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Recent theoretical and experimental work has demonstrated how the superconducting critical temperature
(T.) can be modified by rotating the magnetization of a single homogeneous ferromagnet proximity-coupled to
the superconducting layer. This occurs when the superconductor and ferromagnet are separated by a thin heavy
normal metal that provides an enhanced interfacial Rashba spin-orbit interaction. In the present work, we con-
sider the reciprocal effect: magnetization reorientation driven by the superconducting phase transition. We solve
the tight-binding Bogoliubov-de Gennes equations on a lattice self-consistently and compute the free energy of
the system. We find that the relative angle between the spin-orbit field and the magnetization gives rise to a
contribution in the free energy even in the normal state, 7' > T, due to band-structure effects. For temperatures
below T, superconductivity gives rise to a competing contribution. We demonstrate that by lowering the tem-
perature, in addition to reorientation of the favored magnetization direction from in-plane to out-of-plane, a 7 /4
in-plane rotation for thicker ferromagnetic layers is possible. Furthermore, computation of 7. of the structure
in the ballistic limit shows a dependence on the in-plane orientation of the magnetization, in contrast to our pre-
vious result on the diffusive limit. This finding is relevant with respect to thin-film heterostructures since these
are likely to be in the ballistic regime of transport rather than in the diffusive regime. Finally, we discuss the
experimental feasibility of observing the magnetic anisotropy induced by the superconducting transition when
other magnetic anisotropies, such as the shape anisotropy for a ferromagnetic film, are taken into account. Our
work suggests that the superconducting condensation energy in principle can trigger a reorientation of the mag-
netization of a thin-film ferromagnet upon lowering the temperature below 7, in particular for ferromagnets

with weak magnetic anisotropies.

I. INTRODUCTION

Recent research within the field of superconducting spin-
tronics has focused on combining superconducting and mag-
netic materials into hybrid structures to study novel phases
arising from proximity effects not found in individual mate-
rials [[1]. In conventional superconductors (S), Cooper pairs
exists as spin-singlet pairs. The two electrons in a pair have
opposite spin and are destroyed when they enter a ferromagnet
(F) as they quickly lose their coherence due to the magnetic
exchange field. At the interface between a superconductor and
a ferromagnet, spin-singlet pairs are transformed into spin-
zero triplet Cooper pairs that have a short penetration depth
into the ferromagnetic region. However, two misoriented fer-
romagnets breaking spin-rotational symmetry can transform
opposite-spin triplets into equal-spin triplets [2]. Due to their
equally directed spins along the magnetization direction, these
Cooper pairs maintain coherence longer and are instead able
to survive for a longer distance inside the ferromagnet. The
density of equal-spin triplets in the system depends on the rel-
ative orientation of the ferromagnets [2| 3]. This has been
demonstrated experimentally (see for instance Refs. [4H8]])
by showing a variation of T, in a F1/S/F2 or F1/F2/S sys-
tem by changing the relative magnetization of the F1 and F2
layers. This variation is attributed to the generation of triplet

Cooper pairs with increasing misalignment of the magneti-
zations of F1 and F2 layer moments. Recent research [9-
12] has reported a similar modulation of the critical tempera-
ture by changing the orientation of a single homogeneous fer-
romagnet coupled to a superconductor through a thin heavy
normal metal (HM) film with strong Rashba spin-orbit cou-
pling. Measurements [12] performed on a Nb/Pt/Co/Pt sys-
tem showed a suppression of the critical temperature for an
in-plane (IP) magnetization that was attributed to a reduced
superconducting gap due to triplet generation. A reduced gap
also implies an increase in the free energy since part of the su-
perconducting condensation energy is lost. We may therefore
suspect the superconducting contribution to the free energy to
favor an out-of-plane (OOP) magnetization direction.

Motivated by this, here we explore the striking possibility
of reorienting the magnetization of the ferromagnetic layer in
an S/HM/F system by changing the temperature. We discover
that upon lowering the temperature below 7., the dependence
of the free energy on the magnetization direction changes due
to the superconducting phase transition. In turn, this leads to
a change in the ground state magnetization direction, or effec-
tively the magnetization angle that minimizes the free energy.
For sufficiently thin ferromagnetic layers, we get a change
from IP to OOP magnetization. We also find that there is an
IP variation in the free energy and show that it is in principle



possible to get an IP 7 /4 rotation of the magnetization when
lowering the temperature below 7. This opens the possibility
for temperature-induced switching of the magnetization both
between the IP and OOP orientation and switching within a
plane parallel to the interface.

II. THEORY

To describe our S/HM/F system, we use the tight-binding
Bogoliubov-de Gennes (BdG) framework and use conventions
similar to those in Refs. [[13],[14]. The lattice BAG framework
is well suited for describing heterostructures, fully accounts
for the crystal symmetry of the electronic environment, and
can describe atomically thin layers of a material. The Hamil-

tonian we use is
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Above, t is the hopping integral, p; is the chemical poten-
tial at lattice site 2, U > 0 is the attractive on-site interaction
that gives rise to superconductivity, A; is the Rashba spin-
orbit coupling magnitude at site ¢, 72 is a unit vector normal
to the interface, o is the vector of Pauli matrices, d; ; is the
vector from site ¢ to site 7, and h; is the local magnetic ex-
change field. c;fﬁ and ¢; , are the second-quantization elec-
tron creation and annihilation operators at site ¢ with spin o,
and n; , = CI,UCz',m The superconducting term in the Hamil-
tonian is treated by a mean- ﬁeld approach where we insert
citCiy = (cipciy) + 0 and ] Tcw = < cl D St into
Eq. [T] and neglect terms of second order in the ﬂuctuatlons )
and 6T. A; = U; (c; 1¢;. 1) is the superconducting order pa-
rameter, which we solve for self-consistently. We consider a
3D cubic lattice of size N, x N, X N, as shown in Fig. E} The
lattice consists of three layers: a superconducting layer, a thin
heavy-metal layer with Rashba spin-orbit coupling, and a thin
ferromagnetic layer. For enabling experimental observation
of the effects considered in this paper, the system should have
as good an interface quality as possible to maximize the prox-
imity effect, and heavy metal interlayers should be used to
boost the spin-orbit coupling strength. For concrete material
choices, we suggest a Nb superconductor with Pt interlayers,
which should give a strong proximity effect and strong spin-
orbit coupling (see for instance Ref. [15]]). In addition, the
ferromagnet should be soft and have as weak an anisotropy as
possible. We suggest using a 7% Mo-doped permalloy, which
has a very low switching energy [[16]. We describe the trilayer
system shown in Fig. [TJusing the Hamiltonian in Eq. [T} where
the terms are only nonzero in their respective regions. The
interface normals are parallel to the z axis (n = &). We as-
sume periodic boundary conditions in the y and z directions,

U>0

Figure 1. Suggested experimental setup for demonstrating a mag-
netization reorientation due to a change in temperature. We have a
stack of a normal-metal layer (1" > T, U = 0) or a superconduct-
ing layer (T' < Tc, U > 0), a heavy-metal layer, and a ferromagnetic
layer. We model our system as a 3D cubic lattice with interface nor-
mal along the x direction. The exchange field h is described by the
polar and azimuthal angles with respect to the z axis, (0, ¢). Note
that the above model is not to scale.

so that all quantities depend on the  component of the site
index only. In our presentation of the results, we scale all en-
ergies to the hopping element, ¢, and all lengths to the lattice
constant, a. For simplicity, we also set the reduced Planck
constant /2 and the Boltzmann constant kg equal to 1. There-
fore, all temperatures are scaled by ¢/kp in the presentation
of the results. The magnetic exchange field of the ferromagnet
is expressed by h = h(cos(¢) sin(), sin(¢) sin(d), cos(h)),
where 6 is the polar angle with respect to the z-axis and ¢ is
the azimuthal angle. Because of our assumption of periodic
boundary conditions along ¢ and 2, the Fourier transform
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can be used to diagonalize the Hamiltonian. The sum is over
the allowed k, and £, inside the first Brillouin zone. Also
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and rewrite the Hamiltonian as
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By using Eqgs. [Z]and [3|to rewrite the Hamiltonian in Eq. [T} we
can show that
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and 7% = (7, £ iy)/2. Above, 7,6, = T; ® 6; is the Kro-
necker product of the Pauli matrices spanning Nambu and spin
space. The constant term is
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Eq. [5|can be rewritten as
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Hy, 1, is Hermitian and can be diagonalized numerically with
eigenvalues Ey, i, x. and eigenvectors @, i . given by
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The diagonalization is done numerically and gives a Hamilto-
nian of the form

1
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where the new quasiparticle operators are related to the old
operators by
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To find the eigenvectors and eigenvalues the initial guess
of the order parameter must be improved by iterative treat-
ment. The expression for the gap can be rewritten by in-
serting the operators given in Eq. [I4] and by using that
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Here, f(Enp k, k. /2) is the Fermi-Dirac distribution.
Having found E,, y, . and {u,v,w,z}, we can compute
the physical quantities of interest. The free energy is given by

1
F=Ho- 3 > (14 e PPrrra/2) 0 (16)
n,ky,kz

where 3 = (kgT)~!. Note that if T — 0,

1 ’
F=H+; kzk En by e (17)

where Zl means that the sum is taken over negative eigenen-
ergies only. The ground state of the system minimizes the free
energy. F'is therefore used to find the preferred orientation of
the ferromagnet. Additional magnetic anisotropy terms may
be added to the free energy to take the thickness of the thin fer-
romagnetic film into account more properly. We model these
terms in a simple way and write the additional contribution to
the free energy as [[17]

F, = —Kegcos®(6,). (18)

where 6, is the polar angle relative to the interface normal.
K 1s the effective anisotropy constant. We assume a thin
ferromagnetic film with one interface to another material and
one free surface, and approximate K.g by [17]]

K5+Kz

Keip = Ky +
tp

19)
Above, K, < 0 is the bulk anisotropy of the ferromagnet, K,
is the surface anisotropy and K; > 0 is the anisotropy of the
interface between the ferromagnet and the other material. K¢
may be positive or negative depending on the thickness of the
ferromagnetic layer, tr. If K. < 0, the magnetic anisotropy
contribution F, to the free energy favors IP magnetization and
shape anisotropy dominates. For K. > 0, OOP magnetiza-
tion is favored and perpendicular anisotropy dominates. To
model a non-cubic ferromagnet, we use the average lattice
constant, a = (a, + a, + a.)/3. By doing this we obtain
a rather rough estimate of F};, but since we are comparing F,
to the superconducting contribution to the free energy, the or-
der of magnitude of the change in F, is more interesting than
the details.

The physical mechanism leading to a variation in the su-
perconducting condensation energy when the magnetization



direction changes is the conversion of singlet Cooper pairs
to triplet ones. To reveal the types of triplet Cooper pairs in
our system, we compute the triplet anomalous Green’s func-
tion amplitudes. The on-site odd-frequency s-wave anoma-
lous triplet amplitudes are defined as

S0,i(7) = {€s,1(7)ei,1(0) + (eiy ()i 1(0))
So,i(T) = <Ci,o(7—)ci7a(0)> )
where we have defined the time-dependent electron annihila-

tion operator ¢; ,(7) = etH Tci,ge*iH ". By differentiating
¢i,o(T) with respect to 7 we obtain the Heisenberg equation,

(20)

dc; o (T) .
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from which we can obtain expressions for ¢; +(7) and ¢; | (T)
by inserting Eq. [I4] Here, 7 is the relative time coordinate
between the electron operators. 7 is scaled by 7/t. The even-
frequency p-wave anomalous triplet amplitudes are defined

Py =) E({cintizay) + (Cicitat)),
+

(22)
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T

where n = {z,y,z}. The spins in these triplet amplitudes
are defined with respect to the z axis. If we want to com-
pute the triplet amplitudes for a specific direction of h such
that (11)p, and (]J)p represent the long-range triplets, the
triplet amplitudes must be transformed so that the spins are
defined with respect to the vector h. This is done by inserting
(cit)o.g = cos(0/2)e™%/2(c; 1), +sin(0/2)e'?/?(c; ), and
(cig)op = —sin(0/2)e™ /2 (cip). + cos(0/2)e™/?(cs )
[2]] into Egs. 20]and [22] The even-frequency s-wave singlet
amplitude is proportional to the gap and given by

Ss,i = <Ci,TCi,,L> — <Ci1ici¢> . (23)

The singlet amplitude is rotationally invariant with respect to
the choice of quantization axis, and the quantity

~ 1
S, = N iZ|SS,iI| (24)

is a measure of the singlet amplitude of the system for a given
magnetization direction. The sum is taken over the supercon-
ducting region only, as we are primarily interested in describ-
ing how the superconducting condensation energy depends on
the magnetization direction.

We find T, numerically by a binomial search within tem-
peratures below the bulk critical temperature of the supercon-
ductor. In each of the n iterations, we determine whether 7T
is above or below the temperature in the middle of the current
temperature interval. This is done by choosing an initial guess
for A, very close to zero and checking whether A;_(T') close
to N, s/2 increases or decreases from the initial guess after
recalculating A;, m times by Eq. [I5] The gap decreases in
the normal state and increases in the superconducting state.

The superconducting coherence length (£) of the supercon-
ducting layer is an important length scale in our system. The
effects of the HM/F layer can be expected to be strongest when
¢ is the same length or slightly longer than the thickness of the
superconductor. In the ballistic limit the superconducting co-
herence length is given by £ = hvp/mAq [18]. The normal-
state Fermi velocity, v, is obtained by the dispersion rela-
tion vp = + %Lk jiop 18I Ejp = —2t[cos(ky) + cos(ky) +
cos (k)] — u is the normal state eigenenergies obtained from
Eq. [I]if we use periodic boundary conditions in all three di-
rections. The Fermi momentum £ corresponds to the Fermi
energy, which is the highest occupied energy level at T' = 0.
Ay is the zero-temperature superconducting gap. In our lat-
tice model we round & down to the closest integer number of
lattice points.

In our calculations, we have used a 3D cubic lattice model
with periodic boundary conditions in both the y and z direc-
tions. It is worth noting that this gives qualitatively different
results than if we use a 2D square lattice model with periodic
boundary conditions only in the y direction. Since the 2D
model does not have periodic boundary conditions in the z
direction, we do not get the sin(k.) terms in Eq. [§] when con-
sidering a 2D square lattice. This makes the system invariant
under ¢ rotations of h. This implies that physical quantities
such as 7, and F' have the same angular dependence in the
xz and yz plane, so that the system is not invariant under 7/2
rotations in the yz plane as is expected for a 3D cubic lattice.
It should therefore be cautioned against simplifying the nu-
merical simulations of a 3D cubic lattice by using a 2D square
lattice model. In our calculations we use N, = N, so that we
get an equal number of &, and &, values, thereby obtaining a
7 /2-rotational invariance in the yz-plane even when N, and
N, are not much larger than the film thicknesses. It should
also be noted that the thickness of the sample parallel to the
interfaces is important for the physical results obtained in an
experiment. In our paper, we have modeled a thin-film struc-
ture in which the width of the sample in the y and z directions
is much larger than the thickness of the sample.

Before presenting our results, we finally also comment on
the relevance of the BdG-lattice framework used here with
respect to making predictions for experimentally realistic sys-
tems. The lattice framework has several advantages, such as
capturing the crystal symmetry and its influence on physical
quantities in addition to the fact that that the energy scales
in the system can be varied across a large range. The main
weakness with the present theoretical framework is that only
relatively small sample sizes are computationally manageable,
especially with periodic boundary conditions in two directions
used here. When considering a thin superconducting layer, the
superconducting coherence length must be short in order to be
comparable to the thickness of the superconducting layer. £ is
proportional to the inverse of the zero temperature gap of the
superconducting layer. Considering a thin superconducting
layer therefore results in a large value for the superconducting
order parameter, and also a large critical temperature. How-
ever, the present framework can still be used to make quali-
tative and quantitative predictions for experimentally realistic
systems, so long as the spatial dimensions are scaled by the su-
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Figure 2. Panels (a) and (b) show Fix(0) — max(F,n,=o0) in the
xz plane for T'= 1 and T' = 0.1. The parameters used are specified
in the main text. In (a) OOP magnetization is favored. In (b) IP
magnetization is favored.

perconducting coherence length. An example that illustrates
that this method gives good agreement with experimental re-
sults when scaled in this way is Ref. [[19]]. This paper utilized
the same theoretical formalism as we do here and the predic-
tions made therein were later found to correspond very well to
experimental measurements done in Ref. [20]]. Thus, there is
good reason to expect that the results obtained in the present
framework for system parameters corresponding to a certain
ratio between the system size N, /& should correspond well
to experimental measurements on a system that has the same
ratio between its length and the superconducting coherence
length. This is the approach we will take below.

III. RESULTS AND DISCUSSION
A. The non-superconducting contribution to the free energy

We first look at a system as shown in Fig. where we
have a normal metal (V) rather than a superconductor, ie.,
U = 0. This is important in order to later distinguish the
influence of the superconducting phase on the preferred mag-
netization orientation compared to the normal-state phase. We
diagonalize the Hamiltonian described in Eqs. [I|and [§|numer-
ically using the parameters N, n = 9, Ny gy = Ny = 3,
N, = N, = 50, un = 1.8, pgpm = 1.7, up = 1.6,
h = 1.4 and A = 0.6. We then plot the free energy for the
N/HM/F trilayer, Fiv (), to find the preferred direction of h
for a given T'. In all free-energy plots we subtract the maxi-
mal free energy within the plane of rotation we are consider-
ing, i.e. max(Fy,n,—0) when considering the xz plane and
max(Fy n,—o) when considering the iz plane. We do this to
make it easier to compare the change in free energy for differ-
ent parameter choices. Figure [2|shows Fiy (6) in the zz plane
forT = 1and T = 0.1. We see that the preferred magneti-
zation direction may change as the temperature is increased.
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Figure 3. Panels (a) and (b) show Fn () — max(Fn,n,=0) in the yz
plane for h = 1.4, A = 0.6 and for h = 1.6, A = 0.8. The other
parameters used are given in the main text. 7' = 0.01. We see a w/4
rotation of the minimum from (a) to (b).

The preferred direction may also change when changing h, A,
or the layer thicknesses. The angular dependence of F is the
same for the zy and xz planes. Figure |3|shows Fy(0) in the
yz plane at T' = 0.01 for different choices of h and A\. We
see that the preferred direction of h is rotated by 7/4 when
changing the parameters from h = 1.4, A = 0.6 to h = 1.6,
A = 0.8. A similar rotation may also happen when chang-
ing T or the layer thicknesses. Note that the free energy is
invariant under a /2 rotation in the yz plane. This is reason-
able, because a 7/2 rotation of the cubic system around the
interface normal should leave the system invariant indepen-
dently of the magnetization direction. For sufficiently high
temperatures, F'y becomes constant. We underline that the
effective magnetization anisotropy that arises here is distinct
from the anisotropy terms described in Eqs. [I8 and [T9] the
latter not being included in the analysis yet. We will shortly
come back to the physical origin of the magnetic anisotropy
in the present case. It is evident that the preferred direction of
h is highly dependent on the choice of parameters. To make
a superconducting switch, we must therefore make sure that
the non-superconducting contribution to the free energy favors
a different magnetization direction than the superconducting
contribution so that the superconducting and non supercon-
ducting contributions compete. We must also check whether
a change in the preferred magnetization direction is actually
caused by the superconducting contribution to F' and not by
the non-superconducting contribution.

Before turning to the superconducting case, we examine the
energy band structure of the system in order to explain the
change in free energy of the N/JHM/F trilayer. If we consider
small temperatures so that F'y can be approximated by Eq.
the free energy is determined by the sum over negative
eigenenergies. If eigenenergies are shifted from above to be-
low zero when some parameter is changed or if the eigenener-
gies below zero shift closer or farther away from zero, Fiy ()
will change. When increasing the temperature from zero,
the smallest of the positive eigenenergies will give a contri-
bution to the free energy. The band structure close to zero
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Figure 4. Panels (a)-(i) show the energy band structure, En k, k.=o(ky), of the NJHM/S system. The parameters used are given in the
main text. In (a), (d), and (g) we have OOP magnetization corresponding to the maximum of Fx for low 7. In (b), (e) and (h) we have IP
magnetization with 6 = 7/4 corresponding to the maximum IP value of Fy for low T In (c), (f), and (i) we have IP magnetization with
0 = 0 corresponding to the minimum of F for low T". Panels (d)-(f) show the band structure in the region marked in yellow in (a)-(c). The
crosses mark the discrete eigenenergies. The encircled eigenenergies are shifted from above zero energy (green circle) to below zero energy
(blue circle) or vice versa when rotating h. At 7" = 0 only eigenenergies below zero energy contribute to Fiy. Panels (g)-(i) show the band
structure in the region marked in purple in (a)-(c). Also for these higher-energy bands that contribute to F' at finite temperatures, there is a shift

in the energy bands when rotating h.

energy (relative the chemical potential) should therefore be
of great importance to the free energy at low temperatures.
In Fig. (4| we have plotted the energy bands, E., x, r.=o(ky),
for three different magnetization directions. We consider the
out-of-plane case (6,¢) = (7/2,0) and two in-plane cases
(0,6) = (m/4,7/2) and (0,0), respectively. We have used
the same parameters as in Fig. In Fig. @] panels (a)-(c)
show the overall band structure of the three magnetization di-
rections. Panels (d)-(f) correspond to the region marked in
yellow in (a)-(c) and show some of the eigenenergies close
to zero energy. We see a variation in band structure between
the different directions of h. As a result some eigenenergies
are shifted from above to below zero energy and vice versa.
For T" — 0 it is therefore likely that the differences in band
structure cause the variation in Fy for different magnetization
directions. Note that this effective anisotropy is not caused by
the discreteness of &, and k.. In the limit where we have con-
tinuous energy bands, N,, N, — oo, the shifting of the en-

ergy bands should cause the same effect since finite sections
of the continuous energy bands are shifted from above to be-
low zero energy and vice versa. Panels (g)-(i) correspond to
the purple region in (a)-(c) and show higher energy bands that
only contribute to the free energy at finite temperatures. We
see that the band structure has an angular dependence also at
finite temperatures. It is therefore reasonable that F'y has a
temperature dependent angular dependence also for low, fi-
nite temperatures. For temperatures that are sufficiently high
to make all energy eigenvalues partially occupied, Fy (6) be-
comes gradually more independent of the magnetization di-
rection. Since Fy (#) becomes constant for high temperatures,
this indicates that the relative shift between the energy bands
is such that it leaves the sum over all eigenenergies constant.
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Figure 5. Panel (a) shows Tt /T, s when rotating the magnetization
from IP to OOP. Panel (b) shows T /7. s for an IP rotation. The
parameters used are specified in the main text.

B. The superconducting contribution to the free energy

We now look at a system as shown in Fig. [I] where we
have a superconductor, i.e., U > 0. The basic question we
seek to address is, is it possible to trigger a reorientation of
the preferred magnetization direction in the system via a su-
perconducting phase transition, i.e., by adjusting the tempera-
ture from above to below 7,.? We diagonalize the Hamiltonian
described in Egs. [I] and [6] numerically using the parameters
N%S = 9, Nac,HM = Nm,F == 3, N, = Nz = 50, Hns = 1.8,
pay = 1.7, pp = 1.6, U =19, h = 1.4 and A = 0.6.
For this parameter set the superconducting coherence length
is £ = 5. We expect that our results can be generalized to
systems with thicker layers as long as the relative thicknesses
of the layers compared to the coherence length stay constant,
as explained previously in this paper.

We begin by considering the dependence of the supercon-
ducting critical temperature on the magnetization direction.
Since we have chosen a size of the superconductor larger than
the coherence length, the magnitude of the change in critical
temperature is rather small. T,.(6)/T, s is plotted in Fig.
T, s is the critical temperature of the superconducting layer
without the heavy-metal layer and the ferromagnetic layer. In
(a) we see a suppression of T, for IP magnetization as found
by experiments [[12]] on a similar system. Panel (b) shows an
additional IP variation in T}, where T is suppressed along the
cubic axes. In our system, where the thickness of the super-
conductor is less than twice the coherence length, we do not
obtain a substantial bulk region with a constant gap. When
calculating 7\, we measure the change in the gap in the middle
of the superconducting region when recalculating the gap m
times. This means that for superconducting layers that are not
much longer than the coherence length, our method for cal-
culating T is not entirely accurate unless m is chosen to be
very large. Therefore, we set m = 150. The change in 7,
when increasing m by 10 is then 107%7 . s, which is a small
change compared to the total change in 7, when rotating h.
We have checked that we get a qualitatively similar behav-
ior of T to that in Fig. [5]for thicker superconducting layers.

T, s was calculated with m = 200. The number of times we
divided our temperature interval is n = 20, making m the pa-
rameter that restricts the accuracy of our 7 calculation. The
reason we chose a superconductor of only 9 lattice points is
that a long superconducting layer requires a low U to obtain a
coherence length that is comparable to the thickness of the su-
perconducting layer. This results in a very low critical temper-
ature. At very low temperatures only the eigenenergies below
zero contribute to the free energy as shown in Eq. [T7] If we
have few k, and k. values, the shifting of eigenenergies from
above to below zero energy will have a great impact on the
free energy. This is especially a problem when computing the
non-superconducting contribution to the free energy, where
we have no gap and many eigenenergies are close to £ = 0.
We therefore do not get a smooth curve when plotting Fiv (6).
To avoid this problem we must either choose a short super-
conductor such that we can look at higher temperatures, or let
N, and N be very large. The latter option makes the free-
energy calculations computationally expensive, which is why
we chose the former. Note that we would expect a stronger
variation in 7, if we made our superconductor comparable to
the coherence length rather than almost two times larger.

From the angular dependence of 7, we may expect a su-
perconducting contribution to the free energy in which F' is
increased for the IP orientation, especially along the cubic
axes. Figure [6] shows the free energy in the xz plane for
T=01>T,T =001 <T.andT = 0.005 < T¢. As
expected, we see a change in the preferred magnetization di-
rection due to the fact that the superconducting contribution to
F' favors OOP magnetization while the non-superconducting
contribution to F' favors IP magnetization. Figure[7]shows the
free energy in the yz plane for the same temperatures. For suf-
ficiently low 7T, the superconducting contribution to the free
energy starts to dominate, and we have an IP 7 /4 rotation of
the minimum of free energy. Notice however that the IP vari-
ation in the free energy is weaker than the IP-OOP variation.
Therefore OOP magnetization is favored as the ground state
of the system despite the fact that the free energy also varies
when the magnetization is rotated IP. For both the xz and yz
planes the change in preferred magnetization direction will
generally occur at lower temperatures than 7,, meaning that
the superconducting contribution does not necessarily start to
dominate exactly at the critical temperature. When increasing
T the preferred magnetization direction at some point changes
from IP to OOP without any involvement of superconductiv-
ity. This is exemplified by the behavior of Fiy(6) in Fig.
which was plotted for a temperature 7' > T.. The super-
conducting switch must therefore be operated over a limited
temperature range around the temperature at which the change
in the preferred magnetization direction occurs. However, we
discuss toward the end of this paper how the superconducting
contribution to the free energy, causing an effective magnetic
anistropy, can be experimentally detected even in the cases
in which the superconducting contribution is not sufficiently
strong to change the preferred magnetization orientation.

The angular dependence of 7, and of the superconducting
contribution to F' can be explained by the generation of triplet
Cooper pairs. At an S/F interface, the spin splitting of the
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energy bands of the ferromagnet causes transformation of sin-
glet Cooper pairs into opposite-spin triplets. The Rashba spin-
orbit coupling terms in the Hamiltonian in Eqs. [I] and [f] are
proportional to sin(k,) and sin(k;). Therefore, electrons ex-
perience different energies if the sign of (k,, k.) is changed.

This symmetry-breaking causes triplet generation at the S’THM
interface, and enables equal-spin triplet generation, depending
on the relative orientation of the magnetization and the spin-
orbit field. In Fig. [§] we have plotted the triplet amplitudes
corresponding to OOP magnetization and the IP magnetiza-
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Figure 8. Panels (a)-(1) show the triplet amplitudes generated in the S/HM/F system at 7' = 0.01 < 7. = 0.017. The parameters are given
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that are not visible in the plots are either zero or close to zero.

tion directions (¢, ¢) = (7/2,7/4) and (0, 0), respectively.
The relative time used in the computation of the s-wave odd-
frequency triplet amplitudes is 7 = 5. We see that there is
a generation of short-range and long-range triplet amplitudes
depending on the magnetization direction. The generation of
triplet amplitudes lowers the singlet amplitude in the super-
conductor, since singlet Cooper pairs are converted into triplet
Cooper pairs. In Fig. |§|We have plotted S, /Ss s, where S, is
defined in Eq. 5575 is the singlet amplitude in the super-
conducting layer without the heavy-metal layer and the fer-
romagnetic layer. We see that the singlet amplitude is sup-
pressed for IP magnetization, especially along the cubic axes.
Since the singlet amplitude is proportional to the supercon-
ducting order parameter, a suppression of the singlet ampli-
tude should lead to a decrease in T, and an increase in F'. This
is exactly what we have seen from Figs. [5] [6|and [7]] We may
therefore explain the variation in 7, and F' by the generation
of triplet amplitudes depending on the relative orientations of
the spin-orbit field and the magnetization.

The diffusive limit calculations in Ref. [12] found an IP
suppression of T, as in our calculations. However, in the dif-

fusive limit 7, was found to be invariant under IP rotations of
the magnetization. In Ref. [12] the HM/F layer is modelled
as a single layer with the exchange field and the spin-orbit
coupling as homogeneous background fields, which similarly
to what occurs in the ballistic limit results in a generation of
both short-range and long-range triplets close to the interface.
The IP suppression of T;, compared to 7, at OOP magnetiza-
tion is both for the ballistic and the diffusive limit a result of
differences in the triplet generation when the exchange field
is parallel and perpendicular to the interface between the su-
perconductor and the HM/F layer. The change in 7. under IP
rotations of the magnetization found in the present paper is
a result of differences in the triplet generation at different IP
magnetization directions due to the crystal structure of the lat-
tice in the HM region. This is the reason why these variations
are not found in the diffusive limit calculations in Ref. [12]],
which does not model the S/HM/F system by a lattice model.
For very thin films, like the ones considered experimentally in
Ref. [12], we expect the sample to approach the ballistic limit
such that a variation in 7T, for IP rotations of the magnetization
should be observable.
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C. The shape anisotropy contribution to the free energy

Until now, we have disregarded the intrinsic magnetic
anisotropy of the thin ferromagnetic film, which does not
depend on the coupling to itinerant electrons {c,c'} in our
model. For concreteness, we will now consider the case of a Pt
heavy-metal layer and a Co(111) ferromagnetic layer. In this
case, the anisotropy constants are [17] K, = —0.77 MJ/m3,
K; = 1.15 mJ/m? and K, = —0.28 mJ/m?. The lattice con-
stants of Co are [21]] a, = a, = 251pm and a, = 407pm.
The anisotropy contribution to the free energy is plotted in Fig.
[I0R for this choice of parameters. The effective anisotropy
constant defined in Eq. [19)is plotted in Fig. as a function
of N, r. By solving K = 0, we find that the anisotropy
contribution to the free energy favors an OOP magnetization
for N, r < 3 and an IP magnetization for N, p > 4. Since
we may generalize our results to any system size as long as
the layer thickness relative to & stays constant, we may con-
sider a system with any N, r. By making the ferromagnetic
layer thick enough to give a contribution to F'(#) favoring an
IP magnetization, but thin enough that K. is small, it is in
principle possible to get an IP-OOP superconducting switch
despite the fact that the non superconducting contribution to
F has gained an extra term. We may also make the ferromag-
netic layer so thick that the non-superconducting contribution
to the free energy enforces IP magnetization. Since the shape
anisotropy contribution to the free energy is invariant under
rotations in the yz plane, we may get a /4 rotation in the
magnetization as shown in Fig. [/] This means that an IP su-
perconducting switch in the magnetization direction is in prin-
ciple possible, even if the preferred magnetization direction is
OOP when disregarding shape anisotropy. The possibility of
changing the preferred direction in the yz plane is interest-
ing as the magnetic field of the ferromagnet in such a case is
not perpendicular to the superconducting layer. We therefore
avoid demagnetising currents close to the interface in the su-
perconducting region as well as vortex formation inside the
superconductor [22]]. For magnetization with an OOP compo-
nent, demagnetization effects may be of greater importance.
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Figure 10. Panel (a) shows the perpendicular/shape anisotropy con-
tribution to F'. Panel (b) shows the effective anisotropy constant,
Ky, as a function of the ferromagnet thickness.

It is worth noting that even if the ferromagnetic layer is so
thick that the non-superconducting contribution dominates, it
may still be possible to measure the superconducting contri-
bution to the free energy. The superconducting contribution to
the free energy in an F1/S/F2 system can be measured [23]] by
applying an external magnetic field and measuring the critical
field needed to flip the magnetization from an antiparallel to
a parallel alignment. It should be possible to do similar mea-
surements on the S/HM/F-system. For instance, one could
apply an external field to flip the magnetization of the fer-
romagnet between the IP and the OOP direction. The super-
conducting contribution favors OOP magnetization and would
therefore reduce the critical field needed to flip the magneti-
zation from IP to OOP orientation. Such a reduction of the
critical field would thus be evidence of a superconductivity-
induced anisotropy term for the ferromagnet.

IV. CONCLUDING REMARKS

This work predicts a possible reorientation of the magneti-
zation direction of a thin-film ferromagnet upon lowering the
temperature below the superconducting critical temperature
T. when the ferromagnet is separated from a superconductor
by a thin heavy-metal film. Especially for a thin ferromagnetic
film with weak shape anisotropy, the superconducting phase
transition should induce an in-plane to out-of-plane rotation
of the magnetization. We have also found that if the shape
anisotropy is strong enough to enforce an in-plane magneti-
zation direction, a 7/4 in-plane rotation of the magnetization
can occur upon lowering the temperature below 7. In addi-
tion, we have considered the dependence of 7, on the magne-
tization direction. Here, we find that our lattice-model calcu-
lations predict an additional in-plane variation in 7, compared
to the previous diffusive-limit calculations, which only show
an in-plane suppression of 7, independently of the in-plane
magnetization orientation. Both the 7. suppression and the
magnetization reorientation can be explained by the genera-
tion of short-range and long-range triplet Cooper pairs close



to the interfaces depending on the relative orientations of the
exchange field of the ferromagnet and the spin-orbit field of
the heavy metal. Our results should be reproducible exper-
imentally for systems with the same ratio between the layer
thicknesses and the superconducting coherence length.
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