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A B S T R A C T

Pure mineral flotation experiments have demonstrated that quartz can be floated without a collector, in solutions
containing an inorganic acid (e.g. H2SO4) and sodium fluoride (NaF). Excellent quartz recoveries, similar to that
of previous investigations with aqueous solutions containing hydrofluoric acid (HF), have been achieved with
lower fluorine concentrations and a more optimal F/H ratio when combining separate sources of H and F instead
of using only HF.

1. Introduction

Quartz is an important industrial mineral with various applications,
and its flotation with anionic collectors when activated with cations, or
with cationic collectors, have been well-known for quite some time
(Glover, 1928; Wark, 1936). More recently it have been shown that
quartz can be easily floated, without the use of collectors, in a solution
of HF and frother (Larsen and Kleiv, 2015), and that it can be selectively
floated from feldspar and other impurities in such a system (Larsen and
Kleiv, 2016). The water contact angle on quartz was shown to be sig-
nificantly larger after HF-treatment, and consequently the HF-treated
quartz was rendered sufficiently hydrophobic for flotation without the
use of a collector. Thus, considering the previous findings of the ex-
cellent floatability of quartz treated with HF and floated without a
collector, the idea of the present work is simply based on replacing HF
by combining separate sources for hydrogen and fluorine, in order to
investigate the floatability of quartz with the combined reagent system.

2. Materials and methods

2.1. Materials

A high purity quartz was used in this study (Table 1). The quartz
sample was dry milled in a polyurethane coated mill with 25 mm Y-
stabilized ZrO2 balls, and screened on a Rotap sieve shaker with Tyler
standard 38, 74 and 104 µm screens. The −38 µm fraction was used for
wettability measurements, while −38 µm, 38–74 µm and 74–104 µm
fractions were used for batch flotation experiments.

2.2. Particle size distribution

Particle size distributions of the quartz fractions were measured
with a Malvern Mastersizer 3000 (laser diffraction), using a refractive
index of 1.54 and an absorption index of 0.01. Particle size distributions
of the samples are shown in Fig. 1 and Table 2. Table 2 also shows the
specific surface area calculated by the Mastersizer software.

2.3. Reagents

Hydrofluoric acid, 48% HF (Sigma-Aldrich), sulphuric acid, 96%
H2SO4 (Merck), and NaF (Sigma-Aldrich) were added to the solutions in
their concentrated form. Brij 58 (Acros Organics), a polyoxyethylene
(20) cetyl ether with a molar mass of 1123 g/mol, was prepared as a
1 wt.% solution before addition. Heptane (VWR) was used as reference
liquid in the wettability measurements.

2.4. Flotation experiments

Flotation was performed with a self-aerated mechanical flotation
machine from Maelgwyn Mineral Services, using a 1.2 L Plexiglass cell.
A 50 g of quartz was conditioned with chemicals and 900 ml deionized
water for 20 min (unless otherwise stated). A frother solution was then
added, followed by a further 1 min of conditioning, prior to air in-
troduction at a superficial gas velocity of 0.55 cm/s (5 L/min). Water
was added to maintain a pulp level during flotation, while flotation was
performed until barren froth. pH was measured prior to flotation using
a Metrohm 744 pH meter.
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2.5. Wettability measurements

A Biolin Scientific Sigma 700 force tensiometer was used to measure
the capillary force liquid weight gain on −38 µm non-treated and

chemically treated samples. All chemically treated samples were con-
ditioned for 20 min (unless otherwise stated), filtered and dried at 40 °C
prior to measurements. The capillary constant of the sample material
was determined by first measuring weight gain with the heptane wet-
ting reference liquid (contact angle, θ≈ 0°), while the contact angle for
water was found after measuring the weight gain on another similarly
treated sample in deionized water. A modification of the Washburn
equation (after Siebold et al., 1997) was used for the calculations:

=w
t

c
µ

· · ·cos2 2

(1)

where w= weight gain, t= flow time, c= capillary constant, ρ= li-
quid density, γ= liquid surface tension, θ= contact angle, μ= liquid
viscosity.

Table 1
Chemical analysis (ICP-MS) of quartz used in this study (ppm).

Al B Ba Be Ca Cr Cu Fe Ga K Li Mg Mn Na P Pb Ti Zn

14.4 < 1 2.2 < 10 < 200 < 0.06 < 0.1 6.6 < 0.05 < 0.03 < 0.4 < 0.2 < 0.2 < 0.02 < 1 0.3 < 0.2 < 0.7

0

10

20

30

40

50

60

70

80

90

100

0001001011

V
ol

um
e 

di
st

rib
ut

io
n,

 %

Particle size, µm

0-38 µm

38-74 µm

74-104 µm

Fig. 1. Particle size distributions of the quartz fractions.

Table 2
Particle size distribution parameters and specific surface area of the quartz
fractions.

Sample D5 D10 D50 D90 D98 Spec. surf. area
(µm) (µm) (µm) (µm) (µm) (10−2 m2/g)

0–38 µm 3.0 4.8 23 49 65 19.5
38–74 µm 41 46 69 102 121 3.5
74–104 µm 67 74 111 163 193 2.1
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Fig. 2. Quartz recovery vs. flotation of fraction −38 µm (2 · 10−5 M Brij 58 as frother).
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3. Results and discussion

3.1. Flotation of quartz

Figs. 2 and 3 show the quartz recovery as a function of flotation time
for fractions −38 µm and 38–74 µm under various chemical conditions.
There was no flotation of quartz in pure water, with only frother, or
with NaF and frother. Quartz started to float when it was treated with
H2SO4 and frother, and with H2SO4, NaF and frother. The recovery of
quartz increased with the increase in the concentration of H2SO4 and
NaF. The results show that flotation of quartz with 0.92 M H2SO4 and
0.42 M NaF showed similar flotation kinetics and maximum recovery
(Rmax) to that of flotation with 0.70 M HF alone, while flotation with
0.61 M H2SO4 + 0.42 M NaF showed similar Rmax to that of 0.70 M HF,
but at a slightly longer flotation time. The amount of H+ was higher
(1.2 M vs 1.0 M) and F− was lower (0.4 M vs 1.0 M) in a system of
H2SO4 and NaF compared to HF alone. It indicates that the F-to-H ratio
is not optimal in a system with HF only.

In Fig. 3, flotation with 0.7 M HCl + 0.28 M NaF show similar final
recovery as that of 0.31 M H2SO4 + 0.28 M NaF. Although the flotation
with HCl display a slightly slower rate of flotation, this shows that acids
other than H2SO4 can be used in the process.

Figs. 2 and 3 show that the 38–74 µm fraction requires substantially
less chemicals compared to that of the 0–38 µm fraction, in order to
achieve similar recoveries. A recovery of 91% was achieved with
0.61 M H2SO4 + 0.42 M NaF for the 0–38 µm fraction, while a similar
recovery (92%) was achieved with 0.31 M H2SO4 + 0.14 M NaF for the
38–74 µm fraction. This difference in recovery is likely due to the large
difference in specific surface area between the fractions (Table 2).

Fig. 4 shows the quartz recovery of fractions −38 and 38–74 µm at
0.31 M H2SO4 and varying amounts of NaF, while Fig. 5 shows the
quartz recovery of fraction −38 µm at 0.42 M NaF and varying amounts
of H2SO4. It can be clearly seen that the maximum recovery of quartz
(after 3 min) increased with NaF concentration, and the optimum
concentration of NaF with 0.31 M H2SO4 was ca. 0.25 M for fraction
38–74 μm. For finer quartz particles higher concentrations of both acid
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Fig. 3. Quartz recovery vs. flotation time of fraction 38–74 µm (2 · 10−5 M Brij 58 as frother).
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Fig. 4. Quartz recovery vs NaF concentration at 0.31 M H2SO4 (2 · 10−5 M Brij 58 as frother).
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and NaF are required to achieve high recovery.

3.2. Contact angle

Table 3 shows results from the contact angle studies on the 0–38 µm
fraction. The non-treated sample displayed contact angle of 41 ± 1°.
This is quite similar to our previous results (Larsen and Kleiv, 2015).
Conditioning with a frother Brij 58 increased the contact angle only
slightly, while acid treatment (HF or H2SO4) with or without NaF or Brij
58 rendered the quartz hydrophobicity to contact angle equal to 80°.
This indicates that acid treatment or acid treatment combined with NaF
creates a hydrophobic surface, while NaF or Brij 58 alone does not
render the quartz surface sufficiently hydrophobic for it to float. The
contact angle results correlate with the flotation results.

4. Conclusions

The investigations demonstrate that quartz can be floated in solu-
tions of an inorganic acid (e.g. H2SO4) together with NaF and a frother
Brij58. Quartz recoveries were achieved with lower F concentrations

and lower F/H ratios when combining separate sources of H and F,
compared to using only HF. Experiments with NaF and the frother
showed no flotation of quartz.

Wettability measurements showed an increase in the contact angle
of quartz after conditioning with H2SO4 or with H2SO4 together with
NaF, while NaF or Brij58 alone has apparently little or no effect on the
contact angle of quartz. The contact angle results correlate with flota-
tion data.
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Fig. 5. Quartz recovery vs H2SO4 concentration at 0.42 M NaF of fraction 0–38 µm (2 · 10−5 M Brij 58 as frother).

Table 3
Contact angle measurements on quartz, 0–38 µm.

Conditions Contact angle, °

No treatment 41 ± 2
0.8 M NaF 39 ± 2
Brij 58 (1 min cond.) 53 ± 2
1.2 M HF/H2SO4 (with or without Brij 58) 80 ± 2
0.2–0.9 M H2SO4 + 0.3–0.42 M NaF 82 ± 2
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