evidence that a specific
transcription factor has bound to a region (albeit per-
haps by indirect binding), and information about DNase
hypersensitivity and epigenetic marks can indicate which
regions of the DNA are generally accessible and also give
clues as to their regulatory roles in different cell-types.
Newer motif/module discovery methods, including for

example Chromia [9], Centipede [10], ProbTF [11],
CompleteMOTIFs [12], Combinatorial CRM decoder
[13] and i-cisTarget [14], try to take advantage of such
additional information in order to improve their predic-
tions. Some of these tools rely on a fixed set of features
which are utilized in a predefined manner. This makes
them very convenient and easy to use, but it also means
that they are unable to incorporate new data unless their
original creators update the underlying databases. Other
methods are more general and can work with arbitrary
data, but require that the users themselves obtain all the
relevant data for the sequences they want to analyse and
also convert this data into a format the tool can handle.
This might not always be a trivial task, and it can

sometimes even require that the users are skilled in pro-
gramming. Hence, the threshold for making use of add-
itional data in the analysis can often be high.
In this paper we present a tool called MotifLab which is

designed to be a general workbench for analysing regula-
tory sequences and predicting binding sites for individual
transcription factors and modules of co-operating factors.
The main purpose of MotifLab is to provide a flexible
framework which allows users to easily incorporate differ-
ent kinds of additional information into the motif discov-
ery process. As a motif discovery workbench it has drawn
inspiration from other related tools, primarily Toucan
[15], but it also shares similarities with e.g. MochiView
[16], SeqVISTA [17] and RSAT [18]. MotifLab is written
in Java and will run locally as a stand-alone application.

Implementation
Software description
At its core, MotifLab functions as a repository of data
objects that can be manipulated and analysed using a
number of available operations. The results can be visua-
lized and examined interactively within the system or be
output to standard text based formats (FASTA, GFF etc.)
for further processing by other programs. MotifLab is not
backed up by a central dedicated database server, but data
can be retrieved automatically from various internet
resources, such as the UCSC Genome Browser [19] or
DAS servers [20], or alternatively be imported from local
files. New data objects can also be derived from already
existing objects or created manually from scratch.
MotifLab distinguishes between several types of data for

different purposes. One of the fundamental data types in
MotifLab is the sequence, which represents a segment of a
genome, such as the promoter region associated with a
specific gene. Users can create new sequence objects by
specifying their chromosomal coordinates or by providing
MotifLab with a list of gene identifiers and selecting a re-
gion to analyse around the genes’ transcription start or
end sites. The sequence objects merely function as refer-
ences to genomic locations, and besides the coordinates,
genome build and strand orientation of the sequences,
they hold little additional information by themselves.
However, sequences can be further annotated with feature
datasets, which come in three different types: DNA se-
quence datasets, numeric datasets and region datasets.
DNA sequence datasets contain a single base letter for
each position within a sequence. Usually, they just hold
the original DNA sequences for the genomic segments
being investigated, but it is fully possible to have multiple
DNA sequence datasets associated with the same
sequences. These additional datasets can then contain
masked versions of the original DNA sequence or ran-
domly scrambled sequences to be used for statistical com-
parisons. Numeric datasets, on the other hand, have a
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numeric value for each position in the sequences, and
this data type can represent information such as phylo-
genetic conservation level, DNA stacking energy, melt-
ing temperature or basically any other signal that can
vary in intensity along the sequence. The final feature
data type, region datasets, associates each sequence
with a set of regions. A region here refers to a subseg-
ment of a sequence which has distinct properties that
sets it apart from the rest of the sequence. Regions can
represent features such as genes, CpG-islands, repeat
regions or transcription factor binding sites. Different
regions within the same sequence may overlap each
other, and regions can also be assigned values for vari-
ous attributes, including a type designation, score value
and strand orientation.
MotifLab’s graphical user interface offers a sophisticated

sequence browser with powerful capabilities for visualiz-
ing sequences and associated feature data tracks, as shown
in Figure 1. All the sequences are displayed simultaneously
beneath each other in the same window so that features
for different sequences can be compared visually. The
browser is highly interactive and customizable, and it sup-
ports fast zooming to any scale and panning to show dif-
ferent parts of a sequence. The appearance of each track,
including its colour, size and orientation, can be easily
modified, and the order of the tracks and sequences can
be rearranged or sorted according to different criteria. In-
dividual sequences, tracks and even individual regions
within region datasets can also be hidden from view to
display only what the user wants to focus on at any time.
Besides sequences, another fundamental data type is

the motif, which is used to model binding motifs for
transcription factors. The binding motifs themselves are
typically represented as either position weight matrices
or IUPAC consensus sequences, but motif objects can
be annotated with a lot of additional information as well,
such as the names of different transcription factors that
bind to the motif, names of organisms and tissues these
factors are expressed in, references to other motifs
representing known interaction partners for these factors
and references to alternative models for the same motif.
New motif objects are automatically added when per-
forming motif discovery, but they can also be created
manually by entering a matrix, IUPAC consensus or a
set of aligned binding sequences. MotifLab includes sev-
eral predefined motif models from databases such as
TRANSFAC [21], JASPAR [22] and ScerTF [23].
It is often useful to be able to refer to subsets of

sequences and motifs, for instance to divide a set of
sequences into groups according to gene expression or
to limit the search for binding motifs to transcription
factors that are actually present in the cell-types being
investigated. In MotifLab this can be accomplished with
the help of collection objects. Users can create new

collections by selecting data objects from a table or
by supplying a list of objects to include. Collections
can also be based on various statistics. For example, it
is possible to create a sequence collection containing
sequences with less than 40% GC-content or a motif col-
lection with motifs that appear in at least 80% of the
sequences. Somewhat related to collections are partitions
which allow all data objects of a specific type to be
divided into non-overlapping clusters. The numeric map
data type associates each sequence or motif with an indi-
vidual numeric value. Numeric maps can be used to
hold data such as gene expression values for sequences
or expected occurrence frequencies for motifs. General
text variables, on the other hand, can hold any kind of
structured or unstructured text which will be interpreted
depending on the context.

Operations and protocol scripts
MotifLab provides more than 40 data-processing opera-
tions to create, transform, combine, analyse and output
data objects, including special operations to perform
motif and module discovery. Some of these operations,
like “output” and “copy”, can be applied to any object,
while others may be specific to a single type of data. The
“mask” operation, for instance, can replace parts of a
DNA sequence with other letters, such as X or N, or it
can even replace the whole sequence with random bases
sampled from a background distribution to create an
entirely new artificial sequence. Numeric data objects
can be transformed with arithmetic operations or other
mathematical functions such as logarithms, range nor-
malizations etc., and sliding windows can be applied to
numeric features to smooth the data or to detect peaks,
valleys and edges within the track. Other operations
can change the size of regions by extending them in ei-
ther direction or merge regions that overlap with each
other. One of the simplest operations, but also one of
the most useful, is the “filter” operation, since it can be
employed to remove selected regions from a dataset,
particularly binding sites that are suspected to represent
false predictions.
Operations that target feature datasets can be limited

to selected parts of sequences by specifying conditions
that are evaluated for each individual base position or
region in the dataset. These conditions can be based on
the contents of the target track itself or involve informa-
tion compared across several tracks. For example, a sim-
ple way to perform phylogenetic footprinting without
having explicit access to orthologous sequences would
be to first predict a set of binding sites in the normal
way and then filter out those predictions where the aver-
age value of a conservation track within the binding sites
is less than some threshold. Likewise, the process of “re-
peat masking”, which is often performed prior to motif
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discovery, can easily be accomplished by limiting the
“mask” operation to bases that lie within regions in a
track containing known repeats. Conditions offer an easy
way of integrating information from several features,
and they can be made arbitrary complex by combining
multiple individual conditions with Boolean operators.
Analysis of regulatory sequences usually involves mul-

tiple steps and requires several operations to obtain and
pre-process data, discover motifs and binding sites and
post-process and analyse the results. To keep track of
what is being done, MotifLab provides functionality that
allows users to automatically record every step they per-
form in a protocol. The protocol is written in a struc-
tured format and includes information about which
operations have been executed, as well as details about

their parameters, conditions and constraints. The proto-
col can thus serve as a form of documentation of the
analysis process, but more importantly, it also makes
MotifLab able to automatically apply the same workflow
to other datasets as well, or to restore a previous session.
Protocols can alternatively be written and edited manu-
ally, either in external text editor programs or in Motif-
Lab’s own internal protocol editor. By supplying a
protocol script describing the full analysis workflow, it is
possible to run MotifLab in “batch mode” from a com-
mand line without starting up the graphical user inter-
face. This also allows MotifLab to be incorporated as a
component in larger analysis pipelines.
MotifLab’s graphical user interface promotes interactive

data exploration, and multi-level undo/redo-functionality

Figure 1 MotifLab’s graphical user interface. The screenshot shows MotifLab’s graphical user interface with three data panels to the left and
with the sequence browser to the right taking up most of the screen space. The top data panel contains the feature datasets in the order they
are visualized as tracks in the sequence browser, the middle data panel contains the motifs and modules, and the bottom panel contains
miscellaneous data objects that to not belong in the first two panels. Features and motifs that are greyed out in the data panels are hidden from
view in the sequence browser. The bottommost sequence shows a motif track in “close-up mode” which is activated at zoom-levels above
1000%. The binding sites are shown with superimposed “match logos” where the base matching the DNA sequence in that position is shown in
colour and the other three bases are greyed out.
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provides users the opportunity to experiment with various
operations and try out different parameter settings for
these without having to worry about making irreversible
changes to the data. Unlike some other workbench sys-
tems, MotifLab does not maintain an explicit history rec-
ord which keeps track of all changes made to data and
provides access to earlier states. However, when data is
updated through the use of operations, the results can al-
ways be stored in a new data object under a different
name rather than replacing the original object. This way,
the original data can be kept intact and used for other pur-
poses as well. It is also possible to save the entire state of
MotifLab to a single “session file” to continue working on
an analysis at a later time.

Motif discovery
Discovering motifs and searching for transcription factor
binding sites within sequences are some of the primary
functions of MotifLab. However, MotifLab is not actually
capable of performing motif discovery by itself but relies
on external programs installed on the user’s computer to
accomplish such tasks. This makes MotifLab flexible
with respect to local software preferences or novel tools.
In order for MotifLab to communicate with external
programs, they must conform to standard data formats
for input and output and their interfaces must be
described in XML-based configuration files. MotifLab
already supports several popular motif discovery tools,
including AlignACE [24], BioProspector [25], MDscan
[26], MEME [27], MotifSampler [28] and Weeder [29],
and more tools will continuously be added (visit the
MotifLab web site for a complete and updated list).
Many of the supported programs have also been gath-
ered in a central repository so they can be downloaded
and installed from within MotifLab.
MotifLab has separate operations for performing motif

scanning, where external programs are provided with a
collection of predefined motifs and should return a re-
gion dataset containing predicted binding sites for these
motifs, and de novo motif discovery, where the programs
should discover both the binding sites and the motifs
themselves. In addition, a third operation offers support
for ensemble methods which can take predictions from
other methods as input and combine these into poten-
tially more reliable predictions.
Tracks with predicted binding sites are called motif

tracks, and they have a special status in MotifLab be-
cause of the connection between the binding site regions
and the motif objects associated with these sites. This
enables the sequence browser to visualize binding sites
with motif logos superimposed on the regions (as can be
seen in the bottom sequence in Figure 1), and clicking
on a binding site will bring up additional information
about the motif.

Using positional priors to guide motif discovery
Motif discovery is a challenging problem since it involves
searching for short and often degenerate patterns embed-
ded in potentially long sequences. However, some parts of
the sequences are more likely to contain functional bind-
ing sites than others, such as regions where the chromatin
has an open conformation or sites that have been con-
served throughout evolution. Some motif discovery pro-
grams allow users to limit the search space by masking
out parts of sequences and thereby excluding them com-
pletely from further consideration. However, this approach
might be considered too strict, since the excluded regions
could, in fact, contain functional binding sites that will in-
evitably be destroyed by the masking procedure. A more
flexible alternative is to construct a positional priors track
wherein each sequence position is assigned a score or
probability value reflecting a prior belief that the position
could be part of a binding site. Such a track can be used
to guide motif discovery programs by biasing the search
towards regions with higher probability of containing true
sites. Many types of information can be represented using
positional priors, for instance phylogenetic conservation
[30], nucleosome occupancy [31], properties of the DNA-
helix [32] and epigenetic marks [33], and information
from many different sources can be combined into a sin-
gle priors track [34]. Positional priors are currently only
supported directly by a few motif discovery and scanning
programs, including PRIORITY [35], MEME [36], FIMO
[37], ChIPMunk [38] and GRISOTTO [39], but they can
also be used indirectly in combination with other pro-
grams, for instance by employing positional priors to filter
out likely false predictions in a post-processing step.
Although tracks related to e.g. conservation, DNase

hypersensitivity and ChIP-Seq experiments do not actually
contain probability values in a strict statistical sense, such
tracks can often be used directly as positional priors (or
after minimal processing) since higher values in these
tracks correlate well with occurrences of functional bind-
ing sites. For other types of features the relationship might
not be so direct, and more advanced processing will be
required to generate positional priors based on such fea-
tures. MotifLab is an extension of an earlier program
called PriorsEditor [40], which was developed specifically
for creating and using positional priors tracks for motif
discovery. Many of the operations provided by MotifLab
are therefore related to transforming and combining fea-
tures to facilitate manual construction of positional priors
tracks, for instance to make weighted combinations of
several tracks. Creating positional priors tracks manually
can be beneficial if you want to utilize specific biological
knowledge or want to set up a track with clearly defined
focus. For example, if you have a set of known binding
sites for a single transcription factor and want to look for
potential interaction partners for this factor, you can
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create a track which focuses the search to the vicinity of
these sites, possibly adjusting the track further, for in-
stance by assigning increased weight to conserved regions.
Compared to PriorsEditor, MotifLab offers several new

functions to work with positional priors, including an op-
eration to convert a regular priors track into a discrimina-
tive prior (as described in [31]) and analyses to evaluate
the potential merit of priors tracks. The most important
new addition, however, is the introduction of “Priors Gen-
erators” that can be used to generate positional priors
automatically based on information from various features.
A Priors Generator is basically just a machine learning
classifier that can be trained to predict whether or not a
position in a sequence would be expected to lie within a
transcription factor binding site depending on the values
of relevant features at that position. MotifLab provides a
simple “wizard” to guide users through the steps required
to configure a new Priors Generator, such as selecting the
target and input features, setting up a training dataset and
finally training the classifier and saving the result. Once a
Priors Generator has been created, it can be used to gen-
erate positional priors for any sequence as long as the
required input features are available. Although Priors
Generators were introduced primarily for the prediction
of transcription factor binding sites, they can just as well
be trained to predict other region-based features in the
same manner, provided that a reasonable correlation be-
tween the target feature and the input features can be
expected.

Module discovery
Co-occurrence of motifs in modules represents a higher
level of cis-regulatory organization that can be exploited
to improve motif prediction, as binding sites for interact-
ing factors which appear in close proximity to each
other are less likely to represent spurious motif occur-
rences. MotifLab allows motifs to be annotated with in-
formation about known interaction partners, and one
way to utilize this information is simply to filter out pre-
dicted binding sites that do not have sites for potential
partners within some given distance.
Regulatory modules can also be modelled explicitly in

MotifLab with their own data type analogous to single
motifs. A module is made up of multiple constituent
motifs along with optional constraints on their order,
their orientations relative to each other and the distances
between them. Because public motif databases often
contain several alternative motif models for the same
transcription factors, MotifLab permits each constituent
motif in a module to be represented by collections of
motifs in order to achieve greater sensitivity when per-
forming module scanning.
As for single motif discovery, MotifLab provides separ-

ate operations to scan sequences for matches to

predefined modules and to search sets of sequences to
identify groups of motifs that might represent novel
modules. Again, both of these operations rely on exter-
nal module discovery programs to do the actual work.

Statistical analyses
The analyze operation is a versatile operation that can
be employed to perform a number of different statistical
analyses ranging from simple data comparisons to more
elaborate analyses like motif overrepresentation studies.
It will often be used to produce the final reports for an
analysis session, but it is also useful for providing rapid
answers to simple questions that might arise when work-
ing with datasets, such as “what is the GC-content of
these DNA sequences”, “do these two collections share a
significant overlap”, “is property X correlated with prop-
erty Y” or “is the value of this numeric track higher
within some regions than outside”.
The results from the analyses can be output either as

HTML-documents, with nicely formatted tables and
images, or in a “raw text” format suitable for parsing by
other programs. Individual results can also be extracted
from analysis objects and turned into other types of
objects for use elsewhere. For example, if you have per-
formed an analysis to determine the number of times
each motif occurs in a sequence set (“count motif occur-
rences”), you can extract these counts as a numeric map,
or you can make a motif collection containing the motifs
that were significantly overrepresented in the sequences
and use this in another analysis.
Some analyses, like the previously mentioned “count

motif occurrences”, will generate individual results for each
motif, module or sequence, and these results are presented
in interactive tables that are linked to the corresponding
data items. This makes it possible to e.g. highlight entries
in the tables that are members of different collection
objects, or to highlight corresponding elements in the se-
quence browser based on selections made in the tables.
For example, when examining the results from a motif
overrepresentation analysis, users can select the top most
significant motifs from the table and then choose “Show
only these motifs” from a context menu to visualize only
the binding sites for these motifs in the sequence browser.
The tables are therefore not merely static presentations of
the results, but can be used as a starting point for further
exploration of the data. If the tables contain motifs, the
motif logos will always be included in a separate column.
This is very useful, since rather than just listing numerous
motif identifiers or names of transcription factors the user
may or may not be familiar with, the logos enable users to
immediately identify properties of the corresponding
motifs and see similarities between them.
Results from multiple analyses can be collated into

“meta-analyses” by extracting selected columns from
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individual analyses and combining them into larger tables.
Information from different types of analyses can be com-
bined in this way to produce more comprehensive reports,
or results from the same analysis run multiple times with
different parameter settings can be juxtaposed to assess
the impact of varying these parameters.

Interactive tools
In addition to the data manipulation and analysis cap-
abilities provided by operations, MotifLab also includes
a few tools aimed at interactive exploration of data. Un-
like operations, these tools cannot be controlled by
protocol scripts, and they are only available through the
graphical user interface. Many of the tools are intended
to aid visual inspection of motif tracks, for instance by
highlighting binding sites with selected properties in the
sequence browser.
The Motif Browser and Module Browser are two con-

venient tools for managing your motif and module librar-
ies. These browsers will show an overview of all motifs or
modules currently known to the system. The entries are
displayed in a table with three columns containing the
name of the motif/module, a graphical logo representa-
tion, and a third property that can be chosen by the user
(see Figure 2a). A filter box enables users to search for en-
tries with specific properties, for instance motifs asso-
ciated with a given transcription factor, motifs for factors
expressed in specific organisms or tissues, motifs contain-
ing a given consensus sequence, or modules containing a
specific constituent motif. The search filter can also be
coupled to the sequence browser so that only binding sites
for motifs or modules matching the selected filtering cri-
teria will be shown in the tracks.
The Motif Score Filter tool is basically just a slider

bar which is used to dynamically adjust a cut-off thresh-
old. Any binding site region whose score-property falls
below the selected threshold will be hidden from view in
the sequence browser. This tool can thus be used to
highlight sites with increasingly higher scores. Besides
the standard score-property, other values associated with
binding sites can be used for filtering as well, for in-
stance the average score of a numeric data track within
the binding site.
As previously mentioned, MotifLab allows motifs to be

annotated with known interaction partners, and this in-
formation can be utilized by the Interactions Viewer to
visualize potential interaction networks directly within
motif tracks. When a user clicks on a binding site re-
gion, any binding sites within a chosen distance that are
associated with known interaction partners of the target
motif will be highlighted (Figure 2b). The network can
also be expanded to show several levels of interactions
in different colours. This tool is especially useful if you
already have a verified binding site that can be used as a

starting point to implicate additional predictions that
might be likely to represent functional binding sites.
Finally, the Positional Distribution Viewer will draw a

histogram based on the locations of all currently visible
regions in a selected track across all sequences (Figure 2a,
bottom). The histogram will be dynamically updated in re-
sponse to events that change the visibility of regions, mak-
ing it very useful in conjunction with other tools such as
the Motif Browser or Motif Score Filter.

Results
This section presents three examples of practical applica-
tions using MotifLab, which also illustrate some benefits
of incorporating additional information when analysing
regulatory sequences. Complete protocol scripts for these
examples are available from the MotifLab web site.

Example 1: Improving motif discovery with automatically
generated positional priors
We have previously published a suite of benchmark
datasets for single motif discovery (based on binding
sites annotated in TRANSFAC) where we made sure
that it would be at least theoretically possible to discrim-
inate the target motifs from the background sequence.
Nevertheless, when we tested the performance of the
motif discovery program MEME on these benchmark
sets, the results were not particularly encouraging [41].
In this example we use an updated version of the data-
sets (see Additional file 1) to demonstrate how informa-
tion about various sequence-related features can be
integrated into a positional priors track and used to
guide MEME towards the target motifs. The features
chosen as a basis for the priors track were: conservation,
conserved peaks, DNase hypersensitive sites, general
regions bound by transcription factors according to
ChIP-Seq data, CpG-islands, gene regions, coding
regions, repeat regions and regions with histone marks
H3K4me1 and H3K4me3. Since not all organisms are
annotated with these features at the present time, we
restricted the benchmark datasets to only consist of
sequences from human and mouse genomes. The
updated benchmark suite comprised 22 datasets, each
containing binding motifs for a particular transcription
factor and consisting of at least five sequences. We used
a cross-validation approach where a Priors Generator
based on a neural network classifier was trained on 21
of the 22 datasets and then used to generate a positional
priors track for the dataset that was held out. The priors
tracks were provided as input to MEME along with the
DNA sequences, and MEME was instructed to identify a
single motif with size between 8 and 16 bp in each data-
set. For comparison we also ran MEME with a uniform
priors track (effectively the same as using no priors) and
a priors track based solely on conservation.
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Figure 2 Examples of interactive tools. a) The Motif Browser tool (top dialog box) has here been used to search for TRANSFAC motifs
containing the consensus sequence “CCAAT” (both orientations). The corresponding binding site predictions for the 15 motifs matching this
criterion are shown as red boxes in the sequence browser partly visible in the background. The Positional Distribution Viewer tool (bottom
dialog box) shows a histogram of the locations of these binding sites, and the prominent peak indicates that the majority of the sites are located
within 200 bp upstream of the TSS. b) The Interactions Viewer tool. A part of a motif track is shown in close-up mode at 1200% scale (binding
sites are displayed here without motif logos). The black binding site in the middle is the target site selected by the user and the red sites on
either side have been highlighted by MotifLab as binding sites for transcription factors that are known to interact with the target factor(s) from
other locations. All other binding sites are greyed out.
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The results, combined over all datasets, are shown in
Figure 3. Detailed results for individual datasets are pro-
vided in Additional file 1. As can be seen from the bar
chart, the performance of MEME when not relying on any
additional information was rather low, with an average CC
score of 0.06. However, the performance increased about
3- to 4-fold for most metrics when the automatically gen-
erated positional priors were used to guide the search.
Many of the target binding sites in the benchmark were
located in conserved regions, and conservation was the
most informative single feature with respect to binding
site prediction. Conservation also contributed most to the
specificity of the combined priors, while the other features
primarily helped to elevate the basal prior probability
slightly within some broader parts of the sequences.
Figure 4 illustrates the ability of the individual features
to discriminate between binding sites and the back-
ground sequence.
Even when positional priors were used, the results

were far from perfect. There are several reasons for this:
1) for about half of the datasets MEME failed to predict
the correct target motif as its top candidate, 2) in some
datasets where MEME did identify the correct motif, al-
ternative binding sites for the motif were selected in-
stead of the annotated targets in a few sequences, and 3)
even if MEME predicted the basic motif and binding
sites correctly it did not always predict the correct size
of the motif, which could have significant impact on the
nucleotide-level statistics. A closer look at the predicted
sites and motifs revealed that MEME found the target
motif (or a resembling one) in 3 out of the 22 datasets
with the uniform priors. This number increased to 8
when conservation was used to guide the search, and
with the auto-generated priors MEME found the target

motif in about 9 to 11 datasets (depending on the par-
ticular Priors Generator used).

Example 2: Module discovery
In a second benchmark study we evaluated the perform-
ance of eight published module discovery methods on a
novel benchmark suite [7]. The suite consisted of 10
datasets with pairs of motifs appearing together in

Figure 3 Results from example 1 – Single motif discovery benchmark. The figure shows the performance of MEME on the single motif
discovery benchmark when guided respectively by a uniform positional priors track, a priors track based only on conservation, and a combined
priors track made by automatically integrating information from several features with the use of a Priors Generator. The statistics were calculated
by combining all sequences from the 22 datasets into one large dataset and measuring the overlap between the predicted binding sites and the
target sites. The first eight statistics are nucleotide-level statistics whereas the last statistic is the site-level sensitivity (number of predicted sites
overlapping with at least 25% of a target site). Due to the stochastic nature of the algorithm used to train the Priors Generator, the combined
priors track could vary slightly depending on the training. We therefore trained 20 different Priors Generators and ran MEME with priors tracks
generated by each of them. The bars show the average scores with standard deviations over the 20 runs.

Figure 4 Predictive capabilities of individual features. These
ROC-curves illustrate the ability of both the auto-generated
combined priors and the 10 individual features the combined priors
were based on to discriminate between sequence positions that are
part of binding sites or part of the background sequence. The
numbers in the legend box are the area under the curve (AUC)
values for each feature.
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multiple sequences and two additional datasets with lar-
ger heterogeneous modules involved in regulation in
liver and muscle tissue respectively. Most of the meth-
ods we tested relied on a first step to scan sequences
with a provided motif collection to find a set of candi-
date binding sites, and then they proceeded to search
through these candidates in order to identify potential
modules. The results showed, not surprisingly, that the
task of identifying the target modules became harder as
more candidate motifs were considered. In this example
we demonstrate how the performance of a module dis-
covery tool can be improved by utilizing additional in-
formation to reduce the number of candidate sites in a
pre-processing step.
To generate the candidate datasets we first scanned

the benchmark sequences with 1363 motifs from
TRANSFAC PRO using a rather sensitive threshold
(80% match) to ensure that all the target binding sites
were recovered. Then we filtered the predicted sites
according to various criteria to produce different candi-
date sets. As filtering criteria we used increasing levels
of average conservation within the sites (more than 0%,
10%, 30% and 60%) or required that each site should be
located nearby a site for a known interaction partner
(within 10 or 20 bp). For the “liver” and “muscle” data-
sets we also filtered sites for transcription factors that
were not known to be expressed in the respective tis-
sues. In addition we tried several combinations of these
criteria. The remaining binding site predictions for each
dataset were provided as input to the module discovery
tool ModuleSearcher [42].
Results for two of the datasets are shown in Figure 5,

and the remaining results are included in Additional file
1. For all 12 datasets there was some form of additional
information that would lead to better performance when
used to filter candidate sites. However, in some cases,
there were filtering criteria that would actually result in
lower performance. This was especially true for the data-
sets “CEBP-NFkB” and “IRF-NFkB” (see Additional file
1: Figures S2d and S2g). These two datasets were the
easiest in the original benchmark, and ModuleSearcher
did a good job of discovering the target modules even
without filtering the candidate sites. However, since only
about half of the binding sites comprising these modules
were conserved, using a strict conservation criterion made
it impossible to correctly discover the target modules.
As an additional control we also tried to filter the can-

didate datasets completely at random to verify that any
increase in performance was not simply due to a general
reduction in the number of candidate sites. Filtering sites
at random would in fact lead to better results in many
cases, most notably for datasets where the baseline per-
formance was poor. This is perhaps not so surprising,
since the vast majority of the candidate sites would be

considered to be false positives anyway according to the
benchmark datasets. However, the increase in perform-
ance was usually not as great as when more sensible fil-
tering criteria were employed.

Example 3: Identifying TFs regulating genes after
forskolin treatment
Forskolin is a diterpene which is known to raise the level
of cAMP (a second messenger) within cells [43], and this
will in turn trigger many different responses, including
activation of various transcription factors. HEK293 cells
were treated with forskolin and the effect on gene ex-
pression was measured at different time points using
microarray technology. Genes that were significantly dif-
ferentially expressed compared to untreated cells were
identified and sorted according to their peak time point.
Of the 860 genes in total whose transcript levels were
changed by the forskolin treatment, 270 had a peak dif-
ferential expression after 2 hours (108 upregulated and
162 downregulated). We obtained promoter sequences
for these 270 genes spanning 2000 bp upstream to
200 bp downstream of the transcription start site and
performed motif scanning with 931 vertebrate motifs
from TRANSFAC PRO.
The standard procedure for identifying transcription

factors that might be involved in regulating a set of genes
is to identify motifs that are significantly overrepresented
in the dataset relative to a realistic background frequency.
To estimate an expected frequency of each motif, we used
a 3rd-order background model based on human promoter
sequences to create a set of artificial control sequences
and performed motif scanning in those sequences using
the same parameter settings as before. We then derived
the frequencies of the motifs from these control sequences
and stored the results in a numeric map. Finally, we
counted the number of times each motif occurred in the
target dataset and used the expected motif frequencies to
calculate p-values for overrepresentation with a binomial
test. 113 motifs were found to be overrepresented at a sig-
nificance threshold of 0.05 (Bonferroni corrected to
5.37 × 10 –5 by dividing with the number of motifs consid-
ered). Many of the motifs with lowest p-values were GC-
rich, which might stem from the fact that the sequences
in the target dataset had a slightly higher GC-content than
the control sequences used for comparison. The transcrip-
tion factor CREB, which is a well-known cAMP-respon-
sive factor but does not have a particularly GC-rich motif,
was only ranked as number 57 according to p-value.
An alternative to overrepresentation is to look for

motifs whose sites share similar properties across several
sequences, for instance motifs that tend to appear at the
same distance from the transcription start site, or motifs
that are consistently conserved in many sequences.
We therefore ran two additional analyses where we first
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calculated the average conservation level for each motif
across all its binding sites and then analysed the pos-
itional distribution of the sites, using kurtosis as a simple
measure of clustering.
Not surprisingly, the motifs that scored highest on

average conservation were those that only occurred once
or twice and their binding sites just happened to lie
within conserved regions. These motifs are not interest-
ing for the dataset as a whole, however, since they are at
best involved in regulating only a few genes. The most
interesting motifs would be those that score high on
conservation and kurtosis but still occur often enough
to have a significant overrepresentation p-value, so we
combined these three properties into a single measure
using rank sum.
According to this combined measure, CREB (along with

the related factor ATF which binds to the same motif) was
ranked on top, followed by the ubiquitous factor Sp1 which

binds to the GC-box. Another significant transcription fac-
tor found was NF-Y which binds to the CCAAT-box. This
motif scored particularly high on kurtosis, and it is known
that functional binding sites for NF-Y tend to be located
between 60 to 100 bp upstream of the TSS [44]. NF-Y
is also known to cooperate with Sp1 to regulate some
genes in response to cAMP [45,46]. The two factors
NRF-1 and NRF-2 (nuclear respiratory factors) bind to dif-
ferent motifs, but both are ranked high and both have pre-
viously been implicated together with CREB in responses
to raised levels of cAMP [47]. Interestingly, many of the
sites for these two factors coincided with narrow peaks in
the conservation track whose size matched exactly the
width of the motifs. The fact that these sites were con-
served while the flanking sequence around the sites was
not is a strong indication that the sites might be functional.
Figure 6 shows the top ranking motifs from this analysis.

The full table is available on-line at the MotifLab web site.

Figure 5 Results from example 2 – Module discovery benchmark. This figure shows the nucleotide-level performance of ModuleSearcher on
two of the datasets from the module discovery benchmark. Since ModuleSearcher is based on a non-deterministic algorithm, we ran it 10 times
on each dataset. The bars show the average scores with standard deviations. The “baseline” scores reflect the performance when no pre-
processing was performed to filter candidate binding sites, and the other scores are for different filtering criteria and combinations thereof.
“C10_I10” means that the sites were filtered according to both the “Conservation10” and “Interacting10” criteria etc. a) The “Sp1-Ets” dataset was
one of the hardest in the original benchmark, but filtering sites based on either conservation or potential interacting sites nearby significantly
improves the performance of ModuleSearcher on this dataset. b) For the “liver” dataset we also filtered binding sites for motifs that were not
known to be expressed in liver (“Tissue”) and combined this criterion with different requirements on conservation level (“C10_T” etc.).
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Discussion
The examples given above, as well as previous publica-
tions by other groups, have shown that making use of
additional information might boost the performance of
motif and module discovery methods and help steer
them towards regulatory elements that are more likely
to be functional in a given context. However, relying
on the “wrong” data, or even using data in the wrong
context, can sometimes also have adverse effects. For

example, filtering predicted sites based on phylogenetic
conservation can lead to a higher proportion of true sites
among the remaining predictions, but this will inevitably
also remove any functional sites that are species-specific,
and therefore not conserved. Even “gold standard” data,
like DNase hypersensitive sites, should be used with
some caution, especially when applied across different
cell-types and conditions. To help users decide on which
types of data might be useful to consider, MotifLab

Figure 6 Results from example 3 – Genes responding to forskolin treatment. Results from the forskolin-analysis output in HTML format. The
table is a combination of results from four different analyses performed in MotifLab. The “total”, “support” and “p-value” columns are from an
analysis that counts the number of times each motif occurs in the sequences and estimates the significance of overrepresentation (significant p-
values are highlighted in red). The “conservation” column is the average score taken from an analysis that compares the binding sites for each
motif to a selected numeric feature (here conservation). The “kurtosis” and “histogram” columns are from an analysis of the positional distribution
of the binding sites for each motif. The “group” column is from an analysis that compares the number of binding sites for each motif within
sequences from two different groups to see if some motifs are overrepresented in one group compared to the other. Here we compared the
group of upregulated genes to the downregulated genes. Motifs in the “A” and “B” groups (in red) were significantly overrepresented in the
upregulated sequences whereas motifs in the “D” group (in green) were overrepresented in the downregulated sequences. Motifs in the
“C” group (yellow) occurred at approximately the same rates in both groups. The table is sorted according to the combined ranks of p-values
(ascending), conservation (descending) and kurtosis (descending). Note that almost all top ranking motifs are preferentially located within a
narrow region upstream of the TSS, as indicated by the sharp peaks in the histograms around this position. Motif types are colour coded in the
left-most column (CREB/ATF motifs with boxes in red, SP1 in blue, NF-Y in yellow, nuclear respiratory factors in green, others in grey).
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includes several analyses to evaluate the merit of different
types of information and to benchmark the performance
of motif and module discovery methods. In fact, all the
performance evaluations in the previous examples were
performed within MotifLab, and the bar chart figures and
ROC-curves included in this paper were produced directly
from the analyses using the “output” operation.
Although many recent motif discovery tools can make

use of additional data, they are often limited in what
kind of data they can use and what they do with it, typic-
ally using information about known repeats to mask
sequences or conservation to filter predicted binding
sites. MotifLab allows users to incorporate many differ-
ent types of data and use it in any way they like. No kind
of information is treated as special compared to others
by MotifLab, and information is represented with a few
general data types. This means that it should be easy to
also incorporate new kinds of data that might be avail-
able in the future.
The ability of MotifLab to process data in arbitrary

ways using operations also sets this tool apart from most
other motif discovery workbenches. The program has
been designed so that users with some background in
the field of regulatory sequence analysis should be able
to rapidly learn how to perform standard tasks such as
obtaining promoter sequences, annotating them with
feature data and performing motif discovery or scanning.
But it should also be relatively easy to perform more
sophisticated pre- and post-processing tasks which
would otherwise often require writing custom scripts.
For the use case examples described in this paper, all the
data processing steps involved in the analyses were per-
formed within MotifLab itself.
MotifLab keeps all data objects in memory at all times

rather than relying on external storage solutions. In
addition, all operations are performed locally so most
processing tasks will execute relatively fast. Visualization
in the sequence browser is also very fast and responsive
since the system does not have to wait for individual
data segments to load from a server. This means that
the tool has not been designed primarily to handle ex-
tremely large datasets (e.g. full genomes), although it is
possible to apply it for genome-wide binding site predic-
tions if sufficient memory is available. However, Motif-
Lab is ideal for in-depth analysis of small to moderate
datasets ranging from a single sequence to a few hun-
dred (or even a few thousand) sequences, such as pro-
moter sequences from groups of co-expressed genes. It
is also very well suited for interactive, visual exploration
of datasets and for rapid hypothesis testing.

Conclusions
Although vast amounts of genomic annotation data are
now available to researchers who study transcriptional

regulation, it is not necessarily trivial to make good use
of this data for people who are not skilled in bioinfor-
matics programming. The MotifLab workbench pre-
sented in this paper was designed to make it simple for
users to obtain relevant data for sequences they want to
study and to use this information in combination with
existing motif discovery tools in many different ways.
The utility and versatility of MotifLab was demonstrated
through three practical analysis cases.

Availability and requirements
Project name: MotifLab
Project home page: http://www.motiflab.org
Operating system(s): MotifLab itself is OS-indepen-
dent, but some external tools used by MotifLab for motif
discovery etc. might only be available for some operating
systems.
Programming language: Java 1.6
Other requirements: None
License: None
Any restrictions to use by non-academics: None

Additional file

Additional file 1: Supplementary methods and additional results.
This supplementary file contains detailed descriptions of the procedure
to generate and analyse the datasets used in examples 1 and 2, as well
as results for individual datasets from those examples.
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