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We introduce a novel data-driven approach to discover and decode fea-
tures in the neural code coming from large population neural recordings
with minimal assumptions, using cohomological feature extraction. We
apply our approach to neural recordings of mice moving freely in a box,
where we find a circular feature. We then observe that the decoded value
corresponds well to the head direction of the mouse. Thus, we capture
head direction cells and decode the head direction from the neural pop-
ulation activity without having to process the mouse’s behavior. Inter-
estingly, the decoded values convey more information about the neural
activity than the tracked head direction does, with differences that have
some spatial organization. Finally, we note that the residual population
activity, after the head direction has been accounted for, retains some low-
dimensional structure that is correlated with the speed of the mouse.

1 Introduction

The neural decoding problem is that of characterizing the relationship be-
tween stimuli and the neural response. For example, head direction cells
(Ranck, 1985) respond with an elevated activity whenever the animal is fac-
ing a specific direction. To be able to determine this relationship, however,
an experiment must be designed such that the relevant behavior of the ani-
mal can be properly sampled and tracked. Accurate tracking of the animal’s
complete behavior, including movements of the eyes, whiskers, head, body,
and limbs, is extremely difficult in any freely behaving situation; external
cues such as sounds in the frequency range of the animal, odors, or visual
cues are also similarly difficult to account for appropriately, and yet all of
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these aspects of the experiment are just a subset of the potential features
driving the activity of the neurons. This process of identifying the relevant
features is known as model selection (for recent examples, see Hardcastle,
Maheswaranathan, Ganguli, & Giocomo, 2017; Mimica, Dunn, Tombaz, Bo-
jja, & Whitlock, 2018). As it is typically performed, model selection indicates
the most likely feature or combination of features behind the activity of the
neurons. It does not, however, indicate a feature that is not explicitly in-
cluded. We would therefore prefer to skip the problem of devising and test-
ing all of the infinite ways of tracking and processing the behavioral data
and instead allow the neural data to speak for themselves in data-driven
model selection.

Data-driven approaches such as ours have been made possible by recent
advances in recording technology that permit simultaneous recordings of a
large number of neurons. While the possible states of these neurons form a
very high-dimensional space, one expects that the neural activity can be de-
scribed by a smaller set of parameters (Tsodyks, Kenet, Grinvald, & Arieli,
1999). Standard dimensionality reduction techniques such as principal com-
ponent analysis (PCA) and factor analysis (see Cunningham & Yu, 2014, for
a comprehensive review) can be used to obtain a low-dimensional version
of the data. However, most of these methods give us data lying in some
Euclidean space, while often a different space would be more appropriate.
For instance, if the neurons encode head direction, the population activity
should be confined to points on a circle, corresponding to specific direc-
tions in the room. If the neurons are tuned to more complex features, or
perhaps a combination of features, then spaces with richer topology would
be appropriate. Since these spaces often have nontrivial topology, we ar-
gue that topological methods should be used in addition to traditional
methods. Here we use persistent cohomology and circular parameteriza-
tion (de Silva, Morozov, & Vejdemo-Johansson, 2011; Vejdemo-Johansson,
Pokorny, Skraba, & Kragic, 2015) to identify the shape of the underlying
space and then decode the time-varying position of the neural activity on
it.

In summary, our method consists of combining four key steps:

1. Dimensional reduction using PCA
2. Feature identification using persistent cohomology
3. Decoding using circular parameterization
4. Removing the contribution of the decoded features on the data using

a generalized linear model (GLM)

This procedure is quite general and may qualify to be called cohomological
feature extraction. Steps 1 to 3 are illustrated in Figure 1. In step 4, the process
of removing the contribution of a given feature results in a new data set to
which the method can then be reapplied, in a way similar to Spreemann,
Dunn, Botnan, and Baas (2015), in order to characterize additional features
in the neural activity.
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Figure 1: The decoding procedure. We start with an estimated firing rate for
each neuron (A) obtained by smoothing the spike trains of the neurons. The
firing rates are sampled at fixed time intervals, giving a point cloud (B), which
is then simplified (see appendix C), obtaining a reduced point cloud (C). The
first persistence diagram (D) of the reduced point cloud is computed. We select
the longest living feature (circled in red) and a scale where this feature exists
(red lines). Circular parameterization is used to obtain a circular map (E) on
the reduced point cloud, where the color of a point represents its circular value
according to the color wheel in the upper left corner (the same coloring scheme
will be used throughout the rest of this letter). The map is extended to the full
point cloud (F) by giving each point the value of its closest point in the reduced
point cloud. (G) The decoded circular value as a function of time for the first 20
minutes of the recording, where the circular value at a given time point is the
value of the corresponding point in panel F. The point clouds in panels B, C, E,
and F are displayed as 2D projections.

As an example, we apply this method to neural data recorded from freely
behaving mice (Peyrache, Lacroix, Petersen, & Buzsáki, 2015; Peyrache &
Buzsáki, 2015), discover a prominent circular feature, and decode the time-
varying position on this circle. We demonstrate that this corresponds well
with the head direction, but with subtle, interesting differences. Finally, we
consider the remaining features, following the removal of the head direction
component, and find that a structure still there is correlated to the speed of
the mouse.
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2 Method

2.1 Decoding Procedure. Here we provide details on the decoding pro-
cedure summarized in Figure 1. We are given a set N = {1, 2, . . . , N} of
neurons and a spike train (si

1, si
2, . . . , si

ni ) for each neuron i ∈ N , consist-
ing of the time points when the neuron fires.1 Neurons with a mean fir-
ing rate lower than 0.05 spikes per second are discarded. The remaining
spike trains are smoothed with a gaussian kernel of standard deviation
σ = 1000 ms and then normalized to take values between 0 and 1. This gives
us estimated normalized firing rates fi : R → [0, 1] for each neuron i ∈ N ,
as shown in Figure 1A. The firing rates are then sampled at fixed time in-
tervals of length δ = 25.6 ms,2 resulting in a sequence (x0, x1, . . .) of points
in R

N, where xt = ( f1(δt), f2(δt), . . . , fN(δt)). In order to reduce noise, we
project this point cloud onto its first d = 6 principal components,3 resulting
in a sequence X = (x0, x1, . . .) of points in R

d as shown in Figure 1B (in 2D).
We then simplify the point cloud X , obtaining the point cloud X̃ , shown in
Figure 1C (see appendix C).

The first persistent cohomology of X̃ is then computed (see appendix
A), giving us a summary of the one-dimensional holes in the data. We are
interested in the longest living holes because they represent stable features.
In our analysis, we focus on the longest living hole with life span [a, b), and
we want to understand how this hole is being reflected in the data. To do
this, we first pick a scale ε ∈ [a, b) where this feature exists. We used ε =
a + 0.9(b − a) in our analysis.4 Figure 1D shows the persistence diagram.
The chosen feature [a, b) is circled in red, and the scale ε is marked with
red lines. We then construct a continuous map from the Rips complex (see
appendix A) of X̃ at scale ε to the circle S1 in such a way that the selected
hole gets sent to the hole inside the circle. By restricting this map to the
points of X̃ , we obtain a circular value—an angle θ (x) for each point x ∈ X̃ ,
as shown in Figure 1E. Intuitively, the angle of a point indicates where the
point lies relative to the selected hole. The process of constructing a circular
map on X̃ given a 1-dimensional hole is called circular parameterization (see
appendix D) and uses the representation of the 1-dimensional cohomology
group of a space as maps from the space to S1. We use an improvement on
the original procedure by de Silva et al. (2011), which gives better results

1
The spike trains that we analyzed had a duration of about 30 to 40 minutes.

2
Different interval lengths are possible, but we chose the same interval lengths as were

used for the camera tracking for practical purposes.
3
Care should be taken here, as is also noted in section 5.1 of Vejdemo-Johansson et al.

(2015), since if the projecting dimension d is too small, the projection could give rise to in-
tersections of the underlying space, giving topological artifacts. It lies in our assumptions
that the underlying shape is not too complex and is still an embedding when projected
to six principal components.

4
Our experience, which is shared with de Silva et al. (2011), is that picking a scale near

the end of the life span of the selected feature resulted in a better circular parameterization.
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in cases when the data are nonuniformly distributed around the hole. (This
improvement is described in appendix D in section D.4). We then extend the
function θ to X as shown in Figure 1F by giving a point xt ∈ X the circular
value of its closest point in X̃ . In the end, we get a circular value θ (xt ), for
each time point δt—a time-dependent circular value as shown in Figure 1G.

To improve the decoding, we first run the procedure described above
using a large smoothing width of σ = 1000 ms such that only features with
slow dynamics remain, while arguably less interesting features such as lo-
cal theta phase preferences are ignored. Having decoded the feature, we use
an information-theoretic measure to determine which cells in the popula-
tion are selective for this feature (Skaggs, McNaughton, & Gothard, 1993).
We then run the procedure again with only the spike trains of the selective
neurons, this time using a smaller smoothing width of σ = 250 ms to allow
for a finer decoding.

2.2 Residual Analysis. Identification of a single feature from a neural
recording is a first step. A single recording, however, could contain a mix-
ture of cells responding to different features or even multiple features (Rig-
otti et al., 2013). We therefore take an iterative approach, identifying features
using topological methods and then explaining away by a statistical model
to reveal any additional features, similar to Spreemann et al. (2015). We use
a generalized linear model (GLM) (McCullagh & Nelder, 1989) to predict
the neural activity given the decoded angle. We next subtract the predicted
neural activity from the original spike trains, obtaining residual spike trains.
We can then apply our decoding procedure to the residual spike trains to
uncover remaining features in the data.

3 Results

3.1 Rediscovering Head Direction Cells. We applied our decoding
procedure, as summarized in Figure 1, on spike train data from multi-
electrode array recordings of neurons in the anterodorsal thalamic nucleus
(ADn) and the postsubiculum (PoS) of seven freely moving mice (Peyrache
& Buzsáki, 2015; Peyrache et al., 2015). This revealed a prominent circular
feature that was then decoded as shown in Figures 2 and 3, resulting in
a one-dimensional circular time-dependent value. This decoded trajectory
corresponded very well to the tracked head direction, as shown in Figure 3
and video 1 (see the online supplement).

In Figures 4B to 4D, we see that the decoded trajectories convey more
information about the neural activity than the tracked head direction does.
We were able to resolve moments of drift during the experiment—moments
when the neural data are better explained by the decoded angle than by the
tracked head direction. This was done by evaluating the time-varying log-
likelihood ratio of two GLMs—one with the decoded angle and the other
with the tracked head direction. The difference of these two log likelihoods
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Figure 2: The decoding procedure applied to two recordings. From top to bot-
tom: mouse28-140313 (using all neurons and only identified selective neurons),
mouse25-140130 (using all neurons and only identified selective neurons). For
each round, we show the persistence diagram, the decoded circular value on the
reduced point cloud, and the circular value on the full point cloud. The point
clouds in the second and third column are displayed as 2D projections.
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Figure 3: The decoding procedure applied to different recordings, using all
neurons.

is shown in Figure 4B for each neuron. The GLM test found 90 moments of
drift, lasting 2.01 seconds on average, that were dispersed throughout the
experiment. Consistent with our findings, drift of the head direction repre-
sentation has been previously reported in rodents (Taube, Muller, & Ranck,
1990; Yoder, Peck, & Taube, 2015; Mizumori & Williams, 1993; Goodridge,
Dudchenko, Worboys, Golob, & Taube, 1998).

Figure 4E shows that the discrepancy is mostly independent of the speed
of the mouse, but with a slight clockwise deviation at slow speeds and a
slight counterclockwise deviation at higher speeds. In Figure 4F, we ob-
serve what appears to be a spatial dependence of the deviation, where the
decoded angle is skewed counterclockwise in some parts of the box and
skewed clockwise in other parts. This suggests that the difference is not
simply due to a random drift in the network representation (Zhang, 1996),
but rather that the internal representation is occasionally distorted by the
environment (Dabaghian, Brandt, & Frank, 2014; Knierim, Kudrimoti, &
McNaughton, 1998; Peyrache, Schieferstein, & Buzsáki, 2017). Another pos-
sible reason might be that the head direction is not precisely what is driving
the neural activity but rather something similar, such as gaze direction, the
direction the body is facing, or the direction that the animal is attending to.
It could also be partially due to tracking error since the animal was tracked
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Figure 4: Result of the decoding procedure on mouse28-140313 (using only the
identified selective neurons). (A) Tracked head direction (HD) and decoded an-
gle for the first 5 minutes. (B) Difference between the log likelihood of observed
spike trains given decoded angle and tracked HD over individual neurons. The
shaded time intervals represent the moments of drift. (C) Average information
rate over all ADn neurons (green lines) and PoS neurons (orange lines) of the
tracked HD at different time lags (solid lines) and the decoded angle (dashed
lines) at 0 time lag. The average information rate of the tracked HD peaked at
95 ms over ADn neurons and at 40 ms over PoS neurons. (D) Information rates of
the tracked HD over all PoS neurons at 95 ms time lag and over all ADn neurons
at 40 ms time lag, which is when their average information rates peaked, against
information rates of the decoded angle at 0 time lag. (E) Angular difference (de-
coded angle − tracked HD) for each time step during drift, plotted against the
speed of the mouse. We also display the average angular difference (blue line)
±1 SD (shaded region). (F) For each time step during drift, we plot the tracked
HD (black arrows) and the decoded angles, shown as a green (resp. orange) ar-
row when deviated clockwise (resp. counterclockwise) of the tracked HD. The
arrows are rooted at the position of the mouse at that time step. (G) Tracked and
decoded tuning curves of all neurons.
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using a single camera at 30 frames per second and two LEDs on the animal’s
head.

3.2 Capturing Speed Cells. We then considered the residual activity re-
maining after accounting for the decoded angle in a GLM and applied the
decoding procedure as before (shown in Figure 6). This time we did not
find any additional cohomological features, but the eigenvalues of the co-
variance matrix of the residual point cloud suggest that a one-dimensional
feature remains in the data, as shown in Figure 5A. Two possible candi-
dates are mouse speed and angular velocity, and Figures 5B and 5C show
that both candidates are correlated with the neural activity. By fitting a GLM
including speed and a GLM including angular velocity to the data, we see
in Figure 5D that most of the neurons are more selective for speed than for
angular velocity. Finally, we included decoded HD, speed, and angular ve-
locity in the GLM and created a new residual point cloud as before (shown
in Figure 6C). This time the eigenvalues (see Figure 5E) are closer to ran-
dom. We also tried to include only the residual spike trains of the neurons
that had an initial mean firing rate higher than a certain threshold, varying
the threshold between 0.05 and 20 spikes per second, but we were not able
to uncover any structure in the remaining data (see Figures 7 and 8).

4 Discussion

As illustrated in our example, the main benefit of using persistent cohomol-
ogy is that it allows us to understand the shape of the neural data. Statis-
tical methods such as latent variable methods (Zhao & Park, 2017; Archer,
Koster, Pillow, & Macke, 2014; Frigola, Chen, & Rasmussen, 2014; Koyama,
Pérez-Bolde, Shalizi, & Kass, 2010; Macke et al., 2011; Pfau, Pnevmatikakis,
& Paninski, 2013; Yu et al., 2008) can give a good low-dimensional represen-
tation of neural activity, but they have not yet been developed to character-
ize the shapes underlying the data. It is often difficult, or even impossible, to
identify the shape by looking at a 2D or 3D projection, as seen, for instance,
in the first round on mouse25-140130 (see Figure 2), and it would likely be
even more difficult for more elaborate features. As a preprocessing step,
however, latent variable methods are far more flexible and powerful than
PCA, allowing, for example, for known covariates and priors to be included
in a simple and straightforward manner. Here we chose PCA for simplic-
ity but see a bright future combining the benefits of cohomological feature
extraction and the framework of latent variable models.

We emphasize that our method does not rely on knowing a priori what
we are looking for, such as head direction. In our analysis, the tracked head
direction is only used in the end to demonstrate that the method gives us the
expected feature for these data. In practice, the discovery of a circular fea-
ture, together with a circular parameterization, would give the researcher
useful knowledge of what kinds of data are being encoded. For instance, if
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Figure 5: Residual analysis. (A) The 10 largest eigenvalues (red line) of the
residual point cloud after accounting for decoded HD, compared with a 96%
confidence interval of the 10 largest eigenvalues of each of 100 shuffled point
clouds (see appendix B). (B,C) The first principal component of the residual
point cloud against the speed (resp. angular velocity) of the mouse, with av-
erage values (blue line) ±1 SD (shaded region). (D) The pseudo-R2 score of a
GLM including speed (x-axis) and a GLM including angular velocity (y-axis),
averaged over a five-fold cross-validation on all recorded neurons in the data
set. (E) The same as panel A but for the residual point cloud after accounting for
decoded HD, speed, and angular velocity. (F) The speed tuning curves for all
the neurons in mouse28-140313. On the x-axis of each tuning curve is the speed
of the mouse, going from 0 cm/s to 15 cm/s. On the y-axis is the average firing
rate of the neuron given the speed of the mouse. Note that the y-axes are scaled
independently for each tuning curve.
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Figure 6: Supplement to residual analysis in Figure 5. (A) Residual point cloud
after accounting for the decoded angle. (B) The pseudo-R2 score of a GLM
including speed (red line) and a GLM including angular velocity (blue line)
for different number of bins, averaged over a five-fold cross-validation on all
recorded neurons in the data set. (C) Residual point cloud after accounting for
decoded angle, speed and angular velocity.

Figure 7: The mean firing rates of all 62 neurons of mouse28-140313.

the circular value were instead moving in one direction on the circle with
a certain frequency, this would suggest that something periodic is being
encoded.

Topological data analysis has been previously applied to identify the
shape of the underlying space in neural data (Singh et al., 2008; Dabaghian,
Mémoli, Frank, & Carlsson, 2012; Curto & Itskov, 2008). This work, how-
ever, is the first to develop and apply topological methods for decoding
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Figure 8: We show two figures for each threshold. The first, showing the result-
ing point cloud (in 2D) after removing the contribution of the decoded angle,
speed, and angular velocity, and the second showing the 10 largest eigenvalues
(red line) of the residual point cloud compared with a 96% confidence interval
of the 10 largest eigenvalues of each of 100 shuffled point clouds. We also show
the threshold t and the number of neurons included.

the time-dependent variable. It is also a first example of using topological
methods for systematic identification of relevant parameters—model selec-
tion (see Spreemann et al., 2015, for a demonstration on simulated data).

Some applications of topological methods to neural data (Spreemann
et al., 2015; Curto & Itskov, 2008; Giusti, Pastalkova, Curto, & Itskov, 2015;
Dabaghian et al., 2012) have constructed spaces based on correlations be-
tween neuron pairs. This may work well when the tuning curves of the
neurons are convex, but this assumption might be too strong. For instance,
some of the neurons in Figure 4G are selective for two different directions.
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This could be due to errors in preprocessing where the activity of two neu-
rons is combined or might even be a property of the cells themselves. Our
method does not require this assumption.

In our analysis, we focused on only the longest-living 1-dimensional
hole, but in general, this should depend on the situation. If more than one
hole is considered significant, it would make sense to apply circular pa-
rameterization with respect to each feature. For instance, if the underlying
space was a torus, persistent cohomology would detect two 1-dimensional
features corresponding to the two orthogonal ways to traverse a torus, as
well as one 2-dimensional feature. The 1-dimensional features would then
give circular parameterizations that together determine the time-dependent
position on the torus. Additional theoretical work, such as that by Perea
(2016), should reveal the extent to which other features can be identified
and decoded.

Ideally, when performing persistent cohomology, the real features are
well separated from noise in the persistence diagram. For instance, in the di-
agrams in Figure 2, there is a prominent 1-dimensional hole. In other cases,
however—for instance, some of the diagrams in Figure 3—it is not easy to
separate the features from noise. However, even in these cases, the circular
parameterizations could still be meaningful, and our method of perform-
ing the decoding procedure, again with only the neurons selective for the
chosen feature, might be able to remove some of the noise, making the in-
teresting features more prominent.

Topological data analysis methods have developed into a powerful, in-
tuitive set of tools, built with mathematical rigor, that can now be applied
to large population neural recordings. Here we show one clear example of
how these methods can recover the relevant features of the animal’s be-
havior, essentially performing unsupervised decoding and model selection.
With the continued emergence of large population neural recordings, we
expect to see topological methods playing an important role in exploring
what the neural data are trying to tell us.

Appendix A: Topological Background

The state of a neural population at a given time point can be represented
as a high-dimensional vector x ∈ R

n. When collecting all the vectors corre-
sponding to each time point, we get what is called a point cloud X ⊂ R

n.
Describing the shape of point clouds such as these is nontrivial but can be
done using tools from the field of algebraic topology.

Cohomology (see chapter 3 of Hatcher, 2002), one such tool, is able to dis-
tinguish between shapes, such as a circle, sphere, or torus.5 Intuitively, the
0-dimensional cohomology counts the number of connected components of

5
Technically speaking, the homotopy types.
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Figure 9: (Left) A filtration together with its first persistent cohomology, drawn
as a bar code. Two 1-dimensional holes appear and disappear during the filtra-
tion, as reflected in the bars. (Right) First persistence diagram of the filtration.

the space, and for n ≥ 1, the n-dimensional cohomology counts the number
of n-dimensional holes in the space. For instance, a circle has one connected
component and one 1-dimensional hole, a sphere has one connected com-
ponent and one 2-dimensional hole, and a torus has one connected compo-
nent, two 1-dimensional holes, and one 2-dimensional hole.

If we try to naively compute the cohomology of a finite point cloud X ⊂
R

n, we run into a problem, however, since this is just a finite set of points
with no interesting cohomology. Instead we consider the cohomology of
the ε-thickening of X , denoted by Xε , consisting of the points in R

n that are
closer than ε to a point in X .6

If we are able to find a suitable scale ε, we might recover the cohomology
of the underlying shape. Often, however, there is noise in the data giving
rise to holes, and there is no way to separate the noise from the real features.
The solution is to consider all scales rather than fixing just one scale. This
is where persistent cohomology (de Silva et al., 2011) enters the picture.7 Per-
sistent cohomology tracks the cohomology of the space Xε as ε grows from
0 to infinity. Such a sequence of growing spaces is called a filtration. When
ε = 0, the set Xε is equal to X and has no interesting cohomology. When ε

is large enough, the space Xε becomes one big component with no holes. In
between these two end points, however, holes may appear and disappear.

The nth persistent cohomology gives us the birth scale and death scale
of all n-dimensional features. A feature with birth scale a and death scale
b is denoted by [a, b). The features can then be drawn as a bar code, or al-
ternatively, each feature [a, b) can be drawn as the point (a, b) in the plane,
obtaining the nth persistence diagram, as shown in Figure 9. The features
far away from the diagonal persist longer in the filtration and are consid-
ered more robust, while features near the diagonal are considered as noise.

6
In practice, we replace the ε-thickenings by approximations called Rips complexes.

See appendix D.
7
In topological data analysis, persistent homology is often used instead, but we will

need cohomology for the decoding step. We refer to Ghrist (2008); Edelsbrunner and Harer
(2010) for introductions to persistence and Ghrist (2014); and Carlsson (2009) for introduc-
tions to applied topology in general.
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Once the persistence diagram has been computed, we want to relate the
discovered features to the point cloud. This can be done using circular pa-
rameterization (de Silva et al., 2011; Vejdemo-Johansson et al., 2015); see
also appendix D), which turns any chosen 1-dimensional feature existing
at a scale ε into a circle-valued function f : X → S1, revealing the feature.
(See Figure 1.)

Appendix B: Details about the Methods

B.1 Identifying Selective Neurons. We compute the information rate,
as described in Skaggs et al. (1993), for each neuron relative to the circular
value using the formula

I =
∫

S1
λ(θ ) log2

λ(θ )
λ

p(θ ) dθ,

where λ(θ ) is the mean firing rate of the neuron when the circular value is
θ , λ is the overall mean firing rate of the neuron, and p(θ ) is the fraction
of time points where the circular value is θ . The integral is estimated by
partitioning the circle in 20 bins of width 18 degrees and assuming that the
mean firing rate λ(θ ) is constant in each bin. We identify a neuron as being
selective if its information rate is larger than 0.2. The method can then be run
again without the spike trains of the nonselective neurons. The information
rates of each neuron relative to the tracked HD, shown in Figures 4C and
4D, were calculated in the same way.

B.2 Comparison with Tracked HD. For the comparisons with the
tracked head direction in Figure 4, we rotated the decoded circular value
to minimize the mean squared deviation from the tracked HD. The tuning
curves in Figure 4G were made by taking the histogram of the angles at
the spikes of each neuron, dividing by the time spent in each angle, and
smoothing with a gaussian kernel of 10 degree standard deviation.

B.3 Calculating Mouse Speed and Angular Velocity. The speed of the
mouse was calculated by first smoothing the tracked position of the mouse
separately in the x-axis and y-axis with a gaussian kernel of 0.1 s, and then
taking the central difference derivative of the smoothed position at each
time step. Similarly, the angular velocity was calculated by first smoothing
the tracked HD of the mouse with a gaussian kernel of 0.1 s and then taking
the central difference derivative at each time step.

B.4 GLM. We fit a GLM to the activity of each neuron i ∈ N as follows.
First, we binned the spike train of the neuron into bins of size 25.6 ms and
the circle into angular bins of width 36 degrees. Let Xj(t) be the indicator
function, which is 1 if the decoded value is in the jth angular bin at time
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step t and 0 otherwise, and let yt be the observed spike count of the neuron
in time bin t. Assuming that the firing of the neuron is an inhomogeneous
Poisson process with instantaneous intensity at time step t given by

H(t) =
9∑

j=0

β jXj(t) + h,

where h and the β j are parameters, the log likelihood of observing the spike
train of neuron i is given by

Ldecoded
i =

∑
t

−H(t) + yt log(H(t)) − log(yt !).

We used Ramkumar (2016) to obtain the parameters (h, {β j}) that maximize
the log likelihood. The log likelihood of the neuron having yt spikes in bin
t is now given by

Ldecoded
i (t) = −H(t) + yt log(H(t)) − log(yt !).

We then repeated this process, replacing the function Xj(t) by the indicator
function corresponding to the tracked HD and obtained the corresponding
values Ltracked

i (t). The difference Ldecoded
i (t) − Ltracked

i (t) represents how much
better the neuronal activity at time step t is explained by the decoded value
compared to the tracked HD. This difference is shown for each neuron in
Figure 4B. The time intervals when the sum of these differences was above
a certain threshold (we used thresh = 1) is referred to as moments of drift.

B.5 Residual Analysis. Given the above GLM, we made a residual
spike train for each neuron i ∈ N by taking the original spike train of the
neuron and adding for each time step t a negative spike of magnitude H(t)
at the center of bin t. This is similar to the residual spike trains described in
Spreemann et al. (2015).

Figure 5A was made as follows. The red line shows the 10 largest eigen-
values of the covariance matrix of the residual point cloud after accounting
for the decoded angle in the GLM. Each of the residual spike trains that gave
rise to this point cloud was then shifted in time by n time steps, where n is
a number sampled uniformly in the range from 0 to 100. This was done 100
times, resulting in 100 point clouds. For each of these point clouds, the 10
largest eigenvalues of their covariance matrix were chosen. The blue band
in Figure 5B shows for each index i a 96% confidence interval of the ith
largest eigenvalue, sampled from this empirical distribution.

Figures 5D and 6B were made as follows. We binned the mouse speed
in n − 1 equally sized bins in the range [0, 15) and one bin [15,∞), and the
angular velocity in n − 2 equally sized bins in the range [−π

2 , π
2 ) and the
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two bins (−∞, π
2 ) and [ π

2 ,∞). We then defined two GLMs as before, letting
the functions Xj(t) be the indicator functions on the speed bins (resp. the
angular velocity bins). These two models were cross-validated using five
folds on each recorded neuron of every mouse in the data set for differ-
ent choices of the number of bins n. The average pseudo-R2 score over all
folds and over all neurons is shown in Figure 6B for the two models and for
different values of n. The average pseudo-R2 score over all folds for each
indivual neuron is shown in Figure 5D for the two models, using 20 bins in
each model, which is where the average pseudo-R2 scores peaked.

Figure 5E was made the same way as Figure 5A, but for the residual point
cloud after accounting for decoded angle, speed, and angular velocity in the
GLM.

Appendix C: Point Cloud Simplification

The procedure of simplifying the point cloud X to obtain the point cloud X̃
consists of two steps: radial distance and topological denoising.

C.1 Radial Distance. To make the computations faster, we simplify X
using the radial distance method (de Koning, 2011). Start with the first point
in X and mark it as a key point. All consecutive points that have a distance
less than a predetermined distance ε to the key point are removed. The first
point that has a distance greater than ε to the key point is marked as the new
key point. The process repeates itself from this new key point and continues
until it reaches the end of the point cloud. This procedure results in a smaller
point cloud X ′ that is close to the original point cloud.8 The parameter ε is
typically determined proportionally to the spread of the point cloud. In our
analysis, we used ε = 0.02.

C.2 Topological Denoising. Since the point cloud is noisy, we need to
reduce the amount of noise before we can look for topological features. We
use a method for topological denoising that was introduced in Kloke and
Carlsson (2010). Given a subset S of X ′, we define the function

F(S, x) = 1
|X ′|

∑
p∈X ′

e
−||x−p||2

2σ2 − ω

|S|
∑
p∈S

e
−||x−p||2

2σ2 .

The parameter σ is an estimate on the standard deviation of the noise, and
the parameter w determines how much the points in S should repel each
other. We maximize the function F by iteratively moving each point in S in
the direction of the gradient of F. Starting with a sample S0 ⊂ X ′, we let

8
Since each point in X ′ has a distance less than ε to a point in X, the Hausdorff distance

between the two point clouds is less than ε.



Decoding of Neural Data Using Cohomological Feature Extraction 85

Figure 10: Simplices.

Sn+1 =
{

p + c
∇F(Sn, p)

M

}
for all n, where

M = max
p∈S0

||∇F(S0, p)||

and c is a parameter determining the maximum distance the points in Sn can
move. In our case, we constructed S0 by taking every kth point of X ′, where
k is the largest number such that S0 had 100 points. We used the parameters
σ = 0.1 s, ω = 0.1, and c = 0.05, where s is the standard deviation of X ′.9

We did 60 iterations resulting in the point cloud X̃ = S60.

Appendix D: Circular Parameterization

The material in this appendix is mostly a reformulation of parts of de Silva
et al. (2011) with the exception of section D.4, our own contribution.

D.1 Simplicial Complexes. In topological data analysis, shapes are
modeled by simplicial complexes. A simplicial complex can be thought of
as a space that is constructed by gluing together basic building blocks called
simplices (see Figure 10).

Definition 1. A simplicial complex is a pair (X, S), where X is a finite set called
the underlying set and S is a family of subsets of X, called simplices, such that

1. For every simplex σ ∈ S, all of its subsets σ ′ ⊆ σ are also simplices.
2. For every element x ∈ X, the one element set {x} is a simplex.

9
The parameters used in our analysis were chosen experimentally, but automatical

methods could be used instead.
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An n-simplex is a simplex consisting of n + 1 elements. The 0-simplices,
1-simplices, and 2-simplices are called, respectively, points, edges, and tri-
angles. The simplicial complexes used in our method are called Rips com-
plexes, defined as follows:

Definition 2. Let X ⊂ R
n be a point cloud. The Rips complex of X at scale ε,

denoted Rε (X ), is the simplicial complex defined as follows:

• The underlying set is X .
• A subset σ ⊂ X is a simplex iff ||x − y|| ≤ ε for all x, y ∈ σ .

D.2 Cohomology. Let X be a simplicial complex, and let X0, X1, and X2,
be respectively, the points, edges, and triangles of X.

We will assume a total ordering on the points in X. If {a, b} is an edge with
a < b, we will write it as ab. Similarly, if {a, b, c} is a triangle with a < b < c,
we will write it as abc.

Given a commutative ring A, for instance, Z, R, or Fp, we define 0-chains,
1-chains, and 2-chains with coefficients in A as follows:

C0 = C0(X;A) := { f : X0 → A},
C1 = C1(X;A) := {α : X1 → A},
C2 = C2(X;A) := {A : X2 → A}.

These are modules over A. We define the coboundary maps d0 : C0 → C1

and d1 : C1 → C2 as follows:

d0( f )(ab) = f (b) − f (a),

d1(α)(abc) = α(ab) + α(bc) − α(ac).

A 1-chain α is called a cocycle if d1(α) = 0, and it is called a coboundary
if there exists a 0-chain f ∈ C0 such that α = d0( f ). It is easy to show that
all coboundaries are cocycles. We define the first cohomology of X with
coefficients in A to be the module

H1(X;A) = Ker(d1)
Im(d1)

.

Two 1-chains α and β are said to be cohomologous, or belonging to the same
cohomology class if α − β is a coboundary.

D.3 Circular Parameterization. The idea behind circular parameteriza-
tion comes from the following theorem:

Theorem 1. There is an isomorphism

H1(X,Z) � [X, S1]
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between the 1-dimensional cohomology classes with integer coefficients of a space
X and the set of homotopy classes of maps from X to the circle S1 = R/Z. (This is
a special case of theorem 4.57 in Hatcher, 2002.)

Given a representative cocycle α ∈ C1(X;Z), the associated map θ : X →
R/Z is given by sending all the points in X to 0, sending each edge ab around
the circle with winding number α(ab) and extending linearly to the rest of
X. This extension is well defined since d1(α) = 0.

The circular maps obtained this way are not very smooth, since all points
in X are sent to the same point on the circle. In order to allow for smoother
maps, we consider cohomology with real coefficients. Consider α as a real
cocycle, and suppose we have another cocycle β ∈ C1(X;R) cohomologous
to α. Since it is cohomologous, it can be written as β = α + d0( f ) for some
f ∈ C0(X;R). We define the map θ : X → R/Z by sending a point a to θ (a) =
f (a)(modZ) and an edge ab to the interval of length β(ab) starting at θ (a)
and ending at θ (b). This map is extended linearly as before to the higher
simplices of X.

Given a cocycle α ∈ C0(X;Z), we now want to find a real 0-chain f ∈
C0(X;R) such that the cocycle β = d0( f ) + α is smooth, meaning that the
edge lengths ||β(ab)|| are small. Define

||β||2 =
∑

ab∈X1

||β(ab)||2.

We want to minimize this value. The desired 0-chain can be expressed as

f = argmin
f̄

||d0( f̄ ) + α||. (D.1)

This is a least squares problem and can be solved using, for instance, Jones,
Oliphant, Peterson et al. (2000).

D.4 Improved Smoothing. When we tried to apply circular parame-
terization to the data sets, we quickly discovered that it often produces un-
satisfactory results. We demonstrate this using a constructed example, the
Rips complex shown in Figure 11a. The first cohomology of this complex
with integer coefficient is Z, generated by the cocycle, which has the value
one on the right-most edge and zero on all the other edges. The color of a
point indicates its circular value after applying circular parameterization.

We see that the original smoothing sends the points to circular values
that are close to each other. The reason for this behavior is that the edges
in the simplicial complex are not evenly distributed around the circle; there
is only one edge covering the right-most part of the circle. Since this edge
gives a relatively small contribution to the sum of squares of edge lengths,
it will be stretched around the circle so that the other edges can get smaller.
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Figure 11: Comparison between original and improved smoothing for the con-
structed example.

This is problematic because we want the geometry of the complex to be
preserved.

We describe a heuristical approach to improve the situation. First, we
assume that the underlying set of the simplicial complex comes with a
metric d : X × X → R. When the simplicial complex is a Rips complex of
a point cloud X ∈ R

n, we take the metric to be the Euclidean metric. Let
α ∈ C1(X,Z) be the cocycle that we want to use for circular parameteri-
zation. Now, instead of treating every edge equally, we assign a positive
weight w : X1 → (0,∞) to each edge in the simplicial complex. We define
the weighting by the following procedure. First, we solve the original opti-
mization problem 1.1 to obtain a cocycle β = d0( f ) + α. We then construct
a weighted directed graph G as follows. The vertices of G are the points
a ∈ X0. For each edge ab ∈ X1 with β(ab) ≥ 0, there is an edge in G from a to
b denoted ab, and for each edge ab ∈ X1 with β(ab) < 0, there is an edge in
G from b to a denoted ba. This gives us a bijection between edges in X and
edges in G. The weight of an edge ab is given by d(a, b). It can be shown that
every edge ab in G has at least one directed cycle going through it. Now, for
every edge in G, take the shortest directed cycle in the graph going through
it. This gives us a collection of cycles in G. We now define

w(ab) = l(ab)
d(a, b)2 ,

where l(ab) is the number of cycles going through the corresponding edge
in G.
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Figure 12: Comparison between original and improved smoothing for real
data.

Given this weighting, we then define

||β||2w =
∑

ab∈X1

w(ab) ||β(ab)||2.

Our new optimization problem then becomes

f = argmin f̄ ||d0( f̄ ) + α||w,

which is again a least squares problem. After solving this system, we ob-
tain a new circular parameterization. The result of applying this procedure
to the Rips complex in our example is shown in Figure 11b. Here the right-
most edge is given a much larger weighting than the other edges, since ev-
ery directed cycle has to go through this edge. The result is that the circular
values of the points are more evenly distributed around the circle. In Fig-
ure 12, we compare the original and improved smoothing on the circular
parameterization done in the first round of mouse28-140313.

Appendix E: Persistent Cohomology

By varying the parameter ε of the Rips complex of a point cloud X, we get a
parameterized family of simplicial complexes Rε (X ), where ε goes from 0 to
infinity. For every pair of parameters 0 ≤ a ≤ b, we have a natural inclusion
map iba : Ra(X ) → Rb(X ). We have the following two properties:

1. The map iaa is the identity map on Ra(X ) for all a ∈ R.
2. For all parameters a ≤ b ≤ c, we have icb ◦ iba = ica.
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Such a sequence of simplicial complexes, together with maps satis-
fying the above two conditions, is called a filtration. Let p be a prime,
and let Fp be the field of order p. When taking the cohomology of each
space Rε (X ) with coefficients in Fp, we get a parameterized family of vec-
tor spaces Hn(Rε (X )) together with the induced linear maps îba = Hn(iba) :
Hn(Rb(X )) → Hn(Ra(X )) for every pair of parameters 0 ≤ a ≤ b. We have
the following two properties:

1. The map îaa is the identity map on Hn(Ra(X )) for all a ∈ R.
2. For all parameters a ≤ b ≤ c we have îba ◦ îcb = îca.

Such a sequence of vector spaces, together with linear maps satisfying
the above two conditions, is called a persistence module. The persistence
module obtained by taking the cohomology of a filtration is called the per-
sistent cohomology of the filtration. Another kind of persistence module is an
interval module.

Definition 3. Let J be an interval on the real line. A J-interval module, written I
J,

is the persistence module with vector spaces

Ia =
{
F if a ∈ J

0 otherwise

and linear maps

f b
a =

{
I if a, b ∈ J

0 otherwise
,

where I denotes the identity map on F.

Theorem 2. Given a finite point cloud X , the nth persistent cohomology of the
Rips complex of X can be decomposed into a sum of interval modules

Hn(R(X )) � I
[a1,b1 ) ⊕ I

[a2,b2 ) ⊕ . . . ⊕ I
[ak,bk ) = I.

(This is a special case of theorem 2.7 in Chazal, Outdot, Glisse, and de Silva, 2016.)

The persistent cohomology algorithm, described in de Silva et al. (2011),
finds the intervals in the decomposition, along with a representative cocycle
αi,ε ∈ C1(Rε (X )) for every interval [ai, bi) and ai ≤ ε < bi, such that

ϕε ([αi,ε]) = (0, . . . , 0, 1, 0, . . . , 0),

where the 1 appears in the ith position.
By drawing each interval [a, b) as a point (a, b) in the plane, we ob-

tain the nth persistence diagram of the filtration. We may now apply
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circular parameterization as follows. Pick an interval [ai, bi) in the de-
composition. Then choose a scale ai ≤ ε < bi, and take the corresponding
cocycle αi,ε . This cocycle has coefficients in Fp, but circular parameteriza-
tion requires a cocycle with integer coefficients. We need to lift αi,ε to an
integer cocycle. We do this by first constructing an integer 1-chain by re-
placing each coefficient in αi,ε with the integer in the same congruence
class lying in the range {− p−1

2 , . . .
p−1

2 }. This almost always gives an integer
cocycle α̂i,ε ∈ C1(Rε (X ),Z).10 We can then apply circular parameterization
to this cocycle.

In our computations, we used Ripser (Bauer, 2016) to compute the first
persistent cohomology with coefficients in F47, giving persistence diagrams
and the associated representative cocycles. The procedure described above
to lift this cocycle always gave integer cocycles.
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