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Abstract:
The design of a model-based control method for an Artificial Pancreas requires a relatively
simple and identifiable mathematical model to control glucose levels through hormone delivery.
In this work we introduce new, simple nonlinear models to simulate data from experiments
where insulin boluses are administrated in the peritoneal cavity. The models account for the
delay between insulin administration and its nonlinear transport to other compartments. They
were calibrated using experimental data from pigs. The results show that the suggested models
are able to describe the data well, with average BIC value of 145. Moreover, the new models
were compared with a common linear model which was not able to describe the data well, with
BIC value of 920. They were also compared with a common nonlinear model which failed to
represent insulin increases in the data and had BIC value of 637. Finally, profile likelihoods were
applied for assessing the identifiability of one of the new models.
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INTRODUCTION

An Artificial Pancreas (AP) system must control the blood
glucose level by administrating insulin doses. This can be
done using model-based control, but the choice of control
model and identification procedure is challenging, since
glucose-insulin dynamics are nonlinear and they typically
vary between subjects and also over time in each subject
[Bianchi et al. (2019); Toffanin et al. (2019)].

Several models have been proposed to simulate the nonlin-
ear dynamics of blood glucose. Some of them are not used
for control purposes due to their mathematical complexity
and lack of practical identifiability, e.g. Cobelli’s model
[Cobelli et al. (1982)], the UVA/Padova model [Dalla Man
et al. (2014)], etc. Moreover, using large complex models
does not assure better performance in closed-loop systems
[Bianchi et al. (2019)].

On the other hand, simple linear models cannot repre-
sent the nonlinear time-varying dynamics of glucose and
insulin. Also, linear models describing insulin-dependent
glucose removal in principle allow for negative concentra-
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tions [Farina and Rinaldi (2011)], which does not reflect
physical reality. Moreover, models without compartments,
as the two dimensional Ackerman’s linear model [Yipintsoi
et al. (1973)], cannot account for the delay between insulin
administration and its transport to the circulatory system
(blood), which is crucial for subcutaneous or intraperi-
toneal (IP) insulin infusions.

Candas and Radziuk (1994) proposed a simple nonlin-
ear model (an extension of Bergman’s minimal model
[Bergman et al. (1979)]) to design a plasma glucose con-
troller. For this simple model they consider insulin com-
partments and that insulin-dependent glucose removal is
proportional to plasma glucose concentration, obtaining
in this way a positive nonlinear system. This model was
designed for intravenous insulin infusions and an exten-
sion for subcutaneous infusions was presented as well.
But none of them can account for nonlinear transport
between insulin compartments, which might be necessary
to appropriately represent IP insulin infusions.

In this work, we propose two simple nonlinear models for
glucose-insulin dynamics. These are based on Ackerman’s
linear model [Yipintsoi et al. (1973)] and Candas and
Radziuk model [Candas and Radziuk (1994)], but novel
features were added to better represent nonlinear dynam-
ics and experimental data from IP insulin administrations.
Our approach proposes using compartments to represent
the delay associated with transport of insulin administered
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in the IP cavity to the circulatory system. Moreover,
we use power-law kinetics [Crampin et al. (2004); Voit
et al. (2015)] to account for nonlinear transport of insulin
between two compartments. The use of power-law allows
for modeling of a wide range of kinetics assuming that
chemical reactions rates can be represented with products
of variables raised to non-integer powers.

In Section 1, we present a modified version of Ackerman’s
linear model [Yipintsoi et al. (1973)] that accounts for
insulin compartments and power-law kinetics for insulin
transport rates. However, this model is not yet positive.

In Section 2, a nonlinear positive system is introduced.
This model was obtained from adapting the model of-
Candas and Radziuk (1994) to account for intraperitoneal
insulin infusions. Power-law kinetics were used as well to
describe nonlinear insulin transport rates.

The two new models were calibrated using data from
experiments with pigs, where insulin boluses were adminis-
trated in the IP cavity [Dirnena-Fusini et al. (2019)]. Data
collection and the parameter estimation technique used
are reported in Section 3. The results obtained after the
calibration are presented in Section 4.

Ackerman’s linear model and the model of Candas and
Radziuk were also calibrated using the experimental data,
but the results show that these models cannot represent
delays and/or nonlinear transport of insulin (see Appen-
dices A and B). Furthermore, the new models fit data
with BIC (Bayesian Information Criterion) values lower
than those of Ackerman’s linear model and Candas and
Radziuk model.

In Section 5, parameter profile likelihoods for the model
introduced in Section 2 were carried out. The results show
that, from a set of 9 parameters, 8 are identifiable and
only 1 is practically non-identifiable. Finally, in Section
6 we discuss and give some conclusions about the new
approach here presented.

1. A NONLINEAR COMPARTMENTAL
MODIFICATION OF ACKERMAN’S MODEL

In this section we propose a simple nonlinear model
for simulating glucose-insulin dynamics. The model was
inspired by Ackerman’s linear model [Yipintsoi et al.
(1973)], to which we add two important features. The first
one is the delayed transport of insulin from the IP cavity
to the circulatory system. The second one is the nonlinear
transport of insulin between compartments.

Ackerman’s linear model has been used to model blood
glucose and plasma insulin responses during slow intra-
venous infusions of insulin [Yipintsoi et al. (1973)]. But in-
travenous injections of insulin provides more rapid increase
in plasma insulin concentration, compared to intraperi-
toneal and subcutaneous infusions [Schade et al. (1979)].
As a consequence, Ackerman’s linear model cannot repre-
sent the delay for the increase in blood insulin levels when
infusions are made in the IP cavity (see Figure A.1).

In order to represent delayed transport of insulin, we
consider that insulin goes through three different compart-
ments: 1) the IP cavity, 2) an intermediate compartment
(IC) between the IP cavity and the circulatory system, and

3) the blood circulatory system (CS). The intermediate
compartment can be interpreted as the insulin released
from the IP cavity that will be absorbed by the capillaries
to go to the circulatory system. Other analogous intraperi-
toneal insulin absorption kinetics can be considered, e.g.
assuming different compartments within the IP cavity as
in Matsuo et al. (2003).

Moreover, there is evidence from data [Dirnena-Fusini
et al. (2019)] that the transport rate of insulin from the IP
cavity to CS might be nonlinear and dependent on insulin
doses. In this work, this nonlinearity has been represented
using the power-law for reaction kinetics [Crampin et al.
(2004); Voit et al. (2015)].

Therefore, we propose the following modified version of
Ackerman’s model:

dG

dt
= −m1 ·G(t)−m2 · I(t) + j · J(t) (1)

dI

dt
= −m3 · I(t) +m4 ·G(t) +m5 · [i1(t)]p

di1
dt

= −m6 · i1(t) +m7 · i2(t)
di2
dt

= −m8 · i2(t) + k ·K(t),

where G denotes blood glucose concentration, I blood
insulin concentration in CS compartment (minus a basal
value), i1 and i2 are insulin transport rates from the
IC compartment and the IP cavity, respectively. J(t)
and K(t) are nonnegative functions representing the rate
of exogenous glucose infusion and insulin bolus input,
respectively.mi, j and k are positive parameters depending
on the individual, and p is a real number characteristic
of the individual as well. Notice that in type 1 diabetes
cases, the parameter m4 can be set to 0, since there is
not endogenous insulin production in response to increased
glucose levels [Yipintsoi et al. (1973)].

The modified Ackerman’s model (1) here proposed repre-
sents accurately the data obtained from experiments with
pigs, where insulin boluses were administrated in the IP
cavity (see Figure 1 and Table 1).

However, system (1), as well as Ackerman’s linear model,
is not a positive system [Farina and Rinaldi (2011)]. Then,
parameters to fit data must satisfy that variables do not
attain negative values. This constraint is omitted with the
model proposed in the following section, which is a positive
nonlinear model.

2. A SIMPLE NONLINEAR POSITIVE MODEL WITH
POWER-LAW KINETICS

In Candas and Radziuk (1994) a nonlinear model used for
designing a plasma glucose controller is presented. This
model already proposes to consider insulin compartments.
However, it was used for glycemic control using intra-
venous and subcutaneous injections of insulin. To adapt
the model to intraperitoneal insulin boluses, the insulin
input K(t) has to be set in the appropriate compartment.
Thus, we consider insulin compartments as in Section 1
and that the insulin input is located in the IP cavity
compartment.

Assuming that insulin-dependent glucose removal is pro-
portional to glucose concentration, Candas and Radziuk
obtained a system that is nonlinear and positive. However,
the model does not allow to represent nonlinear transport
between insulin compartments. As in the preceding Section
1, we have used power-law kinetics to represent nonlinear
transport of insulin.

We define the following model, based on the model of
Candas and Radziuk (1994), to represent data of intraperi-
toneal insulin administration:

dG

dt
= −[k0 + k1 · I(t)] ·G(t) + j · J(t) (2)

dI

dt
= −a1 · I(t) + a2 · [i1(t)]p

di1
dt

= −a3 · i1(t) + a4 · I(t) + a6 · i2(t)
di2
dt

= −a6 · i2(t) + a5 · i1(t) + k ·K(t),

where G is the blood glucose concentration, I the blood
insulin concentration in CS compartment (minus a basal
value), i1 and i2 are insulin transport rates from the IC
compartment and the IP cavity, respectively. J(t) and
K(t) are nonnegative functions representing the rate of
exogenous glucose infusion and insulin administrated in
the IP cavity, respectively. ai, j, k, k0 and k1 are positive
parameters depending on the individual, and p is a real
number depending on the individual as well.

Note 1. Bergman’s minimal model adapted for type 1
diabetes is similar to the model presented in Candas and
Radziuk (1994), but it accounts for less insulin compart-
ments [Bergman et al. (1979); Chee and Fernando (2007)]

3. DATA COLLECTION AND METHODS

Systems (1) and (2) were calibrated using data from ex-
periments with pigs [Dirnena-Fusini et al. (2019)]. Each
experiment was carried out in about 8 hours. Blood glucose
levels were measured at least every 5 minutes from intra-
venous blood samples. Glucose was intravenously infused
at constant rate (8 g/h) during all the experiment, except
for Pig 1 in which glucose infusion was readjusted based
on blood glucose samples analyzed during the experiment
(mean rate 7.72 g/h).

Insulin boluses were introduced in the IP cavity. Insulin
and porcine insulin were measured from intravenous blood
samples. Porcine insulin and glucagon endogenous produc-
tion were neglected for modeling, since they were sup-
pressed by a combination of octreotide and pasireotide
during the experiments [Dirnena-Fusini et al. (2019)].

Insulin levels were measured with ELISA kits (Mercodia,
Sweden). For the insulin analysis kit used, 6 mU/L is
equivalent to 1 pmol/L.

Note 2. An analysis of a larger data set of these experi-
ments is going to be published later on.

Parameter estimation for each model was carried out us-
ing the Nelder-Mead algorithm to minimize the sum of
squared errors between the model and data. The fmin-
search tool was used in Scilab (www.scilab.org) to obtain
a minimum of the cost function

F (θ) =
∑
t∈TG

[BGA(t)−G(t, θ)]2 +
∑
t∈TI

[IM(t)− I(t, θ)]2,

where θ is the vector of parameters to be estimated,
BGA(t) and IM(t) represent the data of blood glucose
analysis and insulin measured, respectively, TG and TI are
the time sets at which glucose and insulin were measured,
respectively, and G(t, θ) and I(t, θ) are state variables of
the model with the parameters in θ.

In order to compare the accuracy of the models after
parameter estimation, we compute the BIC (Bayesian
Information Criterion) values [Burnham and Anderson
(2004)] for each model.

4. RESULTS

After parameter estimation, the new models (1) and (2)
here proposed gave sound results to approximate glucose-
insulin dynamics (see Figures 1-2 and Tables 1-2). Both
models efficiently represent the delayed and nonlinear
transport of insulin from the IP cavity to the blood
circulatory system.

For the parameter sets obtained using experimental data
(see method in Section 3), the average BIC values of
systems (1) and (2) are 147.21 and 143.18, respectively.

Ackerman’s linear model [Yipintsoi et al. (1973)] and
the model proposed in Candas and Radziuk (1994) were
also calibrated using data from Pig 1 (see Appendices A
and B). However, their approximations of data are less
accurate than those obtained with the new models (1) and
(2) (see Figures A.1-B.1 and Tables A.1-B.1).

The BIC values of Ackerman’s linear model and the model
of Candas and Radziuk are 919.58 and 631.16, respectively.
In conclusion, we obtained that BIC values of the new
models (1) and (2) are significantly lower than those of
Ackerman’s linear model and the model of Candas and
Radziuck

Note 3. In Figures 1,2, A.1 and B.1, the values for Insulin
IC and Insulin IP rates are normalized with respect to
Insulin CS state values.

Table 1. Parameters estimated for system (1)
and BIC values for each subject (see Figure 1).
Parameter m4 representing endogenous insulin

production was assumed to be zero

Parameter Pig1 Pig 2 Pig 3 Units

m1 4.21 14.69 26.13 1/d
m2 2.67 8.43 23.18 mol/(d.U)
m3 49.51 36.99 4.66 1/d
m5 0.16 0.0017 0.0098 mU/(L.d1−p)
m6 173.06 659.87 69.15 1/d
m7 290.35 460.30 106.84 1/d
m8 237.66 119.95 115.50 1/d
j 0.86 2.13 6.00 h.mol/(d.L2)
k 13329 23123 16319 1/(U.d2)
p 2.25 2.71 1.95 -

BIC 209.62 49.26 182.74

5. PARAMETER IDENTIFICATION

Although systems (1) and (2) give similar approximations
of the data, system (2) has lower BIC values in average.



	 Claudia Lopez-Zazueta  et al. / IFAC PapersOnLine 52-26 (2019) 219–224	 221

Assuming that insulin-dependent glucose removal is pro-
portional to glucose concentration, Candas and Radziuk
obtained a system that is nonlinear and positive. However,
the model does not allow to represent nonlinear transport
between insulin compartments. As in the preceding Section
1, we have used power-law kinetics to represent nonlinear
transport of insulin.

We define the following model, based on the model of
Candas and Radziuk (1994), to represent data of intraperi-
toneal insulin administration:

dG

dt
= −[k0 + k1 · I(t)] ·G(t) + j · J(t) (2)

dI

dt
= −a1 · I(t) + a2 · [i1(t)]p

di1
dt

= −a3 · i1(t) + a4 · I(t) + a6 · i2(t)
di2
dt

= −a6 · i2(t) + a5 · i1(t) + k ·K(t),

where G is the blood glucose concentration, I the blood
insulin concentration in CS compartment (minus a basal
value), i1 and i2 are insulin transport rates from the IC
compartment and the IP cavity, respectively. J(t) and
K(t) are nonnegative functions representing the rate of
exogenous glucose infusion and insulin administrated in
the IP cavity, respectively. ai, j, k, k0 and k1 are positive
parameters depending on the individual, and p is a real
number depending on the individual as well.

Note 1. Bergman’s minimal model adapted for type 1
diabetes is similar to the model presented in Candas and
Radziuk (1994), but it accounts for less insulin compart-
ments [Bergman et al. (1979); Chee and Fernando (2007)]

3. DATA COLLECTION AND METHODS

Systems (1) and (2) were calibrated using data from ex-
periments with pigs [Dirnena-Fusini et al. (2019)]. Each
experiment was carried out in about 8 hours. Blood glucose
levels were measured at least every 5 minutes from intra-
venous blood samples. Glucose was intravenously infused
at constant rate (8 g/h) during all the experiment, except
for Pig 1 in which glucose infusion was readjusted based
on blood glucose samples analyzed during the experiment
(mean rate 7.72 g/h).

Insulin boluses were introduced in the IP cavity. Insulin
and porcine insulin were measured from intravenous blood
samples. Porcine insulin and glucagon endogenous produc-
tion were neglected for modeling, since they were sup-
pressed by a combination of octreotide and pasireotide
during the experiments [Dirnena-Fusini et al. (2019)].

Insulin levels were measured with ELISA kits (Mercodia,
Sweden). For the insulin analysis kit used, 6 mU/L is
equivalent to 1 pmol/L.

Note 2. An analysis of a larger data set of these experi-
ments is going to be published later on.

Parameter estimation for each model was carried out us-
ing the Nelder-Mead algorithm to minimize the sum of
squared errors between the model and data. The fmin-
search tool was used in Scilab (www.scilab.org) to obtain
a minimum of the cost function

F (θ) =
∑
t∈TG

[BGA(t)−G(t, θ)]2 +
∑
t∈TI

[IM(t)− I(t, θ)]2,

where θ is the vector of parameters to be estimated,
BGA(t) and IM(t) represent the data of blood glucose
analysis and insulin measured, respectively, TG and TI are
the time sets at which glucose and insulin were measured,
respectively, and G(t, θ) and I(t, θ) are state variables of
the model with the parameters in θ.

In order to compare the accuracy of the models after
parameter estimation, we compute the BIC (Bayesian
Information Criterion) values [Burnham and Anderson
(2004)] for each model.

4. RESULTS

After parameter estimation, the new models (1) and (2)
here proposed gave sound results to approximate glucose-
insulin dynamics (see Figures 1-2 and Tables 1-2). Both
models efficiently represent the delayed and nonlinear
transport of insulin from the IP cavity to the blood
circulatory system.

For the parameter sets obtained using experimental data
(see method in Section 3), the average BIC values of
systems (1) and (2) are 147.21 and 143.18, respectively.

Ackerman’s linear model [Yipintsoi et al. (1973)] and
the model proposed in Candas and Radziuk (1994) were
also calibrated using data from Pig 1 (see Appendices A
and B). However, their approximations of data are less
accurate than those obtained with the new models (1) and
(2) (see Figures A.1-B.1 and Tables A.1-B.1).

The BIC values of Ackerman’s linear model and the model
of Candas and Radziuk are 919.58 and 631.16, respectively.
In conclusion, we obtained that BIC values of the new
models (1) and (2) are significantly lower than those of
Ackerman’s linear model and the model of Candas and
Radziuck

Note 3. In Figures 1,2, A.1 and B.1, the values for Insulin
IC and Insulin IP rates are normalized with respect to
Insulin CS state values.

Table 1. Parameters estimated for system (1)
and BIC values for each subject (see Figure 1).
Parameter m4 representing endogenous insulin

production was assumed to be zero

Parameter Pig1 Pig 2 Pig 3 Units

m1 4.21 14.69 26.13 1/d
m2 2.67 8.43 23.18 mol/(d.U)
m3 49.51 36.99 4.66 1/d
m5 0.16 0.0017 0.0098 mU/(L.d1−p)
m6 173.06 659.87 69.15 1/d
m7 290.35 460.30 106.84 1/d
m8 237.66 119.95 115.50 1/d
j 0.86 2.13 6.00 h.mol/(d.L2)
k 13329 23123 16319 1/(U.d2)
p 2.25 2.71 1.95 -

BIC 209.62 49.26 182.74

5. PARAMETER IDENTIFICATION

Although systems (1) and (2) give similar approximations
of the data, system (2) has lower BIC values in average.
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Fig. 1. Numerical solution of the nonlinear compartmental system (1) compared to experimental data. The parameters
estimated for system (1) are described in Table 1.
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Fig. 2. Numerical solution of the positive nonlinear system (2) compared to experimental data. The parameters estimated
for system (2) are described in Table 2.

Table 2. Parameters estimated for system (2)
and BIC values for each subject (see Figure
2). Parameters a4 and a5 (representing reverse
transport between insulin compartments) were
assumed to be negligible, thus equal to zero.

Parameter Pig 1 Pig 2 Pig 3 Units

a1 56.00 60.00 3.50 1/d
a2 0.62 1.30 0.55 mU/(L.d1−p)
a3 163.00 223 131.00 1/d
a6 221.00 131.00 79.00 1/d
k0 0.0001 0.01 0.50 L/(d.mU)
k1 0.94 3.00 11.50 L/(d.mU)
j 0.40 0.50 4.50 h.mol/(d.L2)
k 9980 10000 10100 1/(U.d2)
p 2.20 1.87 1.22 -

BIC 210.30 85.93 133.30

Furthermore, system (2) is positive, while system (1) could
attain negative values if its set of parameters is not selected
accurately and when blood insulin levels, represented by
the I(t) state, are sufficiently large.

For these reasons, system (2) was selected as the best
model and profile likelihoods [Kreutz et al. (2013)] for
its parameters were computed. The results are presented
in Figure 3. All the parameters, except for k0, have
finite confidence intervals under the confidence thresholds,
leading to conclude that they are identifiable.

The only practically non-identifiable parameter detected is
k0, which represents removal of glucose that is independent
of insulin. Since the profile likelihood of k0 flattens towards
small values, we can only conclude that k0 should have a
small value (in the context of these experiments).

6. DISCUSSION AND CONCLUSIONS

In this paper we have presented the simple nonlinear
models (1) and (2) to simulate glucose-insulin dynamics.
The models are able to represent data from experiments
with intraperitoneal insulin boluses. This was achieved
considering different insulin compartments and power-law
kinetics.

In the models proposed here, we have considered power-
law kinetics for the transport of insulin to the circulatory
system, when insulin is administrated in the IP cavity. The
use of power-law kinetics for modeling insulin nonlinear
dynamics has been introduced in this work. In general,
previously published models used nonlinear dynamics to
describe glucose utilization [Bergman et al. (1979); Candas
and Radziuk (1994); Dalla Man et al. (2014)] or insulin
synthesis and secretion controlled by blood glucose levels
(non-diabetic case) [Cobelli et al. (1982)].

The nonlinear dynamical behavior of insulin described in
this paper has not been considered before, probably due
to lack of insulin concentration data after using more than
one insulin bolus during the same experiment (e.g. [Cobelli

Fig. 3. Parameter Profile Likelihood (PL) for system (2) and Pigs 1-3. Red dotted horizontal lines denote the confidence
thresholds with 99% confidence. For these experiments, parameter k0 (the rate of insulin-independent glucose
uptake) is practically non-identifiable and its profile flattens towards low values. The rest of the parameters are
identifiable in their respective finite confidence intervals.

et al. (1982); Candas and Radziuk (1994); Matsuo et al.
(2003); Magdelaine et al. (2015)]) and in particular for
intraperitoneal insulin infusions.

The practical identifiability of one of the new models has
been observed. Computing profile likelihoods has shown
that, out of a set of 9 parameters, 8 parameters are
identifiable.

The only practically non-identifiable parameter corre-
sponds to the insulin-independent consumption of glucose.
However, this practical non-identifiability might be due to
the experiments conditions (e.g. constant glucose infusions
and short fasting states). It is well known that there exists
glucose uptake independent of insulin which, for instance,
maintains the supply of glucose for the brain, the central
nervous system and red blood cells [Chee and Fernando
(2007)]. We suggest to keep this parameter representing
insulin-independent glucose uptake in the model, since
it can be useful in other scenarios where this effect is
more dominant. For the case of these short-lasting animal
experiments, this parameter just needs to be small or zero
and is practically negligible.

Future work is to consider larger glucose-dynamics models
where the transport of hormones between compartments
is delayed and nonlinear, as it has been presented in this
work.

Appendix A. ACKERMAN’S LINEAR MODEL

Ackerman’s model [Yipintsoi et al. (1973)] accounts for the
equations of blood glucose and hormone concentrations:

dG

dt
= −m1 ·G(t)−m2 · I(t) + j · J(t) (A.1)

dI

dt
= −m3 · I(t) +m4 ·G(t) + k ·K(t),

where G represents blood glucose, I is the effective hor-
mone level in blood (minus a basal level), m1,m2,m3 and
m4 are constants characteristic of the individual, J and
K are the rates of exogenous infusions of glucose and
hormone, respectively.

Model (A.1) fails to represent delayed and nonlinear trans-
port of insulin from the IP cavity to the circulatory system
(see Figure A.1) .

Appendix B. CANDAS AND RADZIUK MODEL

To adapt model proposed in Candas and Radziuk (1994)
to the case where insulin is administrated in the IP cavity,
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Fig. A.1. Ackerman’s linear model (A.1) compared to
experimental data. The estimated parameters are
described in Table A.1.

Table A.1. Parameters estimated for Acker-
man’s linear model (A.1).

Parameter Pig 1 Units

m1 9.72 1/d
m2 13.39 (mol/d.U)
m3 36.34 1/d
m4 0.00032 (U/d.mol)
j 3.60 (h.mol/d.L2)
k 1758 1/(d.kL)

BIC 919.58

we consider the peripheral compartment i2 as the IP
cavity and that insulin-dependent glucose removal I(t) is
proportional to blood insulin concentration (minus a basal
value). Thus, we write

dG

dt
= −[k0 + k1 · I(t)] ·G(t) + j · J(t) (B.1)

dI

dt
= −a1 · I(t) + a2 · i1(t)

di1
dt

= −a3 · i1(t) + a4 · I(t) + a6 · i2(t)
di2
dt

= −a6 · i2(t) + a5 · i1(t) + k ·K(t)

where G and I are glucose and insulin blood concentra-
tions, respectively, i1 and i2 are insulin transport rates, ai,
k0, k1, j and k are nonnegative parameters, J(t) and K(t)
are glucose and insulin systemic appearance, respectively.

Notice that kinetics of system (B.1) are nonlinear only for
the equation corresponding to blood glucose concentra-
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Fig. 3. Parameter Profile Likelihood (PL) for system (2) and Pigs 1-3. Red dotted horizontal lines denote the confidence
thresholds with 99% confidence. For these experiments, parameter k0 (the rate of insulin-independent glucose
uptake) is practically non-identifiable and its profile flattens towards low values. The rest of the parameters are
identifiable in their respective finite confidence intervals.

et al. (1982); Candas and Radziuk (1994); Matsuo et al.
(2003); Magdelaine et al. (2015)]) and in particular for
intraperitoneal insulin infusions.

The practical identifiability of one of the new models has
been observed. Computing profile likelihoods has shown
that, out of a set of 9 parameters, 8 parameters are
identifiable.

The only practically non-identifiable parameter corre-
sponds to the insulin-independent consumption of glucose.
However, this practical non-identifiability might be due to
the experiments conditions (e.g. constant glucose infusions
and short fasting states). It is well known that there exists
glucose uptake independent of insulin which, for instance,
maintains the supply of glucose for the brain, the central
nervous system and red blood cells [Chee and Fernando
(2007)]. We suggest to keep this parameter representing
insulin-independent glucose uptake in the model, since
it can be useful in other scenarios where this effect is
more dominant. For the case of these short-lasting animal
experiments, this parameter just needs to be small or zero
and is practically negligible.

Future work is to consider larger glucose-dynamics models
where the transport of hormones between compartments
is delayed and nonlinear, as it has been presented in this
work.

Appendix A. ACKERMAN’S LINEAR MODEL

Ackerman’s model [Yipintsoi et al. (1973)] accounts for the
equations of blood glucose and hormone concentrations:

dG

dt
= −m1 ·G(t)−m2 · I(t) + j · J(t) (A.1)

dI

dt
= −m3 · I(t) +m4 ·G(t) + k ·K(t),

where G represents blood glucose, I is the effective hor-
mone level in blood (minus a basal level), m1,m2,m3 and
m4 are constants characteristic of the individual, J and
K are the rates of exogenous infusions of glucose and
hormone, respectively.

Model (A.1) fails to represent delayed and nonlinear trans-
port of insulin from the IP cavity to the circulatory system
(see Figure A.1) .

Appendix B. CANDAS AND RADZIUK MODEL

To adapt model proposed in Candas and Radziuk (1994)
to the case where insulin is administrated in the IP cavity,
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Fig. A.1. Ackerman’s linear model (A.1) compared to
experimental data. The estimated parameters are
described in Table A.1.

Table A.1. Parameters estimated for Acker-
man’s linear model (A.1).

Parameter Pig 1 Units

m1 9.72 1/d
m2 13.39 (mol/d.U)
m3 36.34 1/d
m4 0.00032 (U/d.mol)
j 3.60 (h.mol/d.L2)
k 1758 1/(d.kL)

BIC 919.58

we consider the peripheral compartment i2 as the IP
cavity and that insulin-dependent glucose removal I(t) is
proportional to blood insulin concentration (minus a basal
value). Thus, we write

dG

dt
= −[k0 + k1 · I(t)] ·G(t) + j · J(t) (B.1)

dI

dt
= −a1 · I(t) + a2 · i1(t)

di1
dt

= −a3 · i1(t) + a4 · I(t) + a6 · i2(t)
di2
dt

= −a6 · i2(t) + a5 · i1(t) + k ·K(t)

where G and I are glucose and insulin blood concentra-
tions, respectively, i1 and i2 are insulin transport rates, ai,
k0, k1, j and k are nonnegative parameters, J(t) and K(t)
are glucose and insulin systemic appearance, respectively.

Notice that kinetics of system (B.1) are nonlinear only for
the equation corresponding to blood glucose concentra-
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Fig. B.1. Candas and Radziuk model (B.1) compared
to experimental data. The estimated parameters are
described in Table B.1.

tion. Therefore, this model cannot represent the nonlinear
relation between insulin bolus administration and the in-
crease of insulin concentration in blood (see Figure B.1).

Table B.1. Parameters estimated for Candas
and Radziuk model (B.1).

Parameter Pig 1 Units

a1 55.83 1/d
a2 81.82 mU/L
a3 232.10 1/d
a4 0.0035 L/(mU.d2)
a5 1.75 1/d
a6 207.54 1/d
k0 1.0037 L/(d.mU)
k1 1.083 L/(d.mU)
j 1.025 h.mol/(d.L2)
k 12654 1/(U.d2)

BIC 637.00
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