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Abstract 12 

A numerical wave tank based on the Harmonic Polynomial Cell (HPC) method is created to study the generation, propagation 13 

and interaction of solitary waves. The HPC method has been proven to be of high accuracy and efficiency in modelling of 14 

water waves, wave-wave and wave-structure interaction within the context of potential flow. An important feature of the 15 

present HPC method is that the free surface and solid boundaries are immersed in a stationary Cartesian grid. Solitary waves 16 

with , i.e. amplitude to water depth ratio, up to 0.6 are generated by different methods. We demonstrate that the results based 17 

on the first-, third- and ninth-order method are less satisfactory than the fully-nonlinear method in generating solitary waves 18 

with 0.4   . Additionally, both the head-on and overtaking collision between two solitary waves are studied. In the 19 

investigation of the phase shifts after the head-on collision, our window model successfully explain the main reason why Su 20 

& Mirie [1]’s third-order approximation of the uniform phase shifts is inconsistent with Chen & Yeh’s [2] experimental results 21 

and Craig et al.’s [3] fully nonlinear numerical results. For the overtaking collision of solitary waves, the collision process 22 

and the phase shifts are numerically analyzed. Our present result also confirms Craig et al.’s [3] category of the overtaking 23 

collision. 24 

Keywords: solitary wave; wave generation; wave propagation; wave interaction; Harmonic Polynomial Cell method. 25 

 26 

1. Introduction 27 

Since discovered by Scott Russell [4], solitary waves have played an important role in modelling tsunamis near the shore. 28 

In order to better understand the mechanism of solitary waves, there have been considerable studies on their behaviors. Among 29 

these researches, the essential aspect is how to generate solitary waves accurately. There exist various methods of solitary 30 

wave generation in wave flumes [5-11], among which the piston-type wave maker is the most commonly used in experiments. 31 

Considering that the prescribed velocity of the wave paddle shall equal the uniform horizontal velocity of the water particles 32 

on the wave maker boundary, Goring [8] derived the motion of a piston-type wave maker. By applying Boussinesq’s [12] 33 

solitary wave solution, Goring’s method has been primarily used in experiments to study solitary waves in the last decades 34 

[13-15]. However, it was observed by Grilli & Svendsen [16] in a numerical study that Goring’s method only performed well 35 

for solitary waves of smaller amplitude, but the amplitude of a generated solitary wave was slightly smaller than the desired 36 

value and attenuated continuously during propagation for higher waves, in spite of neglecting water viscosity. In order to 37 

generate solitary waves as accurate as possible, Katell & Eric [9] carried out experiments to generate solitary waves by using 38 

a paddle motion law from Rayleigh [17], and they observed that the features of generated waves were in close agreement with 39 

those of desired ones. However, Wu et al. [18] pointed out that the boundary outskirt decay coefficient used in Katell & Eric 40 

[9] was smaller than the value based on Boussinesq’s [12] solution. More water volume has been consequently pushed forward 41 

so that the wave amplitude was higher than the designed value in their numerical study. Having noticed the transient behaviors 42 

of solitary waves adjacent to the wave paddle in the process of wave generation, Malek-Mohammadi & Testik [10] proposed 43 

a new methodology by assuming that the wave speed is time-dependent at the wave paddle during wave generation. They 44 

concluded that solitary waves generated through their methodology were less dispersive to retain a permanent form. Based 45 
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on Goring’s paddle movement formula, Wu et al. [18] carried out numerical experiments by using different solitary wave 1 

solutions. They found that Goring’s formula using the ninth-order solution of Fenton [19] could extend the applicability of 2 

Goring’s method to a relative higher wave amplitude. Therefore, a modified Goring's method was proposed and laboratorial 3 

experiments were also carried out later by Wu et al. [11] in a water flume to validate the modified Goring’s method. 4 

It is known that the maximum run-up during a head-on collision of two solitary waves is higher than the sum of their 5 

initial wave amplitudes [20]. Maxworthy [21] carried out experiments to investigate the run-up and the phase shifts after the 6 

head-on collision of two identical solitary waves. It was confirmed that the wave profile reached a maximum run-up greater 7 

than twice the initial wave amplitude and both waves suffered a time delay after the interaction. Su & Mirie [1] proposed a 8 

third-order perturbation method to analyze the head-on collision of two arbitrary-amplitude solitary waves and obtained the 9 

solutions for maximum run-up, phase shifts and the secondary trailing waves. In a later numerical analysis, Mirie & Su [22] 10 

found that solitary waves lost energy to the trailing waves causing reduction of wave amplitude. Fenton & Rienecker [23] 11 

numerically studied the head-on collision based on Fourier series. They pointed out that although the maximum run-up was 12 

consistent with Su & Mirie’s [1] third-order approximation and Chan & Street’s [24] numerical result, the third-order theory 13 

seemed unable to predict the phase shifts. The measurement of the phase shifts is strongly dependent on the measurement 14 

location due to the change of the wave speed after the interaction. Renouard et al. [25] in their experiments observed an 15 

amplitude decay after the reflection of a solitary wave from a vertical wall. The wave reflection was also investigated by 16 

Cooker et al. [26]. They discovered that both amplitude and energy loss occur after the reflection due to the dispersive trailing 17 

wavetrain. It was also found that the run-up process was shorter than the run-down process. In other words, the asymmetry of 18 

the process could have resulted in the observed trailing waves. Craig et al. [3] systematically studied the head-on collision 19 

and overtaking collision of two solitary waves by solving the Euler equations for water-wave problems. They analyzed the 20 

residual produced by the wave-wave interaction and estimated the energy carried away by the trailing waves. Laboratorial 21 

experiments on the head-on collision of two solitary waves were carried out by Chen & Yeh [2] using the laser induced 22 

fluorescence (LIF) technique with a montage method to provide precise measurement of free surface profile. Chen et al. [27] 23 

also showed detailed flow fields on velocity, acceleration, vorticity and velocity-gradient tensor related to the head-on 24 

collision.  25 

 For the overtaking collision of two different solitary waves, Lax [28] theoretically proposed a category of the KdV 26 

overtaking interaction based on the amplitude ratio of the two solitary waves. The same notation was also employed in the 27 

experiments of Weidman & Maxworthy [29]. Zabusky & Kruskal [30] simulated a large solitary wave overtaking a smaller 28 

one and found that the solitary waves retained their initial shapes after the interaction except for a spatial phase change. Mirie 29 

& Su [22] observed that the trailing waves behind the smaller wave after the interaction are much smaller than those in a 30 

head-on collision. Fenton & Rienecker [23] carried out a simulation of an overtaking collision of two solitary waves with 31 

amplitude ratio of 3.142 and found that the category proposed by Lax [28] was not able to explain their numerical results. 32 

Similar discrepancy was also observed by Craig et al. [3] in their numerical and experimental study. Hence, a modification of 33 

Lax’s [28] category has been proposed by Craig et al. [3]. Fenton & Rienecker [23] and Craig et al. [3] also discovered that 34 

the higher wave would slightly grow in amplitude but the opposite for the smaller one after the interaction. Gardner et al. [31] 35 

showed that the overtaking collision between two solitary waves were elastic, where the term ‘elastic’ means that solitary 36 

waves will regain their wave form and velocity except for phase shift after the collision. Sachs [32] showed that overtaking 37 

collision of solitary waves was elastic up to the second-order approximation. Zou & Su [33] obtained second- and third-order 38 

approximation of water wave equations based on the first-order KdV equation and confirmed that the overtaking collision 39 

was elastic up to second order approximation. Their third-order numerical results were also able to explain the dispersive 40 

trailing waves behind the smaller solitary wave after the interaction.  41 

 There exist many different numerical methods that can model solitary waves in the literature. It has been a strong tradition 42 

to use the Boundary Element Method [34,35] to model the fully-nonlinear water waves in the frame of potential flow. However, 43 

the bottleneck of the conventional Boundary Element Method is that both CPU time and computer memory requirement 44 

increase quadratically with the number of unknowns. Under this circumstances, Shao & Faltinsen [36] newly proposed a 45 

potential-flow field solver named the HPC method, which has been proven to be highly efficient and accurate for 2D fully-46 

nonlinear potential flow problems. Lately the HPC method was extended to 3D by Shao & Faltinsen [37] and it was also 47 

demonstrated to be of high efficiency and accuracy in some marine applications, such as liquid sloshing in tanks, nonlinear 48 

wave diffraction and wave propagation over various topographies. Additionally, the HPC method has been advanced in many 49 
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aspects in recent years. Fredriksen et al. [38] coupled a Navier-Stokes solver with the HPC method to study the water behavior 1 

in the moonpool of a ship. Liang et al. [39] used the HPC method along with a domain decomposition strategy to treat the 2 

singular flow at sharp corners. They also solved lifting problems of a hydrofoil by using a double-layer nodes technique. Zhu 3 

et al. [40] and Hanssen et al. [45] applied an immersed free surface strategy to the 2D HPC method. Hanssen et al. [41] 4 

created a nonlinear numerical wave tank by the 2D HPC method, adopting two strategies to track the free surface, i.e. 5 

immersed boundary (IB) and multigrid. Ma et al. [42] gave a detailed and systematic analysis on the local and global properties 6 

of the 2D HPC method. After a comparison of various gridding strategies, they concluded that the grid refinement with square-7 

shaped cells was highly recommended due to the minimum local error in numerical calculations. Bardazzi et al [43] extended 8 

the original 3D method to a generalized HPC method, which was confirmed the 4th order accuracy when the method was 9 

applied in solving Poisson equation and even in dealing with cases with singular solutions. Wang & Faltinsen [44] applied 10 

Cartesian grids with an adaptive local refinement in the HPC method to accurately represent the highly-deformed free surface 11 

boundary and complicated body geometries. The method makes it possible to solve highly-nonlinear wave-wave and wave-12 

structure interaction problems, e.g. the plunging breakers and water entry of solid objects, very accurately and efficiently. 13 

In the present study, a fully-nonlinear wave tank is created by the 2D HPC method. The free surface, which is treated as 14 

an immersed boundary in a structured Cartesian grid, is tracked by a set of markers moving only in vertical direction. 15 

The paper is organized as follows: In Section 2 we give an introduction the present 2D HPC method and the treatments 16 

of free surface conditions in both the background grid and the wave-maker grid. In Section 3, after we compare the numerically 17 

generated solitary waves by using different solutions, validation of the numerical results against laboratorial experiments is 18 

also presented. In Section 4, the head-on collision of solitary waves is investigated with the focus on the phase shifts after the 19 

interaction. Additionally, the overtaking collision is also studied and the category of the overtaking interaction is discussed. 20 

2. Mathematical consideration 21 

2.1 2D Harmonic Polynomial Cell method 22 

A numerical water wave tank is defined and the origin of a global Cartesian coordinate system with axes (x, z) is located 23 

at the midpoint of the tank, on the mean water level. A local body-fixed coordinate system x O z  with the origin at the bottom 24 

of the wave paddle is also introduced, which is applied in the wave maker fixed reference frame in Sec. 2.3. A sketch of the 25 

wave tank and the coordinate systems are given in Figure. 1. 26 

  27 
Figure 1. Sketch of a 2D water wave tank with a piston-type generator. Both the global coordinate system xOz and the local 28 

body-fixed coordinate system x O z   are introduced. 29 

 30 

The fluid is assumed to be incompressible, inviscid, and the flow is irrotational, which can be described by the Laplace 31 

equation: 32 

  , 0x z  .  (1) 33 

The whole computational domain can be discretized by quadrilateral overlapping cells as shown in Figure. 2. Each cell 34 

consists of eight boundary nodes with local indices 1-8 and a central node with local index 9. We introduce a local cell 35 

coordinate system with the origin at the central node, namely, 36 

 9

9

x x

z z



 

  
, (2) 37 

where (x, z) are global coordinates and (x9, z9) are the global coordinates of the central node. 38 



4 
 

 1 

Figure 2. Sketch of a cell with local node indices and the local cell coordinate system. 2 

 3 
According to Shao & Faltinsen [36], the velocity potential   at an arbitrary location within a cell can be approximated 4 

by the linear superposition of velocity potential 
i of the eight boundary nodes 5 

 
8 8

,
1 1

( , ) ( , )j i j i
i j

c f     
 

 
  

 
  . (3) 6 

Here ( , )jf   are the eight harmonic polynomials given by Shao & Faltinsen [36]: 1( , ) 1f    ; 2 ( , )f    ;7 

3 ( , )f    ; 2 2
4 ( , )f      ; 5 ( , )f    ; 3 2

6 ( , ) 3f      ; 2 3
7 ( , ) 3f       ;8 

4 2 2 4
8 ( , ) 6f         , where 

,j ic are elements of the inverse of the matrix [D] whose elements are , ( , )j i j i id f   . 9 

Since all these harmonic polynomials satisfy the Laplace equation everywhere in the fluid domain, the velocity potential 10 

described in Eq. (3) automatically satisfies the Laplace equation. 11 

The velocity potential of the 9th node in each cell can be further simplified as 12 

 
8

9 9 9 1,
1

( 0, 0) i i
i

c    


    . (4) 13 

This equation serves as a connectivity equation employed for every node in the fluid domain (except for nodes along the 14 

boundaries of the numerical wave tank), because each of them will be the central node of a particular cell. For grid nodes in 15 

the fluid, it is straightforward to impose continuity of velocity potential in the fluid by Eq. (4). For points in the domain that 16 

do not coincident with grid nodes, the velocity potential can be directly approximated by using Eq. (3) with local coordinate17 

( , )p p  in an appropriately chosen cell. For nodes along a Neumann boundary, the Neumann boundary conditions are 18 

fulfilled by taking the normal derivative of Eq. (3)  19 

 
8 8

,
1 1

( , ) ( , ) ( , )j i j i
i j

c f n
n

       
 

 
     
   , (5) 20 

where ( , )n   is the unit normal vector of the Neumann boundary at the node ( , )  . 21 

 22 

2.2 Free surface boundary conditions in the background grid 23 

In our study, an Immersed Boundary (IB) method is used to handle the free surface conditions. The IB method was 24 

primarily combined with the 2D HPC method by Hanssen et al. [45] to impose body-boundary conditions on a solid body in 25 

an exterior flow. The method along with a free-surface tracking strategy was later used for imposing Dirichlet-type free-26 

surface conditions in a fully nonlinear water wave tank [41]. In our numerical experiments, the free surface is assumed to be 27 

calm at t = 0s. We technically represent the free surface by a set of markers, which are evenly distributed in horizontal direction. 28 

As illustrated in Figure. 3, the free-surface markers are only allowed to move freely along the vertical grid lines in the 29 

background Cartesian gird, so that the wave elevation is assumed as a single-value function. Each free-surface marker is 30 

restricted in the upper half area of the associated cell. The upper layer cells of the free surface are marked in gray in Figure. 31 

3, which contain certain nodes above the free surface. Those nodes shall be considered as ghost nodes, whose velocity 32 
potentials are also unknown. Free surface conditions are enforced by applying Eq. (3) with local coordinates ( , )m m  of free 33 

surface markers. Since the grid refinement remain unchanged at any time step, the inverse of matrix [D] only needs to be 34 

determined once at the start of the simulation. 35 
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 1 
Figure 3. The free surface is treated as an immersed boundary in a structured background grid, which is tracked by free-2 

surface markers moving vertically as indicated by arrows. The cells used to impose free-surface conditions on are filled with 3 

gray. 4 

 5 

In order to satisfy the fully nonlinear free surface conditions, the semi-Lagrangian method is adopted to describe 6 
kinematic and dynamic free surface conditions for a vertically moving marker with global coordinates (

mx ,
mz ), namely 7 

 0,  ( )m mDx Dz
x

Dt Dt z x x

      
   

  
; (6) 8 

 
2 2

( )

1
        ( )  

2

mD
x

Dt t t z

g x
x z t z

     

     

  
  
  

                    
，

 (7) 9 

where ( , )z t x denotes the free surface elevation, g is the gravity acceleration and the term ( )x is a damping coefficient 10 

that is used to absorb the energy of the waves at the end of the tank to minimize wave reflection from the downstream tank 11 

wall. More details of the damping zone and damping coefficients are referred in Greco [46] and Hanssen et al. [41]. In the 12 
study of the interaction and reflection of solitary waves, ( )x is set to be zero. Here we have used the semi-Lagrangian 13 

derivative / / mD Dt t v     , where (0,  / )m mv z t   . All spatial derivatives are calculated at the instantaneous position 14 

( mx , mz ) of a marker. The wave slope / x   is evaluated using a high-order finite difference scheme. We use an explicit 15 

fourth-order Runge-Kutta scheme in time domain to integrate the free surface conditions. 16 

 17 

2.3 Free surface boundary conditions in the wave-maker grid 18 

A physical piston-type wave maker is simulated by introducing a local body-fitted grid on the right side of the wave 19 

paddle. This local grid overlaps with the background Cartesian grid, as depicted in Figure. 4. This local grid also slides over 20 

the background grid as the paddle moves, which possesses its own set of free-surface markers.  21 

As described previously for the background grid, the free surface markers are only allowed to move along vertical grid 22 

lines in the global coordinate system. Similarly, markers in the wave maker grid are also only allowed to move along the z 23 
axis in the wave maker fixed reference frame. The corresponding semi-Lagrangian free surface conditions for a marker in this 24 

reference frame can be written as: 25 

 0,  m m m
grid

Dx Dz z
u

Dt Dt t x x

               
; (8) 26 

 
2 2

1

2
m

grid grid

D
g u w

Dt x z x t z

     
                                  

. (9) 27 

gridu and gridw are the horizontal and vertical velocity components of the grid point at a position ( x , z ) related to the 28 

movement of the paddle. The detail of the derivation of Eq. (8) and (9) can be found in Hanssen et al. [41]. 29 
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 1 

Figure 4. Modeling of the piston-type wave maker with structured body-fixed grid. The local grid fixed on the wave marker 2 

is marked in red while the background grid is marked in black. 3 

 4 

 By using overlapping grids, an important part is the exchange of information between the local wave-maker fitted grid 5 

and the background grid. The velocity potential of a grid point in the local grid can be interpolated from the background grid 6 

through: 7 

 
8 8

,
1 1

( , ) ( , )WMG j i j i BGG
i j

x z c f   
 

 
    

 
  , (10) 8 

where WMG and BGG are the velocity potential in the wave maker grid and in the background grid, respectively. Since in the 9 

fluid domain the velocity potential of a particular point is unique regardless of the selected reference frame, the velocity 10 
potential of a grid point ( , )  in the wave maker grid can be approximated by a cell in the background grid that contains the 11 

node ( x , z ), i.e. by applying Eq. (10). Correspondingly, nodes of the background grid in the overlapping region can also 12 

get the velocity potential from interpolation in the wave-maker fitted grid: 13 

 
8 8

,
1 1

( , ) ( , )BGG j i j i WMG
i j

x z c f   
 

 
   

 
  . (11) 14 

This ensures a direct two-way coupling between the regions in an implicit form. 15 

All these boundary conditions together with Eq. (4) are combined to build a global linear algebraic matrix system for 16 
the velocity potential in the form of [A]{ }={b}. The coefficient matrix [A] is sparse with at most 9 nonzero entities in each 17 

row so that the equations can be solved efficiently with standard solvers for sparse-matrix equations.  18 

 19 

3. Validation and verification 20 

The numerical water wave tank based on the HPC method presented in Section 2 will be verified and validated in this section 21 

through studies on solitary wave generation and head-on collision of two solitary waves.  22 

3.1 Solitary wave generation 23 

Piston-type wave makers have been widely used to generate solitary waves. Wu et al. [18] compared the solitary waves 24 

generated by applying Boussinesq’s [12] first-order solitary wave solution, Rayleigh’s [17] solution, Grimshaw’s [47] third-25 

order solution and Fenton’s [19] ninth-order solution to Goring’s [8] paddle motion formula. However, the use of Goring’s 26 

formula is not compliance with the fluid particle velocity along the wave maker boundary, especially for highly nonlinear 27 

solitary waves. In that case, they were still unable to produce solitary waves of desired dimensionless amplitudes as 0.4 28 

( /A d  , d is the water depth).  29 

In this part, we use Clamond & Dutykh’s [48] fully nonlinear solitary wave solution as the wave maker boundary 30 

condition. The main difference between this method and Goring’s method is that the wave maker is kept stationary in the 31 

process of generating waves. We only update fully nonlinear solution of the horizontal velocity along the wave maker 32 

boundary below the free surface, so that the method is named Fully Nonlinear (FNL) method.  33 

Primarily, the numerical experiments of solitary wave generation are conducted to assess the convergence of the spatial 34 
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and temporal discretization for 0.4   by the FNL method. The wave tank is set to be L = 40m, the tank height H = 2m and 1 

the water depth d = 1m. Table 1 gives the information of three grid refinements. (Δx/d, Δz/d) and (nx, nz) denote length and 2 

number of grid elements in horizontal and vertical direction, respectively. 3 

 4 

Table 1. Grid refinements for the wave tank domain. 5 

Case Δx/d nx Δz/d nz 

Coarse 0.20 200 0.20 10 

Medium 0.10 400 0.10 20 

Fine 0.0667 600 0.0667 30 

 6 
According to Clamond & Dutykh’s [48] fully nonlinear solution, the wave speed of the solitary wave is C = 3.6892m/s. 7 

To make sure the CFL number ( /CFL C t x   ) below unity, the non-dimensional time step / 0.01t t g d    is used 8 

for all simulations. Figure 5 depicts the free surface at / =37.579t t g d  for the three grid refinements. The results obtained 9 

here using the fine and medium mesh strategy are almost coincident while the amplitude cannot reach the target value for the 10 

coarse mesh strategy. This indicates that the grid convergence is achieved using the medium grid refinement. Similar tests for 11 

different time steps ( t = 0.01s, 0.02s and 0.025s) using the medium grid refinement indicate that t = 0.02s is sufficient for 12 

the accuracy. 13 

  14 

Figure 5. Free surface profiles of solitary wave with 0.4  for different grid refinements.  15 

 16 

Table 2. The list of numerical conditions of cases for solitary wave generation. 17 

Method number Method Target wave amplitude  

1 G1S 0.2 | 0.4 | 0.6 

2 G3S 0.2 | 0.4 | 0.6 

3 G9S 0.2 | 0.4 | 0.6 

4 FLN 0.2 | 0.4 | 0.6 

 18 

To conform the accuracy of this method, we compare numerical results of the FNL method with those of Goring’s method 19 

by using the first-, third-, and ninth-order solitary wave solution (Here, we call them G1S, G3S and G9S method for simplicity). 20 

We have to remark that the wave maker is only kept still when applying the FNL method to produce solitary waves, but not 21 

for Goring’s method. 22 

The height of the numerical wave tank is H = 2m, the length is L = 80m and the calm water depth is d = 1m. The whole 23 
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domain is horizontally and vertically discretized into 600 and 30 elements, respectively. A time step t = 0.02s is chosen in 1 

this simulation. The conditions of the cases are listed in Table 2. 2 

Figure. 6(a), 6(b) and 6(c) compare snapshots of wave profiles at a time when the wave crest arrives at x/d = 15 for = 3 

0.2, 0,4 and 0.6, respectively. For the smaller solitary wave, i.e. = 0.2, the figure shows good agreement of wave elevations 4 

among the G3S, G9S and FNL method. However, the wave amplitude based on the G1S method fails to reach the target value 5 

and the trailing waves are more visible than those in other methods. As the wave amplitude increases to 0.4, G3S and G9S 6 

method’s wave profiles (both the wave crest and trailing waves) are almost identical, but the trailing waves are still nearly 7 

invisible for the FNL method’s result. For a solitary wave of amplitude = 0.6, it is seen from Figure. 6(c) that the solitary 8 

wave generated by the FNL method can not only reach the desired wave amplitude but also propagate with minor dispersive 9 

trailing waves. But all the other three methods underestimate the maximum wave amplitude and they also introduce non-10 

negligible trailing waves. There also exist clear phase differences between Goring’s method and the FNL method as can be 11 

seen in Figure. 6(c). Since the generated wave using the FNL method is higher than that of Goring’s method, the 12 

corresponding phase speed is also slightly larger. Figure. 6(d) shows temporal evolution of the maximum amplitude for the 13 

three cases. G1S method’s result of the maximum amplitude seems to first overpredict but then underpredict the wave height 14 

during propagation. This is especially apparent for higher waves. This observation indicates that the dispersive effect in the 15 

G1S method is much stronger when compared with the other three methods. One can also notice that, for 0.4  , the 16 

maximum amplitude based on the G1S method seems to be much lower than the target value. A similar discrepancy was also 17 

observed in Wu et al. [18] for 0.4  by using the G1S method. Moreover, Wu et al. [18] and Hanssen et al. [41] have also 18 

used the G9S method to generate solitary waves of amplitude = 0.6. As a comparison, the FNL method is proven to be able 19 

to generate solitary waves much closer to desired ones, even for waves with amplitude as high as = 0.6. 20 

 21 

 22 
Figure 6. Subplots (a), (b) and (c) display snapshots of the wave profiles by using the G1S method (      ), the G3S method 23 

(    ), the G9S method ( ) and the FNL method ( ) for solitary wave of amplitude = 0.2, 0.4 and 0.6. Subplot 24 

(d) shows temporal evolution of the maximum wave elevations for solitary wave of amplitude = 0.2, 0.4 and 0.6. 25 

 The cause of the deviation between Goring’s method and the FNL method is mainly because horizontal velocities of 26 
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water particles are assumed uniform along the wave maker, while in the FNL method the fully nonlinear solution of horizontal 1 

velocity is directly imposed on the wave maker boundary. Therefore, the higher-order terms in solitary wave solutions become 2 

fairly important as increases. Goring’s paddle-motion formula ignores the higher-order effects, which eventually results in 3 

some dispersion errors, causing both trailing waves and reduction in wave amplitude. In this way, the FNL method seems 4 

superior when it comes to higher-amplitude solitary waves. This also indicates the wave-generation mechanism rather than 5 

the numerical method resulting in disparity of numerical results when different wave-generation methods are used.  6 

Based on the comparisons presented above, the use of a piston-type wave maker by the G9S method is accurate enough 7 

for solitary waves of amplitudes 0.4  , while the FNL method might be needed for much higher waves. In Sec.3.2, we will 8 

compare our numerical results with experimental measurements where the piston-type wave maker is used. The largest  9 

value considered therein is 0.4. 10 

 11 

3.2 Head-on collision of solitary waves 12 

3.2.1 Wave run-up at a wall 13 

As for the reflection of solitary waves from a wall, He & Kashiwagi [49] investigated the interaction of a solitary wave 14 

with a vertical elastic plate. Ertekin et al. [50] in their study mentioned that the reflection process is equivalent to the head-15 

on collision between two identical solitary waves, so that we can imagine that there is an exactly upright wall located at the 16 

collision center during the head-on collision. In this part, the G9S method is used for solitary wave generation. In present 17 

computations, a 2D domain with calm water depth d = 1m, tank height H = 3m and tank length L = 40m is assumed. The 18 

whole domain is evenly discretized into 600 elements in horizontal direction and 75 elements along the vertical direction. A 19 

time step is set as 0.02s in the time-domain simulations. A set of solitary waves with different normalized initial amplitudes, 20 

A/d = 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, are simulated. Figure. 7 presents the comparison of the maximum 21 

run-up among Su & Mirie's [1] first-, second- and third-order approximation, Cooker et al.’s [26] numerical results, the 22 

experimental results of Camfield & Street [7] and Maxworthy [21]. According to Su & Mirie’s [1] third-order solution, the 23 

non-dimensional maximum run-up can be quantified in the form as: 24 

 2 3
max

1 3
2 +

2 4
     .      (12)     25 

 26 

Figure 7. Maximum run-up versus incident wave amplitude. 27 

 28 

From Figure. 7, it can be found that the results of the present HPC method are consistent with Su & Mirie’s [1] third-29 

order results except for higher incident waves. Both the results of our calculation and Cooker et al. [26] appear to be obviously 30 

higher than Su & Mirie’s [1] third-order predictions when the incident wave amplitude is larger than 0.5, which indicates the 31 

importance of nonlinear terms higher than 3th order. The fourth-order or even higher order solutions might, therefore, be 32 
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required for predicting the maximum run-up in experiments. In our study, trailing waves are created due to the use of the G9S 1 

method. Consequently, the wave amplitude will be lower than the target value. To eliminate this effect, the wave maker signal 2 

has to be calibrated to generate the incident waves of desired amplitudes. In other words, the input wave should be slightly 3 

higher than the desired one during wave generation. The same technique is commonly implemented for generating high-4 

amplitude solitary waves in physical wave flumes. One can see from Figure. 7 that the present numerical results are in 5 

excellent agreement with Cooker et al.’s [26] results. 6 

 7 

3.2.2 Comparison with experimental results 8 

In this part, we validate our numerical model with experimental measurements of Chen & Yeh [2] on symmetric head-9 
on collision of identical solitary waves with amplitudes 0.4R L    . Here, /R RA d   and /L LA d   denote non-10 

dimensional amplitude of the right- and left-running wave, respectively. Figure. 8 shows wave crest trajectories of the present 11 

numerical results and experimental results with excellent agreement. Chen & Yeh [2] reported, in their study, that the phase 12 

speed of a solitary wave slowed down resulting from the reduction in amplitude after the collision. However, from the plot of 13 

crest trajectories and the slopes of the linear fitted lines in Figure. 8, it is clear that the wave speed of two solitary waves has 14 

slightly increased after the interaction, which is obviously contradictory with the conclusion of Chen & Yeh [2]. Similar to 15 

our report, Maxworthy [21] also mentioned, according to their experimental observation, that the reflected wave moved 16 

slightly faster than the incoming wave in spite of the attenuation in height. On the other hand, Byatt-Smith [20], Su & Mirie 17 

[1] and Chan & Street [24] concluded the unchanged wave amplitude after the head-on collision from either their theoretical 18 

predictions or numerical solutions. Fenton & Rienecker [23] also noticed the increase of wave speed for a returned solitary 19 

wave from a vertical wall. They suggested that even though the crest elevation was actually reduced, the trough of the first 20 

trailing wave might have played a significant role in increasing the ‘effective wave height’ (the vertical distance from the 21 

trailing trough to the main crest), which consequently results in the wave speed augment. 22 

 23 
Figure 8. Wave-crest traces of the symmetric head-on collision of solitary waves with equal amplitude 0.4R L    :24 

 , linear fitting results of right- and left-running wave-crest trajectory before and after collision;           , crest 25 

trajectories of our numerical results;  , experimental measurements of Chen & Yeh [2]. 26 

 27 



11 
 

 1 

 2 

 3 

 4 
 5 

Figure 9. The comparison of free surface profiles during the head-on collision of identical solitary waves with amplitude6 

0.4R L   : , numerical results based on the HPC method; - - - - -, experimental results from Chen & Yeh [2]; 7 

, linear superposition of the counter-propagating KdV solitons.  8 

 9 

____
   
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 Figure. 9 presents the comparison of the numerical, experimental and linear KdV solutions of the free-surface profiles 1 
for the head-on collision of solitary waves with amplitudes 0.4R L   . The moment when the maximum run-up occurs 2 

corresponds to t = 0s in the experiment of Chen & Yeh [2]. Satisfactory agreement of our numerical results and the 3 

experimental results can be seen in Figure. 9, yet the linear KdV solution fails to predict the collision process. On the other 4 

hand, we also notice that the wave profile from the experiment slightly differs from our numerical result especially for the 5 

trailing waves at t = 0.79s. In fact, the right- and left-running solitary wave in the experiment were marginally different in 6 

amplitude. The right-running wave was a little higher than the left-running wave after the collision in the experiment, which 7 

consequently results in the first trailing wave crest behind the right-running wave faintly higher. Conversely, the two waves 8 

are the same in amplitude in our numerical study, so that the trailing waves are, correspondingly, symmetric at t = 0.79s. As 9 

mentioned in Chen & Yeh [2], the phase lag between the linear KdV solution and experimental measurements was caused by 10 

the additional run-up process.  11 

 The trailing waves we mentioned above are also manifested in Figure. 10. Due to the asymmetry of solitary waves in 12 

the experiment, the phase speed of the right-running wave is slightly larger than that of the left-running wave, which leads to 13 

minor augment in celerity of the first trailing wave behind the right-running wave. Thus, it can be found, from Figure. 10, 14 

that the numerical and experimental trailing wavetrain profiles are in reasonable agreement for the left-running wave, but not 15 

for the right-running wave. The first trailing wave trough in the experiment propagates slightly faster than that in the numerical 16 

calculation. Considering that the trailing waves are minor in amplitude, the trailing waves of the present numerical result 17 

agree fairly well with the third-order prediction of Su & Mirie [1]. The validation strongly indicates the capability of our 18 

numerical model based on the HPC method in successfully simulating head-on collision of solitary waves. 19 

 20 
Figure 10. Comparison of dispersive trailing waves of the present work with experimental result of Chen & Yeh [2] and the 21 
third-order prediction of Su & Mirie [1] at t = 0.96s for solitary waves of amplitudes 0.4R L   . 22 

4. Analysis of wave-wave interaction 23 

4.1 Symmetric and asymmetric head-on collision 24 

 In this part, we present numerical results of head-on collision cases. Four simulation scenarios are considered, which are 25 

listed in Table. 3. The time step here is t = 0.02s. 26 

 27 

Table 3. List of numerical simulation scenarios. 28 

 Case 
Water depth  

d (m) 

Tank length 

L (m) 

Right-running  
wave R   

Left-running  
wave L  

Collision center 

x/d 

Symmetric 

collision 

1 

1 300 

0.2 0.2 - 40.89 

2 0.4 0.4 - 24.16 

Asymmetric 

collision 

3 0.2 0.4 - 31.16 

4 0.3 0.4 - 37.56 

 29 
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(a) Symmetric collision 1 
Figure. 11 shows the spatial-temporal profiles of solitary waves propagating in opposite directions for Case2. As for the 2 

phase shifts, Craig et al. [3] proposed that the crest trajectories can be asymptotically expressed as ( 1, 2)i ix c t a i   prior 3 

to collision and ( 1, 2)i ix c t a i    after collision, in which i = 1, 2 represent right- and left-running waves, respectively. 4 

Since the phase shift varies with measurement points [23], Craig et al. [3] suggested that the phase shift   can be calculated 5 

at the time t   to reduce this variance:  6 

    = ,( 1,2)i i i ia a c c i       . (13) 7 

Here  is the moment when the maximum run-up occurs during the collision. Figure. 12 gives crest traces of solitary waves 8 

for this symmetric head-on collision. We present the asymptotic functions for these trajectories in the plot, just as the same 9 

way as Craig et al. [3] proposed. From the asymptotic functions, we can also find that wave speeds increased after their 10 

collision. In this simulation, / /d g = 426.34. The phase shifts for right- and left-running wave are calculated by Eq. 13 11 

as / 0.9459R d   and / 0.9486L d   , respectively. We have to remark that these phase shifts are absolute values 12 

representing a retardation of waves after the collision. According to Su & Mirie’s [1] third-order prediction, the uniform phase 13 

shift for the right- and left-running wave is expressed respectively as: 14 

 

1

2

1

2

1 3
1

3 8 4

1 3
1

3 8 4

R L
L R

L R
R L
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   

   

             

              

 . (14) 15 

However, the phase shifts predicted by Eq. 14 in this case yield / / 0.49R Ld d     , which is much lower than the 16 

results of our numerical calculation. On the other hand, the experimental measurements of the phase shifts in Chen & Yeh [2] 17 

give 0.98 for the right-running wave and 1.1 for the left-running wave, which are in reasonable agreement with our present 18 

numerical results. The difference between our calculations and Su & Mirie’s [1] third-order approximation will be further 19 

discussed in details in Sec. 4.2.  20 

 21 

Figure 11. The surface profiles of head-on collision of solitary waves with an equal wave amplitude / 0.4A d   . 22 
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 1 

Figure 12. Wave-crest traces of symmetric head-on collision for solitary waves with an equal amplitude / 0.4A d   : 2 

, linear fitting lines of the right- and left-running wave-crest trajectories before and after the collision;          , crest 3 

trajectories of the present numerical calculations.  4 

 5 

 6 

 7 

Figure 13. Plots of the free-surface profiles at different time for waves with amplitudes 0.4R L   : (a) before collision for 8 

10 / / 0t d g   and (b) after collision for 0 / / 10t d g  . 9 

 10 

Figure. 13(a) and Figure. 13(b) present the collision run-up and run-down process, respectively. We define the time 11 

when maximum run-up occurs as t = 0s, so the time before the collision is negative (t < 0) and the time after the collision is 12 

positive (t > 0). From Figure. 13, we can clearly find that the maximum run-up during the collision is larger than the sum of 13 

two incident amplitudes. The results of the maximum run-up can be found in Table 4. Moreover, the run-up and run-down 14 

process of the head-on collision are not symmetric. In the collision run-up process, the free surface elevation at the collision 15 
center gradually rises up with an inflection point of the wave profile at / 0.55d  , while the inflection point occurs at 16 

/ 0.43d  in the run-down process. In Figure. 13(b), it shows that the amplitude of each wave is slightly attenuated after 17 

re-emerging. Furthermore, the wave profile at the collision center is also lower than the quiescent water level between two 18 

departing waves.  19 

 20 

(b) Asymmetric collision 21 
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For asymmetric head-on collision, we choose to first generate the higher wave, which travels downstream to be reflected 1 

from the tank wall and then collides with the lower wave. In laboratorial experiments, the wave amplitude would attenuate 2 

during propagation due to water viscosity and dispersion by reflection from the wall. In our study, despite the absence of 3 

water viscosity in potential flow, there is still a dispersion factor causing reduction in the wave amplitude. To produce a 4 

reflected solitary wave with a desired amplitude, we need to calibrate the input wave amplitude. Take asymmetric collision 5 

Case3 in Table 2 for example, the maximum run-up happens at / /d g  = 420.39. Figure. 14 displays the collision 6 

process between two solitary waves of amplitudes 0.2R  and 0.4L  . Figure. 15 shows the positions of wave crests 7 

prior to and after the collision. The third-order approximation of maximum wave run-up for asymmetric head-on collision by 8 

Su & Mirie [1] is 9 

 
max

3
( )

2 8
R L

R L R L R L

            . (15) 10 

In this asymmetric collision, the maximum run-up of the present numerical analysis and the third-order prediction by Eq.15 11 

are very close to each other, which are summarized in Table 4. In Figure. 16, the smaller wave is gradually swallowed by the 12 

larger one until only one wave crest is formed in the run-up process. Unlike the symmetric collision, the single crest moves 13 

with a changing speed instead of standing at a fixed point, which can also be seen in Figure. 15 in the collision area (marked 14 

as +). In the run-down process, both the two waves do not re-gain their initial amplitudes and the smaller wave reemerges 15 

from the single crest.  16 

 17 

Table 4. Non-dimensional results of symmetric and asymmetric head-on collision. 18 

 

Symmetric collision Asymmetric collision 

Case1 Case2 Case3 Case4 

0.2R L     0.4R L    0.2R   0.4L   0.3R   0.4L   

Third-order approximation 

of the maximum run-up  
0.4260 0.9280 0.6580 0.7915 

Numerical maximum run-up 0.4243 0.9118 0.6486 0.7815 

Amplitude after collision 0.1889 0.1886 0.3786 0.3790 0.1939 0.3857 0.2847 0.3841 

Reduction ratio of amplitude 5.56% 5.70% 5.35% 5.25% 3.05% 3.57% 1.53% 5.30% 

 19 

Figure 14. The surface profiles of the head-on collision of solitary waves with wave amplitudes 0.2R  and 0.4L  . 20 
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 1 
Figure 15. Wave-crest traces of the asymmetric head-on collision for solitary waves with wave amplitudes 0.2R  and2 

0.4L  ： ，linear-fitting lines of right- and left-running wave-crest trajectories prior to and after the collision； 3 

 and ， crest trajectories of the present numerical results.  4 

 5 

Figure 16. Plots of the temporal variation of the free surface profile for wave amplitudes 0.2R  and 0.4L  ：(a) before 6 

the collision for 8 .3 / / 0t d g   ; (b) after the collision for 0 / / 8 .3t d g  .  7 

4.2 Investigation of phase shifts for the head-on collision 8 

 As mentioned in Sec. 4.1, Chen & Yeh’s [2] experimental results of the phase shifts do not agree with the third-order 9 

prediction by Su & Mirie [1]. This discrepancy was also noticed by Craig et al. [3] in their fully nonlinear numerical study. 10 

In this part, we will account for the reason why the prediction by Eq. 14 underestimates the phase shifts. 11 

For the symmetric collision, the free surface profile at the collision center is gradually elevated as the two solitary waves 12 

approach each other in the run-up process. At the same time, the amplitude of each wave grows until the wave amplitude is 13 

equal to the free surface elevation at the collision center. The process corresponds to the appearance of the inflection of the 14 

wave profile in Figure. 13. During this process, there is a moment when the wave speed is close to infinity until a single crest 15 

appears at the collision center. This observation can be referred to the theoretical analysis of Cooker et al. [26]. It can be 16 

found from Figure. 17 that some crest trajectories (symbols ‘+’) close to the collision center deviate from the fitting lines due 17 

to the dramatic growth of wave speed in a short period. The inclusion of these crest trajectories close to the collision center 18 

to get the linear fitting lines will affect the calculations of the phase shifts by Eq. 13. In this case, these trajectories close to 19 

the collision center are reasonably discarded while obtaining the linear fitting lines by a least-squared method. In the following 20 

texts, for simplicity we will use ‘deviated data’ and ‘fitting data’ to stand for the crest trajectory data close to the collision 21 

 +
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center and remnant fitting data, respectively. 1 

 2 
Figure 17. Wave-crest traces of symmetric head-on collision： ，linear fitting lines of crest trajectories；  and 3 

，the present numerical results. 4 

 5 

 To calculate the phase shifts by Eq. 13, the main task is to specify the linear fitting functions based on the ‘fitting data’ 6 

prior to and after the head-on collision. We find that the fitting function varies with both the distance Dm from mearsurement 7 

point to the collision center and the length of data window Lw, which are demonstrated in Figure. 17. The measurement point 8 

is fixed at the center of each data window. The following model of window length Lw is conducted in specifying the linear 9 

fitting functions: 10 

 

m

m
w

m

m

[5,10],   if  [1,10]

(10,20],   if  (10,20]

(20,40],   if  (20,40]
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L

D

D


   
  

.  (16) 11 

The slope of wave-crest trace changes dramatically close to the collision center. Therefore, the data window should be 12 

shorter. However, considering there still exist numerical errors when recording the crest trajectories, the window length should 13 

not be set too small to avoid distortion of the fitting lines. For the measurement point closer to the collision center, the 14 

calculation of the phase shifts shows that Eq. 16 can perform well in getting fitting lines based on ‘fitting data’. 15 

 16 

Figure 18. Phase shifts versus the measurement distance from the collision center for symmetric head-on collision of solitary 17 
waves: (a) 0.2R L    and (b) 0.4R L    . The asymptotic value for 0.2R L    and 0.4R L    is / 0.3d 18 

and / 0.49d  , respectively. 19 


+
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Fenton & Rienecker [23] pointed out that the measurement of phase shifts is sensitive to the distance from the collision 1 

center. They found that their numerical results of the phase shifts near to the collision center are in consistent with Su & 2 

Mirie’s [1] another third-order phase shift limit, namely 3 
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 , (17) 4 

which is called immediate phase shift. The immediate phase shift by Eq. 17 for 0.2R L   and 0.4R L   is / 0.56d 5 

and / 1.22d  , respctively. Excellent agreement can be observed from Figure. 18, between our numerical results near to 6 

the collision center and the prediction by Eq. 17.  7 
For 0.4R L   , Chen & Yeh [2] dealt with their experimental data, actually, using the same window model as we 8 

proposed in Eq. 16 and obtained R /d = 0.98 and L /d = 1.1. The ‘deviated data’ were also discarded in their analysis. We 9 

can translate their ‘fitting data’ into our window model: Dm5 and Lw6.5. Our calculation yields R /d =1.0 and L /d = 10 

1.01, which are in good agreement with the experimental results. On top of this, another satisfactory discovery is that the 11 

calculated phase shifts are asymptotic to the prediction by Eq. 14 if the measurement point is far away from the collision 12 

center. The approximation of the phase shifts by Eq. 14 is named as the uniform phase shift when two departing waves are 13 

far enough away from each other. Chen & Yeh [2] thought their calculation of the phase shift based on the ‘fitting data’ is 14 

larger than the asymptotic value of Eq. 14 mainly resulting from the solitary wave tilting backward with respect to the 15 

direction of its propagation after the collision. In fact, the ‘fitting data’ used by Chen & Yeh [2] are very close to the collision 16 

center. The result they calculated corresponds, actually, to the immediate phase shift, but they compared their immediate phase 17 

shift with the asymptotic value of the uniform phase shift by Eq. 14. This is the main reason why they mistakenly concluded 18 

that the third-order prediction (Eq. 14) of Su & Mirie [1] could not predict their experimental measurements of the phase shift. 19 

 20 

Figure 19. Phase shifts versus the measurement distance from the collision center for asymmetric head-on collision of solitary 21 
waves: (a) 0.2 0.4R L  ,  and (b) 0.3 0.4R L  , . 22 

 23 

Figure. 19 provides phase shifts versus the measurement distance from the collision center for asymmetric head-on 24 

collision. Both the immediate phase shifts and the uniform phase shifts of our calculations are in good agreement with the 25 

third-order asymptotic results. We can notice that the retardation of the smaller solitary wave is more severe than the higher 26 

wave considering the uniform phase shift, which can also be seen from Figure. 15. 27 

 As we have mentioned above, the measurement of the phase shifts strongly depends on the distance from the collision 28 

center because of the change of wave speed after the collision. Fenton & Rienecker [23] found that even though the spatial 29 

phase shift changes with measurent positions, the phase lag in time T remains unchanged at the collision center, which is 30 

equivalent to the length of A B segment in Figure. 17 for symmetric head-on collision. However, it is still difficult to evaluate31 

T in practice because the location of point A and B in Figure. 17 depends on the linear fitting lines. As we have discussed, 32 
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the determination of the fitting functions is associated with Dm and Lw. Under this circumstance, Cooker et al. [26] proposed 1 
to use the wall residence time r d aT T T  , alternatively, as the definition of phase lag in time. aT is the attachment time at 2 

which the incoming wave arrives at the vertical wall and dT is the detachment time at which the reflected wave leaves the 3 

wall. The equivalent attachment and detachment time for symmetric head-on collision are defined in Figure. 17. The wall 4 

residence time given by Cooker et al. [26] is  5 

 1/2 1/204 1
+

8/ 3
rT

d g


    
 

 , (18) 6 

where 1
0 tanh (1/ 3)  . 7 

 Figure. 20 records the maximum amplitude versus time for symmetric head-on collision. Figure. 20(a) shows the 8 
comparison of the present results with the numerical results of Cooker et al. [26] for 0.2R L   with excellent agreement. 9 

Figure. 20(b) gives the present numerical result, experimental result of Chen & Yeh [2] and numerical result of Craig et al. 10 
[3] for 0.4R L   . Our numerical result of maximum wave amplitudes agrees well with Cooker et al.’s [26] numerical 11 

result, while the experimental result of the maximum run-up is smaller than our numerical result. The wall residence time of 12 

our numerical results and the solutions by Eq.18 for different cases are summarized in Table 5. For asymmetric collision, 13 

Eq.18 is not applicable. 14 

 15 

Table 5. The wall residence time for symmetric collisions and fully interacting time for asymmetric collisions. 16 

Wall residence time or 

fully interacting time 

Type of 

collision 
Case 

Present 

numerical result 

Theoretical result 

(Eq.18) 

/
rT

d g
 

Symmetric 

collision 

0.2R L    3.633 3.672 

0.4R L    2.944 2.970 

/
fT

d g
 

Asymmetric 

collision 

0.2R  | 0.4L   4.323 NA 

0.3R  | 0.4L   3.630 NA 

 17 

Figure 20. Temporal variation of the maximum amplitude for symmetric head-on collision. (a) The comparison of the our 18 
numerical results with the numerical results of Cooker et al. [26], here 0.2R L   . (b) The comparison of the our results 19 

with the numerical results of Craig et al. [3] and the experimental measurements of Chen & Yeh [2], here 0.4R L   . 20 

Attachment and detachment points are indicated:  from Cooker et al. [26] and   from the present study. 21 

 22 
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 1 

Figure 21. Temporal variation of the maximum amplitude for asymmetric head-on collision. (a) 0.2 0.4R L  ,  . (b) 2 

0.3 0.4R L  , . Attachment and detachment point are indicated. 3 

 4 

Figure. 21 shows the maximum amplitude versus time of the higher solitary wave for both the two asymmetric head-on 5 
collision cases, i.e. 0.4L  . During the collision, we can always record the crest trajectory of the higher wave because the 6 

higher wave gains height without losing its crest by swallowing the smaller one. On the other hand, there is a dramatic leap 7 

of the crest elevation for the smaller solitary wave when it is swallowed, shown in Figure. 16.  8 
Although the attachment and detachment point are proposed in the study on the reflection of a solitary wave from a 9 

vertical wall, we can still identify them in asymmetric head-on collision. In fact, the attachment and detachment point in 10 

symmetric or asymmetric head-on collision are the critical time to divide the whole collision process into two parts. There 11 

are two crests before the attachment and after the detachment, while there is only a single crest between the attachment and 12 

detachment time. So we can define the ‘wall residence time’ in wall reflection of a solitary wave as general fully interacting 13 

time Tf , namely 14 

 f d aT T T   , (19) 15 

which can be applied in both symmetric and asymmetric head-on collision. The numerical results of two asymmetric collision 16 

cases are summarized in Table 5. No researchers have investigated the analytical expressions of the attachment and 17 

detachment time for the asymmetric collision according to authors’ knowledge, which requires further research in the future. 18 

 19 

4.3 Overtaking collision 20 

Overtaking collision of two solitary waves is considered as a ‘strong’ wave-wave interaction, which means that it takes 21 

a long duration for a larger solitary wave to catch up with, interact with, overtake and separate from the smaller one. There is 22 

a slight modification of wave amplitude and velocity after the collision, which has been discussed by Craig et al. [3] and Li 23 

[51]. The higher solitary wave experiences a positive phase shift while the smaller wave is retarded after the interaction. 24 
In order to determine the numerical phase shifts of solitary waves after the overtaking collision, we take two locations 25 

1X and 2X ( 2 1X X ). When passing these locations, the two solitary waves are clearly separated. The collision domain is 26 

between these two locations. The phase shifts can be evaluated according to Li [51] as 27 

 0ˆ ,( 1,2)i i is L c t i    , (20) 28 

where 0 2 1L X X  and ic (i=1,2) is the ninth-order phase speed according to Fenton [19]. it (i =1, 2) is the time interval of 29 

a wave crest passing these two locations.  30 

Li [51] gave the theoretical phase shifts for the two solitary waves in the form of 31 
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where 1 13  ， 2 23   , 1 = 1A /d and 2 = 2A /d are dimensionless wave amplitude of the higher solitory wave 1 

and the smaller one, respectively. d is the calm water depth. Since s1 > 0 and s2 < 0, the higher wave is shifted forward and 2 

the smaller wave shifts backward after the interaction. 3 

 Lax [28] has categorized the overtaking collision of two solitary waves based on the ratio between the two initial 4 

amplitudes 1 2/  ( 1 2  ): (a) 1

2

3 5
1

2





  ，(b) 1

2

3 5
3

2





  ，(c) 1

2

3



 . However, Craig et al. [3] found that the 5 

category given by Lax [28] seemed unable to accurately predict larger amplitude ratio cases, and proposed a revised criterion 6 

based on their experimental and numerical results, namely  7 

1

2

1 2.941



   , category (a); 8 

1

2

2.941 3.536



   , category (b); 9 

1

2

3.536



  , category (c). 10 

In the present study, selected overtaking collision cases will be simulated and the results will be validated with the 11 

exsiting numerical and experimental results. The present numerical results will also be used to check the applicability of the 12 

categories proposed in Lax [28] and Craig et al. [3]. 13 

 14 

 15 

 16 
 17 

 18 

 19 
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 1 

 2 
Figure 22. Overtaking collision of solitary waves with amplitudes 1A = 2.295cm and 2A =0.730cm at (a) t = 2.90304s, (b) t = 3 

5.50196s, (c) t =6.40517s, (d) t = 7.05025s, (e) t = 7.60014s, (f) t = 8.50024s, (g) t = 9.50478s, (h) t = 11.30191s. Here，4 
, numerical result of Craig et al. [3]; , linear KdV solution;      , experimental result of Craig et al. [3]; 5 

 , our present result. 6 

 7 

 Figure. 22 shows a comparison of wave profiles among our present numerical result, the numerical and experimental 8 

result of Craig et al. [3] and the KdV two-soliton solution at different time. The quiescent water depth is d = 5.0cm. It can be 9 

observed that the present numerical result agree well with the numerical result of Craig et al. [3]. The overtaking process 10 

takes a long distance so that we can notice there is an obvious attenuation in the wave amplitudes due to the water viscosity 11 

in Craig et al.’s [3] experiment. Despite the wave amplitudes decrease with the distance, the wave profile still has the same 12 

form as numerical results at t = 7.05025s (Figure. 22(d)), while the linear KdV solution has already been unable to provide 13 

convincible prediction. 14 

Figure. 23 demonstrates a higher solitary wave of 1 0.4  catching up a smaller wave with amplitudes 2 = 0.3, 0.133, 15 

0.113 and 0.1, respectively. Since the wave velocity is dependent on wave amplitude, the duration of the overtaking process 16 

is different from case to case. The length of the wave tank is much longer compared with head-on collision. In this study, the 17 

tank length has been adjusted to avoid wave reflection from the downsteam tank wall before the overtaking process is 18 

completed. The water depth is d = 1m in our simulations. 19 

It is difficult to tell from Figure. 23(a) whether the collision have happened or not, but we can identify the interaction 20 

from Figure. 23(b). During the collision, the amplitude of the larger solitary wave monotonically decreases as the smaller 21 

wave rises up until the their amplitudes become identical at a critical time. After the critical time, the process reverses till two 22 

wave crests are well separated. Specifically, there are two distinguishable crests during the collision process. The whole 23 
interaction between solitary waves of 1 0.4  and 2 0.3  takes a very long CPU time as the relative velocity of the two 24 

waves is too small. After the collision, the higher solitary wave shifts forward while the smaller one shifts backward. Our 25 
numerical results for this case with ratio 1 2/ =1.333  matches with both the KdV category (a) by Lax [28] and the category 26 

(a) by Craig et al. [3].  27 

 28 

 29 

 30 

____
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 1 

Figure 23. Overtaking collision for solitary waves of amplitudes: (a)-(b) for 1 0.4   and 2 0.3  ; (c)-(d) for 1 0.4   2 

and 2 0.1333   ; (e)-(f) for 1 0.4    and 2 0.113   and (g)-(h) for 1 0.4    and 2 0.1   . Each case shows both 3 

spatial-temporal plot (left) and wave profiles at different time (right) : , the critical time when two waves exchange 4 

their relative positions; , wave profile before the critical time ; , wave profile after the critical time. 5 

 6 
For 1 2/ =3  , shown in Figure. 23(c) (d) , the higher wave catches up with the smaller wave and then partially absorbs 7 

it. The dual-crest wave profile in our simulation at the critical time belongs to Lax’s [28] category (a) though the distance 8 
between the two crests is significantly smaller than that in the first case with 1 0.4  and 2 0.3  . But the amplitude ratio 9 

tells us that the result should have belonged to Lax’s [28] category (b) or (c). So there is a conflict of our numerical result 10 

with the category of Lax [28]. 11 
Figure. 23(f) shows that there is a flattened peak instead of distinctive dual crests at the critical time for 1 2/ =3.539  . 12 

The wave profile is supposed to be in the form of a single crest based on category (c) of Lax [28] at the critical time, while 13 

this ratio is defined as a critical transition value from category (b) to (c) in Craig et al. [3]. Our present numerical result for 14 

this case is essentially consistent with the revised category proposed by Craig et al. [3].  15 
Figure. 23(h) shows only a single crest at the critical time for the case with 1 0.4  and 2 0.1  . The larger wave 16 

gradually swallows the smaller one during the overtaking process. After the critical time, two waves re-emerge with a change 17 

of relative positions. This behaviour is the same as category (c) both in Lax [28] and Craig et al. [3].  18 

 19 

Table 6: Spatial phase shifts and categary for overtaking collision of solitary waves 20 

Case 1  2  
1 / 2  

Category in 

Lax [28] 

Category in 

Craig et al. [3] 
1̂s  2ŝ  1s  2s  

1 0.4 0.3 1.1333 a a 5.7688 -6.3883 5.8896 -6.8007 

2 0.4 0.1333 3 b or c  b 2.3666 -5.3963 2.9443 -5.1004 

3 0.4 0.113 3.539 c b or c 2.5960 -3.9291 2.6486 -4.9832 

4 0.4 0.1 4 c c 2.9604 -3.834 2.4566 -4.9131 

 21 

Table 6 gives the theoretical and numerical result of the phase shifts as well as the category of the overtaking collision. 22 

1̂s  and 2ŝ are the present numerical results and 1s  and 2s represent theoretical results by Eq. (21). It can be found that the 23 

numerical results agree well with analytical data.  24 

 25 

5 Conclusions 26 

A thorough analysis on the generation, propagation and interaction of solitary waves in a nonlinear numerical water wave 27 

tank based on the 2D Harmonic Polynomial Cell method is presented.  28 

Four different methods of solitary wave generation are implemented in the numerical water wave tank. For 0.4  , the 29 

results by Goring’s method are found to be less satisfactory because of reduction in amplitude and obvious trailing waves. 30 



25 
 

But the FNL method can produce solitary waves with minor trailing waves even for highly nonlinear waves.  1 

For the head-on collision of solitary waves, our numerical results of the maximum run-up are in excellent agreement with 2 

the third-order approximation by Su & Mirie [1] up to 0.5  . For even higher waves, higher-order nonlinearity is not 3 

negligible so that the Su & Mirie’s [1] theory fails to provide accurate prediction. But our fully-nonlinear numerical wave 4 

tank can still get the highly accurate results. Moreover, for the symmetric collision with 0.4  , our numerical results of wave 5 

profiles, phase shifts and the trailing waves after the collision are also successfully validated with experimental measurements 6 

of Chen & Yeh [2].  7 

The phase shifts after the head-on collision are thoroughly investigated. Many researchers have questioned that Su & 8 

Mirie’s [1] third-order prediction consistently underestimates the phase shifts when comparing with either their numerical 9 

results or experimental measurements. In present study, we demonstrate that the phase shift near to the collision center is 10 

larger than that far away from the collision domain. However, those researchers always mistakenly compared their immediate 11 

phase shifts with Su & Mirie’s [1] third-order approximation of the uniform phase shifts. This is the main reason for the 12 

discrepancy. Additionally, inspired by Cooker et al. [26], we suggest to use the general ‘fully interacting time’ as the phase 13 

lag in time for both symmetric and asymmetric head-on collision. But the theoretical expression of the fully interacting time 14 

is not obtained, which could be a valuable research in the future work. 15 

The overtaking collision of solitary waves is also studied for selected cases. Our numerical result is well validated with 16 

the numerical and experimental result of Craig et al. [3]. Furthermore, the simulations of four selected cases also strongly 17 

support Craig et al.’s [3] category of the overtaking collision process As for the phase shifts, our present results are also in 18 

good consistent with the analytical results by Li [51]. 19 

 20 
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