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Abstract—In this paper, a practical approach for benchmark-
ing different bidding strategies towards the day-ahead market
has been evaluated. A rolling horizon simulation framework is
developed and closely integrated in the daily operations of a
hydropower producer. The power producer’s existing framework
of decision support models and data for prices and inflow has
been used to simulate the use of alternative strategies on a real
life case. In the simulation procedure, a mixed-integer stochastic
optimization model is used to determine the bids to the electricity
market and the production schedule.

It has been demonstrated that simulation over a long time-
horizon can be used to evaluate different bidding strategies.
Results from the case study show that one single strategy not
necessarily will be the optimal one under all conditions, because
the optimal strategy will depend on the the state of the system.

Index Terms—Hydropower, Bidding problem, Day-ahead mar-
ket, Rolling Horizon Simulator

I. INTRODUCTION

In modern power systems, electricity is traded on various
markets. For individual power producers, the trading strategy
should optimize the value of resources in a long and short-
term perspective [1]. To manage and plan for sales in the
electricity market, most power producers have engaged pro-
duction planners who combine decision support models with
commercial competence and experience to determine the daily
bidding strategy.

As bids for the market must be based on physically feasible
production schedules, optimization models used for bidding
must consider the production system as well as market aspects
such as expectations of future market prices. For hydropower
producers with reservoir storage, there is also uncertainty in
future inflows. Accounting for these uncertainties is crucial in
long and medium-term hydropower scheduling, but it might
also be beneficial to consider them in the bidding process, i.e.
in the daily scheduling process. Such stochastic models have
been formulated in the literature [2]–[4] , but have not yet
been implemented in any significant extent in the industry.

Presently, the main strategies implemented by Nordic hydro-
power producers for bidding towards the day-ahead market
are based on deterministic models, and are described in [5].
Optimal bidding strategies, also referred to as optimal offer
construction in electricity markets, have also been investigated
for other liberalized electricity markets [6].

With the introduction of multiple markets with different
closure times, the hydro-power producers also have the option
to bid and allocate production to markets where they believe
the highest profit can be obtained. The optimization of se-
quential markets have been the topic for several publications,
and bidding strategies are often grouped into sequential or
coordinated bidding strategies [7], [8].

Finally, with the increasing flexibility among consumers,
estimating the value of bidding strategies from a consumer
point of view have also received increased attention [9].

II. PROBLEM FORMULATION

Before deciding to implement new operation and bidding
strategies in the existing decision support system, power
producers need to evaluate the performance of alternative
strategies.

Gains from improved modeling could either be documented
by theoretical analyses, or be verified by comparing the per-
formance of different strategies over time. In [5], comparison
between four different bidding strategies in the day-ahead
market were investigated for a limited number of days. In
[10], back-testing of a stochastic coordinated bidding model
for sequential electricity markets was investigated over a time
horizon of 200 days.

To capture the dynamics and large variations in prices and
inflow, it is necessary to evaluate performance over a longer
time horizon. When long-term simulations are combined with
historic forecast for prices and inflow that were available to
the planner at that time, it is possible to estimate accurately the



consequences of choosing one strategy over another. The long-
term aspects of the trading strategy are important due to the
ability to store water (energy) in reservoirs. Access to historic
water values is therefore also important. The water value can
be defined as the future expected value of the stored marginal
kWh of water, i.e. its alternative cost [11], [12].

A. Bidding strategies

Two strategies have been evaluated in this analysis. The first
is Bidding the expected volume. The expected volumes are
found by deterministic optimization against forecasted price
and inflow using the SHOP software, and are submitted as
fixed hourly bids to the power exchange. SHOP is a software
tool for optimal short-term hydropower scheduling developed
by SINTEF Energy Research, used by many hydropower
producers in the Nordic market [13].

The second strategy is Stochastic bidding. The stochastic
model is based on the deterministic method, but allows for a
stochastic representation of inflow to the reservoir and day-
ahead market prices. In this case, bid-curves can be generated
from stochastic model as described in [14]. The bid-curves
can be represented as a bid-matrix sent to the power exchange
prior to the operation day. For hourly bids, the matrix consist
of one row for each hour, and columns for each price point.
Graphically, bids for one day can be illustrated as in Fig. 1. In
this work, we assume that the producer is a price-taker and the
committed volumes will be calculated by linear interpolation
using the realized market price in the market clearing. When
spot prices are available, resulting production for each power
station can be calculated. The resulting production is plotted
for a selected date in the simulation period with bid-curves and
realized spot prices in Fig. 1. Detailed production is given in
Table II in Appendix.

Fig. 1: Bid curves for one investigated power-plant, on date[i] Dec
2018. Resulting production is shown with round markers

Two important observations can be made for the bid curves
in Fig. 1. The first is that even for the same day, where realized
prices for one hour is equal to another hour, the resulting
production will not necessarily be the same. As an example,
a price 46.3 C in hour 1 would give a production of 18.5
MW, the same price in hour 9 will only give a production
of 13.3 MW. This is because the bid curves are different for

the two hours, so interpolation between the market price and
the bid curves will result in different realized volumes. To
understand why the bid curves are different, we have to look
at the price scenarios in Fig. 2 associated with generation of
the bid-curves.

Fig. 2: Price scenarios for date[i] Dec 2018. Realized price is
dashed line

While a price of 46.3 C in hour 1 is well above the expected
price for this hour, it is below the expected price for hour 9.
In hour 1, interpolation will therefore be between volumes
associated with the high- and expected price scenario. Both
of these scenarios give close to full production in hour 1,
which again is a result of prices for both scenarios being above
the water value. In hour 9, interpolation will be between the
low- and expected price scenario. The low scenario has zero
production in hour 9 since the price is below the water value.
Including more scenarios with prices close to the water value
could reduce the difference in production that is observed for
similar prices, but would also increase calculation time.

Another observation is that the bid-curves only span out
for a limited region. This is do to the fact that the minimum
and maximum bid price is set by the minimum and maximum
prices in the price scenarios. This do not represent a problem
as long as realized prices remain within the min and max
values. However, if prices turn out to be outside this limits,
it is important to have a strategy to handle this situation. If a
linear interpolation between 0 C/MWh and the minimum value
is chosen in a situation where there is a risk of flooding, this
could lead to unnecessary flooding. An alternative strategy in
this situation is to maintain the same production for all prices
down to 0 C/MWh, as the production associated with the
minimum price in the price scenarios. This however, could lead
to a sub-optimal solution if we were to experience a collapse in
prices without any risk of flooding. Another alternative could
be to include scenarios with very high and very low prices,
even though estimating probabilities for extreme scenarios
could be difficult, and calculation time would increase.

B. Evaluation method for a single day

There exist several methods to evaluate the performance of
a bidding method. In this paper we compare cost and revenues



obtained from producing according to the cost minimizing
schedule that cover the commitments for the two bidding
methods. This value (Π) is further compared to an optimal
solution where we assume perfect foresight for price and
inflow. The perfect foresight model therefore represent the
maximum value that can be obtained for a specific day.

For each selected bidding strategy, we obtain an hourly
volume commitment for the day-ahead production. After
market clearing, when prices for the next day are known,
the production schedules are re-optimized in the after spot
problem. To take into account the possibility for interacting
with the intraday market, there is a possibility to deviate
from the committed load with a pre-defined penalty of 5
EUR/MW. This represents an estimate for the average cost
the power-producer would experience for trading after market
clearing, however the cost could vary significantly. Including
an intra-day market with actual historic prices has not been
in the scope for this analysis, but could be a topic for further
research. We further assume that bidding is performed close
to midnight, and that information about inflow for the next
day is known when re-optimization is conducted. To link the
short term optimization with long term water values, and to
capture the possible trade-off between deviating from the day-
ahead plan with producing more or less the remaining week,
the optimization is conducted for a whole week.

The linear optimization problem in SHOP is designed
to minimize the cost in a hydro scheduling problem. The
objective function is used to measure the sum of all costs,
income and penalties. It is tempting to use this as a measure
for value, but in a successive linear optimization problem
where penalties are involved, penalties obtained in the early
iterations are not necessarily passed on to the last iterations.
A detailed accounting follow-up system which measures all
incomes, unbalance- and start-up- cost as well as the value of
water in the reservoir is an alternative way to establish a basis
for comparison.

Symbol Explanation
Variables
Πs Total measure for value from strategy s [C]
Ih Income for the simulation in hour h [C]
Uh Unbalance cost in hour h [C]
Sh Start-up cost in hour h [C]

Rh
Value of stored water in reservoir r at the end of
the simulation period [C]

λh Market price in hour h [C/MWh]
Ph Total production in hour h [MWh]
µh Number of generators starting in hour h
P com
hg

Committed volume for generator g in hour h

P plan
hg

Re-optimized production plan for generator g in
hour h

Parameters
Scost Start-up cost for each generator [100 C]
Cdev Cost for deviating from plan [5 C/MWh]

The total performance-gap (βs) for a select strategy is
calculated as the difference between the optimum value for
the relevant bidding date and the value of the investigated
strategy. A high number for (βs) indicate poor performance.

βs = Πopt − Πs, (1)

Πs =

168∑
h=1

(Ih − Uh − Sh) +
∑
r

Rr, (2)

Ih = λh · Ph, (3)

Uh = Cdev ·
∑
g

∣∣∣(P com
hg

− P plan
hg

)∣∣∣ , (4)

Si = µi · Scost, (5)

C. Long term simulation

The main objective of the analysis is evaluate the perfor-
mance of different bidding strategies. To simulate the perfor-
mance over a longer time horizon, a simulation framework
as illustrated in Fig 3 has been developed in Python. In the
analysis, every simulated day starts with the historical reservoir
filling for that day, and historical data for reservoir filling,
inflow and prices are collected from the production database.

Fig. 3: simulation framework for long-term evaluation of bidding
performance

D. Quality assurance

When investigating the performance of a limited number of
days, it is possible to manually review the results to ensure
that they seem reasonable by looking at production plans
and reservoir development. However, when simulating over a
longer time horizon such as years, there is a need to implement
some automatic quality assurance calculations that can help to
consider whether the results are reasonable or not.

Two simple measures have been implemented in the sim-
ulator to check the validity of the results. They define the
upper and lower limit for performance of the investigated day.
Results for a strategy where we have imposed restrictions on
the day-ahead production should never be able to perform
better than the optimal plan with perfect foresight on prices
and inflow, and full freedom to allocate production. The lower
limit is defined by :

Πoptimal − Πs >= 0, (6)

This follows the general rule that when adding constraints
to an optimization problem, the new optimal solution should
always have a lower or equal objective value.

An interesting observation here is that if we change the
simulator to update the daily initial reservoir levels for each



strategy based on results from the previous day, this would not
necessarily be the case. When the simulator is updated with
individual reservoir levels, each strategy will follow their own
reservoir trajectory . A consequence of this is that what might
seem as an optimal decision today, might not necessarily be
an optimal solution if long term prices and inflow turn out to
deviate much from the expectations.

A penalty cost for changing the production plan has been
introduced. With this option, the model will always have
the possibility to adjust the production for day-ahead to the
production given by the optimal plan where prices and inflow
are known prior to bidding. The performance of a strategy
should therefore never be worse than the cost of changing
the plan to optimal production. The upper limit is therefore
defined by:

ηs <= Cdev ·
∑
g

168∑
h=1

∣∣∣(P optimal
hg

− P plan
hg

)∣∣∣ , (7)

III. CASE STUDY

A. System description

The river system analyzed in this article is a section of
a river system located in south-western Norway. The inves-
tigated system consists of three linked reservoirs. Water is
drawn from the upstream reservoir to two plants in series with
a small reservoir in between. The discharge capacity [m3/s]
for the lower plant is 10 % higher than for the upper plant.
There is high head loss in the lower plant, and there is time-
delay between the different reservoirs. The system has a high
utilization rate, and is sensitive to flooding in periods with high
inflow. Finally, there could be gains from head-optimization in
the system motivating high water level in the intake reservoirs,
which again could increase the risk of flooding.

B. Model input

a) Price: The input price for the simulator is based on
the price-prognosis for the NO2 NordPool area from the power
producer’s short-term market model. Historical prognosis are
imported and pre-processed in the simulator. Only the expected
price is available for the investigated time period. It has
therefore been necessary to synthetically generate a sample
space for the stochastic optimization. In this analysis three
scenarios are used. The scenarios represent the expected value
(E) and a high (H) and low case (L) with the probabilities
given in Table I.

The prices are only spread out for the next day, and after
day-ahead the expected price is used for all scenarios, as
illustrated in Fig. 2. Water-value are in general lower than
prices in this investigated period.

b) Inflow: The input to the inflow model is based on
historical observations (1958-2011) with weekly resolution.
A model with finer resolution exists in the operational en-
vironment, but historical prognosis from this model has not
been recorded. Three inflow scenarios are used, and sample
space for next bidding day is selected as the average (A), 25

and 75 percentile. Equal probability has been given for all
inflow scenarios. Realized inflow has been collected from the
operational database.

c) Stochastic representation: With three prices and three
inflow scenarios, the probability matrix with nine scenarios
used for the stochastic bidding is given in Table I.

TABLE I: Probability matrix for price and inflow

Inflow
Scenario IA I25 I75

Probability 1/3 1/3 1/3

Price
PE 1/2 S1 1/6 S2 1/6 S3 1/6
PL 1/4 S4 1/12 S5 1/12 S6 1/12
PH 1/4 S7 1/12 S8 1/12 S9 1/12

When applying stochastic optimization, it is important to be
able to represent the uncertainty in prices and inflow in the
best way. Several methods exists, where the use of scenario-
trees is one that is commonly applied in Hydro Scheduling
problems. This is not a trivial task and has been a topic for
research in several publications [15]–[17].

Even though a theoretically robust way to implement a
stochastic bidding model could be to focus on correct repre-
sentation of input parameters such as inflow and price, this is
not the target of this analysis. A simplified approach is chosen
for representation of uncertainty, and the main objective is to
demonstrate a method of how to compare two different bidding
strategies.

Even though a simplified approach to represent uncertainty
is chosen, it might still represent a realistic alternative for
power producers. Given the focus many companies have on
producing an up-to-date forecast for prices and inflow close
to the bidding deadline, it might not always be possible to
span out a samples space with correct probabilities for prices
and inflow. There would simply not be sufficient time to
re-run price and inflow models when a market analyst or
hydrologist decide to change the expected forecast close to
bidding deadline. The question addressed in this analysis is if
a power producer which today is bidding deterministic, would
obtain increased value over time by applying a stochastic
optimization model with nine scenarios as given in Table I.

IV. RESULTS

Simulation for the two investigated bidding strategies have
been conducted for the year 2018. Fig. 4 gives a summary
of results from one year of simulation. The 365 markers
represents the strategy with the lowest deviation from optimum
for that day. If the marker is round, deterministic bidding is
optimum that specific day, for triangular markers, stochastic
bidding is best. The two strategies have been separated by
the horizontal-axis to get a better overview of the amount and
distribution of samples for each strategy. Values on both sides
of axis are positive, since we in both cases are measuring the
absolute loss compared to an optimal plan.

An interesting observation is that during the first 3-4 months
of 2018, the deviation from optimum plan is very small both



Fig. 4: Performance-gap 2018. Lost value relative to optimum for
deterministic and stochastic bidding

for the deterministic and stochastic bidding strategy. This can
be explained by the low water values that can be observed
during this period. The water values are considerably lower
than the market prices, giving a strong production signal
and more or less equal production plans for all strategies as
well as for the optimal plan. By the end of March, water
values have increased considerably and are much closer to the
market price. This makes the decision whether produce or not
more complex, and the risk of deviating from optimal plan is
increasing.

The results show that bidding the expected value turns out
to be best in 175 days (47 %) of the cases, while stochastic
bidding turn out to be best in the remaining 190 days (53 %)

Since we are measuring the lost value compared to an
optimal bidding strategy where day-ahead prices and inflow
are known prior to bidding, it is possible to calculate the
total expected loss over a time period compared to optimal
bidding. For deterministic bidding this turns out to be 62,000
C (0.65 % of 2018 income), while it is 56,000 C (0.59 % of
2018 income) for stochastic bidding. It is important to realize
that the investigated river system had a very high utilization
rate during 2018, and that the limited degree of flexibility
reflects the fairly low deviation from optimum. However, even
a minor difference of 0.06 % could have a significant impact
on profitability for for a Hydro power-producer if the method
proves to be generally applicable for a wider range of river-
systems.

Even though there is a fairly equal split between the number
of days when the two strategies are preferred, choosing a
stochastic strategy will give a significant lower loss compared
to optimum over the time span of one year. When investigating
the daily losses for each strategy, it can be observed that
deterministic bidding is over-represented in the group where
losses compared to optimum is above 600 C/day. Further
investigation of periods where these situations are represented,
show that several of these occur in the spring during April-
May. Detailed results for this period can be found in Fig. 5
in the Appendix. The spring period when snow-melting has

started, is a period with generally higher inflow in the Nordic
region, and also larger volatility in the inflow compared to the
winter.

The inflow forecast to the model is based on historical
observations, and when the actual inflow deviate from the
forecast, the stochastic models will outperform the determin-
istic model. Improved forecasting techniques which already
are implemented for the existing river-system will improve
performance of the deterministic models, while increasing
volatility both related to prices and inflow might favour
stochastic models.

V. CONCLUSION

It has been demonstrated that simulation over a long time-
horizon can be used to evaluate different bidding strategies.
Evaluation on a real life case study show that if one strategy
is to be chosen for that specific system for all bidding days,
a stochastic model would be preferred since this has the
lowest total deviation from optimal over time. However, one
single strategy will not necessarily be the optimal one under
all conditions, because the optimal strategy will depend on
the state of the system. Typically, when realized prices or
inflow deviate considerably from expectations, there would be
a benefit of choosing a stochastic bidding strategy. However,
for almost half of the investigated days, using a a fixed factor to
span out the sample space for price and inflow scenario result
in lower value for the stochastic model since the stochastic
model would be to risk-averse in situations when price and
inflow realize close to expectations.

The upper limit for the performance gap for each strategy is
directly linked to the penalty of 5 EUR/MW used in this anal-
ysis. Including an intra-day market with actual historic prices
would give an improved estimate for the actual performance-
gap for the power producer, and could be a topic for further
research.

There are few alternative to stochastic bidding if one wish
to take into account inflow uncertainty in the bidding process.
However, several other strategies can be chosen for handling
price uncertainty. Multi-deterministic bidding or bidding ac-
cording to marginal cost [5] are two methods that would be
interesting to test within the simulation framework described
in this paper.

The simple measure of performance-gap implemented in
this paper makes it possible to compare a wide range of
bidding strategies. Even though the simulation process is
time consuming, the resulting performance-gap can easily be
stored together with important input parameters for further
analysis. One such analysis is to evaluate if it is possible
to predict in advance which model should be chosen under
certain conditions. This will be a research topic for further
improvement.
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VI. APPENDIX

TABLE II: Resulting production with bid-curves and spot-prices as
illustrated in Fig 1 and Fig 2

Hour Price
C/MWh

Production
MWh

1 44.9 18.2
2 44.4 18.3
3 43.8 18.1
4 43.8 18.3
5 43.5 18.3
6 45.5 19
7 47.4 19
8 48.8 19.4
9 51.2 20.1
10 49.2 19.8
11 48.2 18.5
12 47.4 17.3
13 47.4 17.7
14 47.4 17.7
15 48.1 18.7
16 48.7 18.4
17 50.6 20.1
18 50.7 20.1
19 49.1 19.8
20 49 19.7
21 48.1 19.1
22 46.9 18.9
23 45.6 18.1
24 44.5 18.8

Fig. 5: Detailed results for April and May 2018, including inflow
relative to normal


