
Long-term joint distribution of environmental conditions in a
Norwegian fjord for design of floating bridges

Zhengshun Chenga,b,∗, Erik Svangstuc, Torgeir Moana, Zhen Gaoa

a Department of Marine Technology and Centre for Autonomous Marine Operations and Systems (AMOS),
Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway

b State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
cNorwegian Public Roads Administration, Leikanger, 6863, Norway

Abstract

A floating bridge is an attractive solution for crossing wide and deep fjords. To design a reliable
and cost-effective floating bridge, it is very important to accurately evaluate the long-term envi-
ronmental conditions at the local site in a fjord or strait, because it is relevant for the ultimate-
and fatigue-limit state design check of floating bridges. This study addresses the long-term joint
distribution of environmental conditions in a Norwegian fjord for design of floating bridges based
on simulated wind and wave data from 2002 to 2017. The accuracy of simulated wave data is
validated by comparison against field measurements. The joint distribution is established in terms
of mean wind speed Uw, significant wave height Hs and peak period Tp, by assuming sequential
stationary short-term conditions with a duration of one hour. The 100-year contour surface of wind
and wave parameters is achieved, on which design points are suggested for long-term extreme re-
sponse analysis by using the environmental contour method. Compared to joint distributions for
open seas, the joint distribution in a fjord has fairly close values for environmental conditions with
maximum Uw and with maximum Hs, which implies that fewer design points are required for the
prediction of extreme responses.

Keywords: long-term joint distribution, wind and wave, contour surface, numerical simulation,
field measurement

1. Introduction

Floating bridges are an attractive solution to improve the efficiency of crossing wide and
deep straits or fjords. Although floating bridges have a very long history, traced back to 2000
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BC (Watanabe, 2003), their applications in modern infrastructure started around 1940. The first
pontoon-type floating bridge was implemented in the Hobart Bridge, Australia in 1943. A world-5

wide development of floating bridges was reviewed by Watanabe (2003) and Kvåle (2017). Cur-
rently, several floating bridges are in operation, including four in the state of Washington in the
USA and two in Norway. Moreover, Norway is currently running the Coastal-Highway Route
E39 project, in which ferry transport across 8 fjords are to be replaced by bridges or tunnels. The
width of these fjord crossings is up to 6km and the water depth is up to 1300m. Several innovative10

floating bridge concepts have been proposed (Eidem, 2017) and are being studied (Cheng et al.,
2018; Fredriksen et al., 2019; Xu et al., 2018).

The safety of offshore structures is ensured by fulfilling limiting state design criteria. These
limit states include fatigue-, ultimate-, and accidental-limit state (FLS, ULS, ALS) (Naess and
Moan, 2013). The ULS design check of offshore structures is commonly based on environmental15

load effects corresponding to N-year (e.g., 100-year) wind and wave conditions. The long-term
variation in wind and wave conditions is usually expressed in terms of mean wind speed, signifi-
cant wave height, and peak period, by assuming sequential stationary short-term conditions with a
duration, e.g., 1 hour. To obtain the long-term load effects that are relevant for ULS design check,
the most accurate approach is to carry out a full long-term analysis, in which all environmental20

conditions are taken into account with consideration of their probability of occurrence. Neverthe-
less, this process requires massive computational efforts, which make the full long-term analysis
impractical in engineering practice.

Approximate methods are thus proposed for estimating long-term load effects. A commonly
used approach is the environmental contour method, in which the long-term extreme response25

for a return period of N-year is approximated by exposing the structure to a short-term extreme
sea state (Winterstein et al., 1993; Haver and Winterstein, 2009). In particular, the sea state that
leads to the largest short-term extreme responses is chosen from the N-year contour surface (or
contour line when two environmental variables are present). In this case, the variability of the
short-term extreme response should also be taken into account by multiplying a correction factor30

of 1.1-1.3 (Winterstein and Engebretsen, 1998), or by calculating the short-term extreme response
at a higher quantile of 75-90% (DNV GL, 2014; NORSOK N-003, 2017), rather than 50%. In
this approach, the N-year contour surface is derived from a long-term joint distribution of relevant
environmental parameters, which is constructed based on the long-term variation of wind and wave
conditions.35

Construction of the long-term joint distribution of environmental parameters requires a large
long-term dataset in order to reduce statistical uncertainties. To achieve an accurate prediction
of extreme conditions, it was recommended by Bitner-Gregersen (2012) to use a dataset for over
ten years to develop a joint environmental model. Moreover, since the numerically simulated data
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of the most extreme wind and wave events are limited, it is important that the data are smoothed40

by fitting analytical distributions. To date, several joint distributions of environmental conditions
have been established by fitting analytical distributions to raw data from field measurements at
actual area (Johannessen et al., 2002; DNV GL, 2014) or from a numerical hindcast model (Li
et al., 2015). These joint environmental models are developed for open seas. However, few studies
on the development of the long-term joint distribution of environmental conditions in a fjord or45

strait have been conducted. The environmental conditions in a fjord or strait are different from
those in the oceans. The present study deals with wave conditions in the Bjørnafjord. Compared
to ocean waves consisting of wind waves and swells, the waves in a fjord can be dominated by
wind-generated waves (Cheng et al., 2019b) due to limited fetch lengths. Therefore, the long-term
joint environmental model in a fjord or strait is likely to differ from that in the open seas.50

To establish the long-term environmental model in a fjord or strait, the wind and wave con-
ditions at the local site should be accurately modeled. However, accurate modeling of long-term
wind and wave conditions in a fjord or strait is very challenging, because of the complex topogra-
phy and hydrography. The wind and wave conditions at the local site in a fjord or strait is usually
achieved by numerical simulations based on hindcast data. In coastal regions, the SWAN (Simu-55

lating Waves Nearshore) model (Booij et al., 1999) is usually used to simulate the complex wave
transformation caused by the bathymetry, wind and other factors. With respect to the local wind
conditions, it is usually modeled by the Weather Research and Forecasting (WRF) model (Ska-
marock et al., 2008), which is a numerical weather prediction (NWP) system designed to serve
both atmospheric research and operational forecasting needs.60

The long-term environmental model is constructed based on stationary short-term conditions,
in which the wind and wave conditions have identical duration. However, normally wind in 10
minutes and waves in 3 hours are considered as stationary. A compromise is usually a duration of
1 hour for both wind and waves. This is also used in the present study.

In this study, the long-term joint distribution of wind and wave conditions in a Norwegian65

fjord, i.e., the Bjørnafjord, is established based on numerically simulated wind and wave data over
about 16 years. The simulated wave data is validated by comparison with field measurement. The
developed joint environmental model can facilitate the ULS design check of floating bridges, by
using the environmental contour method described above.

2. Data description70

The Bjørnafjord is located at the Hordaland County, Norway. It has a width of approximately
4600m and a depth of more than 500m. The location and topography around the Bjørnafjord is
depicted in Fig. 1. A floating bridge is planned for crossing the fjord. To design a reliable and
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Figure 1: Location and topography of the Bjørnafjord. A Datawell waverider (DWR), marked as red point, was
located in the fjord and its mean position is about 60◦06′14.0′′N and 5◦21′34.9′′E. This DWR corresponds to DWR3
shown in Cheng et al. (2019b).

cost-effective floating bridge, the environmental condition plays a vital role and should be properly
evaluated.75

To characterize the environmental condition in the Bjørnafjord, both numerical simulations and
field measurements have been conducted. Currently, limited field measurements have been made.
It is thus more feasible to construct the long-term joint distribution of environmental conditions in
the fjord by using numerical simulations based on hindcast data. The field measured data is used
to validate the accuracy of numerically simulated environmental data.80

2.1. Field measurements of wave conditions

Field measurements of wave conditions were carried out by deploying three Datawell waverid-
ers (DWRs) in the Bjørnafjord. The DWR records the heave, north and west displacements of the
buoy in order to analyze the local wave condition. Principle on how the DWR measures wave con-
dition is described in Datawell (2014) and by Cheng et al. (2019b) and is not presented in detail85

here.
The measurements have been performed since February 2016. The data are recorded in 30
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minutes samples with a frequency of 1.28Hz. By analyzing the wave data measured from Febru-
ary 2016 to October 2017, Cheng et al. (2019b) identified the main characteristics of the measured
wave condition. It was shown that the waves in the fjord are short-crested and mainly wind-90

generated. Swell might exist when waves come from northwest, but swell is very small. Waves
with a small significant wave height (Hs < 0.3m) are likely to have multiple dominant direc-
tions, while waves with a relatively large significant wave height are likely to have one dominant
direction.

It should be noted that there are two ferry routes crossing the fjord. The passing ferries generate95

ship waves, which are also recorded by the DWRs. Cheng et al. (2019b) proposed a band-pass filter
based on wavelet and inverse wavelet analyses to detect and remove ship waves from raw data and
concluded that the effect of ship waves is less important in cases with a higher significant wave
height (Hs > 0.3m). Since waves with large significant wave height are of interest from design
point of view, the raw data without removing ship waves are thus used for analyses in this study.100

For the present study, a total of about 33 months (from February 2016 to October 2018) of
measured data has been acquired. To validate the numerical simulations, wave measurement by
only one DWR, denoted by DWR3 as shown in Fig. 1, is considered. The DWR is located in the
middle of the fjord. The measured raw data are post-processed to achieve the wave data in every
hour. The time history of measured significant wave height is shown in Fig. 2.105
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Figure 2: Time series of measured and simulated significant wave height at DWR3.

2.2. Numerical simulation of wind and wave conditions
The wind and wave conditions in the fjord are numerically simulated by using the SWAN

(Simulating Waves Nearshore) model (Booij et al., 1999) and the WRF (Weather Research and
Forecasting) model (Skamarock et al., 2008) in this study. The simulated wind and wave data are
provided by the NPRA.110

The SWAN model is a third-generation wave model for simulating realistic estimates of wave
parameters in coastal areas, lakes and estuaries from given wind, bottom and current conditions.
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The model is based on the wave action balance equation with sources and sinks, and solves the ac-
tion density balance equation in time space, geographical space and spectral space. It can simulate
wind-generated waves and swells at any scale relevant for wind-generated surface gravity waves.115

It can provide wave-frequency spectrum and directional spectrum, and accordingly wave param-
eters such as significant wave height, peak period, mean direction can be estimated; however, it
cannot provide cross spectrum between different points because it is a phase-averaged model. In
the numerical simulation, only wind-generated waves are considered. A total of 296×373 grid
points are equally distributed in the area with latitude ranging from 59.85 to 60.2483 and longi-120

tude ranging from 4.8 to 5.797. The spacing between neighboring points is about 150m. Actually
for the Bjørnafjord considered, wind-generated waves and swell were simulated separately, and
swell data were simulated and analyzed by the Norconsult (Lothe and Musch, 2015).

The WRF Model is a next-generation mesoscale numerical weather prediction system designed
for both atmospheric research and operational forecasting applications. It solves the compressible,125

nonhydrostatic Euler equations in the time and geographical spaces. It can be used for a wide
range of meteorological applications across scales from tens of meters to thousands of kilometers.
It provides the mean wind speed at 10m height for each grid point in the latitude and longitude
directions, respectively. In the numerical simulation, 138×180 grid points are equally generated
for simulating mean wind speed. The spacing between neighboring points is about 500m.130

Numerical simulation of wind and wave conditions in the fjord are based on hindcast data from
January 2002 to June 2017. During the numerical simulation, wave parameters (significant wave
height, peak period, and mean direction) and wind parameters (mean wind speed in the latitude
and longitude directions) are stored for each hour. Fig. 3 shows the spatial distribution of the
significant wave height simulated by the SWAN model and the mean wind speed simulated by the135

WRF model during a storm condition in December 26, 2016.
In addition, since the mean position of the DWR3 is known from the field measurement, the

wind and wave parameters at the location of DWR3 are interpolated and extracted from the sim-
ulated data. The significant wave height from numerical simulation at DWR3 is shown in Fig. 2.
Herein, the extracted wind and wave parameters at DWR3 are used to construct the long-term joint140

distribution of environmental conditions in the fjord.

3. Validation of numerically simulated data

In this section, the simulated wave parameter at the location of DWR3 is compared with the
measured wave parameter to validate the accuracy of numerical simulations. The simulated data
and the measured data have an overlap from February 2016 to June 2017, about 17 months. Data145

during this period, in particular significant wave height Hs, is analyzed in depth to check the quality
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(a) Significant wave height (b) Mean wind speed

Figure 3: Distribution of simulated significant wave height and corresponding simulated mean wind speed in the
Bjørnafjord during a storm condition on December 26, 2016.

of numerically simulated data.
Comparison of the field measured and numerically simulated significant wave height during

this period is shown in Fig. 4. A close-up view of the time series of significant wave height during a
storm condition is demonstrated in Fig. 5. It can be found that the simulated Hs has an overall good150

agreement with the measured Hs. The storm event during December 26, 2016 is well captured by
the numerical simulation.
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Figure 4: Comparison of time series of measured and simulated significant wave height at DWR3 from February 2016
to June 2017.

However, a small discrepancy between the simulated Hs and measured Hs, denoted by ∆Hs =

Hs,S − Hs,M, is also clearly observed from Figs. 4 and 5. A scatter plot of simulated and measured
Hs is shown in Fig. 6. The regression line for simulated Hs larger than 0.3m has a slope of about155

0.716. For simulated Hs larger than 1.2m, the simulated and measured Hs, marked by red + in
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Figure 5: Comparison of measured and simulated significant wave height at DWR3 during a storm event in December
2016.

Fig. 6, exhibit a great scatter, but they all come from the same storm event in December 2016, as
shown in Fig. 5.
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Figure 6: Scatter plot of simulated and measured significant wave height, ∆Hs, from February 2016 to June 2017.
Here red + indicates the events with simulated Hs larger than 1.2m. Red dash line denotes the regression line for
simulated Hs larger than 0.3m.

This discrepancy is plotted in Fig. 7 and also given in Table A.6 in the appendix. To quantify
the discrepancy, root mean square error (RMSE), bias and model uncertainty are introduced here.160

The RMSE provides a quantitative measure of the model, and the bias indicates the correspondence
between the mean values of measured and simulated significant wave height. The RMSE and bias
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are defined as follows

RMS E =

√√√
1
N

N∑
j=1

(
Hs,S j − Hs,M j

)2
(1)

Bias =
1
N

N∑
j=1

(
Hs,S j − Hs,M j

)
(2)

where N represents the number of measured Hs. The calculated RMSE and bias are 0.105 and165

0.007, respectively.
The model uncertainty is defined as the ratio between measured Hs and simulated Hs, given by

X =
Hs,M j

Hs,S j

(3)

Model uncertainty for each pair of measured Hs and corresponding simulated Hs can be calculated.
However, when the simulated Hs is small, the estimated model uncertainty might be significantly170

large and is not representative. Therefore, model uncertainty given large simulated Hs is consid-
ered here. The mean value and coefficient of variation (CoV) of model uncertainty for simulated
Hs larger than 0.6m are 0.767 and 0.228, respectively.
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Figure 7: Distribution of the measured significant wave height and the discrepancy between simulated and measured
significant wave height from February 2016 to June 2017.

Statistical analysis indicates that 93.2% of total data have a absolute discrepancy |∆Hs| less
than 0.2m. Moreover, 75.1% of total measured data have a Hs smaller than 0.3m, in which 97.1%175

are associated with a discrepancy |∆Hs| less than 0.2m. This implies that the discrepancies ∆Hs
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mainly come from cases with small Hs. One possible reason for these discrepancies is that in the
numerical simulations, the cases with small Hs assumes only one dominant direction; however, the
measured wave data is usually associated with multiple dominant directions (Cheng et al., 2019b).
Another possible reason is due to ship-induced waves captured by the wave buoy. Ship waves180

might contribute to the discrepancy for small Hs, but for large Hs, the impact of ship waves on the
significant wave height is negligible (Cheng et al., 2019b).

3.1. Marginal distribution of significant wave height

The measured and simulated significant wave height at DWR3 from February 2016 to June
2017 are plotted in a Weibull probability paper, as shown in Fig. 8. It can be observed that the185

upper part of both measured and simulated Hs follow a Weibull distribution. However, the raw
data in the lower tail behave differently. Hereinafter, the term raw data means the sample data that
is used for fitting of analytical distributions.

For the simulated Hs, raw data with Hs larger than 0.1m follows a Weibull distribution. Since
large Hs is significant from design point of view, Weibull model is thus applied for the simulated190

data. The probability density function (PDF) is given by

fHs,S (h) =
αS

βS

(
h
βS

)αS−1

exp
[
−

(
h
βS

)αS
]

(4)

where αS and βS denote the shape and scale parameters, respectively.
Regarding the measured Hs, the lower part of the raw data follows a log-normal distribution

while the data in the upper tail follow a Weibull distribution. The hybrid lognormal and Weibull
distribution, i.e., the Lonowe model developed by Haver (1980) is thus employed to describe the195

marginal distribution of measured Hs. The PDF is written as

fHs,M (h) =


1

√
2πσMh

· exp
[
−1

2

(
ln(h)−µM
σM

)2
]

if h ≤ h0

αM
βM

(
h
βM

)αM−1
exp

[
−

(
h
βM

)αM
]

if h > h0

(5)

where h0 is the shifting point from the lognormal distribution to Weibull distribution, µM and σM

are the mean value and standard deviation of ln(Hs) in the lognormal distribution. αM and βM are
the shape and scale parameters in the Weibull distribution. Parameters αM and βM are estimated
by imposing the continuity condition of PDF and cumulative distribution function (CDF) at the200

shifting point. Detailed method on estimating the shifting point is described by Haver (1980)
and Moan et al. (2005) and is not explained here.

The comparison between the raw data and fitted distribution for both measured and simulated
Hs in the Weibull probability paper is demonstrated in Fig. 8. In general, the fitted distribution
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Figure 8: Weibull plot of marginal distribution of simulated and measured significant wave height Hs from February
2016 to June 2017.

and the raw data agree fairly well, except for the lower tail of simulated Hs. The value of Weibull205

parameters for the simulated and measured Hs is given in Table 1.

Table 1: Comparison of Weibull parameters and significant wave height Hs estimated from measured and simulated
wave data based on raw data and fitted distribution. Data from February 2016 to June 2017 is considered here.

Data
Weibull parameters Raw data Fitted distribution
α β 1-year Hs 1-year Hs 10-year Hs 50-year Hs 100-year Hs

Measurement 1.071 0.182 1.711 1.425 1.760 1.991 2.090
Simulation 1.145 0.242 1.699 1.664 2.027 2.275 2.381

It can be found that the 1-year Hs estimated from the raw data of measured and simulated Hs is
very close, with a difference about 0.7%. It should be noted that the raw data used for estimating
the 1-year Hs is from February 2016 to June 2017, about 17 months. Uncertainty might exist in
the estimated 1-year Hs from the raw data. The predicted annual extreme value of Hs based on210

the simulated data is close to that estimated from the raw data. The difference is approximately
2.75%, which is also small. However, the predicted annual extreme value of Hs based on the
measured data presents a significant discrepancy, about 16.7%. It underestimates the predicted
annual extreme value of Hs. The reason is due to the difference in the fitted parameters, especially
the scale parameter, for the Weibull distributions, as given in Table 1. As a result, the predicted 10-215

year, 50-year and 100-year extreme values of Hs based on the fitted distribution differ significantly
between the measured data and simulated data.
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3.2. Variation in the wave data

To study the variation of predicted Hs in different years, the fitting procedure described above
are applied for measured or simulated data in each year. For the simulated data in 2017, only220

data in 6 months is used. For the measured data in 2016 and 2018, a duration of about 11 months
and 10 months is applied, respectively. The fitting procedure described above is also employed to
predict the extreme values of Hs for all measured or simulated data, as shown in Fig. 9.
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Figure 9: Weibull plot of marginal distribution of (a) measured significant wave height Hs based on measured data
from 2016 to 2018, (b) simulated significant wave height Hs based on simulated data from 2002 to 2017.

Fig. 10 shows the variations in the mean values of measured and simulated Hs based on annual
data, overlap data from February 2016 to June 2017 and all data. The mean values of measured and225

simulated Hs in each year present certain variation. The mean value and coefficient of variation
(CoV) of annual mean Hs for the simulated data is 0.252m and 0.0079, respectively, and for
the measured data is 0.241 and 0.0319, respectively. These mean values are very close to the
corresponding mean values of annual Hs based on all data, which are 0.252m and 0.241m for the
simulated and measured data, respectively. Regarding the overlap data, mean values of measured230

and simulated Hs are 0.236m and 0.243m, which are fairly close.
Figs. 11 and 12 show the predicted annual and 100-year extreme values of measured Hs by

using the Lonowe model and simulated Hs by using the Weibull model, based on annual data,
overlap data from February 2016 to June 2017 and all data. These two figures also show the large
variations in the predicted extreme values based on the data in different years.235

Regarding the simulated data, the annual extreme value varies between a maximum of 1.749m
in 2016 and a minimum of 1.227m in 2002, while it is 1.512m based on 16-year simulated data
(from 2002 to 2017). The ratio of maximum to minimum of the predicted 100-year extreme value
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Figure 10: Variations in the mean value of measured and simulated significant wave height estimated based on annual
data, overlap data from February 2016 to June 2017 and all data.
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Figure 11: Variations in the annual predicted extreme value of measured and simulated significant wave height esti-
mated based on annual data, overlap data from February 2016 to June 2017 and all data.

2002 2004 2006 2008 2010 2012 2014 2016 2018

Year

0

0.5

1

1.5

2

2.5

3

H
s
 [

m
]

Measured Hs based on annual data

Measured Hs based on overlap data

Measured Hs based on all data

Simulated Hs based on annual data

Simulated Hs based on overlap data

Simulated Hs based on all data

Figure 12: Variations in the predicted 100-year extreme value of measured and simulated significant wave height
estimated based on annual data, overlap data from February 2016 to June 2017 and all data.
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is about 1.53, varying from 1.650m (corresponding to 2002) to 2.531m (corresponding to 2016).
The predicted 100-year extreme value based on 16-year simulated data is about 2.097m. The CoV240

of predicted annual and 100-year extreme values based on annual simulated data is 0.119 and
0.156, respectively.

The predicted annual extreme values of Hs based on annual measured data in 2016, 2017 and
2018 are 1.432m, 1.480m and 1.178m, respectively. The predicted annual extreme value of Hs

based on 3-year (2016-2018) measured data is 1.634m, which is larger than the annual extreme245

value predicted by annual measured data. The predicted 100-year extreme value of Hs based on
3-year (2016-2018) measured data is 2.654m, which is also much larger than the 100-year extreme
values predicted by annual measured data. The differences in predicted 100-year extreme values
are due to the fact that very limited data (annual or 3-year measured data) are used to estimate
the parameters for the Lonowe model and great uncertainty might exist in the parameter fitting. A250

larger data basis, e.g. by hincasting, is required to limit the uncertainty in the predicted 100-year
extreme value.

4. Prediction of long-term environmental conditions

In this study, the simulated wind and wave data based on the hindcast data are represented in a
database for the years 2002-2017. They have been sampled hourly for wind and wave parameters.255

By assuming sequential stationary short-term conditions, the long-term variation in environmental
condition is described by the mean wind speed Uw and wave spectral parameters, significant wave
height Hs and peak period Tp. Marginal and joint distribution of wind and wave conditions are
approximated by fitting analytical distributions to the raw data. It should be noted that when
constructing the joint distributions, the wave data only include wind-generated waves and swell is260

not considered.

4.1. Marginal distribution of mean wind speed Uw

The mean wind speed considered is at the height of 10m above the sea level. Previous studies,
e.g., by Bitner-Gregersen and Haver (1991) and Bitner-Gregersen (2005), have shown that the
two-parameter Weibull distribution is a good approximation for modeling wind speed distribution.265

The PDF is given in Eq. 6.

fUw(u) =
αU

βU

(
u
βU

)αU−1

exp
[
−

(
u
βU

)αU
]

(6)

where αU and βU denote the shape and scale parameters, respectively, and u is mean wind speed
variable. Fig. 13 shows the fitted marginal distribution curve of the 1-hour mean wind speed at
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10m height on the Weibull probability paper. A good agreement between the raw data and the
fitted curve is observed.270
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Figure 13: Weibull plot of marginal distribution of mean wind speed Uw.

4.2. Joint distribution of Hs and Tp

If only wave data is considered, the joint distribution of Hs and Tp consists of a marginal
distribution of Hs and a conditional distribution of Tp given Hs

fHs,Tp(h, t) = fHs(h) fTp |Hs(t|h) (7)

where h and t are significant wave height and peak period variables, respectively. fHs(h) is the
marginal distribution of Hs, which is given by Eq. 4 and shown in Fig. 9(b) for the simulated wave275

data. fTp |Hs(t|h) is the conditional PDF of Tp given Hs.
According to previous studies (Bitner-Gregersen, 2012; Johannessen et al., 2002; Li et al.,

2015), the conditional distribution of Tp given Hs seems to follow a lognormal distribution

fTp |Hs(t|u, h) =
1

√
2πσLT t

· exp
−1

2

(
ln(t) − µLT

σLT

)2 (8)

where µLT and σLT are the mean value and standard deviation of ln(t).
The peak period data is resampled into different Hs classes with a bin size of 0.1m, and is then280

plotted in a lognormal probability paper. Fig. 14 shows the fitted lognormal distribution curves
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of Tp at a low Hs class and at a high Hs class. It can be found that the lognormal distribution is
reasonable for both low and high Hs classes. For each Hs class, µLT and σ2

LT can be estimated.
They are thus expressed as a function of Hs in order to describe the conditionality of Tp on Hs.

µLT = e1 · he2 + e3 (9)

285

σ2
LT = k1 · hk2 + k3 (10)

in which e1, e2, e3, k1, k2, and k3 are the parameters estimated from the raw data by nonlinear curve
fitting. The curve fitting results are shown in Fig. 15.
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Figure 14: Lognormal plot of conditional distribution of Tp given Hs.

As a summary, the parameters in the joint distribution of Hs and Tp are estimated by fitting
raw data into analytical distribution, and are given in Tables 2.

Table 2: Parameters for the marginal distribution of Hs, fHs (h), the conditional distribution of Tp given Hs, fTp |Hs (t|h).
Distributions Parameter Associated equation DWR3
Marginal Hs αS Eq. 4 1.256

βS Eq. 4 0.261
Conditional Tp given Hs e1 Eq. 9 -6.727

e2 Eq. 9 -0.060
e3 Eq. 9 8.088
k1 Eq. 10 0.002
k2 Eq. 10 -1.397
k3 Eq. 10 0.002
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Figure 15: Nonlinear fitting of lognormal parameters for conditional distribution of Tp given Hs.

4.3. Joint Distribution of Uw, Hs and Tp290

The joint distribution of Uw, Hs and Tp is expressed as follows

fUw,Hs,Tp(u, h, t) = fUw(u) fHs |Uw(h|u) fTp |Uw,Hs(t|u, h) (11)

in which fUw(u) is a marginal distribution of Uw as given by Eq. 6, fHs |Uw(h|u) is a conditional
distribution of Hs given Uw, and fTp |Uw,Hs(t|u, h) is a conditional distribution of Tp given both Uw

and Hs. In this section, the estimations of fHs |Uw(h|u) and fTp |Uw,Hs(t|u, h) are explained in detail.
The development of joint distribution in terms of conditional distributions has been used by Jo-295

hannessen et al. (2002), Li et al. (2015) and Horn et al. (2018). In this paper the procedure used
follows the work by Li et al. (2015) and Johannessen et al. (2002).

4.3.1. Conditional distribution of Hs given Uw

Considering a bin size of 1m/s for the mean wind speed Uw, the significant wave height Hs is
resampled according to Uw classes. To fit the conditional PDF of Hs given Uw, the raw data in300

each wind speed class is plotted in the Weibull probability paper. Fig. 16 shows two examples of
raw data at two different Uw classes. It appears that the raw data in the medium and high wind
speed classes follow the Weibull model for the conditional distribution of Hs. However, in the low
wind speed classes, the Weibull model is only suitable for Hs larger than 0.1m. To improve the
accuracy of fitted distribution for Hs at high wind speed classes, the Weibull model is considered305

for all wind speed classes.
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Figure 16: Weibull plot of conditional distribution of Hs given Uw.

Therefore, the conditional PDF of Hs given Uw is described by a two-parameter Weibull dis-
tribution, as follows

fHs |Uw(h|u) =
αHC

βHC

(
h
βHC

)αHC−1

exp
[
−

(
h
βHC

)αHC
]

(12)

where αHC and βHC denote the shape and scale parameters, respectively. For each wind speed
class, a pair of shape and scale parameters is achieved. The shape and scale parameters are then310

fitted as power functions of mean wind speed to represent the conditionality.

αHC = a1 · ua2 + a3 (13)

βHC = b1 · ub2 + b3 (14)

in which a1, a2, a3, b1, b2, and b3 are the parameters estimated from the raw data by nonlinear
curve fitting. The curve fitting results are shown in Fig. 17.

4.3.2. Conditional distribution of Tp given Uw and Hs315

The peak period data is resampled in different wind-wave classes by considering a bin size of
1m/s for the mean wind speed Uw and a bin size of 0.1m for the significant wave height Hs. The
data in each wind-wave class indicate a lognormal distribution for the conditional distribution of
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Figure 17: Nonlinear fitting of Weibull parameters for conditional distribution of Hs given Uw.

Tp given Uw and Hs, whose PDF is given by

fTp |Uw,Hs(t|u, h) =
1

√
2πσln(Tp)t

· exp

−1
2

(
ln(t) − µln(Tp)

σln(Tp)

)2 (15)

where µln(Tp) and σln(Tp) are the parameters in the conditional lognormal distribution, i.e., the mean320

value and standard deviation of ln(t) at each combination of wind-wave class. The parameters
µln(Tp) and σln(Tp) are functions of both Uw and Hs and can be estimated by using the following
relationships

µln(Tp) = ln

 µTp√
1 + υ2

Tp

 (16)

σ2
ln(Tp) = ln

(
1 + υ2

Tp

)
(17)

325

υTp =
σTp

µTp

(18)

where µTp and σTp are the mean value and standard deviation of Tp in each wind-wave class,
respectively. υTp is the coefficient of variation (CoV) of Tp.

To express the conditionality, we need to fit µTp and υTp as functions of Uw and Hs. Fig. 18
shows the variations of µTp and υTp in terms of Uw and Hs. It should be noted that the wind-wave
classes with limited data are excluded to avoid large uncertainties.330
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Figure 18: Mean value and coefficient of variation (CoV) of Tp for each wind-wave class.

It can be observed that µTp and υTp are primarily dependent on Hs and they shift with the
variation of wind speed. The method proposed by Johannessen et al. (2002) is employed in this
study to estimate the parameters of Tp in the lognormal distribution. The mean value of Tp is
modeled by using the following equation:

µTp = t̄(u, h) = t̄(h) ·
[
1 + ϑ

(
u − ū(h)

ū(h)

)γ]
(19)

where ϑ and γ are fitting coefficients; t̄(h) and ū(h) are the expected peak period and mean wind335

speed for a given value of Hs. Here, t̄(h) and ū(h) are fitted as a function of Hs

t̄(h) = c1 · hc2 + c3 (20)

ū(h) = d1 · hd2 + d3 (21)

in which c1, c2, c3, d1, d2, and d3 are the parameters estimated from the raw data by nonlinear
curve fitting.

The term
[
1 + ϑ

(
u−ū(h)

ū(h)

)γ]
in Eq. 19 adjusts the expected Tp according to whether the actual340

wind speed is above or below the expected wind speed for the particular significant wave height.
To estimate parameters ϑ and γ, Eq. 19 can be rewritten as

t̄(u, h) − t̄(h)
t̄(h)

= ϑ

(
u − ū(h)

ū(h)

)γ
(22)
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Figure 19: Nonlinear fitting of expected peak period t̄(h) and mean wind speed ū(h) for conditional distribution of Tp

given Uw and Hs.

where t̄(u,h)−t̄(h)
t̄(h) and u−ū(h)

ū(h) are normalized peak period and wind speed, respectively. For each Hs

class, the normalized peak period is plotted as a function of the normalized wind speed. Nearly
linear relationships are observed for most Hs classes, indicating that γ is close to 1. Moreover, ϑ345

estimated for each Hs class is shown in Fig. 20, A mean value of ϑ for high Hs classes (larger than
0.2m) is thus adopted and used in Eq. 22.
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Figure 20: Nonlinear fitting of parameter ϑ for conditional distribution of Tp given Uw and Hs.
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In addition, the coefficient of variation can be assumed to be a function of only Hs

υTp(h) = f1 · h f2 + f3 (23)

where f1, f2, and f3 are the parameters from nonlinear curve fitting, as shown in Fig. 21.
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Figure 21: Nonlinear fitting of parameter υTp for conditional distribution of Tp given Uw and Hs.

By fitting the raw data with analytical distributions, the parameters in the long-term joint dis-350

tribution of Uw, Hs and Tp can be estimated, as given in Table 3.

4.4. Environmental contour surface

Based on the joint distribution, a environmental contour corresponding to a given return period
can be achieved. The environmental contour provides a simplified approach to predict the long-
term extreme response. To construct the environmental contour, the physical variables in the joint355

distribution are usually transferred into a nonphysical space (i.e., U space) consisting of several
independent standard and normal variables. Such a transformation is generally carried out by
using the Rosenblatt transformation (Madsen et al., 2006).

For the joint distribution of Uw, Hs and Tp given by Eq. 11, the following three variables in the
U space are introduced360

U1 = Φ−1(FUw(u))

U2 = Φ−1(FHs |Uw(h|u)

U3 = Φ−1(FTp |Uw,Hs(t|u, h)

(24)

where Φ() is the CDF of standard normal distribution, and F represents the CDF of the original
random variables. Therefore, these three variables in the U space represent the marginal distri-
bution of Uw, the conditional distribution of Hs given Uw, and the conditional distribution of Tp
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Table 3: Parameters for the marginal distribution of Uw, fUw (u), the conditional distribution of Hs given Uw,
fHs |Uw (h|u), and the conditional distribution of Tp given both Uw and Hs, fTp |Uw,Hs (t|u, h).

Distributions Parameter Associated equation DWR3
Marginal Uw αU Eq. 6 1.735

βU Eq. 6 5.805
Conditional Hs given Uw a1 Eq. 13 0.053

a2 Eq. 13 1.774
a3 Eq. 13 0.671
b1 Eq. 14 0.019
b2 Eq. 14 1.436
b3 Eq. 14 -0.012

Conditional Tp given Uw and Hs c1 Eq. 20 4.509
c2 Eq. 20 0.351
c3 Eq. 20 -0.592
d1 Eq. 21 15.388
d2 Eq. 21 0.679
d3 Eq. 21 -0.556
ϑ Eq. 19 -0.25
γ Eq. 19 1.0
f1 Eq. 23 0.026
f2 Eq. 23 -0.887
f3 Eq. 23 0.012

given Uw and Hs, respectively. They are then used to construct a 3-dimensional sphere in the U
space, with a radius, r, given by365

Φ(r) = 1 − P f = 1 −
1
Ny

(25)

where P f = 1/Ny is the failure probability corresponding to the N-year return period, and Ny is the
total number of 1-hour sea state in N years. By transforming the variables in the U space into the
physical space, we can obtain the environmental contour surface.

The three-dimensional 100-year environmental contour surface of Uw, Hs and Tp is demon-
strated in Fig. 22. Contour lines of Hs and Tp at several different levels of Uw are also shown in370

Fig. 22. From the 100-year environmental contour surface, two particular extreme conditions, i.e.,
one with maximum mean wind speed Uw and the other with maximum significant wave height,
are identified, as given in Table 4. These two extreme conditions have fairly close values in terms
of mean wind speed, significant wave height and peak period. In other words, the maximum mean
wind speed is highly correlated to the maximum significant wave height. This is because the waves375

are mainly generated by local winds and the sea condition is considered as fetch limited. Accord-
ing to Carter (1982) and Tucker and Pitt (2001), the significant wave height and peak period for
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fetch-limited seas in deep water is given by,

Hs = 0.0163
√

L f Uw (26)

Tp = 0.566L f
0.3U0.4

w (27)

where L f is the fetch length in km. The topography shown in Fig. 1 indicates the fetch length is380

limited. The longest fetch length in northwest and east directions are about 20km and 23km, re-
spectively. Therefore, the fetch length calculated from Eq. 26 under these two extreme conditions
agrees well with the values measured from Fig. 1.
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Figure 22: (a)100-year contour surface of Uw, Hs, and Tp. The red dash lines indicate the projection of the condition
with maximum Uw. (b) 100-year contour lines of Hs and Tp under different levels of Uw. The wave steepness criterion
is also plotted by the green dash line. According to DNV GL (2014), the limiting value of average wave steepness is
S p = 2π

g
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p

= 1
15 for Tp ≤ 8s.

Table 4: Environmental conditions on the 100-year and 10000-year contour surface with the maximum Uw or maxi-
mum Hs

Return period Condition Uw [m/s] Hs [m] Tp [s]

100 year
Condition with maximum Uw 26.22 2.05 5.12
Condition with maximum Hs 25.87 2.11 5.22

10000 year
Condition with maximum Uw 31 2.63 5.65
Condition with maximum Hs 30.21 2.66 5.73

The average wave steepness for a short-term sea state is defined as S p = 2π
g

Hs
T 2

p
. According

to DNV GL (2014), the limiting values of S p for peak period Tp ≤ 8s is about S p = 1/15 based385

on measured data from the Norwegian Continental Shelf. This wave steepness criterion is also
24



plotted in Fig. 22(b). Under a low mean wind speed, the 100-year contour lines of Hs and Tp

might slightly exceed the steepness criterion for sea states with small sea states. Two possible
reasons are envisaged for this: one is due to parameter uncertainties in the fitting of raw data by
analytical distributions for small sea states, especially in the estimation of conditional distribution390

of Tp given Uw and Hs; the other one is that the limiting value of wave steepness is developed
mainly for open seas and might not be suitable for the fjord considered since the wind-generated
waves in the fjord considered are strongly affected by limited fetch length and limited duration
especially for small sea states.

Fig. 23 shows the three-dimensional 10000-year environmental contour surface of Uw, Hs and395

Tp and the contour lines of Hs and Tp at several different levels of Uw. The wave steepness criterion
is also plotted in the figure. In general, the 10000-year contour surface and contour lines exhibit
similar trends as the 100-year contour surface and contour lines.

10
0

15

20

32

U
w

 [
m

/s
]

25

30

T
p
 [s]

24

35

H
s
 [m]

16
8 0

(a) Contour surface

0 2 4 6 8

T
p
 [s]

0

0.5

1

1.5

2

2.5

3

H
s
 [
m

]

Uw =  31.00 [m/s]

Uw =  30.21 [m/s]

Uw =  19.71 [m/s]

Uw =  16.23 [m/s]

Steepness criterion

(b) Hs and Tp Contour lines

Figure 23: (a)10000-year contour surface of Uw, Hs, and Tp. The red dash lines indicate the projection of the
condition with maximum Uw. (b) 10000-year contour lines of Hs and Tp under different levels of Uw. The wave
steepness criterion is also plotted by the green dash line.

5. Discussions

5.1. Uncertainty in the joint distribution400

Uncertainties exist in the joint distribution. The main sources of uncertainties are related to the
accuracy of simulated wind and wave data, the amount of data and the model used in this study.

The joint distribution is constructed by using simulated wind and wave data based on hindcast
environmental data. An indication of the accuracy of simulated wave data is obtained in this study
by comparison against field measurements. An overall good agreement is observed with respect to405
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significant wave height. However, the accuracy of simulated wind data is not studied and validated
yet. It can introduce an uncertainty in the joint distribution.

The joint distribution consists of a marginal distribution and conditional distributions. It should
be established by using sufficient long-term wind and wave data in order to reduce the statistical
uncertainty. In this study, about 16-years of simulated wind and wave data are used. It is thus410

inevitable that statistical uncertainty exists, in particular in the fitting of conditional distribution,
because of limited data. This fact can be observed in Section 4. The marginal distribution of mean
wind speed can be well fitted by the two-parameter Weibull distribution, as shown in Fig. 13.
However, due to lack of data in certain wind and wave conditions, fitting of conditional distribution
of Hs given Uw is not accurate for some wind classes, as shown in Fig. 16. Some wind and wave415

classes have to be excluded when estimating the conditional distribution of Hs given Uw and Tp,
as shown in Fig. 18. In addition, the choice of bin size of the environmental parameters affects the
number of samples in conditional distribution, which may cause statistical uncertainty.

Model uncertainty is introduced through the choice of probability distribution types to describe
the marginal and conditional distribution. The two-parameter Weibull distribution is applied to de-420

scribe the marginal distribution of simulated Hs. However, as shown in Fig. 9, a large discrepancy
is observed in the low tail, i.e., for Hs < 0.1m, between the raw data and the analytical Weibull dis-
tribution model. A more suitable analytical distribution model that gives good agreement in both
upper and low tails is not available. Since extreme environmental conditions are of interest in this
study, distribution fitting is thus conducted by concentrating on the upper tail, instead of the whole425

raw data. Large discrepancies are also observed between the raw data and analytical distribution
model when fitting the conditional distributions of Hs given Uw and Tp given Uw and Hs. The
focus is on the upper tail region in the raw data to ensure the accuracy of extreme environmental
conditions.

5.2. Simplified joint distribution of Uw, Hs, and Tp430

Li et al. (2015) proposed a simplified joint distribution of Uw, Hs, and Tp, in which the condi-
tional distribution of Tp given both Uw and Hs is simplified by the conditional distribution of Tp

given only Hs. The simplified joint distribution of Uw, Hs and Tp is written as

fUw,Hs,Tp(u, h, t) = fUw(u) fHs |Uw(h|u) fTp |Hs(t|h) (28)

Such a simplification is reasonable and also applicable for the present study. The determination
of conditional distribution of Tp on Uw and Hs following the method described by Johannessen435

et al. (2002) is very complicated and may cause large statistical uncertainty due to limited data for
conditional probabilities. Moreover, the raw data shown in Fig. 18 indicates that the distribution
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of Tp is mainly dependent on Hs, while its dependency on Uw is limited.
Following the simplified method, 100-year environmental contour surface can be obtained, as

shown in Fig. 24. Contour lines of Hs and Tp at several different levels of Uw are also demonstrated440

in Fig. 24. By comparing the contour surface derived from the simplified joint PDF (Eq. 28) with
that from the complete joint PDF (Eq. 11), it can be found that

• The critical environmental conditions on the 100-year contour surfaces with maximum Uw

or maximum Hs are almost identical by applying the complete and simplified joint PDF. The
difference with respect to environmental parameters is smaller than 1.5%.445

• For a given Uw level, the Tp value at critical conditions that corresponds to the largest Hs is
also very close by using the complete and simplified joint PDF. The discrepancy decreases
with the increase of Uw.

• By applying the complete joint PDF, the shape of contour lines of Hs and Tp for a given Uw

level is skewed towards small Tp for small Hs. This is also observed by Li et al. (2015), due450

to the consideration of dependency of Tp on Uw. Local wind can increase the steepness of
wave, causing a smaller Tp at the same Hs level.
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Therefore, the simplified joint distribution of Uw, Hs, and Tp does not affect the determination
of critical environmental conditions for design. Based on studies by Cheng et al. (2019a, 2018),
dynamic response of a typical extra-long floating bridge is strongly affected by resonant responses,455
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and these dominant response modes have a natural period larger than 7s. That means that the
extra-long floating bridge considered by Cheng et al. (2019a, 2018) is not sensitive to small Tp.
For design of such extra-long floating bridges, the simplified joint distribution can thus be an
alternative method to construct the environmental contour surface. However, if the structure is
sensitive to small Tp, the complete joint distribution should be used.460

5.3. Joint environmental models in a fjord versus open seas

As discussed in the introduction, the long-term joint environmental model in a fjord or strait
differs from that in the open seas, because the waves in a fjord are mainly wind-generated and are
strongly affected by the duration and fetch length. This can be further illustrated by comparing
the joint PDF and contour surfaces of Uw, Hs, and Tp presented in this study for a fjord with those465

given by Li et al. (2015) for open seas. It can be found that

• The joint PDF in a fjord is dominated by environmental conditions with small Hs and Tp,
because they are mainly wind-generated and fetch-limited. However, the joint PDF for open
seas covers a much broader range of Hs and Tp for the dominant environmental conditions.

• The maximum Uw along the contour surface for a fjord is likely to correspond to the max-470

imum Hs, as given in Table 4. However, regarding the contour surface for open seas, the
extreme environmental conditions with maximum Hs and with maximum Uw differs signifi-
cantly, as described by Li et al. (2015).

As a matter of the fact, high correlations exist in the environmental parameters in a fjord.
Table 5 gives the correlation matrix between Uw, Hs, and Tp based on simulated data over about 16475

years. The correlation coefficients between Uw and Hs and between Hs and Tp are both very high,
larger than 0.91. Moreover, since the maximum Uw and maximum Hs occur almost concurrently
for the joint PDF in a fjord, the corresponding sea state is thus likely to cause the largest short-term
extreme response and can be considered as the most critical sea state. This also implies that the
joint PDF in a fjord can consider much fewer sea states in order to identify the most critical sea480

state, compared to the joint PDF for open seas. In general, the ’actual critical sea state’ should be
further verified by considering several sea states around the estimated critical sea state.

Table 5: Correlation matrix of Uw, Hs, and Tp based on simulated data from 2002 to 2017.
Uw Hs Tp

Uw 1 0.915 0.802
Hs 0.915 1 0.924
Tp 0.802 0.924 1
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5.4. Application for design of floating bridges

The developed joint PDF or N-year environmental contour surface of Uw, Hs, and Tp can be
used to predict the long-term extreme responses for ULS design check of floating bridges, based485

on the environmental contour method. The sea state with the maximum Uw or maximum Hs can be
considered as the most critical short-term sea state. The viability of short-term extreme response is
considered by multiplying a correction factor (1.1-1.3) or by using a higher quantile (75-90%) for
the short-term extreme response. The value of correction factor or quantile should be calibrated by
comparison with a full long-term analysis. This calibration process for a cable-supported bridge490

with floating pylons is demonstrated by Xu et al. (2018).

6. Conclusions

Long-term joint distribution of parameters for environmental conditions in a Norwegian fjord
is addressed in this study for design of floating bridges based on numerically simulated wind and
wave data from 2002 to 2017. The joint distribution is expressed as analytical functions in terms495

of mean wind speed Uw, significant wave height Hs and peak period Tp, by assuming sequential
stationary short-term conditions, each with a duration of one hour.

The wind and wave data are numerically generated by using the WRF model and SWAN
model, respectively. The accuracy of simulated wave data is validated by comparison against field
measurements during the period from February 2016 to June 2017. The time series of simulated500

Hs has an overall good agreement with the measured Hs. The marginal distributions of measured
and simulated Hs are similar for large Hs, but differ for small Hs. Uncertainty in the predicted
annual and 100-year extreme values of Hs is also addressed by considering yearly and all data.
Since measured data is limited, simulated data need to be used for analyzing the long-term joint
distribution.505

The parameters for the joint distribution are estimated by fitting the hourly sampled data with
analytical distributions. The marginal distribution of Uw, joint distribution of Hs and Tp, and joint
distribution of Uw, Hs, and Tp are all presented. Based on the joint distribution, the 100-year con-
tour surface of wind and wave parameters are established. The design points, i.e., environmental
conditions with maximum Uw and with maximum Hs, on the 100-year contour surface are also510

suggested for long-term extreme response analysis by using the environmental contour method.
Compared to the joint distribution of Uw, Hs, and Tp for open seas, the joint distribution in a

fjord is dominated by environmental conditions with small Hs and Tp, because they are mainly
wind-generated under limited fetch. The extreme environmental condition with maximum Uw and
with maximum Hs are fairly close for the joint distribution in a fjord.515
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To conclude, the long-term joint distribution of parameters for wind and wave conditions in a
fjord provides a condensed representation of all data from numerical simulation. It also provides
the environmental basis for determining the extreme load effects for ULS and cyclic load effects
for FLS, which are very useful in the design check of floating bridges. However, it should be noted
that in the long-term joint distribution, the wave data only include wind-generated waves and swell520

is not considered.
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Appendix A.

Table A.6: Scatter diagram of measured significant wave height Hs,M and the discrepancy between simulated and
measured significant wave height ∆Hs from Feb. 2016 to June 2017.

Hs,M\∆Hs [-0.5, -0.4] [-0.4, -0.3] [-0.3, -0.2] [-0.2, -0.1] [-0.1, -0] [0, 0.1] [0.1, 0.2] [0.2, 0.3] [0.3, 0.4] [0.4, 0.5] [0.5, 0.6] [0.6, 0.7] Sum
[0, 0.1] 0 0 0 0 238 938 98 29 1 0 0 0 1304

[0.1, 0.2] 0 0 0 165 3147 1375 361 71 11 9 2 1 5142
[0.2, 0.3] 0 0 7 477 851 750 281 103 26 3 1 0 2499
[0.3, 0.4] 0 2 88 222 427 429 225 66 23 2 2 0 1486
[0.4, 0.5] 0 15 45 95 167 176 108 63 26 4 3 0 702
[0.5, 0.6] 0 7 31 30 75 88 85 51 16 3 1 0 387
[0.6, 0.7] 0 3 8 25 43 46 57 23 11 4 0 0 220
[0.7, 0.8] 0 1 1 5 19 27 22 19 7 0 0 0 101
[0.8, 0.9] 0 0 0 3 5 12 15 5 1 0 0 0 41
[0.9, 1.0] 0 0 1 2 0 5 3 1 1 1 0 0 14
[1.0, 1.1] 1 0 2 2 0 2 1 0 0 0 2 0 10
[1.1, 1.2] 0 0 0 1 0 0 0 0 0 0 0 0 1
[1.2, 1.3] 0 0 0 1 0 1 0 0 0 2 0 0 4
[1.3, 1.4] 0 0 0 0 1 0 0 0 0 0 0 0 1
[1.4, 1.5] 0 0 0 0 1 0 0 0 0 0 0 0 1
[1.5, 1.6] 0 0 0 0 0 0 0 0 0 0 0 0 0
[1.6, 1.7] 0 0 0 1 0 1 0 0 0 0 0 0 2
[1.7, 1.8] 0 1 0 0 1 0 0 0 0 0 0 0 2

Sum 1 29 183 1029 4975 3850 1256 431 123 28 11 1 11917
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