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In recent years, substantial progress has been made regarding the application of quasiclassical theory on
superconducting hybrid structures. This theoretical framework is reliant on a proper set of boundary conditions in
order to describe multilayered systems. With the advent of the field of superconducting spintronics, systems which
combine heavy metal layers, in which there is large spin–orbit coupling, with ferromagnets have received a great
deal of attention, due to their potential for generating long range triplet superconductivity. In contrast to interfaces
of strongly spin polarized materials, which are well understood, a quasiclassical theory for interfaces in systems
where there is significant spin–orbit coupling does not yet exist. After reviewing the quasiclassical theory for
interfaces, we here solve this problem by deriving a new set of boundary conditions which take spin–orbit coupling
explicitly into account. We then go on to apply these boundary conditions to a superconductor-ferromagnet (SF)
bilayer and an SFS Josephson weak link, demonstrating the emergence of long range triplet superconductivity in
these systems.

I. INTRODUCTION

The quasiclassical approximation [1–3] is a versatile toolwith
which complex quantummechanical problems can be simplified
to such an extent that they become numerically solvable. The
main assumption of this approximation is that the relevant
quantities under study vary on length scales which are much
larger than the Fermi wavelength so that the computationally
challenging shorter length scale oscillations may be integrated
out. This makes the quasiclassical approximation particularly
well suited for superconductors, in which the superconducting
condensate may remain correlated over mesoscopic distances.
Indeed, the most general theoretical framework used to describe
superconductors, the Green function technique, requires the
solution of the Gor’kov equation [4], which is too cumbersome
in all but a few select problems. Instead, progress can be
achieved with its quasiclassical equivalents, the Eilenberger [5]
and the Usadel equation [6], which govern quassiclassical
Green functions describing only the envelopes of the original
propagators, and remain the only viable solution method for
many problems of practical interest.

When non-superconducting materials are attached to a super-
conductor to form superconducting hybrid structures, an inter-
esting phenomenon occurs. In such systems, superconducting
correlations may leak into the adjoining non-superconducting
materials, so that they too attain superconducting properties.
This is known as the proximity effect. The study of such
systems necessarily involves the proper treatment of interfaces
between materials. However, while the bulk properties of su-
perconductors are easily described within quasiclassical theory,
interfaces between materials is another matter entirely. In the
vicinity of an interface, the governing Hamiltonian changes
abruptly, which invalidates the use of the quasiclassical ap-
proximation. The consequence of this is that the quasiclassical
Green functions feature a discontinuous jump at interfaces, the
size of which is impossible to determine within quasiclassical
theory—additional information is needed. This jump was first
computed for ballistic SN structures using a full microscopic
description of the interface [7], thereby giving a set of boundary
conditions linking the two materials. These boundary condi-

tions were generalized with the use of a projection operator
method [8–10]. Alternative derivations, where the interface is
treated perturbatively via a T matrix approach [11–13] have
also been proposed. In the diffusive limit, boundary conditions
may be arrived at by connecting the momentum independent
diffusive Green functions far away from the interface to ballistic
Green functions present in a region immediately surrounding
the interface [14, 15].

For hybrid structures involving strongly polarized magnetic
materials, the interfacial boundary conditions generally become
spin active. Such boundary conditions have been formulated
heuristically using a tunnelling Hamiltonian [16]. Another,
more fundamental, approach is to connect the two sides of
the interface by means of scattering or transfer matrices, in
which the spin dependence of the scattering processes are taken
into account [17–19]. Both the projection operator and the
T matrix method have also been successfully generalized to
handle spin active interfaces in ballistic systems [20–24]. The
latter method was also applied to diffusive systems in Ref. [25],
in which a completely general theory for boundary conditions
in spin polarized hybrid structures was derived.

When hybrid structures are made from superconducting and
ferromagnetic materials, the proximity effect allows for the
coexistence of both magnetic and superconducting correlations.
This produces a number of interesting effects. One of the
more fascinating effects is perhaps the appearance of triplet
superconductivity, due to the Zeeman splitting endowing the
Cooper pairs with a net momentum [26]. In homogeneous
ferromagnets, the triplet Cooper pairs remain in the spinless
state, and hence the magnetization has a strong depairing effect.
In ferromagnets where the magnetization is inhomogeneous,
on the other hand, the triplet Cooper pairs may be converted
to an equal spin state [27, 28], giving them a net spin. In
such a state, the Cooper pairs are insensitive to a parallel
magnetization, and may therefore persist for long distances into
proximitized ferromagnets, a phenomenon known as long range
triplet superconductivity. In addition, since these correlations
are spin polarized, they may carry spin currents, a realisation
which has strongly contributed to the field of superconducting
spintronics [29, 30].
Another avenue towards triplet superconductivity is by in-
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troducing layers with spin–orbit coupling [31–33]. In such
systems, spin polarized supercurrents may be generated even
in homogeneous ferromagnets, which is advantageous from an
experimental point of view. However, while the boundary con-
ditions for spin polarized systems is well understood, a theory
for interfaces in which spin–orbit coupling is prominent does
not yet exist. In this paper, we seek to remedy this by deriving a
new set of boundary conditions which take spin–orbit coupling
into account, using the general framework of Ref. [25]. This
result consequently allows for a proper treatment of spin-orbit
coupled interfaces in quasiclassical theory, which is in principle
relevant for any heterostructure, since interfaces break inversion
symmetry, but particularly so for heterostructures with heavy
metal interlayers.

We here state our main analytical result and comment briefly
on the qualitative physical meaning of each term in the boundary
condition. Below, we shall derive this result rigorously and
provide a clear description of how the various terms arise, and
the meaning of each of the symbols.

n̂ · ǧ1∇ǧ1 = T [ǧ1 , ǧ2] + Tα
[
ǧ1 , σ̌ | | ǧ2σ̌ | |

]
+ T ′α

[
ǧ1 , σ̌ | | ǧ1σ̌ | |

]
+ i

√
T ′′α T

[
ǧ1,

{
ǧ2

[
σ̌ | |, ǧ2

]
, σ̌ | |

}]
+ i

√
T ′′α T

[
ǧ1 ,

{
ǧ2, σ̌ | |

}
ǧ1σ̌ | | + σ̌ | | ǧ1

{
ǧ2, σ̌ | |

}]
. (1)

The usual Kupriyanov-Lukichev term [14] is the one propor-
tional to T . The term proportional to Tα represents a correction
to the usual tunneling boundary condition from the spin-orbit
coupling part of the tunneling matrix. The term T ′α represents
spin-dependent phase-shifts occurring due to spin-orbit cou-
pling at the interface and thus exists even in the absence of
any tunnelling. The terms

√
T ′′α T are higher order corrections

which exist only in the presence of spin-independent tunneling,
spin-orbit coupled tunneling, and spin-orbit coupled reflection.
The quasiclassical theory for boundary conditions is quite

intricate, involving many details, so to ensure complete clarity
of the ensuing derivation, we include in Section II a review
of the treatment of interfaces within quasiclassical theory.
In Section III we formulate the boundary conditions in the
presence of spin–orbit coupling, and in Section IV we apply
the new boundary conditions to example problems, in order to
demonstrate their use.

II. REVIEW OF THE QUASICLASSICAL THEORY FOR
INTERFACES

In this section, a review of quasiclassical boundary conditions
will be given, starting with a brief excursion into general
quasiclassical theory.

A. Quasiclassical equations of motion

All physical observables of interest may be expressed in
terms of Green functions, and we use the Keldysh formalism,
in which the Green functions take the form of 8 × 8 matrices in

spin ⊗Nambu ⊗Keldysh space, defined as

Ǧ =
(
ĜR ĜK

0 ĜA

)
, ĜR =

(
GR FR(
FR

)∗ (
GR

)∗) , (2)

where ĜA = −ρ̂3

(
ĜR

)†
ρ̂3, with ρ̂3 = diag (+1,+1,−1,−1),

and ĜK = ĜR ĥ − ĥĜA for a given distribution function ĥ
[2]. Furthermore, GX and FX , with X ∈ {R, A,K} are 2 × 2
matrices in spin space. We assume time translation invariance,
and Fourier transform in the relative time coordinate, so that
we may write Ǧ = Ǧ(r0, rn; ε) ≡ Ǧ(r0, rn), where ε is the
quasiparticle energy. The equation of motion may then be
written as[

ερ̂3 −
1

2m

(
−i∇0 Ǐ − Ǎ(r0)

)2
+ µǏ − Σ̌(r0)

−Vimp(r0)Ǐ
]

Ǧ(r0, rn; ε) = δ(r0 − rn)Ǐ, (3)

where Ǐ is the 8×8 identity matrix, Ǎ(r0) is the vector potential,
Vimp(r0) is the impurity potential, and Σ̌(r0) encompasses any
other local self energies, such as the superconducting gap, or
an exchange field. The impurity potential in the conventional
way—as a perturbation in momentum space. Towards that end,
Eq. (3) is reformulated as

Ǧ(k0, kn) = Ǧ0(k0, kn)

+

∫
dk1

(2π)3

∫
dk2

(2π)3
Ǧ0(k0, k1)Vimp(k1 − k2)Ǧ(k2, kn), (4)

where the Fourier transform of the Green function is defined as

Ǧ(k0, kn) =
∫

dr0

∫
drn Ǧ(r0, rn)e−ik0 ·r0+ikn ·rn . (5)

Note that by changing variables to R = (r0 + rn)/2 and r =
r0 − rn, the Fourier transform may also be written as

Ǧ(k0, kn) =
∫

dR Ǧ(k, R)e−i∆k ·R, (6)

with k = (k0 + kn)/2 and ∆k = k0 − kn, and

Ǧ(k, R) =
∫

dr Ǧ(r, R)e−ik ·R . (7)

Eq. (7) is known as the mixed representation of Ǧ, as it involves
both the center of mass position R and the center of mass
momentum k. The unperturbed Green function Ǧ0(k0, kn)
satisfies∫

dk1

(2π)3

[(
ερ3 −

k2
0

2m
+ µǏ

)
δ(k0 − k1) +

1
m
k0 · Ǎ(k0 − k1)

− 1
2m

[
Ǎ(k0 − k1)

]2 − Σ̌(k0 − k1)
]

Ǧ0(k1, kn)

= Ǐδ(k0 − kn).
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By making use of standard techniques for diagram summation
[4], taking into consideration that Ǧ0(k0, kn) depends on two
momentum indices, Eq. (4) can be written as

Ǧ(k0, kn) = Ǧ0(k0, kn)

+

∫
dk1

(2π)3

∫
dk2

(2π)3
Ǧ0(k0, k1)Σ̌imp(k1, k2)Ǧ(k2, kn), (8)

with the impurity self energy Σ̌(k0, kn) defined as

Σ̌imp(k0, kn) = Vimp(k0 − kn)+∫
dk1

(2π)3

∫
dk2

(2π)3
Vimp(k0 − k1)Ǧ0(k1, k2)Σ̌imp(k2, kn). (9)

It is customary to employ the self-consistent Born approxi-
mation, in which Eq. (9) is truncated at second order in Vimp,
and the replacement Ǧ0 → Ǧ is made on the right hand side.
The latter is equivalent to including a much greater number of
diagrams in the self energy. The impurity potential is assumed
to consist of a large number of randomly distributed identical
impurities, so that Vimp(r) =

∑
j U(r − r j). After impurity

averaging, ignoring terms which only depend on U(0) since
these simply renormalize the chemical potential, the self energy
becomes

Σ̌imp(k0, kn) =
∫

dq
(2π)3

|U(k0 − q)|2Ǧ(q, q − ∆k). (10)

In the mixed representation, arrived at by Fourier transform-
ing in the relative momentum ∆k, this expression becomes
particularly simple,

Σ̌imp(k, R) =
∫

dq
(2π)3

|U(k − q)|2Ǧ(q, R). (11)

By comparing with the full Fourier transform, given in Eq. (5),
we may identify R as the center of mass position. Eq. (3) takes
the following form in the mixed representation,[

ερ̂3 −
1

2m

(
−i

(
ik +

1
2
∇R

)
Ǐ − Ǎ(R)

)2
+ µǏ − Σ̌(R)

−Σ̌imp(k, R)
]
⊗ Ǧ(k, R) = Ǐ, (12)

where the operator ⊗ indicates the Moyal prod-
uct, which is defined as A(k, R) ⊗ B(k, R) =

ei(∇
(A)
R ·∇

(B)
k
−∇(A)

k
·∇(B)R )/2 A(k, R)B(k, R). If the spatial varia-

tion of A(k, R) and B(k, R) is slow, one may approximate
A(k, R) ⊗ B(k, R) ' A(k, R)B(k, R).
Eq. (12) may be further simplified by introducing the quasi-

classical approximation, wherein the rapid oscillations of the
Green function are integrated out [3],

ǧ(kF, R) =
i
π

∫
dξk Ǧ(k, R), (13)

where ξk = 1
2m (k2 − k2

F ). In Eq. (13) there is an implicit
assumption that the Green function Ǧ(k, R) is strongly peaked

at the Fermi level kF , so that only the angular dependence of
the momentum k appears in the quasiclassical Green function
ǧ(kF, R). This is satisfied as long as the spatial variation of
the self-energies appearing in Ǧ is sufficiently slow. The quasi-
classical approximation may not be applied to Eq. (12) directly,
as it contains both constant terms and terms proportional to
ξk . These terms can be removed by employing the so-called
“left–right” trick [1, 5, 35], where one instead considers the
difference between Eq. (12) and its adjoint, thereby cancelling
out the problematic terms. Doing so leads to the Eilenberger
equation [5],

ivF · ∇̃ǧ(kF, r)
+

[
ερ̌3 + Σ̌(kF, r) − Σ̌imp(kF, r) , ǧ(kF, r)

]
= 0. (14)

Eq. (14) is accompanied by a normalization condition on the
quasiclassical Green function, ǧ2 = Ǐ.
In the limit of large concentrations of impurities, the effect

of frequent scatterings may be included by averaging over
momentum direction. This defines a diffusive Green function
ǧd = 〈ǧ〉, and its governing equation of motion, the Usadel
equation [2, 3, 6]

D∇ · ǧd∇ǧd + i
[
ερ3 − Σ̌ , ǧd

]
= 0, (15)

where D is the diffusion constant.

B. Distinguished impurities

We next consider a case where there is an additional impurity
V̌(r0) present, which may in some way be distinguished from
the averaged impurities described by Σ̌imp. We further assume
that this impurity is strongly localized at some position. This
means that impurity averaging is not possible. Even so, the
quasiclassical formulation of the equation of motion for such a
system may be arrived at by perturbation theory [36]. Indeed,
if any interference between the averaged and the localized
impurity is neglected, the integral equation for the Green
function once again takes the form of Eq. (4), where V̌ replaces
Vimp as the perturbing potential, and Ǧ0 is the Green function
for a system where Σ̌imp is included, but where V̌ = 0. By
repeated iteration of this equation, it is seen that it may be
written in the form

Ǧ(k0, kn) = Ǧ0(k0, kn)

+

∫
dk1

(2π)3

∫
dk2

(2π)3
Ǧ0(k0, k1)Ť(k1, k2)Ǧ0(k2, kn), (16)

with the T matrix defined as

Ť(k0, kn) = V̌(k0 − kn)

+

∫
dk1

(2π)3

∫
dk2

(2π)3
V̌(k0 − k1)Ǧ0(k1, k2)Ť(k2, kn). (17)

If the distinguished impurity is localized at a position R0,
the Fourier transformed of the impurity potential is given as
V̌(q) = V̌0(q)e−iq ·R0 , where V̌0(q) is a slowly varying function
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of q. By inserting this into Eq. (17), it is seen that the T matrix
can be written as

Ť(k0, kn) = Ť0(k0, kn)e−i(k0−kn)·R0, (18)

where Ť0(k0, kn) has the exact same form as Eq. (17), with
the replacements V̌ → V̌0 and Ť → Ť0. It is thus a slowly
varying function of k0 and kn, so that we may approximate
Ť0(k0, kn) ' Ť0(k, k), where k is the center of massmomentum.
In the mixed representation, the T matrix then becomes

Ť(k, R) = Ť0(k, k)δ(R − R0). (19)

The equation of motion in the mixed representation becomes
identical to Eq. (12), but with the addition of a term Ť(k, R) ⊗
Ǧ0(k, R), which is once again approximated by a product.
Following the same steps used in deriving Eq. (14) then gives

ivF · ∇̃ǧ(kF, R) +
[
ερ̌3 + Σ̌(kF, R) − Σ̌imp(kF, R) , ǧ(kF, R)

]
=

[
ť0(kF, R) , ǧ(kF, R)

]
δ(R − R0), (20)

where ť0(kF, R) is the quasiclassical version of the T matrix,
given as

ť0(kF, R) = V̌0(0) + N0

∫
dΩq

4π
V̌0(kF − qF ) ǧ(qF, r) ť0(qF, R).

(21)

C. Interface

An interface, which is a plane in three dimensions, may be
treated as an impurity that is localized along a specific direc-
tion, having translation invariance along the two orthogonal
directions. This implies that a similar perturbation expansion
as was discussed in the previous section may be applied also in
this case. However, the interface may not be constructed from
an ensemble of point impurities satisfying Eq. (20) [36]. This
is because i) the pointlike nature of the impurity was explicitly
made use of in Eq. (18), and ii) interference between different
impurities is neglected. Instead, we follow Ref. [37] and con-
sider a model surface of the form V̌(r0) = V̌0δ[n̂ · (r0 − Rn)],
where n̂ is the normal vector of the surface, and Rn is a point
on the surface. To simplify the notation, we define n̂ · r0 = r⊥,
and n̂ · Rn = R0. Furthermore, we have that r0 = r⊥n̂ + r | | .
Insertion into Eq. (17) allows us to define

Ť(k0, kn) = Ťs(k0, | |, kn, | |)e−i(k0,⊥−kn,⊥)R0, (22)

with k j,⊥ and k j, | | , respectively, the orthogonal and paral-
lel components of momentum j, with respect to the surface.
Moreover,

Ťs(k0, | |, kn, | |) = V̌0 (2π)2δ(k0, | | − kn, | |)

+ V̌0

∫ dq | |
(2π)2

Q̌(k0, | |, q | |)Ťs(q | |, kn, | |), (23)

where

Q̌(k0, | |, q | |) =∫
dk1,⊥

2π

∫
dk2,⊥

2π
Ǧ0(k0, | | + k1,⊥n̂, q | | + k2,⊥n̂)ei(k1,⊥−k2,⊥)R0

=

∫
dq⊥
2π

Ǧ0(k0, | |, q | |; q⊥, R0). (24)

In the mixed represantion, Eq. (22) simply becomes

Ť(k, R) = Ťs(k | |, R | |) δ(R⊥ − R0), (25)

with

Ťs(k | |, R | |) =V̌0 + V̌0 Q̌(k | |, R | |) ⊗ Ťs(k | |, R | |)
'V̌0 + V̌0 Q̌(k | |, R | |) Ťs(k | |, R | |), (26)

and

Q̌(k | |, R | |) =
∫

dq⊥
2π

Ǧ0(q⊥n̂ + k | |, R0n̂ + R | |) (27)

To find the quasiclassical version of Eq. (27), we
insert the inverse of Eq. (13), namely Ǧ(k, R) =
−iπǧ(kF, R) δ

(
1

2m (k2 − k2
F )

)
. Performing the integral over

q⊥ gives

Q̌(k | |, R | |) = −
i
|vn |

ˇ̄g(k | |, R | |), (28)

with vn =
kF ·n̂
m ,

ˇ̄g(k | |, R | |) =
1
2

[
ǧ(k+, R | | + R0n̂) + ǧ(k−, R | | + R0n̂)

]
, (29)

and k± = ±
√

k2
F − k2

| | n̂+k | | . Thismeans that the quasiclassical
T matrix for an interface,

ťs(k | |, R | |) = V̌0 −
i
|vn |

V̌0 ˇ̄g(k | |, R | |) ťs(k | |, R | |) (30)

only depends on the average of Green functions whose normal
component of the momentum direction point, respectively
toward and away from the interface. The equation of motion,
takes the same form as Eq. (20), with the replacements ť0 → ťs
and δ(R − R0) → δ(R⊥ − R0).

D. Formulation of boundary conditions

We next want to consider an interface between two different
materials. This is done by expanding Hilbert space into two
domains, which represent the two sides of the interface. The
Green function in this space can be written as

ğ =

(
ǧ11 ǧ12
ǧ21 ǧ22

)
, (31)

where the subscripts “1” and “2” indicate the two materials.
The matrices ǧ12 and ǧ21 contain creation and annihilation
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operators on both sides of the interface. These quantities are
drone amplitudes that do not have physical meaning, and since
they will be eliminated from the theory, we do not specify
them further. The interface itself is described as an infinite
surface located at some position, and which mediates tunnelling
between its two sides. Such a potential may be described as

V̆0 =

(
0 V̌0
V̌0 0

)
. (32)

The surface is treated as a perturbation, and the T matrix is
given by Eq. (30).
Without the presence of the interface potential, there is

no coupling between the two sides. The unperturbed Green
function, ğ0, therefore takes the form

ğ0 =

(
ǧ0,1 0
0 ǧ0,2

)
. (33)

Note that Eq. (33) satisfies a generalized version of Eq. (14),
given as

ikF · ∇̄ğ0 +
[
Ξ̆ , ğ0

]
= 0, (34)

where

Ξ̆ =

(
ερ̌3 + Σ̌1 − Σ̌imp 0

0 ερ̌3 + Σ̌2 − Σ̌imp

)
. (35)

Similarly, ğ satisfies

ikF · ∇̄ğ +
[
Ξ̆ , ğ

]
=

[
t̆s , ğ0

]
δ(R⊥ − R0). (36)

To find a relationship between ğ and ğ0, Eq. (36) may
be integrated along a small interval surrounding R0. For a
trajectory (as determined by kF ) crossing the interface, this
leads to

ğ(R+0 ) − ğ(R
−
0 ) =

1
ikF · n̂

[
t̆s , ğ0(R0)

]
, (37)

where we henceforth define n̂ to be an outwards pointing surface
normal. While Eq. (31) is defined everywhere in space, its
diagonal elements, ǧ11 and ǧ22, only make sense physically
in, respectively, in material 1 and 2, i.e., on opposite sides of
the interface. Without loss of generality, we choose material
1 to be the active material, that is, the material for which we
formulate the boundary conditions. This means that n̂ points
from material 1 to material 2. If ğ(R−0 ) is located in material 1,
we thus need to eliminate ğ(R+0 ), which is located in material 2.
This can be done by making use of a generalized normalization
condition, given by

(ğ + sgn(kF · n̂)) (ğ0 − sgn(kF · n̂)) =0 (38)
(ğ0 + sgn(kF · n̂)) (ğ − sgn(kF · n̂)) =0, (39)

These conditions are clearly satisfied in the special case of
ğ = ğ0. That they are valid also in the more general case, can be
seen by considering the original derivation of Shelankov [38],
introducing the interface and taking care to only evaluate points

away from the interface, so that ğ and ğ0 both satisfy Eq. (34)—
albeit with different boundary conditions [39, 40]. In material 1
the Green function which describes a particle on a trajectory
towards the interface satisfies sgn(kF · n̂) = +1. We label
these Green functions as ǧi11 and ǧi0,1, indicating that they
are incoming with respect to the interface. Similarly, Green
functions where sgn(kF · n̂) = −1 are labelled as outgoing;
ǧo11 and ǧo0,1. By evaluating Eqs. (38) and (39) immediately
adjacent to, and on opposite sides of the interface, and inserting
Eq. (37), the following boundary conditions may be derived at
the interface,

ǧi11 =ǧ
i
0,1 +

1
2i |vn |

(
ǧi0,1 − Ǐ

)
ťs,11

(
ǧi0,1 + Ǐ

)
, (40)

ǧo11 =ǧ
o
0,1 +

1
2i |vn |

(
ǧo0,1 + Ǐ

)
ťs,11

(
ǧo0,1 − Ǐ

)
. (41)

Due to the form of the interface potential V̆0, t̆s is in general
dense in 1–2-space. However, a closed solution for the ťs,11
element may be found by iterating Eq. (30) once [24],

ťs,11 = −
i
|vn |

V̌0 ˇ̄g0,2V̌0 −
1
v2
n

V̌0 ˇ̄g0,2V̌0 ˇ̄g0,1 ťs,11. (42)

Note that ˇ̄g0, j =
1
2

(
ǧi0, j + ǧ

o
0, j

)
, for a given side of the interface

j. Eq. (42) may easily be solved for ťs,11, giving

ťs,11 =
1

i |vn |

[
Ǐ +

1
v2
n

V̌0 ˇ̄g0,2V̌0 ˇ̄g0,1

]−1
V̌0 ˇ̄g0,2V̌0. (43)

To summarize the progress so far, we have found boundary
conditions for the quantities ǧi11 and ǧo11, given in Eqs. (40)
and (41), expressed entirely in terms of ǧi/o0, j . While these
unperturbed Green functions exist everywhere in space, they
are only physically valid solutions on their respective sides of
the interface. Furthermore, as discussed in Ref. [25], they can
be easily modified to describe a system with an impenetrable
interface by having them satisfy the condition

ǧo0, j = Šǧi0, j Š
† (44)

where Š is a scattering matrix. For spin independent scattering,
Š = Ǐ. The point is that rather than considering the interface as
a perturbation to omnipresent Green functions, we may exploit
the fact that we only evaluate ǧ0, j in one region of space to
redefine them to represent a system with an impenetrable inter-
face, simply by imposing Eq. (44). This provides significant
benefits. Ultimately, the goal is to derive boundary conditions
for diffusive systems, which are governed by diffusive Green
functions ǧd, j . Even for such a system, there will always be
a ballistic zone immediately surrounding an interface, since
a particle travelling away from the interface will traverse a
distance on the order of the mean free path before encoun-
tering its first impurity. Diffusive systems with an interface
are therefore governed by ballistic Green functions ǧi/o0, j , with
Σ̌imp = 0, close to the interface, and by ǧd, j far away from
the interface. In between is an asymptotic matching region
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known as the isotropization zone, within which the momentum
dependence of the ballistic Green functions are averaged out by
repeated impurity scatterings. Matching the Green functions
of the two regimes is only possible if the following conditions
are satisfied [15, 17, 18],(

ǧi0, j + Ǐ
) (

ǧd, j − Ǐ
)
=0, (45)(

ǧd, j + Ǐ
) (

ǧi0, j − Ǐ
)
=0, (46)(

ǧo0, j − Ǐ
) (

ǧd, j + Ǐ
)
=0, (47)(

ǧd, j − Ǐ
) (

ǧo0, j + Ǐ
)
=0. (48)

Using Eqs. (45)–(48) and Eq. (44), the ballistic Green functions
at the interface may be expressed in terms of their diffusive
counterparts as

ǧi0, j =
(
Š†ǧd, j Š + ǧ

)−1 (
2Ǐ + ǧ − Š†ǧd, j Š

)
, (49)

ǧo0, j =
(
2Ǐ + ǧ − Šǧd, j Š†

) (
Šǧd, j Š† + ǧ

)−1
. (50)

The quasiclassical boundary conditions are completed by com-
puting the matrix current directed at the interface. In the
ballistic zone it is defined as

J̌n =
∫

dΩ
2π

n̂ · vF
(
ǧij j − ǧoj j

)
, (51)

where the integration measure is an angular average over a
hemisphere. In the diffusive zone the matrix current is given
as [15]

J̌n = σj n̂ · ǧd, j∇ǧd, j, (52)

where σj is the normal state conductivity of material j. The
matrix current is conserved across the isotropization zone [18],
and hence Eq. (52) may be equated with Eq. (51), which in turn
is determined from Eqs. (40) and (41) and Eqs. (49) and (50),
thus giving the complete boundary conditions solely in terms
of the diffusive Green functions.

For spin independent scattering we have Š = Ǐ, which gives
ǧi0, j = ǧo0, j = ǧd, j . This means that the difference between
Eqs. (40) and (41) reduces to ǧi11 − ǧ

o
11 =

1
i |vn |

[
ť11, ǧd,1

]
. By

using Eqs. (43), (51) and (52) one may, with some algebra [23],
produce Nazarovs boundary conditions [15],

σ1n̂ · ǧd,1∇ǧd,1 =
∫ π

2

0
dθ

sin θ τ(θ)
[
ǧd,1 , ǧd,2

]
4Ǐ + τ(θ)

({
ǧd,1 , ǧd,2

}
− 2Ǐ

) ,
(53)

where the coupling constant τ(θ) is given as

τ(θ) = 4υ2 cos2 θ

(cos2 θ + υ2)2
, (54)

with υ = V0/vF , and θ is the angle of incidence with respect to
the interface. τ(θ) is shown in Fig. 1a), where it is seen that it

attains its maximum value for normal incidence (θ = 0), and
goes to zero for trajectories parallel to the interface (θ = π

2 ),
which is intuitively reasonable.

When τ(θ) is small, e.g., in the tunnelling limit, we may
neglect its contribution to the denominator of Eq. (53). This
gives the Kupriyanov–Lukichev boundary conditions [14],

n̂ · ǧd,1∇ǧd,1 = T
[
ǧd,1 , ǧd,2

]
, (55)

where T is the angular average of the coupling constant, and is
given as

T =
υ2

2σ1

[
1
υ

arctan
(

1
υ

)
− 1

1 + υ2

]
. (56)

T is shown for increasing V0 in Fig. 1b). For V0 = 0, there
is no coupling between the two sides. The system reduces to
its unperturbed state in which the interface is impenetrable,
and hence T = 0. For large values of V0, T also goes to
zero. The reason for this is that when the barrier potential
increases, incoming particles are more likely to be reflected
than transmitted, which means that the two sides eventually
become decoupled also in this limit.

a)

0 0.25 0.5
0

1

θ/π

τ
(θ
)/
τ
(0
)

b)

0 2 4
0

0.05

0.1

0.15

0.2

V0/vF
T

FIG. 1: a) The angular distribution of the coupling constant τ(θ), as
determined from Eq. (54). b) The strength of the angularly averaged
coupling constant T in the tunnelling limit, as given in Eq. (56).

III. INTERFACES WITH SPIN–ORBIT COUPLING

We will now consider an interface to a material within
which spin–orbit coupling plays a prominent role, for instance a
heavy metal. This means that the transmission probability will
depend on both the spin of the incoming particle and its angle
of incidence. We model this with a Rashba-like tunnelling
coupling,

V̌0 = w Ǐ + wα(n̂α × k̂F ) · σ̌, (57)

where n̂α is a unit vector indicating the direction in which the
symmetry is broken, andw is a spin independent contribution to
the tunnelling between the two sides separated by the interface,
while wα is the strength of the spin–orbit coupling contribution
to the tunnelling. As the barrier region increases in width, both
w and wα decrease toward zero.
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A. Scattering matrix

As a step towards formulating the boundary conditions,
we need to find the scattering matrix for a system where the
interface is impenetrable. However, even though the probability
for transmission through the interface is zero, an incoming
particle may still penetrate the barrier for some distance before
being reflected. While inside the scattering region, the particle
will experience the spin–orbit coupling and accumulate a spin
dependent phase, the size of which depends on the incoming
angle of incidence. To find the scatteringmatrix for this process,
we assume that sufficiently close to the interface, the interface
potential is large enough to dominate all other self energies [17].
This means that we may follow the procedure of Ref. [19] and
describe the interface as a step function potential in a free
electron gas. For simplicity, we use a cylindrical coordinate
system in which the z axis is aligned with the surface normal.
The Hamiltonian for such a system is given as

H = − 1
2m
∇2 − µ +

(
µ + εg + iα(ẑ × ∇) · σ

)
θ(z), (58)

where α expresses the strength of the spin–orbit interaction at
the interface, µ = εF is the chemical potential, and θ(z) is the
Heaviside step function. We consider particles with energies
close to the Fermi energy, meaning excitation energies ε ' 0,
which is the relevant energy regime for quasiclassical theory.
The wave function therefore satisfies Hψ ' 0. The parameter
εg expresses an energy gap, and is included to ensure that the
wave function is evanescent in the barrier region. Since the
interface is assumed to be perfectly smooth, the momentum
parallel to the interface, k | | , is conserved during the scattering
process. Hence, we may use the ansatz ψ(r) = eik | | ·r | |φ(z).
Eq. (58) then takes the form

φ′′(z) +
[
2mεF − k2

| |

]
φ(z) = 0, z < 0 (59)

φ′′(z) −
[
k2
| | + 2m(εg + α(ẑ × k | |) · σ)

]
φ(z) = 0, z > 0

(60)

For z < 0, the solution of Eq. (59) is given as

φ(z) =
(
A1
A2

)
eik⊥z +

(
B1
B2

)
e−ik⊥z, (61)

where k⊥ =
√

k2
F − k2

| | . For z > 0, we get

φ(z) = C
(

1
−ieiϕ

)
e−q+z + D

(
1

ieiϕ

)
e−q−z, (62)

where ϕ is the azimuthal incidence angle. The momentum q±
is given as

q± =
√
k2
| | + 2m

(
εg ± α |k | | |

)
. (63)

The scattering matrix is found by relating the coefficients
A1,2 to B1,2 via the matrix equation B = SA. This is done by

enforcing continuity of φ and φ′ at z = 0, and leads to

S =
1

(k⊥ + iq+)(k⊥ + iq−)

(
k2
⊥ + q+q− e−iϕk⊥(q+ − q−)

eiϕk⊥(q− − q+) k2
⊥ + q+q−

)
.

(64)

Since the scattering matrix is unitary, SS† = I, it may be
parametrized as

S = eiβeiγ(ê ·σ) = eiβ (cos γ + iê · σ sin γ) , (65)

where γ is a spin mixing angle and ê is a unit
vector. By inspection, we see that we may define
ê · σ = −σx sin θ sin ϕ + σy sin θ cos ϕ. To find an expression
for γ, we define the constants a =

√
εg
εF

and b = 2mα
kF

. The
former expresses the strength of the barrier potential, and the
latter the strength of the spin–orbit coupling. Furthermore, we
have |k | | | = kF sin θ, where θ ∈ [0, π/2] is the polar angle of
incidence. We assume that the barrier potential is strong, so
that an incoming particle only penetrates a short distance into
the scattering region before being reflected, and hence a � b.
From Eq. (64) we may then identify the spin mixing angle as

γ = arctan

(
k⊥(q+ − q−)

sin θ
(
k2
⊥ + q+q−

) ) ' K cos θ, (66)

with K = b
a3 when we assume that a � 1, corresponding to

a large band gap in the insulator. The parameter β describes
an overall phase, which is inconsequential for the boundary
conditions, and hence we set β = 0. In coordinate free form,
the scattering matrix therefore takes the form,

S = eiγ(n̂α×k̂)·σ . (67)

As before, n̂α is a unit vector that is either parallel or antiparallel
to the interface normal, depending on the direction of symmetry
breaking. In Nambu-space, the scattering matrix becomes

Ŝ =
(
S(k) 0

0 S∗(−k)

)
= eiγ(n̂α×k̂)·σ̂ρ̂3, (68)

with σ̂ = diag (σ , σ∗). Note that the spin mixing angle
is antisymmetric in k, e.g., γ(k) = −γ(−k). Finally, the
scattering matrix is diagonal in Keldysh space, e.g., Š =
diag

(
Ŝ , Ŝ

)
.

B. Boundary conditions

Finding the correct boundary conditions has now become a
matter of identifying the terms in Eq. (51). To achieve this, we
include only the lowest order tunnelling contributions,

ťs,11 '
1

i |vn |
V̌0 ˇ̄g0,2V̌0.

=
1

i |vn |
[
w2 ˇ̄g0,2 + wαw

{ ˇ̄g0,2, ζ̌k
}
+ w2

α ζ̌k ˇ̄g0,2 ζ̌k
]
, (69)
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where ζ̌k = (n̂α × k̂) · σ̌ ρ̌3. Furthermore, the spin mixing angle
γ is assumed to be small, and we therefore keep terms in the
scattering matrix only up to second order. This gives

Š '
(
1 − 1

2
γ2

)
Ǐ + iγζ̌k . (70)

In addition, we approximate[
Š†ǧd, j Š + ǧd, j

]−1
=

1
2

[
Ǐ +

1
2

(
ǧd, j Š†ǧd, j Š − Ǐ

)]−1
ǧd, j,

' 1
2

[
Ǐ − 1

2

(
ǧd, j Š†ǧd, j Š − Ǐ

)]
ǧd, j,

and similarly for
[
Šǧd, j Š† + ǧd, j

]−1, leading to

ǧi0, j '
1
2

Ǐ +
3
2
ǧd, j −

1
2
ǧŠ†ǧd, j Š −

1
2
ǧd, j Š†ǧd, j Šǧd, j, (71)

ǧo0, j '
1
2

Ǐ +
3
2
ǧd, j −

1
2

Šǧd, j Š†ǧ −
1
2
ǧd, j Šǧd, j Š†ǧd, j . (72)

By performing the first order expansion in this way, we ensure
that in the limit of spin independent scattering, Š = Ǐ, we get
ǧi0, j = ǧo0, j = ǧd, j . By inserting Eq. (70) we get

ǧi0, j 'ǧd, j −
1
2
γ2

(
ǧ − Ǐ

)
+

1
2

iγ
(
ǧd, j − Ǐ

) [
ζ̌k , ǧd, j

]
− 1

2
γ2ǧζ̌k ǧζ̌k

(
ǧ + Ǐ

)
, (73)

ǧo0, j 'ǧd, j −
1
2
γ2

(
ǧ − Ǐ

)
+

1
2

iγ
(
ǧd, j + Ǐ

) [
ζ̌k , ǧd, j

]
− 1

2
γ2

(
ǧ + Ǐ

)
ζ̌k ǧζ̌k ǧ. (74)

Finally, we compute the full Green functions from Eqs. (40)
and (41), and find the boundary conditions from Eqs. (51)
and (52). Note that due to the angular averaging, all odd
terms in ζ̌k = (n̂α × k̂) · σ̌ ρ̌3 cancel, and thus we remove them
immediately. Furthermore, the spin–orbit coupling is assumed
to stem from the interface, which means that n̂α is parallel to
n̂. Since only even orders of the former appears, we may set
n̂α = n̂. The matrix current is then given as

σ1n̂ · ǧ1∇ǧ1 =

∫
dΩ
2π

1
|vn |

[
ǧ1 , Ǐ

]
, (75)

with dΩ = sin θ dθ dφ, vn = vF cos θ, and

Ǐ =w2ǧ2 + ζ̌k

(
w2
αǧ2 +

1
2
γ2ǧ1

)
ζ̌k

+
1
2

iγwαw
{
ǧ2

[
ζ̌k, ǧ2

]
, ζ̌k

}
+

1
2

iγwαw
({
ǧ2, ζ̌k

}
ǧ1 ζ̌k + ζ̌k ǧ1

{
ǧ2, ζ̌k

})
, (76)

where we have neglected terms of order w2γ2. From the φ
integration we find that, for an arbitrary matrix M̌ ,

ζ̌k M̌ ζ̌k = sin2 θ σ̌ | | M̌σ̌ | |,

where σ̌ | | = [σ̌− n̂ (n̂ · σ̌)]ρ̌3, i.e., only spin directions parallel
to the interface contribute to the boundary conditions.
The θ integration of the spin independent term in Eq. (75)

diverges. However, when α = 0, we know that including
all orders of the T matrix, given in Eq. (43), yields a finite
expression—namely, Eq. (53). This means that the divergence
appears when the T matrix is truncated to give Eq. (69). The
interpretation of this is that microscopic analytical expressions
for the coupling constants due to w, wα, and γ cannot be
found within the present theory, and they instead become input
parameters. After the θ integration we therefore get

n̂ · ǧ1∇ǧ1 = T [ǧ1 , ǧ2] + Tα
[
ǧ1 , σ̌ | | ǧ2σ̌ | |

]
+ T ′α

[
ǧ1 , σ̌ | | ǧ1σ̌ | |

]
+ i

√
T ′′α T

[
ǧ1,

{
ǧ2

[
σ̌ | |, ǧ2

]
, σ̌ | |

}]
+ i

√
T ′′α T

[
ǧ1 ,

{
ǧ2, σ̌ | |

}
ǧ1σ̌ | | + σ̌ | | ǧ1

{
ǧ2, σ̌ | |

}]
, (77)

where T ′′α =
1
2TαT ′α. The parameter T may be identified by

comparing with Eq. (55), and is hence given by Eq. (56). The
parameter Tα arises from the spin-orbit coupling part (wα) of
the tunnelling potential in Eq. (57) whereas T ′α arises from the
interfacial spin-orbit coupling (α) giving rise to a spin-mixing
angle in Eq. (66). Eq. (77) is the main result of this paper.
A special case is worth commenting on. In the absence of

any tunnelling, as is the case for a superconductor interfaced
by a spin-orbit coupled insulator, only T ′α is non-zero, whereas
all other terms vanish, giving the boundary condition

n̂ · ǧ1∇ǧ1 = T ′α
[
ǧ1 , σ̌ | | ǧ1σ̌ | |

]
. (78)

This boundary condition could thus be used to look for possible
bound states induced at the interface of a superconductor and a
spin–orbit coupled insulator. The fact that the T ′α term exists
despite the absence of a material to tunnel into on the other side
of the interface is clear from the fact that this term only depends
on ǧ1. In this sense, it may be thought of as the spin-orbit
coupled equivalent of the spin-dependent phase-shift term Gφ

previously discussed in the context of ferromagnetic insulators
[18, 25].

IV. APPLICATIONS

In the following we will apply the boundary conditions de-
rived in Eq. (77) to a set of example problems. In particular,
we will consider superconducting hybrid structures in which a
non-superconducting material is proximitized to a supercon-
ductor. The boundary conditions are assumed to represent a
thin intermediary layer of a material with strong spin–orbit
coupling. We neglect the inverse proximity effect, in which
case the superconductors are approximately described by the
Bardeen-Cooper-Schrieffer (BCS) bulk Green function,

ǧBCS =

(
cosh θI eiφ sinh θiσy

e−iφ sinh θiσy cosh θI

)
, (79)

where θ = arctan ∆ε for a given quasiparticle energy ε and gap
size ∆, and φ is the superconducting phase. In other words,
we solve the Usadel equation only in the non-superconducting
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material. We note that
[
ǧBCS, σ̌ | |

]
= 0, and hence the boundary

conditions simplify to

n̂ · ǧ1∇ǧ1 = (T + Tα) [ǧ1 , ǧ2] + T ′α
[
ǧ1 , σ̌ | | ǧ1σ̌ | |

]
+ i

√
T ′′α T

[
ǧ1 , σ̌ | | {ǧ1, ǧ2} σ̌ | |

]
. (80)

For simplicity we will in the following set Tα = T ′α.

A. SF bilayer

As a first example, we consider a bilayer consisting of a
superconductor and a ferromagnet, as shown in Fig. 2. The
exchange field in the ferromagnet is directed at an angle θ from
the plane of the interface, with a strength of |h | = 2∆. In this
case the Usadel equation takes the following form,

D∇ · ǧ∇ǧ + i [ερ3 − h · σ̌ , ǧ] = 0. (81)

When both spin–orbit coupling and a magnetization is present
in the system, this may lead to long range spin triplet super-
conducting correlations. Indeed, such correlations were found
in a previous work which considered a similar system [41].
There, a ferromagnet with Rashba spin–orbit coupling was
attached to a superconductor via conventional spin independent
boundary conditions. Long range spin triplet correlations were
then observed as a zero energy peak in the density of states, the
size of which depended upon the angle of the exchange field,
θ. Here, we seek to explore whether similar results emerge
when the sole contribution to the spin–orbit coupling stems
from the boundary conditions. To quantify the presence of

S F

SO
C

h�
ǧBCS

FIG. 2: The investigated bilayer, consisting of a ferromagnet and a
superconductor. There is assumed to be significant spin–orbit coupling
at the interface between the two materials, as shown in black. The
ferromagnet is modelled by an exchange field |h | = 2∆, pointing in a
direction θ relative to the interface.

long range spin triplet correlations, we compute the density of
states, which is given as

ν(R, ε) = 1
2

N0<
(
g↑↑(R, ε) + g↓↓(R, ε)

)
, (82)

where N0 is the density of states at the Fermi level, and
gσσ(R, ε) are spin components of the normal Green function.
The presence of long range spin triplets can be inferred from
density of states at ε = 0, at which point Eq. (82) may be
expressed in terms of the contributions from the anomalous
Green function f = ( fs I + ft · σ) iσy . With this particular

parametrization, where the scalars fs and ft give the singlet
and triplet parts of f , respectively, Eq. (82) takes the form

ν(R, 0) = 1 − 1
2
| fs |2 +

1
2

�� f | | ��2 + 1
2
| f⊥ |2 . (83)

For an exchange field direction indicated by the unit vector ĥ, the
triplet correlation is decomposed into a parallel, f | | =

(
ft · ĥ

)
ĥ,

and an orthogonal, f⊥ = ft − f | | , component. The motivation
for this decomposition is that the spin expectation value of the
triplet Cooper pairs is given as 〈S〉 ∝ i ft (ε) × f ∗t (−ε) [30, 42].
The triplet Cooper pairs whose spins are aligned with the
exchange field, will not experience a pair breaking effect, in
contrast to orthogonal spin alignments, and hence f | | and
f⊥ expresses the short and long range triplet correlations,
respectively. From Eq. (83) it is clear that while the presence
of singlet superconducting correlations causes a suppression
of the density of states, triplet correlations lead to an increase,
and thus a potential for the formation of a zero energy peak.
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FIG. 3: Evidence of long range triplet superconducting correlations.
a) The maximum density of states in the ferromagnet at zero energy,
δν(θ) ≡ ν(ε = 0, Rmax, θ) − ν(ε = 0, Rmax, 0), as a function of the
angle of the exchange field θ relative to the interface. The strength of
the spin–orbit coupling at the interface, Tα, is indicated on the figure.
b) The anomalous Green function components as a function of θ at
Tα = 0.5. fs is the singlet contribution, and f | | and f⊥ are the parallel
and orthogonal parts of the triplet contribution, respectively.

Fig. 3a) shows the change in the density of states at zero
energy as the exchange field is rotated away from the interface,
δν(θ) ≡ ν(ε = 0, Rmax, θ) − ν(ε = 0, Rmax, 0), where Rmax is
the location at which the maximum density of states is found.
A modulation of the zero energy peak is found, similar to
the results of Ref. [41]. At θ = 0 and θ = π, i.e., for an
exchange field parallel to the interface, the T ′α-dependent terms
of Eq. (80) do not contribute, and the boundary conditions
reduces to a conventional, spin independent tunnelling barrier.
As θ is increased from zero, so too is the zero energy peak of
the density of states, indicating the generation of triplet Cooper
pairs. However, as θ approaches π/2, a dip is found instead.
These results are further elucidated in Fig. 3b), which shows
the angular dependence of the singlet and triplet correlations.
The largest modulation is clearly seen in the long range triplets,
f⊥, which is nonzero only when the exchange field has both
an in-plane and an out-of-plane component with respect to
the interface. In other words, it vanishes for θ ∈

{
0, π2 , π

}
,
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in agreement with Ref. [41]. Interestingly, it is not purely
sinusoidal, but has maxima that are slightly tilted towards
θ = π/2. A small angular dependence in the singlet, fs, and
the short range triplet, f | | , is also observed. At θ = π/2, fs
has a slight increase, whereas | f | | | decreases. This explains
the reduction in the zero energy peak of the density of states at
θ = π

2 .

B. SFS Josephson weak link

When two superconductors are separated by a non-
superconducting material, they may form a Josephson weak
link. When a phase difference ∆φ is induced between the
superconductors of such systems, for instance by applying a
current bias, dissipationless charge currents will flow between
them, mediated by the Cooper pairs present in the nonsupercon-
ducting material due to the proximity effect. It is well known
that when the intermediary layer consists of a ferromagnet with
an inhomogeneous magnetization, long range triplet Cooper
pairs may be generated, which are spin polarized, and hence
may carry a dissipationless spin current. It was recently pre-
dicted that a spin current may also emerge in homogeneous
ferromagnets if thin normal metal layers with strong spin–orbit
coupling are added between the ferromagnet and the super-
conductors [43]. To achieve this, the spin–orbit coupling was
introduced in thin separate layers, coupled to the surrounding
layers by tunnelling barriers, within which the Usadel equation
was solved. While experimental verification of these results
has proven elusive [44, 45], the theoretical predictions provide
an excellent benchmark for the new boundary conditions, as
similar results should be obtained when the spin–orbit coupling
is introduced as an interface effect. To verify this, we consider
the system illustrated in Fig. 4. A homogeneous exchange field
is defined in the ferromagnet, with a strength of |h |, pointing
in a direction θ relative to the transversal direction of the weak
link. For this system, we compute the spin supercurrent, which
in equilibrium is found from the Green function as

Is = Is,0

∫
dε <Tr

[
ρ̂3σ̂ (ĝ∂x ĝ)K

]
tanh

βε

2
, (84)

where it has been assumed that junction is aligned along the
x axis, and Is,0 =

N0DW
8 , for a given junction width W , and

β = 1/kBT , with T the temperature.
The results are given in Fig. 5, which shows the spin current

component aligned parallel to the exchange field, in other words
the spin current induced by the long range triplets. In Fig. 5a)
its dependence on the canting angle θ is shown. It is noticed
that the spin current goes to zero for θ = 0 and for θ = π

2 .
This means that an exchange field with both an in-plane and an
out-of-plane component is required in order to observe an effect,
similarly to the SF bilayer. In Fig. 5b) we show the dependence
of the spin current on the phase difference ∆φ between the
superconductors. It is seen that the current phase relation is
approximately sinusoidal, similar to the conventional Josephson
effect, indicating that the charge currents have become spin
polarized. Finally, we show in Fig. 5c) the maximum spin
current as a function of the interface spin–orbit coupling Tα.

S F S

SO
C

SO
C

h�
ǧBCS ǧBCS

FIG. 4: A Josephson weak link, where a ferromagnet is sandwiched
between two superconductors, with spin–orbit coupling present at the
interfaces. The exchange field h is directed at an angle θ relative to
the transverse direction of the junction, and has a strength of |h | = 2∆.
The distance between the superconductors is assumed to be L = 2ξ,
where ξ is the superconducting coherence length.

For low values of the spin–orbit coupling, the spin current has
an approximately parabolic form, but reaches a plateau as Tα
approaches 0.5, the maximum value investigated in this study.
A possible interpretation of this is that we are nearing the edge
of the domain of validity for the small angle approximation used
in the derivation of the boundary conditions, which requires
Tα to be small.
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FIG. 5: The spin current component parallel to the exchange field
in the SFS Josephson weak link, scaled by Is,0 = N0DW/8. a)
shows its variation with the canting angle θ, where the strength of the
interface spin–orbit coupling Tα is indicated on the figure, b) shows its
dependence on the phase difference between the superconductors, ∆φ,
and c) shows the maximum spin current as a function of the interface
spin–orbit coupling.
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V. CONCLUSION

Wehave derived a new set of boundary conditions for systems
in which there is large spin–orbit coupling. This allows the
study of, for instance, superconducting hybrid structures with
thin heavy metal layers. We demonstrate the use of these
boundary conditions by considering an SF bilayer and an SFS
Josephson weak link. In both cases we find that whenever the
exchange field of the ferromagnet has both an in-plane and an
out-of-plane component, long range triplet superconductivity
is induced. The findings reported herein are consistent with
results found in previous works, where the spin–orbit coupling
is approximated by other means.
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