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Abstract— In this paper we derive a minimum time conver-
gent bilateral observer for a 2×2 system of linear coupled first-
order 1-D hyperbolic PDEs. First, a Volterra integral transfor-
mation is combined with a Fredholm integral transformation to
derive a minimum time collocated observer for a class of 2+2
systems (four coupled PDEs). Then, it is shown that the 2× 2
system (two coupled PDEs) can be transformed to a 2+2 system
via an invertible coordinate transformation. The 2×2 bilateral
observer is subsequently obtained from the 2+2 minimum time
collocated observer, and it is shown that it has convergence time
equal to the theoretical minimum time for bilateral sensing. The
performance of the 2× 2 bilateral observer is demonstrated in
a simulation and compared to a previously derived observer
using only unilateral sensing.

I. INTRODUCTION

A. Problem statement

We are interested in systems with dynamics, in terms of
the state (u,v), given by

ut(x, t) + λ(x)ux(x, t) = σ+(x)v(x, t) (1a)

vt(x, t)− µ(x)vx(x, t) = σ−(x)u(x, t) (1b)
u(0, t) = qv(0, t) + U1(t) (1c)
v(1, t) = ρu(1, t) + U2(t), (1d)

defined over x ∈ [0, 1] and t ∈ [0,∞), where

λ, µ ∈ C1(0, 1), λ(x), µ(x) > 0,∀x ∈ (0, 1), (2)

σ+, σ− ∈ C0(0, 1), q, ρ ∈ R, and U1(t) and U2(t) are
boundary control inputs. We assume that the initial condi-
tions u(x, 0) = u0(x) and v(x, 0) = v0(x) satisfy u0, v0 ∈
L2(0, 1).

System (1) is referred to as a 2×2 hyperbolic system, and
u and v are scalar values that carry information in opposite
directions on (0, 1). More generally, u and v may be vector-
valued with n and m components, respectively, in which case
the system is referred to an n+m hyperbolic system. Notice
that 2× 2 systems and 1 + 1 systems are the same.

We assume that measurements from (1) are taken at the
boundaries, only, defined as

y1(t) = u(1, t) (3a)
y2(t) = v(0, t). (3b)

The goal of the paper is to design an observer for (1), using
the measurements (3), only, that provides state estimates û, v̂
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which converge to the correct system states in the minimum
time for bilateral sensing, defined in [1] as

t2,min = max


1∫

0

dx

λ(x)
,

1∫
0

dx

µ(x)

 , (4)

which is strictly smaller than the theoretical lower boundary
t1,min when only measuring a single boundary, also defined
in [1] as

t1,min =

1∫
0

dx

λ(x)
+

1∫
0

dx

µ(x)
. (5)

In [2], the problem is solved for a general n+m system,
and the bilateral minimum time observer for (1), that is the
n = m = 1 case, takes the form

ût(x, t) + λ(x)ûx(x, t) = σ+(x)v̂(x, t)

+ P++(x)(y1(t)− û(1, t))

+ P+−(x)(y2(t)− v̂(0, t)) (6a)

v̂t(x, t)− µ(x)v̂x(x, t) = σ−(x)û(x, t)

+ P−+(x)(y1(t)− û(1, t))

+ P−−(x)(y2(t)− v̂(0, t)) (6b)
û(0, t) = qy2(t) + U1(t) (6c)
v̂(1, t) = ρy1(t) + U2(t), (6d)

where P++, P+−, P−+ and P−− are observer gains tailored
to achieve convergence in finite time given by (4). The initial
conditions of the observer û(x, 0) = û0(x) and v̂(x, 0) =
v̂0(x) are assumed to satisfy û0, v̂0 ∈ L2(0, 1).

The contribution of the present paper is twofold: First, we
design a minimum time convergent observer for a class of 2+
2 systems using a single measurement taken at one boundary.
This problem has to the best of the authors’ knowledge not
been solved before. Second, we show that the 2 + 2 system
can be transformed by an invertible change of coordinates
into the 2 × 2 system (1), thereby obtaining the observer
gains in (6) by an alternative route.

To facilitate the design of the observer for the 2+2 system,
we impose the following assumption on the transport speeds
of (1), in addition to (2):

µ(x) ≤ µ ≤ λ ≤ λ(x),∀x ∈ (0, 1). (7)

Notice that the direction of the inequality signs in (7) is
chosen without loss of generality in view of the symmetry
in (1). In [2], constant transport speeds are considered, so
there (7) holds trivially. One immediate consequence of (7)



is that

t2,min =

1∫
0

dx

µ(x)
. (8)

B. Background
Systems of coupled first-order linear hyperbolic PDEs,

along with their observation and control problems, have
been subject to research recently due to their application
in modeling various physical scenarios. Applications include
heat exchangers [3], gas pipelines [4] and oil well drilling
[5], to name a few.

A gradually more common method for observer and
controller design for this type of systems is the infinite
dimensional backstepping method, initially pioneered for
parabolic PDE control design in [6], and subsequently ap-
pearing in its fully infinite dimensional form in [7]. Applying
the backstepping method for observer design was first seen
for parabolic PDEs in [8].

In [9], the first observer for 2×2 systems (1) relying on the
single boundary measurement (3a), only, was presented. An
observer with single boundary sensing for the more general
class of n + m hyperbolic systems was achieved in [10],
albeit converging in non-minimum time. The 2 + 2 system
observer designed in the present paper builds on the n+m
system observer from [10] by modifying the non-minimum
time target system used there with the help of a Fredholm
integral transformation, following ideas from [11], [12]. We
find expressions for the 2×2 bilateral observer gains using a
domain folding trick similar to the one suggested in [13] for
stabilization of systems of reaction-diffusion equations, and
demonstrate in simulations that our 2× 2 bilateral observer
converges within (8), which is quicker than (5) achieved by
the observer from [9].

This paper is organized as follows. Section II presents
the minimum time collocated observer design for the 2 + 2
system, and the result is applied in Section III to obtain
the minimum time 2 × 2 bilateral observer. Results from a
simulation are given in Section IV before some concluding
remarks are offered in Section V.

II. MINIMUM-TIME COLLOCATED OBSERVER
FOR 2 + 2 SYSTEMS

A. Class of 2 + 2 systems
Consider now the 2 + 2 system defined as

ūt(x, t) + Λ+(x)ūx(x, t) = Σ+−(x)v̄(x, t) (9a)
v̄t(x, t)− Λ−(x)v̄x(x, t) = Σ−+(x)ū(x, t) (9b)

ū(0, t) = Q0v̄(0, t) (9c)
v̄(1, t) = R1ū(1, t) + U(t), (9d)

evolving over x ∈ [0, 1] and t ∈ [0,∞), where

ū(x, t) = [u1(x, t), u2(x, t)]T (10a)

v̄(x, t) = [v1(x, t), v2(x, t)]T (10b)

are the states. We assume that initial conditions, de-
fined as ū(x, 0) = [u1,0(x), u2,0(x)]T and v̄(x, 0) =

[v1,0(x), v2,0(x)]T satisfy u1,0, u2,0, v1,0, v2,0 ∈ L2(0, 1).
The transport speed matrices, which are defined as

Λ+(x) = diag{λ1(x), λ2(x)} (11a)
Λ−(x) = diag{µ1(x), µ2(x)}, (11b)

have components satisfying λ1, λ2, µ1, µ2 ∈ C1(0, 1) and
are ∀x ∈ (0, 1) subject to the restriction

λ2(x) ≥ λ1(x) > 0 > −µ1(x) ≥ −µ2(x). (12)

The two coupling coefficient matrices

Σ+−(x̄) = {σ+−
ij (x̄)}1≤i,j≤2 (13a)

Σ−+(x̄) = {σ−+ij (x̄)}1≤i,j≤2, (13b)

have components satisfying σ+−
ij , σ−+ij ∈ C0([0, 1]), ∀i, j ∈

{1, 2}, whereas the reflection coefficients

Q0 = {qij}1≤i,j≤2 (14a)
R1 = {ρij}1≤i,j≤2, (14b)

have ∀i, j ∈ {1, 2} components satisfying qij , ρij ∈ R. The
term U(t) = [U1(t), U2(t)]T is a boundary control input for
(9), entering at x = 1. In addition to right boundary actua-
tion, it is assumed that the collocated boundary measurement
vector y = [y1, y2]T with components

y1(t) = u1(1, t) (15a)
y2(t) = u2(1, t), (15b)

is available.

B. Collocated observer for the 2 + 2 system

We consider here the observer

ǔt(x, t) + Λ+(x)ǔx(x, t) = Σ+−(x)v̌(x, t)

+ P+(x)(y(t)− ǔ(1, t)) (16a)

v̌t(x, t)− Λ−(x)v̌x(x, t) = Σ−+(x)ǔ(x, t)

+ P−(x)(y(t)− ǔ(1, t) (16b)
ǔ(0, t) = Q1v̌(0, t) (16c)
v̌(1, t) = R1y(t) + U(t) (16d)

providing state estimates ǔ = [ǔ1, ǔ2]T and v̌ = [v̌1, v̌2]T ,
where

P+(x) = M(x, 1)Λ+(1) + T+(x) +

1∫
x

M(x, ξ)T+(ξ)dξ,

(17a)

P−(x) = N(x, 1)Λ+(1) +

1∫
x

N(x, ξ)T+(ξ)dξ, (17b)

are the observer gains. The initial conditions for the ob-
server (16), denoted ǔ(x, 0) = [ǔ1,0(x), ǔ2,0(x)]T and
v̌(x, 0) = [v̌1,0(x), v̌2,0(x)]T are assumed to satisfy
ǔ1,0, ǔ2,0, v̌1,0, v̌2,0 ∈ L2(0, 1). M and N in (17) are 2 × 2
matrix-valued functions

M(x, ξ) = {Mij(x, ξ)}1≤i,j≤2 (18a)



N(x, ξ) = {Nij(x, ξ)}1≤i,j≤2 (18b)

which are solutions to the kernel PDE

Λ+(x)Mx(x, ξ) +Mξ(x, ξ)Λ
+(ξ) = −M(x, ξ)Λ+

ξ (ξ)

+ Σ+−(x)N(x, ξ)
(19a)

−Λ−(x)Nx(x, ξ) +Nξ(x, ξ)Λ
+(ξ) = −N(x, ξ)Λ+

ξ (ξ)

+ Σ−+(x)M(x, ξ)
(19b)

Λ−(x)N(x, x) +N(x, x)Λ+(x) = Σ−+(x) (19c)
Q0N(0, ξ)−M(0, ξ) = H(ξ), (19d)

M12(x, x) = M21(x, x) = 0 (19e)
M21(x, 1) = 0, (19f)

defined over the triangular domain Tu = {(x, ξ) | 0 ≤ x ≤
ξ ≤ 1}. In (19d), H = {hij}1≤i,j≤2 is a strictly lower
triangular 2 × 2 matrix, and its only non-zero component
h21 is defined as

h21(ξ) =

2∑
k=1

q2kNk1(0, ξ)−M21(0, ξ). (20)

The term T+ = {T+
ij }1≤i,j≤2 appearing in (17) is a

strictly lower triangular 2× 2 matrix, and its only non-zero
term T+

21 is defined as

T+
21(x) = k21(x, 1)λ1(1), (21)

where k21 is the solution to the PDE

k21,x(x, ξ)λ2(x) + k21,ξ(x, ξ)λ1(ξ) = −k21(x, ξ)λ1,ξ(ξ)
(22a)

k21(0, ξ) = h21(ξ) (22b)
k21(x, 0) = 0. (22c)

Provided that (12) holds, well-posedness of (19)–(20) is
ensured by Theorem 3.2 in [14] whereas in [11] the explicit
solution to an equation of the form (22) is given. Note that
in [14] the well-posedness proof is given for the case of
constant transport velocities, but it is claimed that the proof
extends to cases involving spatially varying transport speeds.
Next, we present a convergence result for the observer (16).

Theorem 2.1: Consider system (9) with outputs (15) and
the observer (16). If the output injection gains are selected
as (17)–(22), then ǔ(x, t) and v̌(x, t) converge to ū(x, t) and
v̄(x, t), respectively, in finite time given by

tmin =

1∫
0

dx

µ1(x)
+

1∫
0

dx

λ1(x)
. (23)

Subsections II-C and II-D are devoted to proving Theorem
2.1.

C. Volterra backstepping transformation

Define the estimation errors ũ = ū − ǔ and ṽ = v̄ − v̌.
The error dynamics can then be found from (9) and (16) as

ũt(x, t) + Λ+(x)ũx(x, t) = Σ+−(x)ṽ(x, t)

− P+(x)ũ(1, t) (24a)
ṽt(x, t)− Λ−(x)ṽx(x, t) = Σ−+(x)ũ(x, t)

− P−(x)ũ(1, t) (24b)
ũ(0, t) = Q0ṽ(0, t) (24c)
ṽ(1, t) = 0. (24d)

with initial conditions are given by ũ(x, 0) = [ū1,0(x) −
ǔ1,0(x), ū2,0(x) − ǔ2,0(x)]T and ṽ(x, 0) = [v̄1,0(x) −
v̌1,0(x), v̄2,0(x)− v̌2,0(x)]T .

The proof of the following Lemma follows similar steps
as the proof of Lemma 10 in [10], but is included here to
show the details behind the new observer gains (17), which
are different from those in [10] to accommodate minimum
time convergence.

Lemma 2.2: The invertible Volterra integral transforma-
tion

ũ(x, t) = α̃(x, t) +

1∫
x

M(x, ξ)α̃(ξ, t)dξ, (25a)

ṽ(x, t) = β̃(x, t) +

1∫
x

N(x, ξ)α̃(ξ, t)dξ (25b)

maps

α̃t(x, t) + Λ+(x)α̃x(x, t) = Σ+−(x)β̃(x, t)

−
1∫
x

D+(x, ξ)β̃(ξ, t)dξ − T+(x)α̃(1, t) (26a)

β̃t(x, t)− Λ−(x)β̃x(x, t) = −
1∫
x

D−(x, ξ)β̃(ξ, t)dξ (26b)

α̃(0, t)−Q0β̃(0, t) =

1∫
0

H(ξ)α̃(ξ, t)dξ (26c)

β̃(1, t) = 0, (26d)

with initial conditions α̃(x, 0) = [α̃1,0(x), α̃2,0(x)]T and
β̃(x, 0) = [β̃1,0(x), β̃2,0(x)]T where α̃1,0, α̃2,0, β̃1,0, β̃2,0 ∈
L2(0, 1), into (24), where M and N satisfy (19)–(20). D+ =
{d+ij}i,j∈{1,2}, D− = {d−ij}i,j∈{1,2} are the solutions to the
integral equations

D+(x, ξ) = M(x, ξ)Σ+−(ξ)

−
x∫
ξ

M(ξ, s)D+(s, ξ)ds (27a)

D−(x, ξ) = N(x, ξ)Σ+−(ξ)

−
x∫
ξ

N(ξ, s)D+(s, ξ)ds, (27b)

respectively.

Proof: Differentiating (25) with respect to time and
space, substituting in the target error system (26), integrating



by parts and combining with (24) we find

ũt(x, t) + Λ+(x)ũx(x, t)− Σ+−(x)ṽ(x, t) + P+(x)ũ(1, t)

= [M(x, x)Λ+(x)− Λ+(x)M(x, x)]α̃(x, t)

+

1∫
x

[Mξ(x, ξ)Λ
+(ξ) +M(x, ξ)Λ+

ξ (ξ) + Λ+(x)Mx(x, ξ)

−Σ+−(x)N(x, ξ)]α̃(ξ, t)dξ +

1∫
x

[M(x, ξ)Σ+−(ξ)

−D+(x, ξ)−
x∫
ξ

M(ξ, s)D+(s, ξ)ds]β̃(ξ, t)dξ

+[P+(x)−M(x, 1)Λ+(1)− T+(x)

−
1∫
x

M(x, ξ)T+(ξ)dξ]α̃(1, t) = 0, (28)

and

ṽt(x, t)− Λ−(x)ṽx(x, t)− Σ−+(x)ũ(x, t) + P−(x)ũ(1, t)

= [N(x, x)Λ+(x) + Λ−(x)N(x, x)− Σ−+(x)]α̃(x, t)

+

1∫
x

[Nξ(x, ξ)Λ
+(ξ) +N(x, ξ)Λ+

ξ (ξ)− Λ−(x)Nx(x, ξ)

−Σ−+(x)M(x, ξ)]α̃(ξ, t)dξ +

1∫
x

[N(x, ξ)Σ+−(ξ)

−D−(x, ξ)−
x∫
ξ

N(ξ, s)D+(s, ξ)ds]β̃(ξ, t)dξ

+[P−(x)−N(x, 1)Λ+(1)

−
1∫
x

N(x, ξ)T+(ξ)dξ]α̃(1, t) = 0. (29)

From (28) and (29) we obtain (17), the definitions of D+

and D− (27), the PDE (19b) and the first two boundary
conditions (19e) and (19c). For the third boundary condition
(19d), set x = 0 in (25) and substitute this into (24c), and
then apply (26c) to obtain

1∫
0

H(ξ)α̃(ξ, t)dξ =

1∫
0

[Q0N(0, ξ)−M(0, ξ)]α̃(ξ, t)dξ

(30)
from which the required boundary condition (19d) trivially
follows. Finally, (19f) is an additional boundary condition re-
quired for well-posedness, as was done in [14] for equations
in the same form.

D. Fredholm integral transformation

Now a target system which converges in minimum time
(23) is introduced, and proved to be equivalent with (26). The
proof of the following Lemma relies on similar steps as in
the proof of Lemma 11 in [10] together with straightforward

application of the method of characteristics, but is included
here for completeness.

Lemma 2.3: Consider the error system with states γ̃ =
[γ̃1, γ̃2]T and ν̃ = [ν̃1, ν̃2]T , governed by the dynamics

γ̃t(x, t) + Λ+(x)γ̃x(x, t) = Σ+−(x)ν̃(x, t)

−
1∫
x

D+(x, ξ)ν̃(ξ, t)dξ −
1∫

0

K̆1(x, ξ)

(
Σ̆+−(ξ)ν̃(ξ, t)

−
1∫
ξ

D̆+(ξ, s)ν̃(s, t)ds

)
dξ

(31a)

ν̃t(x, t)− Λ−(x, t)ν̃x(x, t) = −
1∫
x

D−(x, ξ)ν̃(ξ, t)dξ

(31b)
γ̃(0, t) = Q0ν̃(0, t) (31c)
ν̃(1, t) = 0, (31d)

and initial conditions ν̃(x, 0) = [ν̃1,0(x), ν̃2,0(x)]T

and γ̃(x, 0) = [γ̃1,0(x), γ̃2,0(x)]T assumed to satisfy
ν̃1,0, ν̃2,0, γ̃1,0, γ̃2,0 ∈ L2(0, 1). Here K̆1, Σ̆+− and D̆+ in
(31a) are defined as

K̆1(x, ξ) =

[
0 0
0 k21(x, ξ)

]
(32a)

Σ̆+−(x) =

[
0 0

σ+−
11 (x) σ+−

12 (x)

]
(32b)

D̆+(x, ξ) =

[
0 0

d+11(x, ξ) d+12(x, ξ)

]
. (32c)

Then γ̃(x, t), ν̃(x, t) converge to zero in finite time given by
(23).

Proof: By the method of characteristics and cascade
structure of (31), we see from (31b) with boundary (31d) that
ν̃(x, t) ≡ 0 ∀t ≥

∫ 1

0
dx

µ1(x)
. The dynamics (31a) reduces after

this to γ̃t + Λ+γ̃x = 0 with boundary condition γ̃(0, t) = 0,
which vanishes after another

∫ 1

0
dx

λ1(x)
time steps.

We will now consider the Fredholm integral transformation

α̃(x, t) = γ̃(x, t) +

1∫
0

K1(x, ξ)γ̃(ξ, t)dξ (33a)

β̃(x, t) = ν̃(x, t) (33b)

with K1 = {kij}i,j∈{1,2} being a strictly lower triangular
2× 2 matrix, with k21 being the only nonzero element. We
know from [11] that since K1 is strictly lower triangular, the
Fredholm integral transformation (33) is invertible.

Lemma 2.4: If k21 satisfies (22), then the invertible Fred-
holm integral transformation (33) maps the error system (31)
into (26).

Proof: Noticing that (33b) is the identity, and that the
first component of α̃ equals the first component of γ̃ due to
the structure of K1, we only need to deal with the second
component of α̃, α̃2. Differentiating α̃2 in (33a) with respect



to time and space, substituting in (31a), integrating by parts
and combining with (26a) we find that

0 = α̃2,t(x, t) + λ2(x)α̃2,x(x, t)− σ+−
21 (x)β̃1(x, t)

−σ+−
22 (x)β̃2(x, t) = [T+

21(x)− k21(x, 1)λ1(1)]γ̃1(1, t)

+

1∫
0

[k21,x(x, ξ)λ2(x) + k21,ξ(x, ξ)λ1(ξ)

+k21(x, ξ)λ1,ξ(ξ)]γ̃1(ξ, t)dξ + k21(x, 0)λ1(0)γ̃1(0, t),
(34)

where (21)–(22) were used in the last step. Setting x = 0
into (33a), and comparing with (26c) we find

1∫
0

K1(0, ξ)γ̃(ξ, t)dξ =

1∫
0

H(ξ)α̃(ξ, t)dξ (35)

due to the boundary condition (22b), and the fact that α̃1 =
γ̃1.
We can now prove Theorem 2.1 by combining the Lemmas.
Proof: [Proof of Theorem 2.1] By Lemma 2.2 and Lemma
2.4, the dynamics of (24) and (31) are equivalent. Since by
Lemma 2.3, (γ̃, β̃) = 0 in finite time given by (23), it follows
(see (33) and (25)), that (ũ, ṽ) = 0 in finite time given by
(23).

III. MINIMUM-TIME BILATERAL OBSERVER FOR
2× 2 SYSTEMS

A. Folding the 2× 2 system into the 2 + 2 system

Lemma 3.1: Let the transformation T : (L2([0, 1]))2 7→
(L2([0, 1]))4 be defined by

T [u, v](x) = (

[
v( 1

2 (1− x))
u( 1

2 (1 + x))

]
,

[
v( 1

2 (1 + x))
u( 1

2 (1− x))

]
) (36)

with inverse T−1 : (L2([0, 1]))4 7→ (L2([0, 1]))2 given by

T−1[ū, v̄](x) =

{
(v2(1− 2x), u1(1− 2x)), x ∈ [0, 12 ]

(u2(2x− 1), v1(2x− 1)), x ∈ ( 1
2 , 1]

.

(37)
The invertible change of coordinates (ū(x, t), v̄(x, t)) =
T [u, v](x, t) maps (1) into (9), with coefficients given by

Λ+(x) =

[
2µ( 1

2 (1− x)) 0
0 2λ( 1

2 (1 + x))

]
(38a)

Λ−(x) =

[
2µ( 1

2 (1 + x)) 0
0 2λ( 1

2 (1− x))

]
(38b)

Σ+−(x) =

[
0 σ−( 1

2 (1− x))
σ+( 1

2 (1 + x)) 0

]
(38c)

Σ−+(x) =

[
0 σ−( 1

2 (1 + x))
σ+( 1

2 (1− x)) 0

]
, (38d)

Q0 =

[
1 0
0 1

]
, R1 =

[
0 ρ
q 0

]
(39a)

U(t) =

[
U2(t)
U1(t)

]
, y(t) =

[
y2(t)
y1(t)

]
. (39b)

Proof: Differentiating (36) with respect to x and
applying the chain rule we can express ūx and v̄x in terms
of ux and vx as

ūx(x, t) =

[
− 1

2vx( 1
2 (1− x), t)

1
2ux( 1

2 (1 + x), t)

]
(40a)

v̄x(x, t) =

[
1
2vx( 1

2 (1 + x), t)
− 1

2ux( 1
2 (1− x), t)

]
. (40b)

Also, differentiating (36) with respect to time, we find

ūt(x, t) =

[
vt(

1
2 (1− x), t)

ut(
1
2 (1 + x), t)

]
(41a)

v̄t(x, t) =

[
vt(

1
2 (1 + x), t)

ut(
1
2 (1− x), t)

]
. (41b)

Inserting (40) and (41) into (9) and comparing to (1) we
find that the transport speeds can be assigned as (38a)–(38b)
and the coupling coefficients become (38c)–(38d). In order
to obey the restriction (12) which is a prerequisite for well-
posedness of (19), we must have

λ(
1

2
(1 + x)) ≥ µ(

1

2
(1− x)) (42a)

λ(
1

2
(1− x)) ≥ µ(

1

2
(1 + x)) (42b)

which trivially satisfies (7) ∀x ∈ [0, 1]. Applying (36) for
x = 0 and x = 1 we find

ū(0, t) =

[
v( 1

2 , t)
u( 1

2 , t)

]
, v̄(0, t) =

[
v( 1

2 , t)
u( 1

2 , t)

]
(43a)

ū(1, t) =

[
v(0, t)
u(1, t)

]
, v̄(1, t) =

[
v(1, t)
u(0, t)

]
(43b)

which confirms that the inverse transform (37) is well-defined
and the boundary condition matrices along with boundary
measurement and control assignments can be found as (39).

B. 2× 2 bilateral observer with minimum time convergence

Now we find the observer gains for (6), and prove that
using these it converges within time t2,min given by (8).

Lemma 3.2: The invertible change of coordinates
(û(x, t), v̂(x, t)) = T−1[ǔ1, ǔ2, v̌1, v̌2](x, t), maps (16) into
(6) with observer gains given in terms of (17) as

P++(x) =

{
P−22(1− 2x), x ∈ [0, 12 ]

P+
22(2x− 1), x ∈ ( 1

2 , 1]
(44a)

P+−(x) =

{
P−21(1− 2x), x ∈ [0, 12 ]

P+
21(2x− 1), x ∈ ( 1

2 , 1]
(44b)

P−+(x) =

{
P+
12(1− 2x), x ∈ [0, 12 ]

P−12(2x− 1), x ∈ ( 1
2 , 1]

(44c)

P−−(x) =

{
P+
11(1− 2x), x ∈ [0, 12 ]

P−11(2x− 1), x ∈ ( 1
2 , 1]

. (44d)

Proof: Consider first the left half-interval x ∈ [0, 12 ].
From (37) we have û(x, t) = v̌2(1 − 2x, t) and v̂(x, t) =
ǔ1(1 − 2x, t). Taking the terms for v̌2(x, t) and ǔ1(x, t)
from (16), applying the coefficient assignments (38)–(39) and



substituting in û(x, t) and v̂(x, t) along with their respective
partial derivatives, which are equivalent to the ones from
(40)–(41), we find

ût(x, t)− 2λ(x)(−1

2
ûx(x, t)) = σ+(x)v̂(x, t)+

P−21(1− 2x)(y2(t)− v̂(0, t))+

P−22(1− 2x)(y1(t)− û(1, t)), (45a)

v̂t(x, t) + 2µ(x)(−1

2
v̂x(x, t)) = σ−(x)v̂(x, t)+

P+
11(1− 2x)(y2(t)− v̂(0, t))+

P+
12(1− 2x)(y1(t)− û(1, t)). (45b)

Comparing (45) to (6), we obtain the observer gains in
(44) valid ∀x ∈ [0, 12 ]. Applying the same steps for the right
half-interval x ∈ ( 1

2 , 1], the observer gain assignments in
(44) valid ∀x ∈ ( 1

2 , 1] are obtained.
Theorem 3.3: Consider system (1) with outputs (3) and

the observer (6). If the output injection gains are selected as
(44), then û(x, t) and v̂(x, t) converge to u(x, t) and v(x, t),
respectively, in finite time given by (8).

Proof: From Lemma 3.2 we know that (6) is mapped
into (16) using the invertible transform (36). Hence the
convergence time of (6) can be expressed as (23) using the
relevant transport speeds from (38a)–(38b) as

tmin =

1∫
0

dx̄

2µ( 1
2 (1 + x̄))

+

1∫
0

dx̄

2µ( 1
2 (1− x̄))

. (46)

Applying the change of variables x̄ = 2x − 1 to the first
integral and x̄ = 1− 2x to the second integral, we find

tmin =

1∫
1
2

2dx

2µ(x)
+

0∫
1
2

−2dx

2µ(x)
=

1∫
1
2

dx

µ(x)
+

1
2∫

0

dx

µ(x)
(47)

=

1∫
0

dx

µ(x)

which is (8).

IV. SIMULATION

The 2 × 2 system (1) is implemented along with the
bilateral observer (6) in MATLAB using the method presented
in [15] for solving the kernel equations. The right boundary
observer from [9] is also implemented for comparison. The
system and observers are implemented with coefficients

λ(x) = 1, µ(x) =
1

2
(48a)

σ+(x) = x2, σ−(x) = − sin(3x) (48b)

q = 1, ρ =
1

2
(48c)

and initial conditions and inputs

u0(x) = cos(8x), v0(x) = e−x (49a)
U1(t) = sin(t), U2(t) = cos(8t). (49b)
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Fig. 1: Graphs of observer gains P+(x) and P−(x), x ∈ (0, 1),
multiplied by ũ(1) in unilateral observer.
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(a) Observer gains P++ and P−+ multiplied by ũ(1) in bilateral
observer.
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(b) Observer gains P+− and P−− multiplied by ṽ(0) in bilateral
observer.

Fig. 2: Graphs of observer gains P++(x), P+−(x), P−+(x)
and P−−(x), x ∈ (0, 1), used by bilateral observer.

The unilateral observer only uses the right boundary
measurement y1(t) = u(1, t), whereas the bilateral observer
additionally uses the left boundary measurement y2(t) =
v(0, t). A graph of the gains P+(x) and P−(x), used by
the unilateral observer to weight the measurement error
ũ(1, t) are shown in Fig. 1. Fig. 2 shows the gains used
by the bilateral observer, for comparison, where in Fig. 2a
the graphs of P++(x) and P−+(x), which weight the
same measurement error ũ(1, t) for the bilateral observer,
are shown, whereas Fig. 2b shows the gains P+−(x) and
P−−(x) which weight the other measurement error ṽ(0, t).

Next, in Fig 3 we see the L2-norms ||u(t)||, ||v(t)|| of
the respective states u(x, t), v(x, t) of the system (1) with
parameters given by (48)–(49). Hence we see that the system
states do not go to zero for the duration of the simulation
and the observation problem is thus nontrivial.

In Fig. 4 the norms of the estimation errors along with the
theoretical convergence times are on display. Here Fig. 4a
shows ||ũ(t)|| for both observers, whereas Fig. 4b shows
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Fig. 3: Time evolution of the L2-norms ||u(t)|| and ||v(t)||
of respective system states u(x, t) and v(x, t).
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(a) Time evolution of ||ũ(t)||.
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(b) Time evolution of ||ṽ(t)||.

Fig. 4: Time evolution of the L2-norms ||ũ(t)||, ||ṽ(t)|| of
the errors ũ(x, t),ṽ(x, t), respectively.

||ṽ(t)|| for both observers, shown as solid lines in both plots.
The theoretical convergence times tF are represented by the
dashed lines.

Note that the estimation errors associated with both the
bilateral and unilateral observer have slightly non-zero val-
ues when crossing the dashed lines corresponding to their
respective convergence times. This is most likely due to the
first-order numerical scheme used when implementing the
simulation. The theory was proven for a continuous PDE
system with the observer gains expressed exactly; however
in practice this ideal scenario is generally not possible to
reproduce perfectly and some approximation error must be
expected.

V. CONCLUSIONS

We have shown an alternative way of deriving a 2 × 2
minimum time bilateral observer than the one presented
in [2]. An observer for (1) utilizing measurements from
both boundaries was derived, going via the derivation of a
minimum time collocated observer for the 2 + 2 system (9),
which was done by making the target system converge in
minimum time with the help of a Fredholm transformation.
The bilateral observer was shown to converge within the

theoretical lower convergence bound from [1] for observers
using both boundary measurements. As was noted in [13],
some of the ideas considered there for control design could
be applied to the design of bilateral observers. Indeed, this
paper demonstrates that the trick of domain folding is also
applicable within the venue of observation problems, and it
would therefore be interesting to investigate its applicability
to the design of observers for systems different from the
hyperbolic ones considered here.
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