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Although there is an extensive tradition of research into the microbes that underlie the
winemaking process, much remains to be learnt. We combined the high-throughput
sequencing (HTS) tools of metabarcoding and metagenomics, to characterize how
microbial communities of Riesling musts sampled at four different vineyards, and
their subsequent spontaneously fermented derivatives, vary. We specifically explored
community variation relating to three points: (i) how microbial communities vary by
vineyard; (ii) how community biodiversity changes during alcoholic fermentation; and (iii)
how microbial community varies between musts that successfully complete alcoholic
fermentation and those that become ‘stuck’ in the process. Our metabarcoding data
showed a general influence of microbial composition at the vineyard level. Two of
the vineyards (4 and 5) had strikingly a change in the differential abundance of
Metschnikowia. We therefore additionally performed shotgun metagenomic sequencing
on a subset of the samples to provide preliminary insights into the potential relevance
of this observation, and used the data to both investigate functional potential and
reconstruct draft genomes (bins). At these two vineyards, we also observed an increase
in non-Saccharomycetaceae fungal functions, and a decrease in bacterial functions
during the early fermentation stage. The binning results yielded 11 coherent bins,
with both vineyards sharing the yeast bins Hanseniaspora and Saccharomyces. Read
recruitment and functional analysis of this data revealed that during fermentation, a
high abundance of Metschnikowia might serve as a biocontrol agent against bacteria,
via a putative iron depletion pathway, and this in turn could help Saccharomyces
dominate the fermentation. During alcoholic fermentation, we observed a general
decrease in biodiversity in both the metabarcoding and metagenomic data. Unexpected
Micrococcus behavior was observed in vineyard 4 according to metagenomic analyses
based on reference-based read mapping. Analysis of open reading frames using
these data showed an increase of functions assigned to class Actinobacteria in the
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end of fermentation. Therefore, we hypothesize that bacteria might sit-and-wait until
Saccharomyces activity slows down. Complementary approaches to annotation instead
of relying a single database provide more coherent information true species. Lastly, our
metabarcoding data enabled us to identify a relationship between stuck fermentations
and Starmerella abundance. Given that robust chemical analysis indicated that although
the stuck samples contained residual glucose, all fructose had been consumed, we
hypothesize that this was because fructophilic Starmerella, rather than Saccharomyces,
dominated these fermentations. Overall, our results showcase the different ways in
which metagenomic analyses can improve our understanding of the wine alcoholic
fermentation process.

Keywords: shotgun sequencing, metabarcoding, wine, microbial diversity, alcoholic fermentation

INTRODUCTION

Microbial interactions are vital to the winemaking process,
with numerous different microbes known to be involved in
the formation of wine flavor and aroma. Understanding this
microbial diversity and their interactions throughout the process
stands to enhance our knowledge of winemaking and wine
complexity (Tempère et al., 2018). Although research on wine
microbes has a long history (Pasteur, 1872), many significant
challenges remain to be solved, not least due to difficulties
in studying the composition of wine’s complex matrix. In this
regard, there is considerable interest in the application of high-
throughput sequencing (HTS) tools such as metabarcoding and
shotgun metagenomic sequencing to wine research, given their
potential to offer us more in-depth characterization of the
microbial community (Belda et al., 2017; Stefanini and Cavalieri,
2018; Sirén et al., 2019).

Questions that have received considerable attention include
the origin of yeasts that drive the fermentation, and how different
microbes shape the fermentation (Fleet, 1990, 2003; Pretorius,
2000; Bisson et al., 2017; Varela and Borneman, 2017). However,
the answers to these questions are not clear cut. For example,
it remains debated as to whether sufficient Saccharomyces
cerevisiae is present in the vineyard (thus entering the must
during pressing) to drive fermentation (Martini, 1993). This
question is particularly timely today, given the trend to return
to spontaneous fermentation during winemaking, for reasons
relating to both typicality as well as arguments that spontaneously
fermented wines gain in complexity due to the more diverse
microbial interactions (Di Maro et al., 2007). Furthermore, the
relative importance of the vineyard versus winery flora during
fermentation remains inconclusive, and little is known about
how the two interact with each other. While some authors have
suggested that the main contributors to fermentation originate
from the vineyard flora (Bokulich et al., 2014, 2016; Morrison-
Whittle and Goddard, 2018), others argue that the winery flora
dominates (Stefanini et al., 2016; Ganucci et al., 2018).

A further topic of interest is the dynamics of the microbial
community during the alcoholic fermentation. While alcoholic
fermentation is known to result from a succession of various
microbes, with Saccharomyces eventually dominating, details
about the timing and abundances of different microbes

remain of interest (Stefanini et al., 2016). It is currently
understood that while microbial diversity decreases during
the winemaking process (Bisson et al., 2017), some microbes
can survive (Torija et al., 2001; Romano et al., 2003), such
as the yeast Metschnikowia pulcherrima (Díaz et al., 2018)
and some bacteria such as Lactobacillus, Lactobacillaceae, and
Gluconobacter (Bokulich et al., 2015; Piao et al., 2015). Although
traditionally how the different microbial species interact has been
studied using culture-based techniques, they are increasingly
targeted using culture-independent methods (Jolly et al., 2014;
Bagheri et al., 2017; Sternes et al., 2017; Morgan et al., 2018;
Zepeda-Mendoza et al., 2018).

Another area of growing interest relates to the role of
spontaneous fermentation. Because this is driven principally
by non-Saccharomyces yeasts, spontaneous fermentations are
regarded as being able to diversify aromatic quality (Zott
et al., 2011; Liu et al., 2016). However, their use remains
intimidating for the industry, as they can lead to unwanted
characteristics (Ciani et al., 2006), and sluggish, or even stuck,
fermentations (Bisson, 1999; Bisson and Butzke, 2000). While the
main reason for sluggish fermentation is often nutrient related,
additional microbial interactions could play a role, for example,
by reducing nutrient availability. Recently, metabarcoding data
have been used to suggest that high species richness (including
the presence of non-Saccharomyces yeasts) in must samples can
negatively affect the capability of Saccharomyces to carry out the
fermentation (Boynton and Greig, 2016). If so, the addition of
sulfur (SO2) to the harvested grapes or must might be a means
to allow desired winery microbes to dominate, by removing
competition originating from unwanted vineyard microbes.

Although there is an increasing trend to apply HTS tools
to study wine microbiology, with few exceptions these have
been amplicon-based “metabarcoding” approaches that enable
community profiling (e.g., as varied by geography, regions,
Botrytis) as reviewed extensively by Belda et al. (2017) and
Stefanini and Cavalieri (2018). Thus, there is considerable interest
in profiling the whole genomic content using true metagenomic
approaches, in the hope that they will also provide information
about the functional pathways involved (Sirén et al., 2019). In this
regard, there are currently only two shotgun sequencing-based
metagenomic studies of wine fermentation published (Sternes
et al., 2017; Zepeda-Mendoza et al., 2018). The first investigated
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the bias between metagenomics and metabarcoding in assessing
community structures, while the second characterized the impact
of the inoculations of Oenococcus oeni and Brettanomyces
bruxellensis on volatile phenol formation.

Given the potential of HTS for investigating microbial
community and interactions, and metagenomics in providing
insights into genomes and genes together with their functional
potential (Sirén et al., 2019), in this study, we combined
metabarcoding and metagenomic sequencing in order to
investigate two principal questions relating to spontaneously
fermented (i.e., not deliberately inoculated) must. First, we
explored how the fermentation microbial community differs as
a result of vineyard, and secondly, how the microbial diversity
changes during the fermentation process itself. Specifically,
we chose to spontaneously ferment must samples originating
from four Riesling vineyards in Pfalz (Germany). While
most of the samples completed alcoholic fermentation, several
exhibited sluggish fermentation. Thus, this also provided us
with the opportunity to also explore the microbial basis of
this phenomenon.

MATERIALS AND METHODS

Fermentation Set Up and Sample
Collection
A fermentation experiment was carried out with grapes from
four Riesling vineyards in the Pfalz wine region of Germany in
Autumn 2015, in order to investigate spontaneous fermentation
dynamics, i.e., fermentation derived solely from vineyard, rather
than winery, microbes. From each commercial vineyard (each
also has a different owner), 8 kg of grapes were handpicked
following a random pattern throughout the vineyard into
autoclaved sterile flat plastic bags (Neolab). These were sealed
inside the vineyards and later processed at the Institute for
Viticulture and Oenology, Dienstleistungszentrum Ländlicher
Raum Rheinpfalz, Neustadt an der Weinstraße, Germany.
The microvinifications were carried out in sterile conditions
under a laminar flow hood, to restrict fermentation to only
those microbes present in the vineyards. After crushing and
pressing, the must from each vineyard was left in 3 L sterile
autoclaved Erlenmeyer flasks (Duran, Germany) for overnight
sedimentation at 4◦C. After settling, must was racked into
duplicate 1 L autoclaved Erlenmeyer flasks (Duran, Germany)
and secured with silicone bungs attached to distilled water
filled airlocks. Sample collection was done over 4 different days
during alcoholic fermentation, with 4.5 mL of fermenting must
collected at each timepoint for subsequent DNA analysis (total
32 extracts, Table 1), and 40 mL collected for monitoring of
the fermentation by measuring various wine parameters (alcohol,
density, total sugar, glucose, fructose, glycerol, titratable acidity,
pH, tartaric acid, malic acid, lactic acid, citric acid, volatile
acid, glycerol, yeast assimilable nitrogen, primary amino nitrogen
(NOPA), and ammonium with routine FTIR analysis (WineScan
FT120, FOSS Electric)]. Furthermore, the alcohol percentage
was estimated by dividing the product of measured alcohol
(g/mL) and sample density (g/mL) by 10 times the density

of ethanol (g/mL). In general, estimation of the fermentation
progress through changes in density or alcohol concentration is
complicated without continual monitoring of the must. However,
it has been observed that continuous monitoring can potentially
expose must to contaminating microbes (Ocón et al., 2013; Pérez-
Martín et al., 2014; Grangeteau et al., 2015), and therefore, we
chose instead to sample four times during the fermentations.
Details of samples and measured wine parameters are shown in
Supplementary Table S1.

DNA Extraction
Prior to DNA extraction, each sample, was centrifuged at
4500 × g for 10 min, after which the supernatant was removed
and the pellet resuspended with 1 mL of ice-cold 1X PBS
(pH 7.4, Life Technologies, Camarillo, CA, United States). The
resuspended samples were washed twice with 1 mL of ice-
cold 1X PBS to remove debris. The pellets were subsequently
stored at −20◦C until DNA extraction. DNA extractions were
performed as described in a parallel study (Mak et al., in
review), with the use of FastDNA Spin Kit for Soil (MP
Biomedical, Santa Ana, CA, United States) following the
manufacturer’s protocol with minor modifications. In brief,
pellets were bead-beaten twice at 30 Hz for 40 s using a
TissueLyser II (Qiagen, Hilden, Germany), with cooling step
on ice for 2 min in between bead-beating steps. In the elution
step, 105 µL of 1X TET buffer (1X TE buffer in 10 mM
Tris-HCl, 1 mM EDTA, pH 8.0, Sigma–Aldrich, and 0.05%
Tween 20, Sigma–Aldrich) was added to the filter column
then incubated at 55◦C for 5 min before elution. DNA was
subsequently subjected to an extra purification step using a
DNA Clean and ConcentratorTM-5 (Zymo Research, Irvine,
CA, United States), and eluted in a final volume of 55 µL
of 1X TET buffer. DNA extracts were quantified using a
Qubit 1.0 fluorometer with dsDNA High Sensitivity Assay kit
(ThermoFisher Scientific). An extraction blank was included for
every 16 samples.

qPCR
Prior to metabarcoding PCRs, we used quantitative real-time
PCR (qPCR) to both estimate the number of copies of the
region, thus determine the number of PCR cycles, and to identify
whether PCR inhibitors were present in the DNA extracts. For
both qPCR and metabarcoding, we used fusion primers targeting
the fungal internal transcribed spacer 2 region (ITS2, ITS7_F
from Ihrmark et al., 2012 and ITS4_R from White et al., 1990),
each containing an exclusive 8 bp multiplex identifier tag (MID
tag) and MiSeq sequencing adapters.

Each qPCR reaction consisted of a 25 µL reaction volume
containing 2 µL of template and 23 µL of mastermix containing
1X GeneAmp R©10X PCR Buffer II (Applied Biosystems,
United States), 2.5 mM MgCl2 (Applied Biosystems,
United States), 0.8 mg/mL bovine serum albumin (BSA),
1 µL SYBR Green (Invitrogen, Carlsbad, CA, United States),
0.25 mM dNTPs, 0.4 µM forward primer, 0.4 µM reverse
primer, 0.25 µL AmpliTaq Gold DNA polymerase (Applied
Biosystems, United States), and 14.5 µL AccuGene molecular
biology water (Lonza). qPCR conditions were as follows: 95◦C

Frontiers in Microbiology | www.frontiersin.org 3 April 2019 | Volume 10 | Article 697

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-00697 April 8, 2019 Time: 16:4 # 4

Sirén et al. Shotgun and Metabarcoding Riesling Vineyards

for 5 min, followed by (95◦C for 30 s, 52◦C for 30 s, and
72◦C for 45 s) for 45 cycles, and a final dissociation curve
of 1 cycle of 95◦C for 1 min, 55◦C for 30 s, and 95◦C for
30 s. PCRs were performed using a MX3005 qPCR machine
(Agilent). Standard curves with duplicates were generated
using a 10-fold serial dilution (101–109 copies/µL) of PCR
products generated by DNA from Cortinarius hinnuleoarmillatus
with the same primer set. Positive controls and negative
controls were included.

PCR and Metabarcode Sequencing
We applied metabarcoding to all DNA extracts. Extraction
blanks, positive controls, and PCR negative controls were
included to monitor for contamination. Metabarcoding PCRs
were based on the same mastermix as that used in the qPCR,
except replacing 1 µL SYBR Green (Invitrogen, Carlsbad,
CA, United States) with 1 µL AccuGene molecular biology
water (Lonza, Switzerland). PCRs were carried out in AB

2720 Thermal cycler (Applied Biosystems, United States)
with the following conditions: 95◦C for 5 min, followed
by 33 cycles of 95◦C for 30 s, 52◦C for 30 s, and 72◦C for
45 s, and a final elongation step of 72◦C for 10 min. PCR
products (∼480 bp) were visualized by electrophoresis using
2% agarose gels, then subsequently pooled together with
amplicons derived from a parallel study (Mak et al., in review)
into three amplicon pools. Amplicon pools were subsequently
purified with QiaQuick columns (Qiagen) following the
manufacturer’s protocol to remove primer dimers. An aliquot
of each amplicon pool was used for quantification and size
estimation using the High-Sensitivity D1000 Screen Tape for
Agilent 2200 TapeStation (Agilent). Lastly, purified amplicon
pools were sent for sequencing in two flow cells on the
Illumina MiSeq platform in 250 bp paired-end mode at The
Danish National High-Throughput DNA Sequencing Centre,
Copenhagen, Denmark. This dataset comprised two-third of a
MiSeq flow cell.

TABLE 1 | Summary of samples analyzed.

No. Sample name Metagenomic
sample ID

Vineyard Biological
replicate

Sampling date Alcohol percentage

1 w2a109 2 a 09-Oct 0.5

2 w2b109 2 b 09-Oct 1.3

3 w3a109∗ W1 3 a 09-Oct 1.5

4 w3b109 3 b 09-Oct 6

5 w4a109∗ W3 4 a 09-Oct 1

6 w4b109 4 b 09-Oct 1

7 w5a109 5 a 09-Oct 0.22

8 w5b109 5 b 09-Oct 0.14

9 w2a112 2 a 12-Oct 1.11

10 w2b112 2 b 12-Oct 1.62

11 w3a112∗ W2 3 a 12-Oct 5.65

12 w3b112 3 b 12-Oct 9.51

13 w4a112∗ W4 4 a 12-Oct 4.93

14 w4b112 4 b 12-Oct 1.79

15 w5a112∗ W7 5 a 12-Oct 0.87

16 w5b112∗ W9 5 b 12-Oct 1.49

17 w2a114 2 a 14-Oct 1.13

18 w2b114 2 b 14-Oct 1.99

19 w3a114 3 a 14-Oct 8.18

20 w3b114 3 b 14-Oct 10.64

21 w4a114∗ W5 4 a 14-Oct 8.44

22 w4b114 4 b 14-Oct 2.16

23 w5a114∗ W8 5 a 14-Oct 3.85

24 w5b114∗ W10 5 b 14-Oct 4.86

25 w2a120 2 a 20-Oct 1.65

26 w2b120 2 b 20-Oct 3.66

27 w3a120 3 a 20-Oct 11.41

28 w3b120 3 b 20-Oct 11.85

29 w4a120∗ W6 4 a 20-Oct 12.34

30 w4b120 4 b 20-Oct 3.47

31 w5a120 5 a 20-Oct 10.5

32 w5b120 5 b 20-Oct 10.34

Each sample name can be used to identify the vineyard name (first two characters), biological replicate (a or b), and the sampling date in 2015 (last two numbers).
∗Samples selected for metagenomic sequencing.
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Shotgun Library Construction and
Metagenomics Sequencing
We additionally generated shotgun metagenomic data on a subset
of ten of the samples. These were chosen as samples exhibiting
normal fermentation rate, with a focus on varying alcohol levels
(especially in early fermentation stages), different vineyards, and
given the fungal diversity observed during the metabarcoding.
Metagenomic sequencing (Table 1 and Supplementary Table S2)
was performed with BGISeq technology (Fang et al., 2018),
although with a customized library build. The DNA extracts
were initially fragmented to around 300 bp using a Bioruptor
300 (Diagenode, Belgium) using 10 cycles of 30 s on and 90 s
off. The DNA was then converted into indexed sequencing
libraries using the Blunt End Multi Tubes (BEMT) protocol
(Supplementary File S1), following an initial comparison of
the performance of different library construction methods on
DNA extracted from ferment samples (Supplementary File S1
and Supplementary Figure S5). Library blanks and index
PCR blanks were included; 30 µL (input amount: <0.3–
6.6 ng) of each sample was used for each library constructions
(Supplementary Table S2) and 2 µL of 10 µM BGI 2.0
adapters (Supplementary Table S3) were added to each sample
in the adapter-ligation step. Each library was quantified using
qPCR post-construction in order to determine the appropriate
number of PCR cycles to subject each to. This was done using
a MX3005 qPCR machine (Agilent) with the forward primer
and one indexed reverse primer. Post-qPCR, each library was
subsequently PCR amplified and indexed with different indices
and purified for residual adapter dimers using SPRI beads
(Sigma–Aldrich) in 1.5X beads:library ratio with incubation
at 37◦C for 10 min and eluted in 50 µL. All libraries were
then sent to BGI-Europe for sequencing, where they were
pooled in equimolar concentrations for circularization, DNA
nanoballs (DNBs) construction, and sequencing on the BGISeq-
500 platform over four lanes in 100 bp pair-ended mode.

Sequencing Data Analysis
Metabarcoding Sequencing Analysis
Metabarcoding sequence analyses were performed following
the pipeline described in Feld et al. (2016), although with
modifications in trimming, post-clustering, and the use of
databases. Raw reads were merged and demultiplexed using
vsearch v2.1.2 (Rognes et al., 2016). Cutadapt v1.11 (Martin,
2011) was used for removal of adapters and primers. Reads
smaller than 100 bp were trimmed with vsearch, followed by
dereplication. Singletons and chimeras were filtered using the
UPASE pipeline (Edgar, 2013), and the reads were clustered
to operational taxonomic units (OTUs) with the command –
cluster_otus. Reads were mapped back (including singletons) to
the filtered clusters with 99% similarity using usearch v9.0.2132
(Edgar, 2010) in order to create the OTU table, then subjected
to the post-clustering algorithm LULU (Frøslev et al., 2017) as
implemented in R v3.4.1. Filtered OTUs were then aligned with
the reference UNITE+INSD database released on 2017.12.01
(UNITE Community 2017) for taxonomic assignment to genus
level, with 97% identity threshold, 70% coverage in BLAST

using QIIME v1.9.1 (Caporaso et al., 2010) with a modified
assign_taxonomy.py script. OTUs that did not obtain taxonomic
assignment in the above were labeled as “No blast hit.”

Metabarcoding data were analyzed using phyloseq (McMurdie
and Holmes, 2013) framework in R (v3.4.0). OTUs with fewer
than 10 reads (Werner et al., 2012; Oliver et al., 2015) and
samples with fewer than 1000 reads were discarded for further
analyses. Furthermore, OTUs with “No Blast Hit” were also
removed from analyses. The α-diversity was evaluated with
relative abundances and Hill numbers (Hill, 1973). Hill numbers
were calculated using q-values between 0 and 3 with 0.001
intervals (Alberdi and Gilbert, 2019). The resulting matrix was
decomposed with principal components analysis (PCA), with
retention of the first principal component as a measure of the
overall effect of α-diversity. The variance of the Hill numbers was
additionally retained for visualization. Heatmap visualization and
clustering were done on variance stabilized transformed (Anders
and Huber, 2010) count data using DESeq2 (Love et al., 2014)
with hierarchical clustering using weighted linkage (WPGMA)
(Sokal and Michener, 1958) on Pearson correlation. Furthermore,
differential abundances and corresponding log2 fold changes
and adjusted p-values were found using DESeq2 (Love et al.,
2014). DESeq function parameters were set as following: test type:
“Wald”; fittype: “parametric.” Significant differences between
relative abundances were controlled by setting false discovery
rate (FDR) at 5% using the method by Benjamini and Hochberg
(1995). OTUs whose abundances differed significantly between
vineyards were visualized with letter-value boxplots (boxenplots)
(Hofmann et al., 2017) of the raw count data.

Metagenomic Data Analyses
The metagenomic data analysis consisted of two stages. In the
first stage, the raw sequence reads were analyzed individually
for each sample. In the second stage, a binning approach was
used, where analyses were performed on the total sequence data
from each of the two vineyards (specifically vineyard 4 and
vineyard 5). This was used to specifically explore for differences
in the microbial communities relating to alcoholic fermentation
or vineyard of origin.

For all analyses, the qualities of all paired-end reads were
checked using FastQC (Andrews, 2010), both before and
after adapter removal using Trim Galore (Krueger, 2012) and
Cutadapt (Martin, 2011), with the following parameters: default
Phred score: 20 and cutoff for read length: 40 bp for filtering.
All reads containing “N” were also filtered and the filtered reads
were subsequently merged to compile with IDBA-UD (Peng
et al., 2012) for sequence assembly. MEGAHIT v1.0.4 (Li et al.,
2016) was then used for sequence assembly, with metagenomic
parametrization for either individual samples (Stage 1) or binning
by individual vineyards (Stage 2).

For taxonomic assignment of the trimmed metagenomic
reads, a curated database was constructed using the genomes
of 130 relevant species, including eukaryotes and bacteria. This
database is similar to, but expanded on, that used in a previous
study (Sternes et al., 2017) (Supplementary Table S4B). These
sequences were obtained from NCBI and used to construct a
custom Kraken database. Relative abundances were obtained by
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mapping using Kraken v.1.0 (Wood and Salzberg, 2014) and
Braken (Lu et al., 2017). Further data analysis was performed
in R v.3.4.4 with phyloseq (McMurdie and Holmes, 2013) and
other custom scripts. The Kraken mapped reads that were higher
than 0.00001 relative proportion were retained for clustering
which was done on Pearson correlation similarities using affinity
propagation (Frey and Dueck, 2007; Bodenhofer et al., 2011).
A general workflow to assess the most suitable number of clusters
was started by setting the exemplar preferences value high,
which led to a very large number of clusters. Application of
agglomerative clustering on the resulting affinity propagation
clusters allowed an inspection of the corresponding dendrogram.
Based on the dendrogram, a cutoff was manually decided and
affinity propagation was rerun repeatedly to achieve the desirable
number of clusters. Prodigal (Hyatt et al., 2012) was used to
predict the open reading frames (ORFs), with parameterization
for metagenomes of individual samples (Stage 1), or binned
by samples per vineyard (Stage 2), as detailed above. In order
to perform the functional analysis, the ORFs were then used
as an input for eggNOG (Powell et al., 2014), to obtain KO
(KEGG Orthology) assignments and Clusters of Orthologous
Groups (COGs) as functional annotations. The unique KOs
generated for each sample individually were combined using
custom Python and R scripts and were used to create a matrix
of total 8744 KO, which were combined in a matrix with unique
412 pathways according to KEGG for all samples together. The
KO pathway enrichment analysis was done using the following
packages: Biostrings (Pagès et al., 2017), ggplot2 (Wickham,
2016), reshape (Wickham, 2007), KEGGREST (Tenenbaum,
2018), lattice (Sarkar, 2008), apcluster (Frey and Dueck, 2007;
Bodenhofer et al., 2011), BioServices (Cokelaer et al., 2013), and
pandas (McKinney, 2011).

For the binning approach (Stage 2), assemblies were
performed with MEGAHIT on the pooled data from vineyards 4
and 5, respectively, in order to create their corresponding contig
files. Next, the trimmed sequences from the data pre-processing
steps for each sample were mapped to their corresponding
vineyard assembled contigs files using the bwa-mem algorithm
v0.7.15 (Li, 2013). The mapped sequences were subsequently
cleaned of PCR duplicates using samtool v1.6 (Li et al., 2009)
and exported as BAM files for binning. Binning was subsequently
performed and the output was visualized with the metagenomics
workflow1 in Anvi’o v5.1’s interactive interface (Murat Eren et al.,
2015). Each assembled contig was used to create corresponding
Anvi’o contig databases using the default settings. The databases
were then run under HMMER v3.1.b2 (HMMER, 2015) for
sequence searching using hidden Markov models (HMMs), and
genes were annotated with functions from the NCBI’s COGs
(Galperin et al., 2015) using command anvi-run-ncbi-cogs.
The genes in the contig database were classified using Kaiju
v1.5.0 (Menzel et al., 2016), with NCBI’s non-redundant protein
database including fungi and microbial eukaryotes. Each of the
sample bam files derived from a single vineyard was profiled with
their corresponding annotated contigs database, with minimum
contig length set to 2500 nt using the command anvi-profile, then

1http://merenlab.org

merged to generate bins using CONCOCT as implemented in
Anvi’o. Bins with completeness ≥40% and redundancy ≤10%
were retained for analysis (Delmont et al., 2015). Abundance
of the reads was estimated in terms of percentage of read
recruitment. This was calculated by the mean coverage of each
split in each bin with normalization of all bins respect to each
other in each sample. For functional assignment of the bins, 6394
KOs were generated when combining the 11 bins, which resulted
in 411 unique pathways.

All figures, except those from Anvi’o were visualized using
ggplot2 (Wickham, 2016), Matplotlib (Hunter, 2007), and
Seaborn (Waskom et al., 2017), with further post-processing
done in Inkscape v0.912. The sequencing data were deposited to
European Nucleotide Archive under study number: PRJEB30801
and ERS3017411-ERS3017414, ERS3017423-26, ERS3017435-38,
ERS3017447-50, ERS3017459-62, ERS3017471-74, ERS3017483-
86, ERS3017495-98 in study number: PRJEB29796.

RESULTS

Eight different Riesling musts, containing four vineyard specific
microbial compositions, were allowed to ferment spontaneously.
While most of the samples underwent alcoholic fermentation
following the expected timeline (Supplementary Table S1),
three exhibited sluggish (henceforth referred to as “stuck”)
fermentation behavior. Specifically, these needed 6 months
(data not shown) to finish the fermentation, as opposed
to the 5 weeks time needed by the others (Figure 1A).
Furthermore, no malolactic fermentation was observed
(Supplementary Table S1).

Metabarcoding was performed by amplifying the ITS2
gene for the 32 extracts (four sampling dates for the eight
samples). Prior to subsequent analysis, one extract (sample
w4b112 representing the stuck fermentation behavior group)
was removed due to yielding fewer than 1000 reads. In total,
2.79 million reads were generated yielding 105 OTUs, although
after all filtering this was reduced to 2.75 millions reads
representing 72 OTUs that were retained for subsequent analyses
(Supplementary Table S5).

A total of 1.6 billion raw reads was generated from the 10
shotgun metagenomic sequenced samples, of which 1.5 billion
were retained after adapter removal. Details of the number of
reads per sample and the percentage that mapped to the curated
database are shown in Supplementary Table S4.

Overall Community Differences
Overall, while the metabarcoding results clearly show that
Saccharomyces drives the alcoholic fermentation (given their
abundance among the data), we observed three main drivers
of sample clustering that relate to the microbial composition.
First, there were differences in fermentation behaviors; second,
there were differences between the four vineyards; and third there
were clear differences relating to the stage of fermentation as
expressed as alcohol percentage (Figure 2). Given these results,

2https://inkscape.org/
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FIGURE 1 | Fermentation performance of the samples. Triangles represent stuck behavior samples and circles represent normal behavior samples. (A) Most
samples showed normal alcoholic fermentation, three samples stood out with a slower fermentation speed, and showed a preference for fructose instead of
glucose. Color scale represents fructose (g/L). (B) A zoom in of stuck behavior samples between fermentation days 13–26. Starmerella was found to be the highest
in relative abundance in these samples in ITS2 metabarcoding data. Color scale represents the proportion of Starmerella. (C) The glycerol concentration was higher
in these stuck behavior samples when less than 20 g/L of fructose remained. The gray dots represent the actual measured values.

we therefore explored three principal questions. First, we used
our metabarcoding and metagenomic data to explore how the
microbial communities vary between vineyards. Second, we
investigated how different stages within alcoholic fermentation
impact the microbial biodiversity. This was done using both
the metabarcoding data from all the samples, as well as the
metagenomic data generated from a subset of samples chosen so
as to give more detailed preliminary insights into the longitudinal
effect at two of the vineyards. Third, we used the metabarcoding

data to investigate how the microbial community profile differs
between the normal and stuck fermentations.

Differences Between Vineyards
The differences between the four vineyards were initially
investigated by metabarcoding all samples for the ITS2 region
(Figure 2). Pairwise comparisons of the vineyards indicated
that the microbial community of vineyard 2 diverged most
from the three other vineyards, with the differential abundances
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FIGURE 2 | Microbial diversity and predominant genera explain the sample differences using ITS2 metabarcoding. (A) Clustered heatmap depicting the 20 most
abundant species. Clustering is mainly driven by fermentation performance. Color scale represents species relative abundances transformed to Poisson
dissimilarities. (B) Differential abundance of OTUs in log2 fold change by the fermentation performance: normal fermentation (pink) and stuck fermentation (purple).
Four OTUs are found to be significantly more abundantly expressed in normal fermentations, whereas two OTUs are found significantly more abundantly expressed
in stuck fermentations. (C) The relationship of alcohol percentage and α-diversity was measured as a first principal component of decomposed Hill numbers with
q-values between 0 and 3, for all samples is found to decrease and vary more with rising alcohol percentage. The size of dots increases with the increase in Hill’s
number variance. The gray scale corresponds to alcohol percentage. (D) Vineyards were studied with pairwise comparisons of differentially expressed abundances
across all time points. Line between vineyards indicates a significant difference between the pairwise comparison.

of four fungal OTUs clearly standing out (Figure 2D). First,
Botrytis (3: p-adj = 3.51e-7, 4: p-adj = 1.68e-3, 5: p-adj = 1.76e-
5) and Saccharomyces (3: p-adj = 4.00e-8, 4: p-adj = 1.78e-
4, 5: p-adj = 5.81e-5) were found to be significantly lower
in vineyard 2. Besides the lower abundance of Saccharomyces,
the vineyard 2 was also showcased a slower fermentation rate
(Supplementary Tables S1, S5). Second, Starmerella was found
at higher abundance in vineyard 2 than vineyard 5 (p-adj = 4.21e-
06). Lastly, Metschnikowia was found to be significantly less
abundant in vineyard 2 than vineyard 5 (p-adj = 1.39e-09) and
vineyard 3 (p-adj = 7.56e-05). Thus, vineyard 2 was found to
be the most different as it differentiated from the others with
3 known fermenting yeast genera and the grape bunch rot
(Figure 2D). The only significant difference was found when
comparing the other vineyards was between vineyards 4 and 5,
where one OTU, Metschnikowia (p-adj = 3.50e-4), was found at

significantly higher concentrations in vineyard 5 (Figure 2D).
Since the differences among vineyards 3, 4, and 5 were minimal
in metabarcoding, in order to investigate further, we chose
a subset of samples from these three vineyards for a further
metagenomic analysis. We were able to further explore this
specific difference of Metschnikowia between vineyard 4 and
vineyard 5 using the metagenomic data derived from samples
from vineyards 4 (W3 and W4) and 5 (W9 and W10) that
were taken at similar fermentation stages as estimated by alcohol
percentage (Figure 3 and Supplementary Table S2). Annotating
reads to the curated taxonomy database showed that samples
with lower alcohol percentage had a lower percentage of mapped
reads (W3: 15.33% and W9: 34.98%) compared to those with
higher alcohol percentage (W4: 77.69% and W10: 50.54%)
(Supplementary Table S4A). This suggested that the curated
database was performing better in annotating higher alcohol
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FIGURE 3 | The visualization of mean coverage of genome bins in samples W3 and W4 in vineyards 4 (left), and W9, W10 in vineyard 5 (right) using Anvi’o and their
corresponding alcohol percentages during fermentation (middle; blue square: vineyard 4; orange cross: vineyard 5). GC-content, length of each contig, and
taxonomy classified by Kaiju were displayed in adjunct layers. Each sample is represented in a separate layer, and each bar inside the sample layer corresponds to a
datum computed for a given split, where contigs longer than 20k bp were divided to different splits. The outermost layer was the bin layer, where corresponding
colors linked with the taxonomy of each bin. Vineyard 4 with 4333 contigs (minimum length: 2500 nucleotides, total nucleotides: 27.29 Mbp) that represented 4% of
all contigs and 36% of all nucleotides found in the vineyard 4 contigs database (93,546 contigs and total nucleotides: 74.84 Mbp). Vineyard 5 with 5364 contigs
(minimum length: 2500 nucleotides, total nucleotides: 53.01 Mbp) that represented 5% of all contigs and 50% of all nucleotides found in the vineyard 5 contigs
database (92,948 contigs and total nucleotides: 105.44 Mb). The hierarchical clustering of contigs based on the sequence composition and their sample distribution
were used for the dendrograms at the center of Anvi’o visualization. More bin details are shown in Supplementary Table S6.

percentage samples, thus, failing to catch species in the start of
the fermentation. We reasoned that a gradual database curation
alone would not cure the low annotation problem. Therefore, we
resorted to functional annotation and binning-based approaches,
which complement the raw reads recruitment approach as they
do not rely on the same database.

Next, a functional comparison of the microbes at these two
vineyards was performed using the COG classification derived
from eggNOG annotation. The count number of bacterial
functions was significantly higher in vineyard 4, whereas the
vineyard 5 had a small increase of Saccharomycetaceae functional
count and a significant increase of the “other fungus” functional
count (Supplementary Figure S1). In order to further explore
this non-Saccharomycetaceae group, and to validate if this
corresponded to the presence of Metschnikowia species (as
observed with metabarcoding), binning was applied with the aim
of reconstruction of draft genomes.

Figure 3 shows an overview of the binning results, and
the comparison of the differences between vineyards 4 and 5
corresponding with regards to alcohol levels. From vineyard
4, five genomic bins were obtained by assembly and binning.
These varied in size between 1.87 and 9.78 Mbp, with

completeness varying from 44.8–94.96%, and redundancy in 0–
10% (Supplementary Table S6). For vineyard 5, six genomic bins
were found. These varied in sizes between 2.34 and 12.3 Mbp,
with completeness ranging 54.22–97.84% and redundancy in
0.72–9.35% (Supplementary Table S6). These vineyards had
two yeast and two bacterial bins (Hanseniaspora, Saccharomyces,
unresolved Actinobacteria, and Pelomonas) assigned to same taxa
by annotating the genes to the NCBI’s non-redundant protein
database. Furthermore, vineyard 4 also had a unique unresolved
bacterial bin, while vineyard 5 was found to have two additional
bins: one for the non-Saccharomyces yeast Metschnikowia, and
another one for the bacteria Bradyrhizobium (Figure 3 and
Supplementary Table S6).

As expected in the functional analysis, differentiation was
found between fungi and bacteria in the form of two distinct
clusters (Supplementary Figure S2). Moreover, for both clusters,
we found a high functional similarity between the same species
coming from different vineyards.

The abundance of Hanseniaspora reads was found to be higher
in samples W3 (72.0%) and W9 (44.2%) in vineyards 4 and 5,
respectively, which had alcohol levels of ca. 1%. At the next
time point sampled (equivalent to around 4% alcohol level), we
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observed a decrease in relative abundance: W4 (8.2%) and W10
(22.8%) (Figure 3 and Supplementary Table S6). Furthermore,
Saccharomyces drastically increased by 27-fold in vineyard 4
and threefold in vineyard 5, between the 1–4% alcohol level
(Supplementary Table S6). This indicated the beginning of
its early dominance in alcoholic fermentation. Of the other
non-Saccharomyces yeasts solely found in vineyard 5 bins,
Metschnikowia exhibited a similar trend to Hanseniaspora, with a
reduction in its amount corresponding to the increase in alcohol
level (Supplementary Table S6).

Interestingly, it was observed that a higher total number
of bacterial related contigs, as well as the percentage of read
recruitment, was obtained while a lower number of genes
was identified in vineyard 4 than vineyard 5 (Supplementary
Table S6). This might be due to a greater bacterial diversity
in vineyard 4 than vineyard 5. Additionally, a decreasing trend
in percentage of recruitment of all bacterial genomic bins was
observed together with the increase in alcohol level in vineyard
4. This followed the observation in the previous subsection with
the increase of Saccharomyces activity. The Metschnikowia bin
had 97 unique KOs, with 14 of those characterized as NADH
dehydrogenase belonging to oxidative phosphorylation.

Alcoholic Fermentation Biodiversity
We explored the effect of alcohol level on microbial biodiversity
using both the metabarcoding and metagenomic datasets (See
Supplementary Tables S4, S5 for details). Overall biodiversity
was found to decrease during alcoholic fermentation. Specifically,
the α-diversity, estimated using decomposed Hill numbers,
clearly decreased with the fermentation progress (as measured in
alcohol percentage) in both the metabarcoding (Figure 2C) and
metagenomic datasets (Figure 4A). Interestingly, the variance
of Hill numbers generated and the α-diversity was found
to increase with metagenomic filtered reads (Figure 4A and
Supplementary Table S4), suggesting increased species diversity.
This observation was further examined by focusing the analysis
on a single vineyard (vineyard 4), using the shotgun metagenomic
data generated at the four different alcoholic fermentation stages
(W3–W6, Figure 4 and Supplementary Table S2). The assigned
taxonomies were generated by mapping reads from these samples
to the curated taxonomy database used in the above subsection
for metagenomic analysis (Supplementary Table S4B). In order
to identify microbes that followed similar trajectories across the
fermentation, affinity propagation clustering was applied on the
relative abundances of species using Pearson correlation.

Five clusters were found (Figure 4B), and more in-
depth investigation was shown in Supplementary Figure S3.
The first contained species which showed an increase in
their abundances during the fermentation (S. cerevisiae)
(Supplementary Figure S3A). This principally implied that they
were growing and active during fermentation. A cluster that
included Vitis vinifera, Botrytis cinerea, and Erysiphe necator also
showed a slight decrease at the end of alcoholic fermentation
(Supplementary Figure S3B). This indicated that they were
relatively stable during the fermentation progress, while the
relative abundance shifts might relate to sequencing effects
and cell/DNA degradation which is quite understandable for

grapevine DNA. The other two grape mold species in the same
cluster can be deduced as originating from the same effect
based on this unsupervised clustering of Pearson correlation.
A third, ambiguous, cluster showed a drastic decrease from the
start, and no further increase until the end of fermentation
(Supplementary Figure S3C). Hanseniaspora dominated in this
cluster, that mainly consisted of non-Saccharomyces yeasts that
also acted similarly (Supplementary Figure S3C). This suggested
that these species were active in the early fermentation, but
perished as the fermentation progressed. The fourth cluster
showed a drastic decrease followed by an increase during the end
of wine fermentation (Supplementary Figure S3D). This group
was found to consist of both bacteria and fungi. We note that the
bacteria found in this group belong to families that have been
observed to relate to potential contamination originating from
the commercial DNA extraction kit (Salter et al., 2014) – although
others have also reported them to be found in grapes and wine
(Liu et al., 2017). The relative abundances of the final (fifth)
cluster that principally contained Micrococcus remained in some
samples unchanged, and decreased in others during the initial
phases of fermentation, before increasing and ending up higher
than the abundances at the start of fermentation (Figure 4C).

As the fifth cluster showed unexpected behavior, further
investigation was performed through functional analysis on the
ORFs obtained with the metagenomic sequencing. Using the
eggNOG taxonomic annotation, we separated each sample based
on functions derived from fungi, bacteria, virus, opisthokonts,
and other eukaryotes. The majority of the observed functions
derived from fungi and bacteria (Figure 4D). A high number
of functional counts that belonged to bacteria were observed at
both the start and end of the fermentation; however, functional
counts for fungi remained similar (Figure 4D). Therefore, the
bacteria were further investigated by categorizing these genes
to different COGs. The eggNOG functional classes allowed
investigation of gene functional categories of selected microbial
groups (Figure 4E). We observed a significant increase of
bacterial functions in the first and last time points, where
the last time point ended up higher than in the start of
fermentation. A high portion of the genes could not be
resolved and were assigned with unknown function. The
read recruitment on five genomic bins yielded from assembly
and binning were also investigated. The reads mapped to
Hanseniaspora and Saccharomyces bins were found to alter as
observed with α-diversity during fermentation. When looking
into the relative abundance of recruited reads, a bin assigned
to unknown Actinobacteria was observed to be increased in
abundance in the last sampling date of the fermentation. This
bin had 1969 genes identified with a 82.01% completeness
and 0.72% redundancy [1.87 total size (Mb) and 319 contigs]
(Supplementary Table S6).

In order to compare the level of fungal cells between
samples, we performed qPCR targeting the ITS2 gene. Our data
indicate that the overall level of fungal cells was lower in stuck
samples (Supplementary Figure S4). We subsequently used
the metabarcoding data to explore the microbial community
differences between the stuck versus normally behaving
ferments. Differential abundance analysis of the data enabled
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FIGURE 4 | (A) Alcohol percentage and relationship to α-diversity of metagenomic sequenced samples of mapped reads show a decrease in α-diversity while
gaining again in the end of fermentation. The α-diversity is shown as a first principal component of decomposed Hill numbers with q-values between 0 and 3. Color
indicates change in variances of log10 fold Hill numbers. (B) A heatmap using pairwise clustering of mapped reads assigned to species. The assigned taxonomies
generated from mapping to raw reads of the four samples from vineyard 4 to a curated database were clustered to observe patterns using affinity propagation of
Pearson correlation similarities of the mapped reads assigned to species. Five clusters were found with corresponding cluster exemplars (blue: Saccharomyces
cerevisiae, orange: Erysiphe necator, green: Micrococcus luteus, red: Candida albicans, purple: Yarrowia deformans). (C) Lineplots of the fifth clustered group of
Micrococcus in B show that these mapped reads assigned to species decrease during alcoholic fermentation, but also start increasing again in the end. (D) An
overview of functional analysis of different groups: bacteria, eukaryotes, opisthokonts, other fungi, Saccharomycetaceae, and viruses based on the read counts in
vineyard 4 during alcoholic fermentation. Bacterial gene counts are observed to be most affected by the stage of fermentation, while other groups remain stable.
(E) An overview of the changes in the bacterial functions to orthologous groups (COG) in vineyard 4. The COG groups are C: energy production and conversion, E:
amino acid transport and metabolism, G: carbohydrate metabolism and transport, L: replication, recombination, and repair, P: inorganic ion transport and
metabolism, and S: function unknown. (F) The relative abundance of binned read recruitment of Anvi’o results. The size of dot increases with the increase in
percentage of recruitment. The Saccharomyces bin is observed to grow during fermentation, while the unknown Actinobacteria bin is observed to increase in the
end of fermentation.

us to identify six OTUs that showed significant differences
between the two phenotypes. In particular, two OTUs (a
Starmerella species and an unknown fungal OTU) were
significantly more abundant in the stuck samples (Figure 2B).
The normal ferments contained a significantly higher abundance
of four Ascomycete OTUs, of which three subsequently
were classified to Saccharomycetales order (Saccharomyces,
Metschnikowia, unknown Saccharomycetales OTU), while the
fourth remained unresolved. For stuck samples, the relative
abundance of Starmerella species was observed to increase
in each sampling time relating to longitudinal direction
(Figure 1B), whereas Saccharomyces tended to dominate the
normal fermentation behavior phenotype. Chemical analyses
identified several interesting observations on the stuck samples.
First, the fermentation speed was slower, and all fructose was
consumed before glucose. Second, the glycerol concentration
was observed to be higher in these samples than in the normal
performing samples, when investigating the samples with
less than 20 g/L of fructose (Figure 1C). This suggests that
the microbial community in the stuck samples preferably
consumed fructose over glucose when the fungal amount in the
community was lower.

DISCUSSION

Our application of metabarcoding and shotgun metagenomic
sequencing techniques to spontaneous Riesling ferments from
four German vineyards enabled us to shed new insights
into a number of questions of relevance to winemaking.
Although we find regional differences and that of biodiversity
decreases throughout wine fermentation in general, such findings
are observed in other amplicon sequencing-based approaches
(Stefanini et al., 2016; Belda et al., 2017). Thus, we here discuss
in further detail some of the other findings.

While Metagenomic Approaches
Complement Metabarcoding Data by
Providing Preliminary Insights Into
Functional Analysis, Some Caveats May
Be Warranted
Although both metabarcoding and metagenomic approaches
showed that Metschnikowia drove the difference between
vineyards 4 and 5, caveats may be needed when interpreting the
results. First, while the two sequencing methods offer broadly
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similar information, differences in relative abundances do exist.
One key difference is similar to that previously suggested in
the first shotgun sequencing paper applied to wine samples,
where a Metschnikowia abundance bias was found between
shotgun analysis and ITS2 marker gene, with ITS2 marker
gene overestimating (Sternes et al., 2017). Further research and
comparisons of relevant methodologies and workflows will be
needed to investigate such different bias further.

Another well-known shortcoming of HTS-based approaches
relates to limitations with current reference databases. It has
been long acknowledged that ITS and other fungal marker
gene regions have limited potential for resolving species
identity (Scorzetti et al., 2002; Stefanini and Cavalieri, 2018),
and metagenomic reference databases face similar challenges
when assigning taxonomic labels to metagenomic DNA
sequences. For example, we found that several Saccharomyces
species besides S. cerevisiae were mapped in our data, namely,
Saccharomyces paradoxus and Saccharomyces pastorianus
(Supplementary Table S4B). Since previous studies have
reported that S. paradoxus is rarely found in wine fermentations
(Sicard and Legras, 2011; Knight et al., 2018), and there is a close
evolutionary relationship between S. cerevisiae and S. paradoxus
(Borneman and Pretorius, 2015), it is possible that our mapping
to S. paradoxus is an artifact driven by close sequence homology
(Naumova et al., 2005). In order to overcome the database
problems, we applied functional analysis and binning strategies
to metagenomic data, to make the results less dependent on
only a single database. Although our preliminary metagenomic
data have small sample sizes, further studies could benefit by
implementing multiple approaches.

Furthermore, for wine studies, multiple challenges exist as
most of the metagenomic algorithms and annotations are built
for prokaryotes, and some included archaea instead of eukaryotic
taxa (West et al., 2018). We see this particularly with the assembly
of overlapping reads into continuous or semi-continuous genome
fragments and the results from the completeness of binning.
Additionally, the taxonomic assignments to genus level are not
particularly satisfying with regard to obtaining useful insights
into the fermentation process, thus, resolution to species or even
strain level is needed. Studies on bacterial communities have
shown this is possible in theory, although challenging (Papudeshi
et al., 2017; Segata, 2018). For yeasts and other eukaryotes, more
work is particularly needed, as multiple species or strains may be
included in a contig due to current challenges in distinguishing
between related community members in both the assembly
and binning processes (Imelfort et al., 2014; Luo et al., 2015;
Parks et al., 2017).

Although by complementing our metabarcoding data with
metagenomic information we were also able to provide
preliminary functional insights, such analyses are also not
devoid of their challenges. This is predominantly due to the
relatively poor state of annotation for most bacterial and fungal
genomes. Thus, while the potential benefits of (meta)genomic
analysis are clear, inference is still based on a rather shaky
foundation. We observe this with the Metschnikowia bin, which
was found to have multiple unique functions for NADH
dehydrogenases which were mapped to human diseases in KEGG,

due to its oxidative phosphorylation (Schägger and Ohm, 1995).
However, these functions for NADH dehydrogenase relate to
iron metabolism/electron transport/respiration, which have been
suggested to be up-regulated by the MarR-like protein PchR in
the pulcherriminic acid biosynthetic pathway of Bacillus subtilis
(Randazzo et al., 2016). Similarly to B. subtilis, M. pulcherrima
is known to synthesize pulcherriminic acid by utilizing the
iron in the growth medium and causing antimicrobial activities
(Randazzo et al., 2016; Gore-Lloyd et al., 2018). This ability is
suggested to be the main reason for the role of M. pulcherrima
as a biocontrol agent against other non-Saccharomyces in wine
(Oro et al., 2014). Additionally, this antagonistic behavior has
been found to extend to bacteria in a study using culturing
(Sipiczki, 2006). In our study, a higher number of bacterial
genes, although a lower total number of bacterial related
contigs, were identified in vineyard 5 compared to vineyard 4
(Supplementary Table S6). This could help to create a less diverse
environment for Saccharomyces to dominate and complete
the alcoholic fermentation easier (Boynton and Greig, 2016).
Therefore, although our metagenomic analysis is preliminary
and clearly limited by the small sample sizes, we believe they
provide evidence that there will be a value in incorporating such
approaches to complement metabarcoding and help advance
wine fermentation knowledge.

Although Microbial Biodiversity During
Alcoholic Fermentation Generally
Decreases, Metagenomic Sequencing
Reveals That Actinobacteria Increase in
Relative Abundance
Although we observed in both our metabarcoding and
metagenomic data a decline in microbial biodiversity during
alcoholic fermentation, one previous metabarcoding study
reported that some bacteria become relatively more abundant (in
reads count) in the later stages of fermentations (Bokulich et al.,
2015). In general, lactic acid bacteria and acetic acid bacteria are
well known to be able to thrive after the alcoholic fermentation.
Consistent with this, we noticed in our metagenomic data from
vineyard 4 an increase in reads relating to the class Actinobacteria
during the later fermentation stages, both when recruiting the
read results to binned data, and in the functional assignments
(Figures 3, 4). Mapping of the raw reads to the curated taxonomy
database tentatively suggested these have a relationship with the
Micrococcus genus. Bacteria from the class Actinobacteria have
been previously observed in wines, in particular Rieslings (Piao
et al., 2015) although without further interpretation (Bokulich
et al., 2013; Marzano et al., 2016; Portillo and Mas, 2016), and
Micrococcus has been previously isolated from beer (Priest,
1999), cheese (Fontana et al., 2010), and other fermented foods
where it is known to be able to influence the final product. This
can happen through its ability to both produce and degrade
biogenic amines through amino acid decarboxylases (Voigt and
Eitenmiller, 1977; Leuschner et al., 1998) as well as, produce
volatile sulfur compounds (Bonnarme et al., 2000). However,
we emphasize that we were not able to map the binned data to

Frontiers in Microbiology | www.frontiersin.org 12 April 2019 | Volume 10 | Article 697

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-00697 April 8, 2019 Time: 16:4 # 13

Sirén et al. Shotgun and Metabarcoding Riesling Vineyards

a more detailed taxonomic level, thus are only confident on the
classification of this particular bin to the class level.

The dynamic changes of the community composition during
fermentation could affect the detection threshold of the above
Actinobacteria, which plays a key role in the unique functional
counts. It is widely known that Saccharomyces dominate the
microbial community during alcoholic fermentation, and that
the total microbial biodiversity decreases. These two patterns
could be driven by two possible explanations. First, due to the
proportional increase of Saccharomyces to other microbes – given
that we maintained a relatively constant sequencing depth across
the samples, we may well be missing less abundant microbes
(such as bacteria). As a result, a big decline in abundance
and identified functions of bacteria would be observed when
Saccharomyces levels are at their peak (Figure 4F). A second
explanation could be that the observed decline in bacteria is
the actual biological behavior, for example, if bacteria enter a
survival mode with drastically decreased activity alongside the
rapid growth of Saccharomyces. Toward the end of alcoholic
fermentation, the activity of Saccharomyces slows down and
provides space for the growth of bacteria. This possibility is
supported by the observed functions of other groups, such as
opisthokonts, and other eukaryotes, where no clear decline is
observed but rather a steady identification rate of their functions
across the fermentation (Figure 4D). Additionally, we cannot
rule out the phenomenon of spurious correlation that is a well-
known potential occurrence in compositional data, therefore
with bigger sample sizes, a more in-depth analysis to the pairwise
associations could be applied. Yet, we cannot rule out that
the potential functionality and the change in abundance of
the actual species is a real observation, although we could not
relate this to the specificities in bacterial potential functionality,
as most of the annotations remained unresolved (Figure 4E).
The behavior was unlike the one observed for the cluster
containing V. vinifera. Clearly, further validation through multi-
omic studies with larger sets of samples would be useful for
exploring this further.

Starmerella and Stuck Fermentation
Behavior
Both our metabarcoding and chemical analyses also showed
that the samples with stuck fermentation behavior during
alcoholic fermentation associated with both the presence of
fructophilic Starmerella and absence of Saccharomyces (Figure 1
and Supplementary Figure S4). These findings are consistent
with those from previous studies in which Starmerella (synonym
Candida zemplinina) had been investigated because of its known
fructophilic characters, aroma profile as well as lower ethanol
production, and elevated glycerol contents (Giaramida et al.,
2013; Ciani and Comitini, 2015; Masneuf-Pomarede et al., 2015).
Based on inoculation studies, it has been shown that Starmerella
has a reduced rate of fermentation (Aponte and Blaiotta, 2016)
and requires S. cerevisiae to finish the alcoholic fermentation
(Masneuf-Pomarede et al., 2015). Indeed, the lower amount
of fungal cells found in the samples instead of the abundant
Starmerella might better explain the sluggish fermentation rate

(Supplementary Figure S4). In addition to providing the first
HTS-based insights into this, our results provide the first
evidence of these characteristics in samples taken from natural
winemaking environments. Our dataset also enabled us to
observe that samples with more Starmerella had reduced levels
of Botrytis. This is intriguing given that Starmerella was isolated
for the first time from sweet botrytized wines with high fructose-
glucose ratio (Sipiczki, 2004; Csoma and Sipiczki, 2008). Thus, we
suggest that further investigation into the relationships between
Starmerella and other fungal genera using HTS techniques
may be of interest, as specific links between Starmerella and
winemaking environment have not currently been established
(Masneuf-Pomarede et al., 2015).

CONCLUSION

In summary, we demonstrate the power of HTS-based
tools in characterizing microbial community differences
and fermentation population dynamics. For instance, we
found that Metschnikowia drove the difference between two
vineyards during alcoholic fermentation, we revealed the
increase of Actinobacteria relative abundance, and that the
stuck fermentation behavior during alcoholic fermentation was
associated with both the presence of Starmerella and absence of
Saccharomyces. While both metagenomic and metabarcoding
approaches were found to deliver similar results, the former
provides a more in-depth understanding given it offers an
untargeted taxonomical analysis, as well as enabling insights at
the functional level. Ultimately as other such studies appear,
we anticipate that the HTS-based tools will catalyze significant
further future wine microbial research.
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FILE S1 | Shotgun library construction method comparison.

FIGURE S1 | Absolute counts of functions with taxonomy separation from
eggNOG results with the top 6 groups included: bacteria, eukaryotes (without
fungi), opisthokonts, other fungus, family Saccharomycetaceae, and virus.
Functions compared between vineyard 4 (W3 and W4) and vineyard 5 (W9 and
W10) show abundances and differences caused mainly by two groups: bacteria
and a collective group of “other fungus and Saccharomycetaceae.”

FIGURE S2 | Heatmap visualization of the drafted genomic bins in vineyard 4 (v4)
and vineyard 5 (v5) assigned with unique 6394 KEGG Orthology annotated
functions using affinity propagation with Pearson correlation on the presence and
absence table. Cluster colors are based on unsupervised clustering from
affinity propagation.

FIGURE S3 | Affinity propagation clustering of mapped taxa using Pearson
correlation in metagenomic data of vineyard 4. (A) The species which had an

increase of their abundance during the fermentation were grouped to cluster 1.
(B) Second cluster included Vitis vinifera, Erysiphe necator, and Botrytis cinerea.
(C) Third cluster was wine related yeasts driven cluster dominated with
Hanseniaspora uvarum. The cluster shows a decrease from the start and no
further increase until the end. (D) Fourth ambiguous cluster with
yeast and bacteria.

FIGURE S4 | Metabarcoding performance. Sample read numbers from
metabarcoding mapped against ITS2 gene copy numbers with samples colored
and shaped according to fermentation behavior. The data show that samples with
stuck fermentation behavior had the lowest amounts of both reads and ITS2 gene
copy numbers. Blue triangle: stuck fermentation behavior, orange circle: normal
fermentation behavior.

FIGURE S5 | Mean Ct values (±standard deviation) from qPCR of three extraction
methods in different sample types. n = 5 for ferment, while n = 2 for other. Colors
correspond to the three methods: dark gray: BEST, light gray: BEMT, gray:
NEBNext. Refer to Supplementary File S1 for more details.

TABLE S1 | Details of samples and measured wine parameters.

TABLE S2 | Summary of selected 10 samples used in metagenomic sequencing.

TABLE S3 | BGI 2.0 adapters sequences.

TABLE S4 | (A) Summary of metagenomic sequencing data generated. The
classified reads and unclassified reads were mapped to a curated database using
Kraken and Bracken. (B) The relative abundance of number of mapped reads to
each taxon in curated database per sample found in at least once.

TABLE S5 | An overview of OTUs assignment per sample using
ITS2 metabarcoding.

TABLE S6 | (A) Summary of binning details and (B) percentage of recruitment for
the metagenomic data of vineyards 4 and 5. Percentage of recruitment
summarizes the mean coverage of each split in each bin, and normalize every bin
with respect to each other. It is critical to remember that these values do not take
the unassembled data into account.
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