Christiansen, Sander Aker
Fauske, lvar Austin

Implementing a Virtual Driving
Instructor

Master’s thesis in Computer Science
Supervisor: Gundersen, Odd Erik

June 2019

=}
z
-
z

>
[=2]
S
o
c
=
o
—
©
[
@
[J]
o
c
@
(8
wn
Y—
o
>
=
n
[
[
2
[
o]
c
.0
[=2]
(]
2
c
o
P

_
o
©
O£
s o
o o
@ <
TTCY
C
S uw
©
>
(=2}
o
S
o
C
e
(8]
(0]
'_
C
o
p=
©
—
o
o
C
=
o
>
=
35
(&)
®
i

o
3]
c
@
3]
wn
j .
o
2
5
o
IS
5]
(@)
o«
5]
!
c
]
£
£
j o
@
o
o
[m]

@NTNU

Norwegian University of
Science and Technology

Christiansen, Sander Aker
Fauske, lvar Austin

Implementing a Virtual Driving
Instructor

Master’s thesis in Computer Science
Supervisor: Gundersen, Odd Erik
June 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

@NTNU

Norwegian University of
Science and Technology

Abstract

Today, most adults understand the domain of traffic to some extent. Ways of
representing this domain has been an active and popular area of research in re-
cent years, especially focusing on traffic management and autonomous vehicles.
Consequently, a good understanding of the domain and feasible ways of reason-
ing about traffic situations have been discovered. However, research regarding
ways of evaluating a driver’s performance has received less focus.

This thesis investigates the implementation of a virtual driving instructor, which
frames the driver’s understanding of the situation using situation awareness and
provides corrective feedback on the basis of it. This novel approach to identify-
ing driver mistakes is investigated through analysis and discussion of scenarios
driven in a driving simulator and later evaluated by a proof of concept im-
plementation. The proof of concept was implemented as a multi-agent system
representing the situation in an ontology.

A professional driving instructor was consulted to provide feedback for the same
scenarios as the proof of concept. A comparison between the two served as the
basis for the validation of the proof of concept. Initial results were somewhat
promising, with the system being able to correctly evaluate violations of having
to yield or speeding. The proof of concept and the driving instructor agreed
83% of the time. However, the agreement could go as low as 42% for diffi-
cult situations. Suggested improvements are identified and future work for a
full system implementation, designed for real-time evaluation and feedback, is
proposed.

Keywords: Situation Awareness, Fxplainability, Traffic Situations, Ontologies,
Virtual Driving Instructor, Artificial Intelligence

Sammendrag

De fleste av dagens voksne har en viss grad av forstaelse for trafikkdomenet.
Hvordan representere dette domenet har veert et aktivt og populaert forskning-
somrade 1 mange ar, spesielt innenfor trafikkhandtering og selvkjgrende biler.
Som en konsekvens har god forstaelse for domenet og mulige mater a resonere
rundt trafikk blitt oppdaget. Derimot har forskning rundt hvordan evaluere en
sjafgrs prestasjoner fatt mindre oppmerksombhet.

Denne oppgaven undersgker implementasjonen av en virtuell kjgreleerer, som
vinkler en sjafers situasjonsforstaelse ut i fra ”situasjonsbevissthet” og gir kon-
struktiv tilbakemelding basert pa denne. Denne nyskapende tilnsermingen til
a identifisere sjafgrfeil, undersgkes gjennom analyse og diskusjon av scenarier
kjort gjennom i en kjgresimulator som senere evalueres i en implementasjon av
konseptbevis. Dette konseptbeviset ble implementert som et multi-agent system
hvor situasjonen ble representert i en ontologi.

En profesjonell kjgreleerer ble bedt om a gi tilbakemelding pa de samme sce-
nariene som konseptbeviset. En sammenligning mellom de to fungerte som
valideringsgrunnlag for konseptbeviset. Initielle resultater var noe lovende, hvor
systemet var i stand til & korrekt vurdere brudd pa vikeplikt og rakjgring. Kon-
septbeviset og kjgreleereren var enige 83% av tiden. Enigheten kunne derimot
veere sa lav som 42% for vanskelige situasjoner. Foreslatte forbedringer har blitt
identifisert og videre arbeid for et fullverdig system, ment til & gjgre evalueringer
og gi tilbakemelding i sanntid, blir foreslatt.

Ngkkelord: situasjonsbevissthet, forklarlighet, trafikksituasjoner, ontologier, virtuell
kjorelerer, kunstig intelligens

Preface

This thesis culminates our studies at the Norwegian University of Science and
Technology. It has been written to fulfill the graduation requirements for the
Master of Science in Computer Science, undertaken between August 2014 and
June 2019.

The project was written in the collaboration with the driving school Way AS,
allowing us to work on such an interesting topic. They have accommodated
very well for our needs throughout the past year, providing us with help from
developers, driving instructors and general help whenever we have asked for it.

We would like to take this chance to express our sincere gratitude towards our
supervisor, Odd-Erik Gundersen, having been the best supervisor we could have
asked for. He took time out of his own schedule, outside of the usual hours, to
help with our work and answer our questions.

Furthermore, we would to express our deep gratitude to our parents and family
for always being there and supporting us, from the literal start, and up until
this point in our lives.

Finally, our most profound and heartfelt thanks go to our respective partners,
for their never-ending belief, support and encouragement. This accomplishment
would not have been possible without them.

Thank you.

Sander Aker Christiansen & Ivar Austin Fauske

June 2019

Contents

[1.1 Background and Motivation|
1.3 Goals and Research Questions|.
1.4 _Research Methodl
[LLb Contributionsl
L6 Thesis Structurel Lo o
|12 Background Theory|
2.1 Context and Situation Awareness
2.2 ntologies|
|2.3 Logic and Reasoning|
24 Blackboard Patfernl. v oo vv e
13__Related Work and Motivationl
3.1 Structured Literature Review Protocoll
3.1.1 Identification of Researchl
3.1.2 Selection of Primary Studies|]
B.1.3 Quality Assessment|
[3.1.4 Data Extraction from Primary Studies|.
3.1.5 ata Synthesis| o o oo
B2 Related Workl oo
8.2.1 Traffic Situation Ontologies|
13.2.2 Providing Feedback Based on Driving Pertormance|
13.2.3 Virtual Driving Instructors|
B.3 Motivationl oo
4 Proposed Solution|
4.1 Situation and Context Representation|
M2 The Traffic Domainl. - « - « « « v v v v v
4.3 System Design| 0oL
...............................

[5Simulator Description|

.1 The Driving Simulator| 46

b2 Available Simulator Datalo 47
.3 Simulator Data Shortcomings| 48
.4 Simulator Additions| oL oo oo 49
BAT Evenfdo 50
0.4.2 Road Signs| 51
................. 52

|6 Proof of Concept Implementation| 53
6.1 esolving Simulator Shortcomings| 54
6.2 System Requirements| 55
6.3 Architectural Drivers and Architecturally Significant Requirements| 58
6.3.1 Architecturally Significant Requirements|. 58
[6.3.2 Architectural Driverd. 58

[6.4 Architectural Tacticsl 59
6.4.1 Modifiability Tactics| 59
6.4.2 Performance Tactics] 61
6.5 Architectural Patterns 62
[6.5.1 Blackboard Patternl 62
6.5.2 Singleton| o 62
6.5.3 Factory Pattern|. 0oL 63
6.5.4 Observer Patternl 63

6.6 Views 63
6.6.1 Logical View| 0. 63
662 Process Viewl 66
16.6.3 Inconsistencies Between Viewsl 69

6.7 Agent Documentation|, 70
6.7.1 Speed and Acceleration Interpolation Agents| 70
6.7.2 Possible Collision Agent| 71
6.7.3 Yield Relation Agent|. 71

6.8 _Archifectural Rationald 72
7 Experiments and Results| 73
[7.1 Experimental Plan| 73
[LI1 Overviewl 73
7.1.2 Rationale Experiment 1} 74
[7.1.3 Rationale Experiment 2|o 74
CITd Datal. 74

7.2 Experimental Setup| 75
I7.2.1 Experiment 1| oo oL 75
[7.2.2 Experiment 2, T-Intersection| 77
[7.2.3 Experiment 2, 4-way Intersection| 79

7.3 Experimental Results|. 81
[7.3.1 Experiment 1| oL 81

[7.3.2 Experiment 2| Lo 82

BI Evaluationl. o v vovv oo e e 90
8.1.1 Experiment 1| L oo 90
8.1.2 Experiment 2, T-intersection| 91
[8.1.3 Experiment 2, 4-way intersection| 92

0 01 S 93

B2 DISCussion] . . .« v v oo v e e 93
8.2.1 Hypothesis, Objectives and Research Questions|. 94
8.2.2 Speeding] 96
[8.2.3 Having to Yield|. 97
[B:2:4 Driving Instructor Evaluation] 98
3.2.5 eedbac CQUENCY| -+« v v e v e e e e e e e e 99
8.2.6 General Topics| oo 99

8.3 Conclusion] 101

84 Future Workl oo o 102
B4l General Workl. 102
8.4.2 Simulator Datal 000000 103
8.4.3 System Improvements|, 103
[8.4.4 Situation Awareness Assumption| L 105
8.4.5 Feedback and Driver Profiling|. 105
B.4.6 _Tnstructor-Student Inferactionl 106

A Experiment Consent Form)| i
IB Video and Log Files| iii

|IC Proof of Concept Source Code| iv

List of Figures

1

A picture taken from within one of Way AS’ driving simulators. |

There i1s no physical engine, input actions from the car are instead |

applied within the virtual simulator world.|. 2

21

Adaptation from |[Endsley| (1995, p.35), illustrating how situation

awareness explains the process behind performing actions within

an environment. Arrows indicate an effect upon a part ot the

process. Key features of the illustration include the different lev-

els of situation awareness, as well as the set of individual factors,

and how they together decide the performance of actions| 10

R.2

Adaptation from |[Erman et al.[(1980 p.222), displaying their im-

plementation of the blackboard pattern. The controller consists

of a monitor that communicates with a scheduling queue accessed

by a scheduler deciding which knowledge source is to be run next.

Upon data flow from a knowledge source (updating state) to a

level in the blackboard, any satisfied knowledge sources after this

update would be added to the scheduling queue. Furthermore,

the figure illustrates how there are several abstraction levels to

the state of the blackboard, and how information in one level can

be used by a knowledge source to add information to another level.| 13

B

Adaptation from |Sukthankar et al. (1998, p.94), displaying the

collection of reasoning objects recommending actions based on

Tocal considerations. Fach reasoning object monitors a subset of

the perception modules, and vote upon a set of possible actions. |

A domain-independent voting arbiter chooses the action to take. |

Finally, the Hysteris Object maintains consistency from one time- |

steptothenext.| 33

A1

The minimal OWL ontology used to describe the traffic situation |

that our Virtual Driving Instructor uses for reasoning on driver

actions. For clarity, only the object properties are included in this

ficure, while the datatype properties have been omitted. The

same goes tor the different kinds of road signs, only the speed |

limit-sign has been included.| 41

4.2 The abstract view of our proposed system solution. The proposed
solution is designed as a multi-agent system, sharing and adding
information using the blackboard pattern, while having a tutor
evaluate the current state, once notified of required information
being available.| oo o 43

b.1 A picture taken from within one of the rooms in which Way |
AS has a driving simulator. A car 1s driven as normal, without
the engine running, and wheels turning, but the driver input is
emitted onto a local network. L he resulting actions are performed
in the simulator world, and the world is projected 360 degrees
| around the car, as well as to a screen in the rear view window.| . 47
b2 A picture from the extension added to the simulator. The trans- |
parent boxes with green borders are event triggers spanning lanes
and the intersection, generating events upon cars entering or leav-
ing them. Furthermore, each event trigger has a unique 1D iden- |
| titying the road segment.| Lo 50
.3 A picture from the extension added to the simulator. The trans- |
parent box with green borders is a collision detector that will
generate a road sign event upon cars passing it. Lhe event has

: an 1D indicating the type of Toad SIgIL] v v . .o oL 51
6.1 The combined class diagram of the proof of concept implementa- |
| tion of our virtual driving instructor system.. 64
[6.2 The class diagram of the agent-package of our proof of concept |
| 1mplementation of our virtual driving instructor system. 65

6.3 Process view showing the overall flow ot the proof of concept |
virtual driving instructor system through a sequence diagram, |

when initializing a timestep coming in as X rom the simulator.| 67
6. rocess view of the observer pattern as used in our proot of con-
| cept implementation, documented as a sequence diagram. 69

7.1 The start positions of the T-intersection scenarios tested in ex-
periment 1. 17 possible legal paths through the intersection (i.e.
no u-turns), were tested, with different legal combinations of road
signs. The FEgo always starts from the left, as indicated by the
red arrow, while the other car starts from the middle as indicated |

by the blue arrow.| o o000 77
[722 The set of T-intersection scenarios as seen from a top-down view |
| within the simulator. The red line indicates the path of the Ego, |

| while the blue line indicates the path of the other car| 79

7.3 The set of 4-way intersection scenarios as seen irom a top-down |

‘ view within the simulator. The red line indicates the path of the
| Ego, while the blue line indicates the path of the other car. LThe

horizontal lanes have right of way, while the vertical lanes have
| to yield, as indicated by the road signs| 80

[7.4

This example of scenario 6 shows the Ego not yielding when sup-

posed to and having to compensate by braking hard. In this case,

the proot of concept system provides feedback about violation of

havingtoyield|o oo oo

83

[7.5

This example of scenario 6 shows the Ego yielding when supposed

to, by adjusting speed appropriately beforehand. In this case,

the proot of concept system provides no feedback as there were

no violations of having to yield,|

84

7.6

This example of scenario 4 illustrates driving on in the case of

having right of way when another car is approaching the inter-

section. In this case, the prootf of concept system provides no

feedback as there were no violations of having to yield.|.

85

7

This example of scenario 4 illustrates stopping to let another car

having to yield for you pass, in the case of having right of way.

In this case, the proof of concept system provides no feedback as

there were no violations of having to yield.|.

85

Initial acceleration is very high initially when cars spawn within

the simulator, resulting in a possible collision and the system

saying the Ego violates having to yield. In this case, the car is

not seen, but is at the end of the road, in the lane opposite to

HEm

the Ego.|

86

|(9 Adjustment of ones position in the lane, due to the intended path,
[is an over-sensitivity within the system that results in the system

saying the Ego violates having to yield.|

87

[7.10 In scenario 9, the other car is on a collision path with the Ego,

L
[7.1T This figure shows part of the output for test subject number 6,

but the system says the Ego violates having to yield.|

88

provided in Norwegian. 1he picture shows speeding violations

with the corresponding speed across a single second within the

simulator. One can observe the general trend of speed having

unexpected variations within a short interval, as displayed here,

the speed values can vary quite drastically momentarily. Also,

1t 1s worth noting the frequency at which the system outputs

feedback. The numbers xx:yy:zzz 1S the time in minutes, seconds

|A.1 The schema (in Norwegian) test subjects would fill out confirming

that we can analyze their data from the simulator test drive, along

with some attributes related to their driving, like experience with

simulators and how long they have held a drivers licence.|

List of Tables

B.I

The groups of search terms, where terms of similar meaning or

within the same scope are grouped together. These groups and

13.2

The set of inclusion criteria that filters out research not closely

L

[3-37 The set of quality criteria to rate the remaining search results.

related to the implementation of our system.|

B.A

The remaining results atter applying inclusion criteria, rated ac-

cording to the quality criteria of our literature review.

6.1

Non-Functional Requirements for the implementation of our Pro-

posed Solution|

6.2

Functional Requirements for the implementation of our Proposed

Solutionl e

6.3

71

The expected results of running the configurations of experiment

1 locally. The destination of the ego, the path of the other car,

as well as their respective right of way privileges: RH = right-

hand rule, ROW = right of way, Y = yield. Whether or not the

scenario was driven in a correct manner is indicated, as well as

whether or not a generated feedback i1s expected|

[7.2

The results of running the configurations of experiment 1 locally.

| The destination of the ego, the path of the other car, as well as

their respective right of way privileges: RH — right-hand rule,

ROW = right of way, Y = yield. Whether or not the scenario

was driven in a correct manner is indicated, as well as whether

or not the system generated a teedback. The scenarios where the

system output a violation and it was expected have their text

made bold)

73

The total number of yield violations discovered by the proot of

concept across all participants of experiment 2 per scenario.| . . .

A

The total number yield violations across all participants of ex-

periment 2 per scenario, along with the percentage of violations

a human driving instructor agrees with.|

Chapter 1

Introduction

This chapter introduces the thesis, by including a short section on background
and motivation, listing the goals of the thesis and research questions to be
answered, our method, the contributions of our work, and finally the structure
of the thesis.

1.1 Background and Motivation

Although a lot of research has been done in the intersecting fields of traffic
representation, autonomous vehicles and providing feedback to drivers, the lit-
erature review conducted within this thesis reveals few attempts of providing
feedback to drivers on how well they are driving. Of the few approaches in the
literature where driver performance is evaluated, none of these utilize situation
awareness as a framework to identify why an incorrect action was taken. The
novelty of such an approach in itself is a motivating factor behind the research
of this thesis.

The scope of our thesis is to look at the feasibility of implementing a virtual
driving instructor that uses situation awareness to indirectly identify the flaws
of a driver’s situation awareness. After identifying the flaws, such a system is to
provide constructive, corrective feedback to resolve misinterpretations of traffic
laws and facilitate improved situation awareness in future similar situations.
The work in this thesis has been done in cooperation with Way AS, a Norwe-
gian driving school, that provided access to a realistic driving simulator, the
raw output data from said simulator, as well as their source code. Way AS see
the business value in having an automated assessment system that can eval-
uate a driver’s performance. They believe such a system can support driving
instructors and reduce their workload. Thus, the business opportunities of such
a system are included as driving forces motivating this research.

1.2 Research Context

The research of this thesis has been conducted at the Department of Computer
Science at the Norwegian University of Science and Technology, in collaboration
with the driving school Way AS situated in Trondheim.

In addition to the regular services offered by a driving school, Way AS also offers
students to practice in a driving simulator. Students operate the simulator from
inside a regular car where inputs are applied to a car within a virtual world
instead of motoring the actual car. The virtual world is projected on walls
around them. Information from the driving simulator is logged to a file that
can be read and analyzed later on. The data produced by the simulator will be
the primary data source of our work. Figure shows the view from within
one of the simulator cars.

Figure 1.1: A picture taken from within one of Way AS’ driving simulators.
There is no physical engine, input actions from the car are instead applied
within the virtual simulator world.

1.3 Goals and Research Questions

The underlying assumption of this report is that a system utilizing rule-based
AT can be used to solve the problem of generating and providing feedback on
a driver’s behavior in traffic situations. The system will also take the context
into account. Therefore our working hypothesis will be defined as:

A Virtual Driving Instructor System, using AI can be used to evaluate a
driver’s behavior to give precise, justified, and understandable feedback about
a traffic situation the driver can use for improvement.” .

To support this hypothesis, we suggest a set of objectives that must be satisfied,
with corresponding research questions to be answered throughout this thesis.
Such a hierarchy is able to shed light on the different problems such a system
has to solve by imposing explicit requirements on it. Furthermore, it identifies a
set of tasks that can be used to evaluate the success of the research documented
within this thesis.

First of all the system has to be able to understand the situation and context a
driver is operating in. Thus our first objective will be defined as: ” The system
must be able to understand the situation and context.”.

A rule-based AT system reasons using rules, which represent domain knowledge.
The first research question to be answered is how the system can use these
rules to build a knowledge base, i.e. how to represent the situation and context
of traffic, as well as traffic rules. This research question is important because
good rules and a good knowledge base provide the foundation for the quality of
reasoning that can be performed by the system, as well as it’s ease of use.

The second research question revolves around implicit information. Much of
the key information of a driving situation is not given explicitly but must be
inferred. Therefore, a Virtual Driving Instructor must be able to infer implicit
information. The aim of the second research question is to understand how a
Virtual Driving Instructor can deduce implicit information.

After being able to represent both the traffic situation and it’s context, a Vir-
tual Driving Instructor must be able to evaluate a driver’s behavior in the given
situation. This will be defined as our second objective: ” A Virtual Driving In-
structor must be able to evaluate driving behavior”.

To evaluate the behavior of a driver, this behavior must be represented. As
a driver’s behavior is a result of their actions, a way of converting actions to
behavior is required. Therefore the first research question related to this objec-
tive is how driving behavior can be recognized and represented, based on driver
actions.

After behavior has been represented, the next step is to evaluate it. Behavior is
context-sensitive and therefore the corresponding situation, set of traffic rules
and context in which the behavior was identified must be included. The second
research question will thus be about how driving behavior can be evaluated with
respect to a given representation of traffic rules, situation, and context.

While being able to identify flaws in driving behavior is a nice first step in the
implementation of a Virtual Driving Instructor that can provide feedback, it
is of little use to a driver if the driver is unable to understand the feedback.
The value of constructive, understandable feedback is the rationale behind our
third objective: ” Feedback generated by a Virtual Driving Instructor must be
understandable for humans with little to no understanding of AI”.

The first challenge is when and how the feedback should be generated. What
kind of behavior should trigger feedback? How often should one give feedback
on the same thing? When do small things add up to justify generating feedback?
Does a behavior result in multiple separate feedback or can it be given as joint
feedback? These are all questions to look into as part of the first research
question related to the third objective.

The last research question revolves around justifying the feedback. It is common
to question why one was given some feedback. Most people are driving with the
best intentions and commit mistakes unknowingly. Therefore it is important
that the Virtual Driving Instructor is able to justify the feedback it provides.
This will also ensure trustworthiness.

The research questions identified in this section will form the basis for the exper-
iments to be performed in this thesis. The experiments will be clearly defined in
chapter [7] These will be conducted within a driving simulator at the offices of
Way AS. The evaluation in chapter [8] will look at each of the research questions,
evaluating the success of each objective. The validity of our working hypothe-
sis will then be looked at based on the degree of success for each of its objectives.

Below is a summary of the working hypothesis, objectives, and research ques-
tions introduced:

Hypothesis A Virtual Driving Instructor System, using AI, can be used to
evaluate a driver’s behavior to give precise, justified, and understandable
feedback about a traffic situation the driver can use for improvement.

Objective 1 A Virtual Driving Instructor must be able to understand the sit-
uation and context.

RQ 1 How to represent both the situation and context that applies at a
given time in traffic?

RQ 2 How can missing information be inferred from domain knowledge,

and basic information of situation and context for a given time in
traffic?

Objective 2 A Virtual Driving Instructor must be able to evaluate driving
behavior.

RQ 3 Based on driver actions, can driving behavior be recognized and
represented?

RQ 4 How should driving behavior be evaluated with respect to a given
representation of traffic rules, situation, and context?

Objective 3 Feedback generated by a Virtual Driving Instructor must be un-
derstandable for humans with little to no understanding of Al.

RQ 5 When and how should a Virtual Driving Instructor generate feed-
back?

RQ 6 Given the way feedback is generated by a Virtual Driving Instruc-
tor, can it also be justified?

1.4 Research Method

Our working hypothesis states that a Virtual Driving Instructor System can
evaluate driver behavior and provide feedback. This thesis is concerned with
documenting how such a system would be developed, as well as the implemen-
tation and evaluation of a proof of concept. Therefore, our research method
will be designing a solution and conducting experiments to validate its accu-
racy. Through aforementioned research method we will provide answers to our
research questions.

The literature review of chapter [3| sheds light on research related to the imple-
mentation of a virtual driving instructor, where theoretical and abstract solu-
tions have been suggested. However, there is no documented implementation
of a virtual driving instructor utilizing situation awareness in the same manner
as proposed in this thesis, further supporting our choice of research method.
Therefore, it will be important to document the proposed system design.

Two experiments were designed to test whether or not the proof of concept
was able to correctly evaluate driver performance. They consisted of a series of
scenarios regarding right of way and yielding in different intersections. Our first
experiment concerned a broad testing of situations. The second experiment had
test subjects drive through a subset of the scenarios in a normal manner. In
both experiments feedback provided by the system was compared to expected
feedback. While the comparison in the first experiment was done with the
authors own evaluation, the second experiment utilized the evaluation provided
by a human driving instructor. A satisfactory level of accuracy would provide
validity to our proposed solution, and lay the foundation for further development
and improvement.

1.5 Contributions

This thesis proposes a novel way of identifying driver flaws and providing cor-
rective feedback, through the framework of situation awareness. Under the
assumption that a driver acts with the best intention, incorrect behavior is the
result of incorrect situation awareness. Thus, this thesis looks into the issue of
indirectly identifying what parts of the situation awareness are incorrect.

Furthermore, this thesis evaluates the applicability of the proposed approach
through testing it on interesting intersection scenarios using a proof of concept
implementation which considers speeding, right of way and having to yield.
Corresponding scenario evaluation given by a human driving instructor served
as a measure of correctness.

1.6 Thesis Structure

Chapter 2| Here we introduce relevant background theory related to the different as-
pects of our system.

Chapter [3] This chapter contains a structured literature review for identifying related
research to the scope of this thesis, along with a synthesis of the work
having been done in the field. Finally, based on the literature review,
the motivation behind the scope of this thesis and an identification of its
contributions is described.

Chapter [In chapter [] the proposed system implementing our idea of a virtual driv-
ing instructor is explained. The way of representing system and context,
the traffic domain, as well as situation awareness is described. Further-
more, an abstract overview of the system is provided, and the whole system
design is summarized.

Chapter [f] The concern of this chapter is describing the simulator from which our
data origins, as well as what data is output from said simulator and the
shortcomings of this data. The extensions made to the simulator, enabling
further reasoning about driving, are also documented within this chapter.

Chapter [6] Here, we document the requirements elicitation and implementation of the
proof of concept system we have used for evaluation of our novel approach
in providing feedback to drivers. The main architectural drivers are iden-
tified and discussed, techniques for taking care of these are documented,
and logical and process views are included to document the workings of
the system. Documentation of how the issues identified in chapter []is also
included. Furthermore, the most critical agent logic implemented is doc-
umented. Finally, a rationale behind the chosen architecture is included.

Chapter [7] The experimental setup, experimental plan and their results are docu-
mented in this chapter. The experiments consist of initial acceptance
testing making sure that the system is able to handle many legal configu-
rations of an intersection, then user testing is performed to test the system
in regular use. A select handful of interesting results are highlighted.

Chapter [§] Finally, an evaluation of the scenarios described in chapter [7] is included.
Based on these results, we discuss the applicability of our novel approach
in providing justifiable feedback to a driver and identify issues and propose
improvements to our system. A final conclusion and suggested future work
is also included.

Chapter 2

Background Theory

The goal of this chapter is to introduce the most relevant topics to understanding
different aspects of the proposed virtual driving instructor system.

2.1 Context and Situation Awareness

A situation is not fully understood through a snapshot in time with information
about all relevant entities within it, but also requires a context. An operational
definition from the field of Human-Computer Interaction illustrates the concept
of context well;

Context is any information that can be used to characterize the situation of an
entity. An entity is a person, place, or object that is considered relevant to the
interaction between a user and an application, including the user and applica-
tions themselves (Dey}, 2001, p. 5).

A framework that describes ones current understanding of a situation, termed
"situation awareness” is introduced in [Endsley| (1988)). The formal definition
from this paper is: ”"The perception of the elements in the environment within
a volume of time and space, the comprehension of their meaning, and the pro-
jection of their status in the near future.”(Endsley, |1988, p. 791). Such a
framework is well suited to describe mental models when it comes to decision-
making. A clarifying definition building upon Endsley’s has been introduced;
”Situation awareness is the continuous extraction of environmental information,
the integration of this information with previous knowledge to form a coherent
mental picture, and the use of that picture in directing further perception and
anticipating future events.” (Dominguez et al (1994, p. 11). By looking at these
two definitions of situation awareness, situation awareness can be summarized

as the degree to which one is aware of the current context as well as the elements
of a situation.

There are several factors that affect one’s situation awareness. Some of these are
individual, while others depend on the task at hand or the system one is using.
Endsley| (1995) lists these individual factors into groups, which are displayed
in figure [2.1] The complete list of individual factors is abilities, experience,
training, automaticity, information processing mechanisms, long term memory
stores, goals & objectives, and preconceptions (expectations). An illustration
of the entire process associated with acting based on one’s situation awareness
is given in figure 2.1

Task/System
Factors

‘ Performance Of Actions ‘

Feedback

Decision

State Of The
Environment

Situation Awareness

Perception of Comprehension Erafzsitan & L
elements in current of current ——— future status
situation situation
Goals & Objectives Individual
Preconceptions —— Factors
(Expectations) -

Information Processing Mechanisms
Long Term Memory Stores
Automaticity

Abilities
Experience
Training

Figure 2.1: Adaptation from |[Endsley| (1995, p.35), illustrating how situation
awareness explains the process behind performing actions within an environ-
ment. Arrows indicate an effect upon a part of the process. Key features of the
illustration include the different levels of situation awareness, as well as the set

of individual factors, and how they together decide the performance of actions.
10

2.2 Ontologies

Ontologies, within the field of information science, serve as representations of
some domain. The following definition explains how ontologies tend to describe
some hierarchy of related concepts, with optional axioms added to describe re-
lations between concepts:

An ontology is a logical theory accounting for the intended meaning of a formal
vocabulary, i.e. its ontological commitment to a particular conceptualization
of the world. The intended models of a logical language using such a vocab-
ulary are constrained by its ontological commitment. An ontology indirectly
reflects this commitment (and the underlying conceptualization) by approxi-
mating these intended models. (Guarino, 1998, p. 5)

Due to its use in this thesis, a short description of the Web Ontology Language,
also known as OWL, will be provided. This is a family of knowledge represen-
tation languages used for authoring ontologies, that is based on the Resource
Description Framework (RDF) standard.

An example of such an ontology description, the minimal one we have used for
the proof of concept implementation of our system, can be seen in figure [{1]
First of all, OWL consists of classes that correspond to concepts within descrip-
tion logics. An example of a class could be Car.

Furthermore, OWL classes are instantiated as individuals, called the same thing
in description logics. An example of a Car instance could be someCar.

OWL also contains properties (known as roles in description logics), which are
further divided into datatype properties and object properties. The former maps
directly to attributes of a class individual, while the latter maps to a relation-
ship from one individual to another. An example of a datatype property would
be the hasAge-property, to state that the someCar instance of the Car class
has an age of 17 years one could express this as hasAge(someCar, 17). Further-
more, a mustYieldFor object property between Car instances could express the
relation between one car and another stating that one has to yield for the other
as must YieldFor(someCar, anotherCar).

2.3 Logic and Reasoning

First-order logic is a way to structure and reason with logical sentences. The
sentences use constants, predicates, and functions as syntactic elements, where
constants map to the objects of the world, predicates maps to relations be-
tween the objects, and functions are an alternative way of naming the objects
of the world. As an example, given the situation where two cars drive alone
on a straight road one after the other, there are five objects, the two cars,
the road, and the left and right lane. Constants could be Caril=the first car,

11

Car2=the second car, and Road. A predicate can be DrivingBehind(Car2,
Carl) symbolizing the relation that the second car is driving behind the first
car. Instead of naming the left and right lanes, one can instead use the func-
tions LeftLane(Road) and RightLane(Road). Note that these are not functions
taking arguments and returning a value, but just another way of naming the
objects. First-order logic also allows the use of variables, quantifiers, and logical
connectivities to build complex sentences. ”"There is a car driving behind the
first car” can be translated to 3z : Car(x) A DrivingBehind(z, Carl) using the
3 (exists) quantifier, a variable x, and the logical ” And” operator; A.

Though not explicitly written as first-order logic, OWL has a similar way of ex-
pressing domain-specific rules applying within an ontology. Rather these rules
are defined through axioms, acting as constraints on individuals of an ontology.
For instance, given there exists a mustYieldFor object property defined from the
Car class to the Car class, and an inverseMust YieldFor object property defined
from the Car class to the Car class, the axiom of "mustYieldFor owl:inverseOf
inverseMustYieldFor” (expressed as an OWL triple here), enforces all occur-
rences of the mustYieldFor relation from individual A to individual B to have
an inverse relation, inverseMustYieldFor, defined from individual B to individ-
ual A as well.

More complicated axioms can be added, expressing things like a Car individual
speeding, or violating having to yield within an intersection, which is inferred by
some inference engine used by an OWL ontology. The triplet syntax of OWL,
borrowed from RDF, allows efficient reasoning on top of instances of an OWL
ontology. Hence this language is well suited to the traffic domain. Another
advantage of OWL is logical axioms being domain-independent, meaning that
general knowledge applying to a certain domain only has to be written once, and
inference and reasoning can be performed on any instance of an ontology. Thus,
it is system agnostic and only requires the ontology instance to be provided in
a valid format.

2.4 Blackboard Pattern

The blackboard pattern is a behavioral design pattern, first identified and used
in the architecture of the Hearsay-1I project [Erman et al.| (1980). Their archi-
tectural implementation of the pattern is shown in figure

12

Blackboard
Knowledge Sources

Level ks,
L]
. L]
. L
]
K3,
Level 5 <
Level 4 <
Controller
Key: Yy v ¥
:] Program Blackboard Monitor Scheduling Queues
Maodules
A =
I:l Databases
- Data Flow v !
> Control Flow Focus-of-control |
Database Scheduler

Figure 2.2: Adaptation from [Erman et al. (1980, p.222), displaying their im-
plementation of the blackboard pattern. The controller consists of a monitor
that communicates with a scheduling queue accessed by a scheduler deciding
which knowledge source is to be run next. Upon data flow from a knowledge
source (updating state) to a level in the blackboard, any satisfied knowledge
sources after this update would be added to the scheduling queue. Further-
more, the figure illustrates how there are several abstraction levels to the state
of the blackboard, and how information in one level can be used by a knowledge
source to add information to another level.

The pattern has been explained and clarified by both [Nii| (1986) and |Corkill
(1991). These authors explain how the pattern revolves around a central ar-
tifact; the blackboard. Furthermore, knowledge sources are able to both read
and write to this blackboard, updating or adding values. Knowledge sources
are schematized as condition-action pairs, whereupon some set of conditions

13

they are triggered to perform some action. This way a knowledge source only
attempts to perform an action once its preconditions are satisfied by the state
of the blackboard (i.e. when enough information is available). A controller is
also present, responsible for deciding which knowledge source is allowed to write
to the blackboard at what time. Such a pattern fits the situation where several
different specialized modules share the same state, incrementally updated as
computations finish.

14

Chapter 3

Related Work and
Motivation

This chapter concerns identifying and synthesizing the research of fields related
to our system through a literature review. Based on this literature review our
motivation behind the implementation of a virtual driving instructor is provided.
The chapter will also explain in detail the ideas we have been inspired by, or
used, from other research.

3.1 Structured Literature Review Protocol

This section concerns documenting the structured literature review protocol
used for identifying the relevant research related to the implementation of a
virtual driving instructor, or a similar domain. The section describes the sources
searched, what search terms were employed, which inclusion criteria had to be
satisfied for a paper to be included, a rating on the quality of the included paper,
as well as a description and summary of the discovered literature.

3.1.1 Identification of Research

This subsection documents how the research of importance to the implementa-
tion of a virtual driving instructor was identified.

Outline

First, an extensive wide search was conducted. Then the results of the initial
search were filtered based on a set of inclusion criteria. Finally, the quality of

15

the remaining results was assessed.

Sources
The following set of digital sources was utilized when conducting the literature
review:
e Elsevier
e [EEE Xplore Digital Library
e Springer Link
ACM Digital Library
CiteSeer
Wiley Online Library

Google Scholar

Search Terms

The search terms of table [3.1] were used to discover the relevant scientific liter-

ature.
Group 1 | Group 2 Group 3 Group 4
Driving Traffic Situation Awareness Driving Instructor
Car Context-Aware Driving Tutor
Road Ontology Multi-Agent System

Ontology-Based Autonomous Vehicle
Driver Evaluation

Table 3.1: The groups of search terms, where terms of similar meaning or within
the same scope are grouped together. These groups and terms form the basis
of the literature review.

The reasoning behind the following search term groups is as follows:

Group 1 : To restrict the scope of our search to research closely related to the
concern of a virtual driving instructor, this group of terms should help
limit it to the domains of driving, related to cars, or concerning the road.

Group 2 : A more strict limitation is including the single term of ”traffic”, as our
system will be concerned with looking at the traffic domain. This helps
filter out papers who simply mention any of our other keywords.

16

Group 3 : We are using situation awareness, or being context-aware, as a framework
to describe the process of our virtual driving instructor analyzing and
providing feedback upon actions taken by the driver, hence these two
terms are included. The main job of the system is evaluating the driver,
which is why ”driver evaluation” was included. The representation of the
current situation is to be that of an ontology, hence we would like to view
other research which is ontology-based or otherwise takes advantage of
ontologies in the traffic domain.

Group 4 : Finally, our system is to realize a virtual driving instructor, so research
related to driving instructors or driving tutors is looked at. Furthermore,
our preliminary approach is to use a multi-agent system architecture,
therefore we are also interested in similar solutions. As there is proba-
bly overlap with how situations are represented and reasoned about in the
domain of autonomous vehicles, this term is also included to identify any
research overlapping with our concerns.

Search Formula and Procedure

The following formula was used to build one search:
Ty ATy A T3 ATy, where T, is a term from Group X in table 3.1]

Searching was done using all possible logical conjunctions following the search
formula. Furthermore, all of the constructions were run through each of the
digital sources.

3.1.2 Selection of Primary Studies

The primary studies are the remaining results after all the results retrieved have
been filtered. These will lay the foundation of the related work to our problem
and system implementation. The filtering steps are outlined below.

Inclusion Criteria

Although the sets of search terms provide some indication of the relevance of
the search results to the implementation of the system, this is not necessarily
true. Therefore, a set of inclusion criteria is applied to the results to make sure
they are relevant to our problem. These criteria are given in table 3.2

17

ID: | Inclusion Criteria:
1c1 The study concerns representing or reasoning
about traffic situations or a closely related domain.

102 The study concerns situation awareness in

traffic or a closely related domain.

The study concerns a system providing feedback

1C3 .

on driving or a closely related task.
1c4 The study concerns an architecture solving a

similar problem to the implementation of a virtual driving instructor.

Table 3.2: The set of inclusion criteria that filters out research not closely related
to the implementation of our system.

After applying the inclusion criteria of table the set of results was substan-
tially reduced to only 35 studies. For clarity, a study does not have to fulfill all
of these inclusion criteria but is required to at least fulfill one. The remaining
studies after filtering will be regarded as our primary studies.

3.1.3 Quality Assessment

The 35 results remaining after applying the inclusion criteria, will be rated
according to the sum of their score over a set of quality criteria.

Quality Criteria

To assess the quality of studies, they have to be evaluated in terms of several
criteria. We have chosen a set of criteria that should be general enough to
apply to all studies found. Furthermore, they are reasonable expressions of
academic qualities that a good study should fulfill, at least to some degree. The
quality criteria are given in table For each quality criterion, the result will
receive a score of either 0, 0.5, or 1, depending on its satisfaction along that
dimension.

18

ID: Quality Criteria:

QC1 There is a clear statement of the aim of the research.

QC2 | The study is put into the context of other studies and research.

The main contributions of the study are, if possible,
validated through well-documented experiments.

QC3

QC4 | The results of the study are thoroughly discussed and analyzed.

Table 3.3: The set of quality criteria to rate the remaining search results.

Assessment

The goal of assessing each of the results is to get an indication of their academic
strength and the degree to which one should trust the findings or results of a
given study. The resulting sorted list of results is given in table[3:4] The quality
score of a study is not an indication that we should base our solution on their
findings, but serve as a guideline to how useful the findings of this study would
be in the case they are applicable to our problem. On the contrary, a low score
indicates that the study’s conclusion should be regarded with criticism.

Table 3.4: The remaining results after applying inclusion criteria, rated accord-
ing to the quality criteria of our literature review.

Abbreviation
sukthankar1998
regele2008
konstantopoulos2009
hulsen2011
morignot2012
huelsen2014
zhao2014
mohammad2015
zhao2015
zhao2016
buechel2017
geng2017
zhao2017
raptis2018
tranvouez2013
sharon2017
provine2004

o
Q
-

QC2

o
Q
%)

Qo
Q
~
&
=
=

(o]

[y

= = =] = =] = = =] = =] = = =] =

el e e i e e R

[t
S
| Ot

== =] =] =] =] == =] =] =] =] =] = =] =] =
I e e e e e Y Y Y Y e Y Y Y
o] ot

.5 0.5 1
Continued on next page

19

Table 3.4 — continued from previous page

Abbreviation QC1 | QC2 | QC3 | QC4 | Rating
gusikhin2008 1 1 0 1 3
sipele2018 1 0.5 1 0.5 3
hwang2003 1 0.5 0.5 0.5 2.5
arroyo2006 1 0.5 0.5 0.5 2.5
vacek2007 1 1 0 0.5 2.5
el2016 1 0.5 0.5 0.5 2.5
zamora2017 1 0.5 0.5 0.5 2.5
kappe2003 0.5 1 0 0.5 2
weevers2003 1 1 0 0 2
radecky2008 1 0.5 0 0.5 2
sun2011 1 0.5 0 0.5 2
geyer2013 1 0.5 0 0.5 2
gutierrez2014 1 0.5 0 0.5 2
martelaro2015 0.5 0.5 0 0.5 1.5
vlakveld2005 1 0 0 0 1
marti2009 1 0 0 0 1
fu2010 0.5 0.5 0 0 1
uschold2003 0.5 0 0 0 0.5

3.1.4 Data Extraction from Primary Studies

To provide an overview of the relevant literature discovered, a short summary
of each study retained after the filtering from the initial searches is given. The
papers considered most relevant will be expanded upon in the next section. The
papers are introduced in order of rating, and then by year, as given in table
A synthesis of the papers is given in the next section.

sukthankar1998 - Multiple Adaptive Agents for Tactical Driving

Sukthankar et al| (1998]) present a paper concerning the implementation of a
multi-agent system for tactical-level reasoning on the task of driving. By having
separate agents with a particular concern, multiple algorithms can be utilized.
The system’s overall dependence on each agent, is automatically tuned using a
novel evolutionary optimization strategy, termed Population-Based Incremental
Learning (PBIL). This system, which employs multiple automatically trained
agents, can competently drive a vehicle, both in terms of the user-defined eval-
uation metric, and as measured by their behavior on several driving situations
culled from real-life experience. In this article, the authors describe a method

20

for multiple agent integration which is applied to the automated highway system
domain. However, it also generalizes to many complex robotics tasks where mul-
tiple interacting modules must simultaneously be configured without individual
module feedback.

regele2008 - Using Ontology-based Traffic Models for more efficient
decision-making of Autonomous Vehicles

Regele| (2008) describes how a high-level abstract world model can be used to
support the decision-making process of an autonomous driving system. The
approach uses a hierarchical world model and distinguishes between a low-level
model for trajectory planning and a high-level model for solving the traffic
coordination problem. This initial high-level model suggestion serves as the
basis for ontologies developed later on.

konstantopoulos2009 - Investigating drivers’ visual search strategies:
towards an efficient training intervention

Konstantopoulos| (2009) has written a thesis with the aims being to identify
some parameters that influence visual search and to develop an efficient train-
ing intervention that will improve drivers’ visual skills. The difference in eye
movements between driving instructors and learner drivers was examined dur-
ing simulated driving. Results showed that driving instructors had an increased
sampling rate, shorter processing time and broader scanning of the road than
learner drivers.

hulsen2011 - Traffic Intersection Situation Description Ontology for
Advanced Driver Assistance

Hilsen et al.| (2011)) provide an approach to create a generic situation descrip-
tion for advanced driver assistance systems using logical reasoning on a traffic
situation knowledge base. It contains multiple objects of different types such
as vehicles and infrastructure elements like roads, lanes, intersections, traffic
signs, traffic lights and relations among them. Logical inference is performed
to check and extend the situation description and interpret the situation e.g.
by reasoning about traffic rules. The ontological representation is successfully
applied to complex intersections.

morignot2012 - An Ontology-based approach to relax Traffic Regula-
tion for Autonomous Vehicle Assistance

Morignot and Nashashibi| (2012) describe a high-level representation of an au-
tomated vehicle, other vehicles, and their environment, which can assist drivers

21

in taking “illegal” but practical relaxation decisions. This high-level representa-
tion (an ontology) includes topological knowledge and inference rules, in order
to compute the next high-level motion an automated vehicle should take, as
assistance to a driver. The results of practical cases are presented.

huelsen2014 - Knowledge-Based Traffic Situation Description

A thesis from Huelsen| (2014]) concerns the goal of providing a generic traffic
situation description capable of supplying various ADAS (Advanced Driver As-
sistance Systems) with relevant information about the current driving and traffic
situation of the ego vehicle and its environment. With this information, ADAS
should be able to perform reasonable functions and actions and approach vi-
sionary goals such as injury and accident-free driving, substantial assistance in
arbitrary situations up to even autonomous driving. Among other things rela-
tive angles between intersections, the process of interpreting a traffic state to an
ontology and using this in a rule-based system to reason and perform an action is
described, as well as a detailed implementation of a possible collision with other
cars approaching intersections. Furthermore, an extensive ontology and ideas of
events for entering and leaving lanes, intersections, looking at traffic lights, etc.
are described. Different from the paper of 2011, Hiilsen also adds the notion
of feature selection to handle uncertainty regarding which situation one is cur-
rently in. The thesis concludes that it has provided a proof-by-implementation
for logic-based situation description for real-time execution of driver assistance
functions. An asynchronous real-time framework is used, specially designed for
the proposed ontological situation description.

zhao2014 - An Ontology-Based Intelligent Speed Adaptation System
for Autonomous Cars

Zhao et al.| (2014) present an ontology-based driving decision-making system,
which can promptly make safety decisions in real-world driving. This initial
work applies the knowledge base of the system to infer whether or not the car
is speeding.

zhao2015 Ontology-based decision-making on Uncontrolled Intersec-
tions and Narrow Roads

Zhao et al.[(2015)) use their previously designed ontology-based driving decision-

making system, on uncontrolled intersections in Japan (using their traffic rules)
and two-way roads only wide enough for one vehicle.

22

zhao2016 - Fast decision-making using Ontology-based Knowledge
Base

Zhao et al| (2016) improve on their earlier work with the process having been
sped up by a new architecture having a smaller knowledge base of rules that
apply to the current situation, than in their previous system.

zhao2017 - Ontology-Based Driving decision-making: A Feasibility
Study at Uncontrolled Intersections

Zhao et al| (2017) test the improved ontology with success in uncontrolled in-
tersections.

mohammad2015 - Ontology-based framework for risk assessment in
road scenes using videos

Mohammad et al.| (2015)) propose a novel ontology tool for assessment of risk in
an unpredictable road traffic environment, as it does not assume that the road
users always obey the traffic rules. A framework for the video-based assessment
of the risk in a road scene encompassing their ontology is also presented in the

paper.

buechel2017 - Ontology-based traffic scene modeling, traffic regula-
tions dependent situational awareness and decision-making

Buechel et al.|(2017) present a modular framework for traffic regulation based
decision-making of automated vehicles. It builds on a semantic traffic scene
representation formulated as ontology and includes knowledge about traffic reg-
ulations. Situation awareness is used as an explanatory framework. The main
contribution is their modularity, which allows for generic representation that
can be reused for differing sets of traffic laws. The system has not been used for
decision-making in traffic or a simulator yet (not real-time) but has been tested
and validated in complex intersections with or without road signs and traffic
lights represented as static scenarios.

geng2017 - A scenario-adaptive driving behavior prediction approach
to urban autonomous driving

Geng et al.| (2017)) target the problem of most traditional driving behavior pre-
diction models only working for a specific traffic scenario, and not being adapt-
able, as well as prior driving knowledge not being considered, the study proposes
a novel scenario-adaptive approach to solve these problems. A novel ontology
model was developed to model traffic scenarios. Continuous features of driving

23

behavior were learned by Hidden Markov Models. Then, a knowledge base was
constructed to specify the model adaptation strategies and store prior probabil-
ities based on the scenario’s characteristics. Finally, the target vehicle’s future
behavior was predicted considering both a posteriori probabilities and a pri-
ori probabilities. The proposed approach was sufficiently evaluated with a real
autonomous vehicle.

raptis2018 - DARA: Assisting Drivers to Reflect on How They Hold
the Steering Wheel

Raptis et al| (2018) present DARA, the Driving Awareness and Reflection As-
sistant that makes drivers aware of potentially dangerous practices on how they
hold the steering wheel and helps them reflect. One component recognizes how
drivers hold the steering wheel and classify their actions through a Leap Motion
controller and machine learning. Another is comprised of a mobile application
that provides drivers with feedback during and after their drive. The system
was successful both in making holding patterns present-at-hand for the drivers
and in assisting them to reflect.

tranvouez2013 - A Multi-Agent System for Learner Assessment in
Serious Games: Application to Learning processes in Crisis Manage-
ment

Tranvouez et al.[(2013) describe a multi-agent system that implements an Intel-
ligent Tutoring System for assessing performance within crisis management in a
simulator environment, where the situation is represented as an ontology.

sharon2017 - Protocol for Mixed Autonomous and Human-Operated
Vehicles at Intersections

Sharon and Stone|(2017)) have made a protocol for intersection management with
mixed autonomous and human-operated vehicles which would work even at 1%
technology saturation, having improved efficiency over previous ones developed
for decreased traffic delay.

provine2004 - Ontology-based methods for enhancing autonomous ve-
hicle path planning

Provine et al| (2004) report the results of a first implementation demonstrating
the use of an ontology to support reasoning about obstacles to improve the
capabilities and performance of onboard route planning for autonomous vehicles.
Experiments reason with whether or not you should change lanes depending

24

on the obstacle and your vehicle, performing a risk-analysis computation of
estimated damage of collision versus that of changing lanes.

gusikhin2008 - Intelligent Vehicle Systems: Applications and New
Trends

Gusikhin et al.| (2008)) discuss the various intelligent vehicle systems that are now
being deployed into motor vehicles, where the topics are fuzzy-neural systems
control, speech recognition, onboard diagnostics and prognostics, an overview
of intelligent vehicle technologies, and driver-aware technologies.

sipele2018 - Advanced Driver’s Alarms System through Multi-agent
Paradigm

Sipele et al.| (2018)) propose an architecture based on the multi-agent paradigm
for designing driver-centered ADAS that operates through data fusion. The
principal goal is to design a hierarchical structure that can manage the knowl-
edge acquisition process of all aspects involved in the driving scene such as the
environment as well as the driver’s behavior and state, providing support for
building and testing reasoning models.

hwang2003 - Hybrid Intelligence for Driver Assistance

Hwang et al.|(2003) document the architecture of an adaptive driver support sys-
tem, that merges various Al techniques; agents, ontology, production systems,
and machine learning technologies. The goal is to help drivers by managing
their attention and workload, with driver specific adaptations. Their system is
tested using a simulator and assumes that all model errors identified are driver
errors. The result is an initial prototype to be improved upon.

arroyo2006 - CarCoach: a polite and effective driving coach

Arroyo et al.| (2006) describe the design and evaluation of a context-aware driv-
ing advisor designed to promote better driving behavior. CarCOACH takes
the information gathered from various sensors in the car and identifies common
driving mistakes to appropriately commenting on driving behavior. The system
presents scheduled feedback controlled in terms of quantity of total feedback
and feedback with regards to a specific stimulus, and driver current state. Its
goal is to reduce driver stress while maximizing the effectiveness of the feedback
presented.

25

vacek2007 - Using case-based reasoning for autonomous vehicle guid-
ance

Vacek et al.| (2007) present an approach for situation interpretation for au-
tonomous vehicles. The approach relies on case-based reasoning in order to
predict the evolution of the current situation and to select the appropriate be-
havior. Case-based reasoning allows utilizing prior experiences in the task of
situation assessment.

el2016 - Virtual Reality Driving Simulator Prototype for Teaching
Situational Awareness in Traffic

El Aeraky et al.| (2016]) developed a virtual reality driving school simulator to
help students learn how to drive and prepare them for real-world traffic and
situations. The users can learn how to behave during various situations while
navigating a fictional city and following a special quest. These situations happen
at random without warning. The users are accompanied by a virtual computer
assistant inside the car which serves as a driving teacher, feedback system and
narrative device for storytelling and virtual reality display techniques (like su-
perimposing a path) without breaking immersion.

zamora2017 - Intelligent Agents for Supporting Driving Tasks: An
Ontology-based Alarms System

Zamora et al.| (2017) discuss a rule-based alarm system as part of an ADAS. The
main point of the proposed system is that it takes decisions based on the fusion
of the information from the driver, the vehicle status and the state of the road
ahead, and it is designed to alert the driver of the car when the system considers
that it is necessary. Five dangerous scenarios are defined, analyzed and studied,
and a repository of rules is designed to help the driver in those situations. The
situation is represented as an OWL ontology, which the multi-agent system
reasons on.

kappe2003 - Virtual Instruction in Driving Simulators

Kappé et al.| (2003) describe some of the steps that were undertaken in the de-
velopment of a ‘virtual driving instructor’. They describe what it is to drive a
car, how to learn that in practice, and how to learn that in a driving simula-
tor. These steps are the basis for a discussion on virtual instruction in driving
simulators, in which they present some of the current and future work on a
cost-effective driving simulator. However, automated driving instruction is a
complex process, requiring an extensive analysis on the selection, timing, and
form of instruction and feedback. It also requires insight into the state and the

26

mental processes of a student. Human instructors are able to evaluate such pro-
cesses relatively easy, but virtual driving instructors are not. The authors argue
that a virtual instructor has to be complemented with a human instructor. The
human and the virtual instructor should be able to cooperate, each attending
to their own specialties.

weevers2003 - The Virtual Driving Instructor Creating Awareness in
a Multiagent System

Weevers et al.| (2003) introduce a virtual driving instructor or VDI, being a
multi-agent system that provides low cost and integrated controlling function-
ality to tutor students and create the best training situations. An architecture
for the implementation of this intelligent tutoring system is suggested. A tree
structure of how different skills are built up is documented, and situation aware-
ness is used to frame the student’s understanding of a situation.

radecky2008 - Intelligent Agents for Traffic Simulation

Radecky and Gajdos| (2008)) deal with the development of intelligent agents with
respect to their process specifications. The development process can be handled
and documented by the standard UML tool. UML activity diagrams were ex-
tended for their purposes to Agent Behavior Diagrams. Next, the behavior
reconfiguration principle is described in more detail. A learning mechanism of
agents was specified thanks to the mentioned reconfiguration principle. This
approach was implemented in the area of traffic simulation.

sun2011 - SmartAgents: A Scalable Infrastructure for Smart Car

Sun et al.|(2011)) propose a multi-agent framework: SmartAgent, which is devel-
oped specifically for Smart Car. The authors define and implement five agents
according to their functionality. These SmartAgents can acquire environment
context, make certain decisions based on the predefined policies and the infor-
mation received from sensors, and react to the driving environment.

geyer2013 - Concept and development of a unified ontology for gen-
erating test and use-case catalogs for assisted and automated vehicle
guidance

Geyer et al.| (2013 present a fundamental ontology that is based on a consistent
terminology for application in the field of assistance and automation of vehicles.
This ontology allows the analysis of different concepts of cooperative and highly
automated vehicle guidance in the early concept phase and ensures that research
results can be exchanged and compared.

27

gutierrez2014 - Agent-Based Framework for Advanced Driver Assis-
tance Systems in Urban Environments

Gutierrez et al.| (2014) present a novel agent-based system focused on high-level
reasoning as part of the development of Advanced Driver Assistance Systems.
This approach focuses on driving safety, in particular, in urban environments in
electric urban cars. The main point of the proposed approach is that it takes de-
cisions based on the fusion of the information from the driver, the vehicle status
and the state of the road ahead. The proposed system uses an OWL Ontology
to represent the concepts and its relation to the urban traffic environment. This
system is developed by using a novel multi-agent framework.

martelaro2015 - DAZE: a real-time situation awareness measurement
tool for driving

Martelaro et al.| (2015)) have found a need for real-time SA (situation awareness)
measurement designed specifically for both simulation and on-road driving sce-
narios during the development of interfaces for autonomous vehicles in both
simulated and on-road environments. This paper concerns documentation of
developing a tool, inspired by the Waze™ driving app, to measure SA through
real-time on-road event questions. The system has been tested in a lab and was
to be further evaluated against current SA measurement tools.

vlakveld2005 - The use of simulators in basic driver training

Vlakveld| (2005) discusses how driver simulators can best be used for basic driver
training. The emphasis is not on the technical requirements but on the didactic
requirements and the development of so-called coursework. A comparison is
made between the use of simulators for training pilots and the use of simulators
for drivers. If driver simulators can be used for the training of higher order skills
like risk perception and situational awareness, is not clear yet.

marti2009 - A Rule-based Multi-agent System for Road Traffic Man-
agement

Mart{ et al.| (2009)) introduce a proposed architecture for a multi-agent system
that is to control traffic. This system has two working modes: co-ordinately,
where all the agents work to solve problems in large networks and locally where
due to communications problems little groups of agents work together to inform
road users about traffic problems.

28

fu2010 - Cognitive Awareness of Intelligent Vehicles

Fu and Soeftker| (2010) have implemented a system for realizing cognitive aware-
ness in a Java-application for intelligent vehicles. Underlying is the Situation-
Operator-Modeling concept, which assumes that changes in the real world can
be considered and understood as a sequence of effects modeled by scenes and
actions. Data comes in from a driving simulator and is represented internally.
Based on the current environment, an operator selection module selects a simple
action to take.

uschold2003 - Ontologies for World Modeling in Autonomous Vehi-
cles

Uschold et al.| (2003) test the hypothesis that it is beneficial to use ontologies
to augment traditional world modeling technologies for autonomous vehicles is
explored by developing a theory of obstacles represented as an ontology. This
ontology is to provide the basis for identifying and reasoning about potential
obstacles in the vehicle environment in order to support navigation. Their work
is preliminary, identifying challenges and issues to be investigated further.

3.1.5 Data Synthesis

A synthesis from the studies above is given. The general findings concerning a
topic will be formulated, laying the foundation for how we approach solving our
problem.

When it comes to representing situations in the traffic domain the overwhelming
majority of research discovered in this literature review opt to use ontologies. It
has both been showed to be flexible enough for several tasks; both autonomous
driving, evaluating the rules applying in a traffic situation, or how risky the
current environment is. Furthermore, logic expressed as ontology axioms al-
low for efficient rule-based reasoning on domain-knowledge contained within a
knowledge base.

The situations are often framed using situation awareness. This framework de-
scribes how drivers, or driving instructors, are aware of the current situations,
as well as domain knowledge, and how this leads them to take the actions they
do. It has the possibility of being efficient means of identifying exactly what
an instructor needs to provide feedback on, in the case of faulty actions having
been taken in a situation.

Providing support to drivers, evaluating their performance or providing feed-
back has also been researched. In terms of providing feedback, experiments have

29

been performed with feedback being tactile, visual, auditory, through vibration,
or even a multimodal combination. Furthermore, the visual search and atten-
tion of drivers has been used as a metric in predicting performance.

Architectures and implementations for virtual instructors or systems solving
similar problems in the traffic domain have been documented and suggested.
Some of these refer to the concept of intelligent tutoring systems. Common to
these, are multi-agent implementations that allow for extension in the future as
well as the separation of implementations concerns.

3.2 Related Work

Based on the synthesis of the previous section, and the structured literature
review, this section will detail related work relevant to the topics our system
will cover. It will look deeper into these studies, as our solution will reuse
ideas or strategies from them. An additional paper, solving how to deal with
the temporal aspect of relation events in ontologies, is also included due to our
usage of their solution.

3.2.1 Traffic Situation Ontologies

Regele| (2008) introduces elements of an intersection, like lanes, as well as rela-
tions between them indicating their priority in a situation where two vehicles
have to avoid collision by reasoning about the right of way. Although not for-
malized in an ontology, this paper introduces an abstract topological model for
reasoning about traffic rules. This work introduced the ”conflicting”-relation
between different paths one can take in an intersection. An important aspect of
the way roads are represented in this paper is through the use of lanes. Lanes
correspond to actual lanes, but there is also the concept of a virtual lane. These
virtual lanes represent paths through an intersection. The suggested approach
explicitly models the relation between any related lanes, meaning that the con-
flicting relation must be looked at and added between all paths through an
intersection before the right of way can be reasoned about. An illustrative ex-
ample is that for the case of a T intersection, there exist 6 virtual lanes, as
each approaching lane can take one of two paths. Furthermore, this number of
virtual lanes means there are a total of 6 - 5 = 30 virtual lane pairs where the
conflicting relation must be considered. The amount of computation potentially
involved in such a representation, especially for real-time processing of the cur-
rent situation, makes it seem less than optimal.

Hulsen et al.|(2011)) formalize the ideas of Regele in an ontology, by introducing
coordinates to intersections, as well as relative angles of incoming lanes. The

30

angle of other incoming lanes is represented relative to that of the ego vehicle.
This paper focuses on analyzing the rules that apply to an ego driver. This
makes reasoning about the right of way more effective, by not explicitly having
to model the relation between each pair of lanes. The focus of this paper was
on a more lean representation of traffic situations for logical reasoning. Again
roads are built up of lanes, but these lanes are divided into either entering
lanes, exiting lanes, or two-way lanes. Furthermore, traffic lights and road signs
are also included in the suggested ontology. Rules are added as axioms to the
ontology, to reason about whether or not one has to yield. One of their rules is
given in equation [3:1}

CrossingPlain(?cr) A Car(?cl) A Car(?c¢2) A approachesTo(?cl, Tcr)
A approachesTo(?¢2,7cr) AisConflictingFromRight(?c2, ?7cl)
A neg(same_as(?cl, 7¢2)) — hasRightO fWay(?¢2,7¢1) (3.1)

Later on, this ontology is applied in experiments of a simulator as reported in
Huelsen| (2014), with correct behavior seen as results for encountered intersec-
tions. Furthermore, the work extends that of the ontology by performing feature
selection upon encountering traffic situations with uncertainty in them.

Zhao et al.| (2015) utilize an ontology for reasoning about how an autonomous
car is to infer whether to stop or yield in narrow roads based on the traffic rules
of Japan. Here the authors rely on an incoming collision warning to prompt
the inference of what action is to be performed. The inference is based on the
current situation, represented in an ontology with a corresponding knowledge
base. If the reference vehicle, the ego, is allowed to drive on according to right of
way rules before the intersection it will do so. When coming to the intersection,
the car will yield if it has a possible collision with any other car. In the case of
other cars also waiting a set amount of time, it will start driving through the
intersection. In the case of a two-way lane, it will always yield for any car ap-
proaching from the opposite direction. These three rules are extremely simple,
and rather naive, but do not end up colliding with any other cars in their ex-
periments. The main goal of the paper is a feasible ontology representation for
traffic roads that can be used for real-time decision-making, which is achieved.
A complete representation of the map they are driving in is initialized within the
system, to begin with, thus they only have to keep track of their own position
and other nearby cars. Their ontology is similar to that of Regele, explicitly
stating whether or not roads are left or right of the others. However, they do
not keep track of virtual lanes. The authors make the simplifying assumption
that they know the direction other drivers end up taking. Furthermore, due
to the simple rules, they do not reason about whether or not to yield for cars
within the intersection based on their paths, but simply yield if they are able
to collide with them.

In |[Zhao et al.| (2017)) their work is further improved, resulting in proof that
knowledge-based reasoning on ontologies can be applied to real-time decision

31

systems of autonomous cars. This is achieved by rather than using the com-
plete knowledge-base as before, only the relevant part of the knowledge base is
retrieved and used based on the situation they are currently in. This is similar
to how feature selection is used in |Huelsen| (2014)), but a less sophisticated way
of doing so by having to explicitly encode the domain-specific information into
the application. For instance rather than reasoning across all the intersections
within their preprocessed map ontology, they only look at the intersection they
are currently in. While showing that reasoning on an intersection is feasible in
real-time, the assumption that all intersections, as well as the layout of the road
and information of all nearby cars, are available might be a bit too optimistic
for a real-world scenario. Zhao et al. mention no drawback related with uncer-
tainty (although their system assumes all information is present), but Hiilsen
does a great job of discussing and handling this issues, which happens to be
very relevant for real-world scenarios.

32

KEY

[selfstate .:} . Lane Tracker .:} . Exit Finder | __/ Perception Modules
AN N N v Reasoning Objects
T T T <> Arhitration
Y 4 l
Velocity Object| | Lane Object Exit Object

Front Left Car
Obhject

Back Left Car

Y Object
: o Front Car {Car Detection
——< Voting Arbiter -« Object “— T\ Modules /

Front Right Car

Object
Hysteresis
Object Back Right Car
l Object
Operational
Controller

Figure 3.1: Adaptation from [Sukthankar et al. (1998, p.94), displaying the col-
lection of reasoning objects recommending actions based on local considerations.
Each reasoning object monitors a subset of the perception modules, and vote
upon a set of possible actions. A domain-independent voting arbiter chooses
the action to take. Finally, the Hysteris Object maintains consistency from one
time-step to the next.

Early work has been done when it comes to understanding traffic situations in
Sukthankar et al.| (1998), within a virtual traffic situation. The authors im-
plement a system that frames the task of driving with situation awareness and
implements a tactical driving strategy which is based on weighted voting among
experts with different responsibilities. These experts are termed reasoning ob-
jects, which based on the current situation, supplied from perception modules,

33

and their area of specialization, vote for the next action to take. The votes are
based on the internal goals of each reasoning object. For instance, all actions
that move the speed towards the goal speed would be voted positively for by
the speed reasoning object, while all actions maintaining the lateral position if
already positioned correctly within the lane would be voted positively for by
a lane position reasoning object. These reasoning objects, or experts, are al-
lowed to veto actions. This is useful in the case where the expert responsible for
keeping a distance to the car in front, as to not collide, knows that increasing
the speed would end in a collision. The most popular, non-vetoed action is sug-
gested as the next action to take by a voting arbiter. An evolutionary algorithm
is used to tweak the voting parameters based on a user-defined fitness function.
This architecture is shown in figure This implementation for understanding
and reasoning about a situation has huge benefits in terms of modularity and
maintainability. If a change is needed in the reasoning of having to yield, one
simply changes the internal logic and/or goals of the reasoning object responsi-
ble for yielding.

Reasoning about situations spanning several timesteps has been covered in
Matheus et al.| (2003). This work introduces several ways of representing the
temporal aspect of situational awareness represented as an ontology. Among
other things, the notion of an event holding the value of some relation between
concepts within some time frame is introduced. By allowing values of relations
to span across several timesteps a more efficient representation is achieved in
terms of space. A dynamic system is queried for the value of a relation for a
given timestep.

3.2.2 Providing Feedback Based on Driving Performance

Arroyo et al| (2006) make use of a blackboard architecture with violations re-
ceiving attention scores indicating their relative priority of being assessed, to
provide feedback to drivers. When the attention score of a single violation, or a
combination of violations, is above a threshold, a central mediator determines
that a situation has arisen demanding corresponding feedback to be given. This
feedback is put in a feedback queue and delivered when the attention scores in-
dicate a low-stress situation where the driver would be more open to feedback.
So far the system has only been utilized to provide simple feedback on things
like braking pattern, but the idea of combinations of violations and a threshold
providing feedback correspond well with how driving instructors provide feed-
back in real life.

In[Raptis et al.| (2018]) feedback is given based on how the driver of a car is plac-
ing their hands on the steering wheel. The system presented consisted of two
components, one using machine learning to analyze their driver’s hand place-
ment as either attentive or inattentive, and another providing feedback. The

34

component responsible for feedback would provide this during the drive, when
the car stops, as an average if the car has moved more than 600 meters since
it last stopped. The feedback is provided visually on a mobile phone mounted
similarly to a GPS, as well as by a female voice to the driver. Furthermore,
once the drive is completed, the system provides 5-second segments marked on
a map from the drive, with color indicating the score. The authors conclude
that such gamification of hand positioning helps motivate to perform better,
however, the participants of the study generally preferred the feedback to be
given immediately rather than the next time they are at a stop. This preference
conflicts the ideas of Arroyo et al., as they insist instant feedback would disturb
the attention of the driver.

Based on a multi-agent rule-based ADAS (Advanced Driver Assistance Systems)
reasoning on an OWL ontology introduced in |Zamora et al.| (2017)), the authors
proceed with testing their system in |Sipele et al.| (2018). Here the authors
actually use situation awareness when providing feedback to a driver, in a driving
simulator. This feedback comes in the form of an alert from an ADAS to
help the driver react in dangerous situations. The system contains information
structured in several abstraction tiers, coming from agents using information in
lower tiers, or simply outside sensors. Based on this information the system is
able to recognize predefined dangerous situations and provide the driver with an
alert so they can react in time. The evaluation of a driver’s situation awareness
in this paper is based on their visual attention. Thus, although the authors
do evaluate the driver performance in terms of situation awareness, they do
not directly reason about which part of the situation awareness is flawed. The
scenarios in which the system is tested contain visual areas in which the driver
should be looking for correct visual awareness. The timing of when a driver has,
if at all, looked at this given place indicates how far in the situation awareness
process they are. If they are not far enough in this process, the system provides
an alert to make them act.

3.2.3 Virtual Driving Instructors

Although little work was found in the literature concerning implementing a vir-
tual driving instructor, one relevant paper was found. An architecture for the
implementation of a virtual driving instructor is suggested in Weevers et al.
(2003), as an implementation of an Intelligent Tutoring System (ITS). The
authors have as a goal to objectively measure student performance in different
aspects of driving, and based on this performance create the best possible learn-
ing environment. The idea is a multi-agent system consisting of one agent im-
plementing situation awareness, another implementing presentation awareness
(presenting feedback based on the situational awareness), and a third imple-
menting curriculum awareness (keeping track of progress within stages of the
driving curriculum). Unfortunately, it is unclear whether or not this system

35

was implemented, as there is no further documentation found in the litera-
ture.

3.3 Motivation

This section will recap the proposed system, and then compare aspects of it to
the relevant literature. The result of this comparison is a clarification of the
contributions of this thesis.

The next chapter, chapter 4} extensively documents the proposed implementa-
tion of a virtual driving instructor.

Our proposed implementation of a virtual driving instructor will be utilizing
the framework of situation awareness to reason about what information a driver
is lacking, or what rules they do not have a correct understanding of. Using a
multi-agent system, the implementation will incrementally add information at
an increasingly abstract level, starting with basic information coming in from
a driving simulator, and ending in projections of the future, for instance, pro-
jected collisions based on the path of other vehicles. This information will be
contained in an ontology, on which a reasoner will infer whether any violations
exist.

The situation awareness of the system is perfect, meaning it has all relevant
information about the situation and context, is aware of all domain knowledge,
and therefore able to correctly project future states. With the assumption that
drivers perform the action they consider correct, given their perception of the
current elements in the situation, understanding of traffic rules, and resulting
projection of future states, incorrect actions indicate flawed situation awareness
and indirectly highlight the fault.

Based on what mistake is made, and the current situation, our system is go-
ing to generate feedback as constructive criticism for correcting the situation
awareness of the driver, hopefully improving their skill as a driver.

Using a multi-agent system architecture to reason about a traffic situation is not
new, [Sukthankar et al.| (1998]) documents a similar architecture to ours where
voting among agents is used to select the action of an autonomous vehicle. Each
agent has its own specific responsibility within traffic, and together they make
up a well-informed understanding of the current situation.

Ontologies have been used to represent the traffic domain before. |[Regele| (2008)
documents early work on reasoning of right of way in an intersection encoded
in a high-level representation, while |Hiilsen et al.| (2011) proposes a more lean
ontology including the concept of relative angles between lanes of an intersec-
tion. [Huelsen| (2014]) also looks at the case of how to handle missing information

36

about the current situation, using feature selection to figure out which situation
is more likely. [Zhao et al,| (2015 and |Zhao et al.| (2017) document successful
reasoning when all information about the intersection, as well as other vehicle’s
paths, are known in advance. This reasoning was done using an OWL ontology
and concluded feasible for real-time decision-making.

The concept of a virtual driving instructor is not new in itself. An early sug-
gestion for an architecture was documented in Weevers et al.| (2003). However,
no implementation of their proposed architecture was discovered in our liter-
ature review, and it is unclear as to whether or not the authors did, in fact,
implement the architecture themselves. One example of providing feedback to
a driver based on their performance was described in|Arroyo et al.| (2006). Here
a blackboard architecture was used to check if the combination of violations in
a current situation exceeds a level, and in this case, feedback is generated and
added to a queue. To avoid distracting the driver, feedback is only presented
once the stress-level of the situation is considered low. [Raptis et al.| (2018)) show
a more recent approach to providing feedback to drivers, looking at the way they
hold the steering wheel, and providing feedback audiovisually once the driver
comes to a complete stop.

Finally, there is a set of related research very close to our proposed virtual driv-
ing instructor implementation. |Zamora et al.| (2017)) and |Sipele et al.| (2018)
use a multi-agent ADAS (Advanced Driver Assistance System) with situation
awareness to frame the current state of the driver in their decision process. Their
system alerts the driver when necessary to notify them of danger. The system
considered five different and potentially dangerous scenarios. One of these sce-
narios is approaching a pedestrian crossing. Their use of situation awareness is
seen in the way they utilize information from an eye tracker. If the user has
looked at a predefined region they consider it perceived, and therefore the pro-
cess of acting as initiated. Furthermore, the eye tracker data was used to decide
whether or not the driver is attentive. Whenever the system considers the driver
inattentive, or the driver has not perceived a key situation element, their system
would alert the user to start their process of acting. An example is a possible
collision alert indicating that a car in front is about to collide with you, which
should prompt you to start breaking even though you were inattentive or had
not seen and perceived said car.

Although many of the ideas described above are reused, our proposed solution
separates itself in the way it evaluates driving behavior and provides feedback to
a driver. Thus, the novelty and contribution of the solution discussed and tested
in this thesis comes from using a multi-agent system and situation awareness to
identify flaws in a driver’s situation awareness and also give feedback to correct
the identified flaws. As a reminder, the work relies on the underlying assumption
that a driver acts with the best intention, meaning that any incorrect action

37

origins from a mistaken understanding or perception of the situation. In other
words, incorrect actions are a result of incorrect situation awareness in the
driver.

38

Chapter 4

Proposed Solution

The goal of this chapter is to introduce the design of a system answering the
research questions introduced in chapter (1 The rationale behind the decisions
taken is all based on the literature identified in chapter First comes an
overview of how the Virtual Driving Instructor’s implementation will be laid out,
then following this are proposed solutions to subproblems of implementation.
While this chapter simply outlines the solution, the following chapter (chapter@
will detail the architecture of the implemented proof of concept system.

4.1 Situation and Context Representation

As is apparent from the scope of the literature review of chapter 2] the de facto
standard of representing the situation for the task of driving, is using an ontol-
ogy. Therefore, we will also use an ontology to represent the situation.

Furthermore, [Endsley| (1988]) describes how an actor within a specific task do-
main has a certain degree of understanding about the current situation and
context, as well as the projected future evolution of it (situation awareness as
described in chapter . For the task of implementing a virtual driving instruc-
tor, the system will have perfect situation awareness, i.e. knowledge of all the
elements of the current situation, have perfect comprehension of the situation,
and also a correct projection of future status. However, a learner driver being
evaluated by our virtual driving instructor could make mistakes due to incor-
rect situation awareness. With the assumption that all drivers drive as well as
they can, according to the traffic rules they are aware of, as well as their com-
prehension of the current situation, one can evaluate their actions. Imperfect
action is the result of an incorrect projection of future status, which, with the
preceding assumption, can only be due to an imperfect comprehension of the
current situation. This can either be due to misconceptions of traffic laws or

39

not having perceived all elements of a situation. The virtual driving instructor
will, therefore, provide feedback to the driver whenever the projection of future
status resulting from actions taken that violate traffic laws. Due to the ontol-
ogy representation, the virtual driving instructor will also have available all the
information about the current situation, which serves as a basis for corrective
feedback to correct the faulty situation awareness of the driver.

4.2 The Traffic Domain

Specifically for the subproblem of representing aspects of traffic domains, ideas
from a set of papers will be reused. These ideas are described below. The most
challenging aspect of modeling and reasoning in the traffic domain concerns
intersections. What vehicles have to yield for others is the most challenging
aspect of intersection situations, which is the scope of experiments performed
to evaluate the performance of our system in chapter [7

Regele| (2008)) was the first one to introduce a ”conflicting” relation between all
the possible ways one is able to travel through an intersection. However, due
to the way traffic laws of yielding are designed, one does not have to explicitly
model the relation between all possible ways of driving through an intersection.
Hiulsen et al.| (2011) mentions the notion of relative angles of roads to inter-
sections. By introducing relative angles, rather than having to represent the
relationship between 30 different ways of driving through a T-intersection with
6 lanes connected to it, one only needs to keep track of the 6 relative angles
of the lanes. Furthermore, relative angles allow general functions to be writ-
ten that capture the left- or right-hand rules applying in the given country one
is driving in. These two advantages are enough for us to adopt using relative
angles in intersections.

40

Trai g
[eatemal)

Lane
{external)

ConnectedTo e

Subclass of

(]
"

DrivingIn

IsApproaching

rﬂ . st‘ﬁ = a

PuossibleCollision

MustYieldForinverse

Figure 4.1: The minimal OWL ontology used to describe the traffic situation
that our Virtual Driving Instructor uses for reasoning on driver actions. For
clarity, only the object properties are included in this figure, while the datatype
properties have been omitted. The same goes for the different kinds of road
signs, only the speed limit-sign has been included.

Apart from the above-mentioned features, our proposed ontology keeps track
of lane connections to intersections, whether or not they are an incoming our

41

SpeedLimitSign

outgoing lane, the cars within the situation, their speed, position, and acceler-
ation, as well as which road segment they are currently in and therefore what
intersection they are approaching. Cars also have relations to each other indi-
cating having to yield for the other car, or having right of way. A road segment
is a generalization and could either be a lane or an intersection. Road segments
are connected to each other. The complete ontology is given in figure This
is a minimal ontology for reasoning about intersections without traffic lights as
of right now, both the ontology and the system are open to extension in the
future.

4.3 System Design

As concluded by the literature review of chapter[3] most systems wanting to rea-
son with information from some domain are designed as multi-agent systems.
Multi-agent systems have the clear advantage of rather than implementing some
general algorithm having to solve all subproblems related to some domain, spe-
cific algorithms can be implemented within each agent, whose sole purpose is
solving some subproblem. Furthermore, multi-agent systems allow simple ex-
tension or modification of an already existing system.

Most interesting to us is the approach shown and thoroughly explained in [Suk-
thankar et al.| (1998]), where agents have traffic situation specific areas of focus,
like maintaining position within one’s lane or maintaining a safe distance from
the surrounding cars. The set of agents cooperate by voting for a suggested
action based on the current situation and projection of future status in their
respective driving tasks. In a similar manner, Sipele et al| (2018) show how
their system concerns several tiers, with the perception tier being at the bottom
taking in raw sensor data, and information tier defined on top of this, further
up is a cognitive tier and finally an actuation tier. Inspired by these two ap-
proaches, our system will consist of a set of agents with a single responsibility.
Each responsibility will be adding information to the current situation based on
the information in the same or lower abstraction levels. One example would be
adding information regarding what cars have to yield for each other by using
their current positions and future paths, where the information of what yield
rules apply can be used to reason about whether or not one is violating the
traffic laws.

In |Arroyo et al.| (2006), their system uses a blackboard pattern, which is a
pattern that fits well for multi-agent systems. This pattern is described in
greater detail in chapter 2 but is basically a way of allowing agents to subscribe
to a set of conditions, performing some action once these are present. In our
case, this pattern allows us to define the set of conditions required for each agent
to be able to reason on the current situation and add new information.

42

reads

Agent and —— State
modifies
reguests ",“
state modification i
access i
notifies reads
!
i
i
i
Contraller Blackboard — F----- naotifies ------ > Tutor

adds feedback

Feedback Queue

Figure 4.2: The abstract view of our proposed system solution. The proposed
solution is designed as a multi-agent system, sharing and adding information
using the blackboard pattern, while having a tutor evaluate the current state,
once notified of required information being available.

In conclusion, our system is going to utilize a multi-agent system architecture,
where conditions of the blackboard pattern are used as a scheduling mechanism
to iteratively add increasingly abstract information concerning the given situa-
tion.

At a given time, the set of agents with their preconditions satisfied by the cur-
rent information available in the state (representing the current situation) are
evaluated by the controller, where the one with the highest priority is run. The
highest priority belongs to the agent that provides the highest information gain
to the current situation description.

Once a set of satisfied conditions are added to the blackboard (new information
added), the agents interested in this information are notified and can request
permission from the controller to add their information to the state. Once
enough information is available for the tutor to provide feedback on the actions
taken in a given situation, the blackboard notifies the tutor. This tutor is run
separately from the rest of the agents and will generate feedback when appro-

43

priate, not having to ask for permission. This feedback is to be provided to
the driver by the system where deemed appropriate and is therefore added to
a feedback queue from which it can be consumed. In an appropriate situation
of lower stress right after a significant traffic event has occurred, for instance,
right after an intersection, the system will consume feedback generated from
the given situation and provide it to the driver in real-time during their drive.
We agree with the conclusion from |Arroyo et al.| (2006), that feedback should
be presented in lower-stress situations, rather than instantly as requested by
subjects of the experiments in Raptis et al| (2018). The abstract description
of our proposed system solution is given in figure [1.2] while implementational
details of our proof of concept are found in chapter [6]

4.4 Summary

To summarize, our proposed solution implements a virtual driving instructor
which provides feedback to a driver based on their potentially incorrect sit-
uation awareness in a traffic situation. Due to the assumption that a driver
performs actions to follow traffic rules as best as possible, based on their cur-
rent understanding of the situation and its context (which includes the applying
traffic laws), one can assume that an incorrect action corresponds to incorrect
situation awareness. The virtual driving instructor itself will possess a perfect
situation awareness.

Representing the traffic domain is done using an ontology, which will include all
relevant entities (classes) of the domain, relations (object properties) between
instances of these entities, as well as datatype properties of each instance.

A set of axioms describing violations of traffic laws are defined in an ontology,
having a reasoner which will infer whether a given instance of an ontology con-
tains any violations. In the case of a violation, this is reported to the tutoring
part of the system, having encoded expert knowledge into it, which will generate
feedback formed as constructive criticism to improve the assumed incorrect part
of the driver’s situation awareness.

To add the necessary information to the ontology, our system will be com-
posed of multiple agents with a specific responsibility. These have encoded
domain-specific knowledge into them. A controller will use priority based on
the information gain each satisfied agent can contribute for a given set of infor-
mation about a situation, and thereby schedule their additions of information.
A set of conditions is used to tell whether or not an agent can add information,
thus indirectly imposing a dependency of agents adding information at a lower
abstraction level to those at a higher abstraction level. These agents will also

44

realize the projection of future status of the situation awareness.

The system will provide feedback in real-time, which will be presented to the
driver in situations where this is appropriate. It will not be provided in high-
stress situations, but as close to a relevant traffic event as possible for temporal
relevance and the highest amount of learning benefits.

45

Chapter 5

Simulator Description

This chapter will describe the driving simulator for which our system has been
developed, and in which our experiments have been conducted. Not only is
the simulator highly relevant as the proof of concept system is based on data
coming from it, but the proof of concept is also limited by the degree of detail
and amount of information available from the simulator’s virtual world. Both
the physical architecture of the simulator and the data output from it will be
described below. Finally, a list of shortcomings in the available data from the
simulator is listed and discussed.

5.1 The Driving Simulator

The simulator of Way AS consists of an actual car, where the controls and en-
gine are connected to a simulator system. Apart from the engine not actually
running, and the wheels turning, the car operates like a normal car. The inputs
of a driver are forwarded into a local network which the simulator computers
are connected to.

Furthermore, the car is situated on top of a motion simulator which is able to
simulate acceleration to correspond to the simulator world, and driver inputs,
as well as tilt the car. This achieves a higher degree of immersion. However, it
is not enough to fully resemble the physical reactions that experienced drivers
expect. As a result, many experience motion sickness the first few times they
drive in the simulator.

The car itself is placed within a blacked-out room, with projectors projecting
the simulated world 360 degrees around it. For extra immersion, an extra mon-
itor has been installed in the rear window. The projectors and this screen are
all connected to different computers, rendering their own part of the simulated
world. A master-computer accepts input coming in from the car, apply these
to the current virtual world state, and emits the results to the rest. This means

46

that all of the different computers share the state of the simulator world, but
render different parts of it. A picture taken from within the simulator room is
given in picture [5.1}

Figure 5.1: A picture taken from within one of the rooms in which Way AS has
a driving simulator. A car is driven as normal, without the engine running, and
wheels turning, but the driver input is emitted onto a local network. The re-
sulting actions are performed in the simulator world, and the world is projected
360 degrees around the car, as well as to a screen in the rear view window.

5.2 Available Simulator Data

The previous section mentioned how the driving simulator shares a simulator
world state. This state is comprised of the current position of the car, other
cars, as well as their speed. Furthermore, these cars are located within a traffic
situation, containing roads, lanes, road markings, road signs, buildings, side-
walks, etc.

To allow reasoning with the state of the simulator, information about the world
is required. The simulator is able to output information about the world, cur-
rently being as an XML log file summarizing a drive after it is finished. The
data within this file restrict the scope and quality of reasoning that is possible
to do.

The contents of this log file provide information on the following for each

47

timestep:

Car Position: Each car within the simulator has the triplet of its coordinates
logged for each timestep.

Car Orientation: Each car within the simulator has the quadruple represent-
ing its orientation logged for each timestep.

Ego Vector: For each timestep the inputs coming from the Ego is logged as
well. This information contains the steering wheel angle, how hard the
throttle, brake, and clutch is pressed, whether or not the parking brake is
on, their RPM, speed (absolute value) and torque, as well as a light vector
representing indicator lights, a custom flag, and what gear they are in.

5.3 Simulator Data Shortcomings

There is a discrepancy between the set of data available within the simulator
and that which is contained within the XML log files. This section will describe
the shortcomings of the XML file from the view of a system wanting to reason
about traffic situations, and end up with a list summarizing what is required
for a system to be able to reason about a traffic situation.

While the data of the XML provides the position and orientation of all cars,
the speed is only provided for the ego. Furthermore, acceleration is completely
missing. To be able to project the future state, a key part of the situation
awareness for making decisions, the speed and acceleration is required to tell
where cars will be in the near future.

Related to speed, acceleration, and position is also wherein the road network a
car is. While the XML file contains the exact coordinates within the simulator
of a car, no point of reference other than the origin is provided. What road a
car is currently driving on, which lane it is in, whether it is in an intersection
or not, etc., are all very relevant parts of the situation description. Without the
information of the road network, the amount of reasoning that can be performed
is scarce.

Closely related to the road network are road markings and road signs. It is
based on previously passed road signs applying to a road segment that a driver
context is formed. As described in chapter [2] one’s situation awareness is based
on both the current situation as well as the context. Without the XML log
telling the system which road signs are passed, or what lanes coming into an
intersection have a yield sign, it is hard to reason about anything other than
performance on driver input and whether or not cars collide provided the travel

48

in a straight line. Assuming a straight line disregards the road they are driving
on, and is, therefore, a naive approach to collision detection.

A less critical part of the information, but still relevant, is being able to tell
where other cars are headed. In a perfect world, everyone would know the other
car’s paths, but in the real world (and in this simulator), indicator lights are
used for this purpose. This information is not present in the XML log, and
therefore not available to our system. Knowing where other cars are headed can
make the traffic flow more efficient, as you can infer whether or not you have to
yield for another car’s path.

The following list summarizes the shortcomings of the XML log’s data, in no
particular order of importance. It consists of the information we consider most
relevant for reasoning about traffic situations that is not currently available in
the simulator logs.

e Car Speed Vectors

e Car Acceleration Vectors

e Road Network Information (roads, lanes, intersections, etc.)
e Road Signs

e Road Markings (broken lines vs. full, crosswalks, etc.)

e Car Indicator Lights

How we overcome these shortcomings within the proof of concept implemen-
tation is described in chapter [6] as well as in the additions to the simulator
described in the next section.

5.4 Simulator Additions

As described above, several important bits required to reason well about the
traffic situation is missing from the simulator log file. This section explains how
the simulator world was extended to add logging of some of the information.
Extensions were implemented by us to log information regarding both road net-
work information, i.e. car positions in the road network, as well as road sign
information.

With these two crucial pieces of information, our system now has data indicat-
ing where in the road network cars are. By including prior knowledge of the
road network layout into our system initialization, we can tell which cars are
approaching the same intersection, and reason about yielding based on their

49

respective lanes. The prior knowledge of road layout includes which lanes are
connected to which intersections, whether they are incoming our outgoing lanes,
and their relative angles into the intersection. Furthermore, the system now also
includes information on road signs passed stored in the context, which enables
more sophisticated reasoning.

The simulator already has an internal event system, which was extended to
allow us to log events with specific IDs and value upon colliding with triggers
within the Unity world that the simulator is based on. These triggers and events
are described below.

Figure 5.2: A picture from the extension added to the simulator. The transpar-
ent boxes with green borders are event triggers spanning lanes and the intersec-
tion, generating events upon cars entering or leaving them. Furthermore, each
event trigger has a unique ID identifying the road segment.

5.4.1 Events

The first thing done to help with the shortcomings of the simulator information
was adding triggers that would log events to the XML. These events consist of
an event ID, a flag, a data field, and a value. Two new events were added to
the already existing event system of the simulator, the road sign event, and lane
change event.

An event for road signs passed, the road sign event, was added. This has an ID
indicating what type of road sign was passed, the data contains the ID of the
car passing the sign, and the data the value of the sign (if applicable, like for a
speed limit sign).

A similar event was added to inform cars entering or exiting road segments, the

50

lane change event. This event has an ID indicating a lane change. The data
field of a lane change event contains the car ID, while the value field contains
the road segment ID (road segments are a generalization of different parts of the
road network, encompassing lanes, intersections, etc.). The event flag indicates
whether or not the car is entering or exiting the road segment.

5.4.2 Road Signs

An event trigger was placed at each road sign of the intersection, as shown in
figure [5.3] These triggers are transparent boxes, detecting collision with other
cars. Upon collision with such a trigger, a road sign event is fired, which is
added to the XML log coming from the simulator.

Given this information, our system is able to update the context applying to a
given car at a given time. After a car passes a speed limit sign, the speed limit
of their context is updated to reflect the fact that a new speed limit applies to
them. Similarly, when a car passes a right of way sign, their context is updated
to reflect them having right of way.

Figure 5.3: A picture from the extension added to the simulator. The transpar-
ent box with green borders is a collision detector that will generate a road sign
event upon cars passing it. The event has an ID indicating the type of road
sign.

o1

5.4.3 Road Network Information

Larger triggers were added to cover whole parts of the road network, i.e. a
trigger covering a whole lane, or a trigger spanning a whole intersection. This is
shown in the simulator screenshot of figure Upon a car entering or exiting
such a trigger (i.e. colliding with one of them), a lane change event is emitted .
By having access to information about which road segment a car has most
recently exited or entered, the system is able to keep track of the time frame
where a car is driving in a particular road segment.

92

Chapter 6

Proof of Concept
Implementation

This chapter documents the architecture of our proof of concept system imple-
mentation. While this documentation is useful for anyone wanting to understand
the working of the proof of concept system, it is also included as the system will
be further developed in the future to a functional prototype. Therefore such ex-
tensive documentation helps new developers get a good grasp of the working of
the current implementation, so they are able to extend and improve the current
proof of concept system. Most of the architectural information of this chapter
is based on the material of |Len Bass (2012)).

First of all how we have resolved the shortcomings of the simulator data is de-
scribed.

Secondly, the set of requirements, both functional and non-functional, of the
proposed system will be given.

Afterward, the requirements having a significant impact on the architecture of
the system will be identified along with an explanation of why and how. These
are so-called architecturally significant requirements.

Important to this elicitation are quality attributes, which are defined as being a
measurable and testable property of a system that is used to indicate how well
the system satisfies the needs of its stakeholders. It defines the “goodness” of a
product along some dimension of interest to a stakeholder. The most relevant
quality attributes for this system will be identified, based on the architecturally
significant requirements. Next, the set of architectural tactics (techniques to

93

help achieve a certain quality attribute) utilized for each quality attribute will
be detailed.

All architectural patterns (techniques to either help with architecturally signif-
icant requirements or the most important quality attributes for this system)
utilized within the architecture are listed along with an explanation of where
our implementation will use each one.

Next comes a section with architectural views, showcasing the proof of concept
system from two viewpoints. Again, this is a proof of concept implementation
of our system, not the full implementation of the proposed system. First is the
logical view, showing the organization of modules and classes within the system,
which helps document the implementation. Next comes process views explain-
ing essential process flows, and the sequence of calls within the implementation.
There is also a section containing the potential inconsistencies between the views
and the actual implementation for completeness sake.

A section detailing the implementation logic of the more critical agents to our
proof of concept system is also included.

Finally comes a rationale behind the overall architecture, relating implementa-
tion decisions back to the requirements initially identified and the architectural
drivers.

6.1 Resolving Simulator Shortcomings

First of all, for our system to be able to read the information logged from the
simulator, an XML parser had to be implemented. This parser needs to convert
the data of the XML file to an internal state representation within our system
implementation.

Our system adds speed and acceleration vectors for all other cars. This is done
through simple interpolation across the previous timesteps. The speed inter-
polation uses the data actually coming in from the XML file (position data),
while the acceleration bases itself on the interpolated speed values computed
internally. More accurate values of acceleration and speed would be preferable,
yet this will suffice for a proof of concept implementation. Together, these two
vectors allow the projection of future positions of other cars. This projection
is crucial to the situation awareness framework which again is the way we have
decided to explain driver actions. Refer to chapters and [for a more in-
depth explanation of this.

o4

As mentioned in chapter [5] information on intended paths of other cars contains
valuable information for reasoning about having to yield or not. Unfortunately,
indicator light information from other cars is not included in the XML file.
The solution used in our implementation is propagating path information back
after a car has driven through the intersection. This knowledge is added to
all timesteps where the car is approaching said intersection. This propagation
backward in time is fine as long as the system is used for post-processing of a
drive, but for real-time feedback this it is required.

Similarly to how path information propagates backward, road signs passed are
also propagated backward. The XML log file has no information about which
signs one is approaching, but it is highly relevant to know this ahead of time.
Therefore, the information of a yield sign being passed at the end of a lane is
propagated back in time for when a car is approaching the intersection from
this lane.

The information on road markings has been omitted for the implementation
of our proof of concept system. As the scope is restricted to reasoning about
speeding and having to yield, road markings do not add any new necessary
information for our system to reason with. However, this is something that
should be added in the future, once the scope is widened.

6.2 System Requirements

This section lists both the functional and non-functional requirements identified
for our system. Functional requirements represent the required functionality of
a system, while the non-functional requirements deal with qualitative aspects of
implementation. For our proposed solution, the set of functional requirements
and non-functional requirements have been elicited. The results are found in
table [6.1] and table 6.2

99

Table 6.1: Non-Functional Requirements for the implementation of our Pro-
posed Solution

ID Requirement
NFR1 The system should be as modular as possible, meaning any independent
functionality should be extracted to its own sub-component.

The cost of modifying any sub-component of the system should be as

NFR2 . .
low as possible.

The system implementation shall support generating feedback in near

NFR3 -
real-time, after receiving and reading incoming simulator data.

The feedback produced by the system shall be explainable, so people

NFR4 without an understanding of the inner workings of the system can
understand the feedback.

NFR5 The system reasoning shall be deterministic.
NFR6 | The system shall be able to appropriately time when it gives feedback.

96

Table 6.2: Functional Requirements for the implementation of our Proposed
Solution

ID Requirement

FR1 The system shall be able to both represent and reason with traffic rules.

The system shall be able to both represent and reason with “best practice”
FR2 of driving, where “best practices” are defined by
domain experts (driving instructors)

The system shall be able to represent the context of a
FR3 situation internally, where the context contains relevant information for
reasoning with traffic rules and best practices.

The system shall read time series data provided in a given format by the

FR4 Way simulator.
FRb5 The system shall be able to represent a situation internally.
FR6 The system must maintain the temporal aspect of the data coming from the

simulator.

The internal representation of situation, context and the
FR7 temporal aspects shall be saved to a file for
each timestep.

The system should be able to reason with a representation of
FRS the situation, context and temporal aspects loaded
from a stored timestep file.

FR9 The system shall be able to reason with the data read from the simulator.

The system shall produce feedback when the student makes a
FR10 driving mistake, being a violation of traffic
rules or best practices.

FR11 The system shall be able to provide justification along with the feedback.

The feedback produced by the system must reference the given

FRI2 violation that made the system produce it.

The system shall support adding domain-specific knowledge for

FR13 finding and adding the missing information.

The system shall be able to find or add missing information
FR14 to the situation, or it’s context, based on
its domain-specific knowledge.

o7

6.3 Architectural Drivers and Architecturally Sig-
nificant Requirements

This section will identify the drivers of our architecture, i.e. what shapes it.
These are defined from the set of architecturally significant requirements, and
the most important quality attributes inferred from these requirements.

6.3.1 Architecturally Significant Requirements
The most significant requirements, both functional and non-functional, identi-
fied in tables and are listed below, along with an explanation for why

they have a significant impact on the architecture.

Table 6.3: Architecturally Significant Requirements

ID Requirement

Having the system be split into
NFR1 parts which interact through interfaces and/or intermediaries,
impacts the architecture

Low modification costs require the system to be

as modifiable as possible. Thus the system requires layers of abstraction,

NFR2 hiding behind interfaces, and mechanisms of indirection
which again impacts the architecture.
NFR3 Generating feedback in near real-time puts significant requirements on the

performance of the system, and therefore also the architecture.

6.3.2 Architectural Drivers
Modifiability

Modifiability concerns the cost and ease of making modifications to a system.

As both NFR1 and NFR2 almost directly map to the definition of modifiability,
this will be the main architectural driver of our system. Being able to replace
parts of components, or even full modules, with as low of a cost as possible
is valuable. Both the representation of the state received from the simulator,
the internal state within the system, or any of the components responsible for
reasoning, would be subject to change in the future.

98

Therefore, all agents should be easily modifiable and making new ones should
require little effort.

Performance

Performance is concerned with managing system resources in a particular phase
of demand to achieve acceptable timing behavior.

For our system, this will be measured as the time the system requires to reason
about a certain timestep of the simulator. The time required should be as low as
possible, so the system is able to provide close to real-time feedback to drivers
in the simulator. This requirement is expressed by NFR3, which is the last of
the architecturally significant requirements of table

6.4 Architectural Tactics

This section describes which architectural tactics are being used to meet the
architectural driving quality attributes of modifiability and performance identi-
fied in the previous section. Again, tactics are techniques that either help with
architecturally significant requirements or a system’s most important quality
attributes.

6.4.1 Modifiability Tactics

Modifiability tactics are being used to reduce the cost of changes made to a
system. The tactics that are being implemented help us create a system that
is able to accommodate changes with ease. The two main concepts for achiev-
ing high modifiability are coupling and cohesion. Our main goal should be to
reduce coupling and maximize cohesion in a modular design. In other words;
maximizing the cohesion in each module and minimizing the coupling between
modules.

Cohesion and coupling can be defined through the concept of responsibilities.
Responsibility is an action, a decision, or knowledge that is being preserved by
a system or an element of the system. Coupling is the strength of the rela-
tionship between responsibilities. By knowing the strength of the relationship
between responsibilities, the likelihood of propagating changes can be calculated.
To reduce coupling we can either reduce the relationship between modules or
maximize the relationships between elements in the same module. Maximizing
the relationships between elements in the same module is defined as cohesion.
Next, we will define some of the tactics to be used for maximizing cohesion and
reducing coupling.

99

Cohesion

To increase cohesion, we need to get the strongest possible relationship between
responsibilities in one module. This can involve moving responsibilities between
modules, or splitting responsibilities. By moving or splitting responsibilities
we reduce the likelihood of side-effects to other responsibilities in the original
module. We will use the following tactics to move or split responsibilities:

1. Maintaining semantic coherence
Collocating responsibilities that are affected by a single modification such
that the cost of modifying the new “collocated” module is less than mod-
ifying the original one.

2. Abstracting common services
If two or more modules essentially provide a variant of the same service,
this service could be implemented in a single module in a more general
form. By doing this, any modification to the service would only need to
occur once. This tactic is often used when refactoring code.

The implemented architecture has a high cohesion in most of its components.
This is especially true for everything related to the blackboard. Each agent
reading and modifying the blackboard state has a single responsibility, i.e. high
semantic coherence. This is also true for most of the other components. Fur-
thermore, abstractions have been implemented wherever possible. For instance
through having a single relation factory for all relations that can be made.

The least cohesive class is the class responsible for reading the XML coming in
from the simulator, as well as the controller, as they both tie the application
together and hence their responsibilities differ a bit.

Coupling

To reduce coupling we can either reduce the relationship between modules or
maximize the relationships between elements in the same module. Some of the
best ways to reduce coupling are to generalize, abstract or to break depen-
dencies by adding layers. We have used the following tactics to achieve these
effects:

1. Encapsulation
By introducing an explicit interface for a module, the chance of changes
propagating to a module is reduced. In other words, the strength of cou-
pling between the modules is reduced by placing an interface working as
an API in front of the original module. By doing this one enforces in-
formation hiding and limit the ways other modules can interact with the
original module.

2. Intermediates
Breaking dependencies by implementing an intermediate layer between

60

the modules. Intermediates remove the knowledge modules have of each
other, and creates a standard way of interaction for all modules requiring
the same service from each other.

In the proof of concept system implementation, there is very low coupling be-
tween components in general, achieved through the use of these tactics. Both
through the use of interfaces and general object-oriented programming prac-
tices, but also the tactics of encapsulation and intermediates. For instance, the
state is accessed through an intermediary defined in an interface. Another mea-
sure has been the introduction of a service locator. Furthermore, the agents
accessing the blackboard are all accessed through an intermediary, which im-
plements an interface, meaning the controller can handle them agnostically and
has no direct knowledge to the workings of each individual agent. Much of the
inter-module communication is through interfaces, and most dependencies are
injected through constructors for inversion of control.

6.4.2 Performance Tactics

Performance tactics are implemented to make sure a system is being able to meet
all it’s timing requirements. Being able to meet timing requirements means be-
ing able to generate a response to an event arriving at the system within a given
time constraint.

"Events” are the triggers for the computation that needs to happen before a
response is sent, and it can be single or a stream of requests.

”Latency” is the time from the event has arrived until a response has been gen-
erated.

There are three main categories of ways to handle system resources: demand,
management, and arbitration.

Demand is characterized by the frequency of events and how much resources
each event consumes. Management related to how resources are managed, and
arbitration to how resources are scheduled. The tactics used in our implementa-
tion for performance mostly revolve around management, as the demand cannot
be changed, and arbitration is not relevant for an application running a single
task on a single computer in this case.

In terms of resource management, our main tactic has been to use concurrency.
This will reduce the time to process events by processing them in parallel.
You can either process similar streams of events on the same threads or by
creating new threads to process different types of activities. An example from
our application is how the scheduler runs in a separate thread from the reasoning
part of the system. Furthermore, some degree of caching has been utilized, as
state and values from earlier computations are kept stored within the state.
This caching frees up resources from computations already having been done,

61

thus increasing the performance potential.

6.5 Architectural Patterns

The architecture will combine several different architectural patterns at different
abstraction levels, to fulfill the requirements dictated by the quality attributes
and architecturally significant attributes. Software design patterns, or architec-
tural patterns, provide general solutions to problems that commonly occur in
software development. All design patterns used in our system are described in
this section.

There are two types of patterns described below: First of all creational design
patterns have been utilized, which deal with common mechanisms used when
creating objects. Secondly, we have also used behavioral patterns. These are
patterns that identify and deal with mechanisms for common ways of commu-
nication between objects.

6.5.1 Blackboard Pattern

The blackboard pattern is a behavioral design pattern revolving around a com-
mon resource, the blackboard, which is read and modified by knowledge sources.
Their access to the blackboard is handled by a controller that among other things
takes the priority of knowledge sources into account. More details on this pat-
tern are found in chapter

Within our system, a blackboard is used to represent the state of our sys-
tem, which agents modify as more information is available. For instance, the
agents responsible for computing acceleration and possible collision depend on
the speed computed by the speed interpolation agent. A controller orchestrates
their requested calls based on priority and satisfied conditions. The agents all
implement a knowledge source interface, facilitating for modifiability in the case
of replacing an agent implementation or adding new ones.

6.5.2 Singleton

The singleton pattern is a creational design pattern, which should be used when
there is a need to guarantee that only one object of a certain class will exist
at any time. This pattern will be utilized for application-wide configuration,
settings, and logging. This may be considered an anti-pattern by some, and
usually, it does not contribute much to modifiability, but it does simplify some
aspects of the implementation.

In our system, there are several classes only requiring to be instantiated a single
time, where the internal state is shared in some sense among the objects of

62

the system. This is true for the blackboard as well as the factories as they
cache already instantiated relations they want to keep track of. By having these
factory objects be singletons and use caching, we help the performance aspect
of the system. Furthermore, the intermediaries in front of frequently referred to
objects like the state are also singletons.

6.5.3 Factory Pattern

The factory pattern is another creational design pattern can be used to create
objects based on configuration or external state, without the knowledge of the
underlying class.

This pattern will be used to manage and instantiate various modifiable relations
of the simulator, differing in which types of entities they relate, and what types
of values the relations hold. This pattern will help achieve modifiability, due to
new types of relations being easily added to the system.

6.5.4 Observer Pattern

The observer or publish-subscribe pattern is a behavioral pattern that allows an
object to notify observers of changes in its state without depending explicitly
on the observers. The observer pattern will be used as part of the blackboard
implementation to allow systems to observe changes in the state, so the systems
can notify listeners to changes in conditions. This will help achieve modifiability,
as new agents can be added almost seamlessly through the implementation of
our subscriber interface.

In our implementation, this pattern is used to notify agents of when any of the
conditions they require to run are updated, for the case where they have already
run, but now improved or updated information is available.

6.6 Views

This section contains the included architectural views of our system, with short
reasoning for why they are included, as well as a thorough explanation of the
view to inform the reader of how our system is implemented.

6.6.1 Logical View

This view documents what features the proof of concept system will provide,
and is of value to both developers and end users, as they can see which parts the
system is built up of. It is documented as a class diagram in figure below,

63

which illustrates which parts of the system are used by other parts. It includes
all the key components and abstractions, along with a thorough explanation of
the high-level workings of the system.

IConditionListener

SEIGNEMEEE

Figure 6.1: The combined class diagram of the proof of concept implementation
of our virtual driving instructor system.

The class diagram of figure [6.1] illustrates how our system is built up. At the
bottom of the diagram is the class responsible for parsing the XML coming in
from the simulator, WaySAXHandler. For each timestep this class reads from
the simulator, it adds information to the state for that timestep through the
Statelntermediate, which it accesses through the ServiceLocator. This Stateln-
termediate has a reference to the WayState singleton, which in our system acts

64

eCo

as the blackboard of the blackboard pattern. Furthermore, the methods of this
intermediary are specified in the IStatelntermediate interface.

After updating the state, WaySAXHandler notifies the Controller class that the
state has been updated. The Controller contains a set of AgentWrappers, each
keeping track of the conditions each Agent requires. Furthermore, these Agen-
tWrappers return the priority of the agent contained within them depending
on whether or not they have run with the current set of blackboard conditions
available. This allows the system to handle the case where conditions could be
updated several times during the same timestep, or for the case where previous
condition values are used. The agents of our system map almost directly to the
abstraction of knowledge sources in the blackboard pattern.

The AgentWrapper is an abstract class, with a method for computing priority
being abstract such that new ways of computing priority can be implemented
in the future. As of right now the NaivePriority AgentWrapper always returns
it’s base priority when the Agent of the AgentWrapper should be run, while
OptionalConditionPriority Agent Wrapper returns it’s base priority except when
any of it’s prioritized conditions are present (they can run without these, but
prefer to run with them). The RerunnableAgentWrapper allows an agent to
run several times, while the other wrappers simply run once for each timestep.
This is useful for the case where information needs to propagate backward, like
new knowledge of a car’s intended path through an intersection. All wrappers
extend the abstract class AgentWrapper. The agent package has been omitted
from the class diagram of figure for clarity, but is given in figure

isionAgent rationinterpolationAgen SpeedInterpolationAgent

Figure 6.2: The class diagram of the agent-package of our proof of concept
implementation of our virtual driving instructor system.

65

YieldRelation

When the Controller is notified of an update to the state, it looks at all satisfied
conditions, filtering all AgentWrappers based on whether or not their agent’s
conditions are all satisfied. The satisfied AgentWrapper with the highest prior-
ity is then run, possibly updating the state and/or satisfied conditions. As long
as the set of satisfied conditions is updated, or there are still satisfied Agen-
tWrappers whose agents are not run, the Controller keeps picking the satisfied
Agent whose AgentWrapper returns the highest priority and runs this Agent.
AgentWrappers implement the IConditionListener interface, meaning through
the observer pattern they are listening to changes in the conditions of a tick
from the State. This is particularly useful for Agents that could improve the
utility of them running due to this update in a Condition. A particular exam-
ple of this would be the PossibleCollisionAgent, which first could run without
taking acceleration into account, but after being notified of acceleration being
added by the AccelerationInterpolationAgent, it would run again with improved
computation results which are indicated by an increase in priority.

When all Agents have done their job, the Controller allows the WayReasoner to
access the state, which again is done through the Statelntermediate. This rea-
soner fills an OWL ontology based on the state of the current timestep, using a
reasoning engine to infer any violations done. Any violations inferred are added
to the current timestep. It is important to note that within this proof of concept
system implementation, post-processing of a drive is performed. Therefore any
information propagating backward tells the controller that new information is
available for all the effected timesteps. It is only once no new information is
new to any timestep that the reasoner actually starts to infer violations across
the timesteps.

Finally, the Controller makes a call to the Tutor, which looks for violations in
any tick. If there are any, it uses Feedback to generate feedback based on these
violations and adding it to a FeedbackQueue.

In a separate thread of the application, the Scheduler runs. This Scheduler
continuously polls the FeedbackQueue for Feedback and consumes any Feedback
added. When consuming Feedback from the queue, the Scheduler provides
this to the user at an appropriate time. Currently, it is simply outputted to
the console as textual feedback upon being consumed, with a justification and
explanation of why the action was a violation in the current situation.

6.6.2 Process View

This view describes the processes and workflows of our system, as well as the
communication between objects. It mainly provides value for developers looking
to maintain or extend the system, but potentially other stakeholders needing
an explanation for how the system works as well.

66

Below, in figure[6.3] is an overview of the call sequence whenever the XML parser
updates the state and notifies the controller of this. This diagram documents the

flow of the system as a whole, on a high level, with some simplifications.

parser controller statelntermediate state agentWrapper agent
XMLParser ‘Controller (IStatelntermediate ‘State ‘AgentWrapper “Agent
i - . attach() l l : i
E N attach() N ﬁ attach() - E
a d L a
| n | | | |
] processTick() H H H H
r getPreconditionsForTick() E E E E
» | getConditionsForTick() ‘U i i
e ————— e ———— : + '
loop J : rung) : > run() .
_L“l—g etState() | getState()
for each @ rorsireisisiresiiii: "“D
satisfied S SR sefState) | i
agen b seiState() ‘_E:]

o]

T |

Figure 6.3: Process view showing the overall flow of the proof of concept vir-
tual driving instructor system through a sequence diagram, when initializing a
timestep coming in as XML from the simulator.

The sequence diagram in figure [6.3| contains the major workflow within our sys-
tem, showing how the information propagates throughout the system following
the blackboard pattern implementation.

For each timestep, the XMLParser calls the controller to process the tick. The
controller will loop over all the AgentWrappers that have been attached to it.
First up it retrieves the currently satisfied conditions from the State in the
getPreconditionsForTick()-call, which is done through the implementation of
the IStatelntermediate interface. Internally, the controller gets all of the prior-
ities for each of the AgentWrappers based on the current set of conditions. A
simplification is made to the diagram by avoiding this flow, for clarity.

After getting the satisfied AgentWrapper with the highest priority, this Agent
is run by a call from its AgentWrapper. Each call to an Agent requires parts of

67

the state, represented by the simplified call to getState() (internally it retrieves
smaller parts of the state, rather than the entire state). This call again uses the
intermediate for access to the state.

Afterward, the agent performs some logic internally and updates the state by
a call, simplified for clarity, setState() (internally smaller parts of the state are
modified). After the state has been updated, the controller retrieves the new
set of conditions.

Whenever any updates are made to conditions, the State will notify any ICondi-
tionListeners, marking the timestep as updated. The notification is not shown
in this diagram, but in that of figure

As long as there are satisfied AgentWrappers, with the set of conditions initially
retrieved after the call from the XML parser, where the represented Agent can
add information to the state, the system loops over the process described above
until the state is filled by each agent of the system.

When the XML parser has initialized this process for all timesteps of the in-
coming XML, the system prompts another pass across all the timesteps. This
is due to the possibility of information having propagated backward (like paths
through an intersection). The same process as above is repeated for each up-
dated timestep. In the end, all timesteps contain all the information the proof of
concept system is able to add to them. For the future real-time system, rather
than doing a pass across all timesteps initially, then another pass as long as
any timesteps are marked as updated, the system would process each timestep
as it arrives, and keep on adding information as IConditionListeners are notified.

After this, the reasoner retrieves the entire state for each tick, reasons with the
information and adds any potential violations. In the future, when the sys-
tem will not be run post-driving, the reasoner will, of course, be run after each
timestep has had all available information be added to it. Again for the future
system, the reasoner would reason for each tick as soon as it contains enough
information, before moving on to the next one.

After the reasoner has added violations, a tutor will generate feedback and put
this into a queue.

A separate thread, the scheduler, consumes feedback from the aforementioned
queue, providing it as textual feedback through the console. While the threading
is not necessary for the sequential post-processing done in this proof of concept,
it will provide useful for the scenario of real-time feedback in the future version

68

of the system.
The reasoner, tutor, feedback queue, and scheduler thread are all intentionally
left out of figure [6.3] for clarity’s sake.

statelntermediate state agent otherAgent
[IStatelntermediate ‘State ‘IConditionListener ‘IConditionListensr
H i i
]]
]]
]]
i i
setState() i i
i
i
i

> setState() ‘jl

o

notify(tick, condition) ‘U

notify

tick, condition)

h

g e Y

T

Figure 6.4: Process view of the observer pattern as used in our proof of concept
implementation, documented as a sequence diagram.

Figure [6.4] illustrates the flow of calls that are performed whenever the state is
updated, meaning that a new condition is satisfied. This was left out of figure
for the sake of clarity, but is a process that is included in this flow.

Initially, AgentWrapers are attached to the state, as shown in figure These
implement the IConditionListener interface. Together these two classes imple-
ment the observer pattern, as all listeners are notified whenever the state is
updated.

As shown in upon having the state set, both the "agent” and ”otherAgent”
instances are notified of this condition update, along with which tick the update
holds for. In the real system, there are of course a lot more agents than two.
Furthermore, these are attached as listeners to state upon the system being
initialized. This is done with the help of the Controller.

6.6.3 Inconsistencies Between Views

The sequence diagram of figure [6.3] contains inconsistencies, as the names of
methods, classes, and instances do not correspond to the ones used internally in

69

the system. The rationale behind this is keeping things clear, and the concern
of parameters taking up too much space within the figure.

The same holds for the sequence diagram of figure [6.4] parameters, names of
methods, classes, and instances do not correspond to the ones used internally in
the system. Specifically, rather than notifying the actual agents, the agent wrap-
pers are notified. Again this simplification is done for the purpose of keeping
the pattern as clear as possible. Furthermore, the view of [6.4] does not show the
process of attaching the listeners to the observable (State), this is commented
on in the corresponding textual description of the view.

Though the mismatches might confuse a reader, the rationale behind this deci-
sion is that the simplification of names and calls helps with understanding the
pattern and call sequence within our system, which we consider more important
than a one-to-one mapping in this case.

6.7 Agent Documentation

This section document the implementation details of the most critical agent
implementations for our proof of concept system. Each agent adds significant
information to the scope of reasoning about violating ones obligation to yield
or speeding.

Again, for each timestep within a drive, each of the agents will attempt to
run once all required information has been added to the situation description,
computing and adding additional, potentially more abstract information to the
situation description. Finally, the reasoner will use this full description to reason
about any possible violations.

6.7.1 Speed and Acceleration Interpolation Agents

Due to both speed and acceleration data missing from the received data from
the driving simulator we are basing ourselves on, these two agents were imple-
mented to add crucial information to our situation description.

Both agents employ simple interpolation to compute the speed or acceleration
of a car, averaging the corresponding values for a given set of timesteps. More
precisely, our system uses the estimates of

speedInterpolation; = |position,_1 — position|/|t1 — t| and similarly
accelerationInterpolation; = |speed;_1 — speed;|/|t1 — t|, both across an inter-
polation window, averaging the values between each timestep.

This is done for each car present during a timestep, and thus along with their
current positions allows us to do prediction about where they will be positioned
in the future.

70

Preconditions required for the speed interpolation agents are simply the posi-
tions of other cars, being the raw data coming in from the driving simulator.
For the acceleration interpolation agent, however, the speed data is required,
hence this agent depends on the information of the speed interpolation agent.
This dependency is expressed through the blackboard conditions declared as
required in the corresponding agent’s wrappers, nicely illustrating the fit of the
blackboard pattern to our system.

6.7.2 Possible Collision Agent

Our framework used for describing the process of driving, situation awareness,
contains a step of projecting the future state. This is exactly what functionality
the possible collision agent implements. Based on the current speed, position,
and acceleration (given this information is available), the agent projects where
cars will be in the future, and if at any point they will be colliding. If so, there
is a possible collision.

However, there is a need to only add this relation whenever a collision is prob-
able. Therefore a restriction to the time in the future has been added. For
our proof of concept system, we say that if the time to collision is within twice
the time required to both react and brake to a complete stop from the current
situation, there is a possible collision.

The distance traveled while reacting is simply d, = (speed - reactionTime) /3.6,
where we divide by 3.6 as speed is given in kph. For the distance traveled by
braking, the distance is computed as dj, = speed?/(250-), with f being the fric-
tion coefficient, estimated to 0.8 for dry asphalt. The sum of these two distances
is used to compute the time window in which we consider collision probable.
This agent adds a possible collision relation between any two cars where their
position at some time restricted by the time interval imposed by the time it
takes to travel twice the computed braking distance, will be within one car
length of each other.

6.7.3 Yield Relation Agent

The scope we have restricted our virtual driving instructor system to be able to
reason about concerns both violating obligations to yield, as well as speeding.
The concern of this agent is to indicate which cars have to yield for others, from
the perspective of the ego, being the driver in the simulator.

For our proof of concept system, this agent assumes the right-hand rule apply-
ing. Furthermore, it relies on information about one’s context to tell whether
or not a right of way sign or yield sign applies to the driver.

Based on the relative angles of incoming lanes to an intersection, the right-hand
rule, as well as currently applying road sign rules imposed, the agent will add a
relation between their driver and other cars it has to yield for.

Furthermore, this agent also looks at the path other vehicles take through an

71

intersection, to tell whether or not the ego driver has to yield for their path
through an intersection. This is done through a special back-propagation of
information within the system, due to a lack of this information as no indica-
tor light data is currently coming in from the simulator. In the case of our
proof of concept system doing post-analysis of drives, this is fine, but for the
proposed solution of chapter [4] real-time data indicating one’s path through an
intersection, like current lane or indicator lights, has to be present for this kind
of sophisticated yield logic to be applied.

6.8 Architectural Rationale

The overall architecture has been built around the blackboard pattern, due to
the tasks our system performs. There are several parts that all interact upon
an internal representation of the current state of the simulator and the corre-
sponding context. This is what is contained within the blackboard, and upon
information being made available the different agents capturing having captured
different domain knowledge can expand upon this information. The viewpoint
of situation awareness on what the job of a virtual driving instructor is has been
outlined in chapter [2] which supports the choice of such an architecture.

Furthermore, as the main architecturally significant requirements concern modi-
fiability, separating responsibilities into knowledge sources (the name of ” agents”
within the original blackboard pattern) provides high modifiability. The imple-
mentation of an agent can simply be modified without having a large effect on
the rest of the system. Furthermore, layers of indirection, like through encap-
sulation, has been introduced through interfaces and intermediaries.

The other architecturally significant requirement of performance has also been
addressed, though not to the same degree. The system architecture supports a
concurrent implementation in the future, where agents could be run in separate
threads, as long as the blackboard has its access atomically secured, and a mech-
anism to stop reasoning about one timestep and move to the next. Furthermore,
caching mechanisms, the singleton pattern, as well as using the factory pattern
have been added as a measure to reduce the number of resources required.

Overall the architecture is understandable for new stakeholders, as known tech-
nologies and patterns lay the foundation for it. As all architecturally significant
requirements of table [6.3] have been addressed, the performance of the system
should be up to par with what is required.

72

Chapter 7

Experiments and Results

In this chapter, we describe the two experiments conducted to test how the
proposed solution answers the research questions.

7.1 Experimental Plan

This section details the design of the experiments that were conducted.

7.1.1 Overview

To evaluate the proof of concept, two experiments were conducted. The purpose
of the experiments was to evaluate the performance of the system across every-
day situations in which yielding applies. Each experiment, therefore, included
a subset of scenarios that can occur in a T-intersection or a 4-way intersec-
tion. To begin with, a T-intersection serves as a basic intersection where rules
of yielding apply, then, to show generalization in the behavior of the proof of
concept, the T-intersection is expanded to a 4-way intersection. Furthermore, a
4-way intersection also opens up for new scenarios not possible within a regular
T-intersection.

The first experiment was conducted on data generated from testing on an ordi-
nary laptop with the authors as drivers. The results of the first experiment will
be based on the Virtual Driving Instructor’s evaluation of speeding and yield-
ing behavior and compared to the authors own domain knowledge. The second
experiment used data generated by test subjects driving in the Way AS simula-
tor. The results of the second experiment will be based on the Virtual Driving
Instructor’s evaluation of speeding and yielding behavior and compared to the

73

evaluation done by a professional driving instructor. The rationale behind the
two experiments follows in the subsequent subsections.

7.1.2 Rationale Experiment 1

The purpose of the first experiment is to test a wide range of different sce-
narios. This means being able to force out both correct and incorrect driving
behavior for all types of scenarios through careful configuration, and thereby
validating the system’s robustness. It serves as a testing ground for the proof
of concept to make sure it handles the different situations. The data will be
produced by the developers of the proof of concept on a laptop to ensure variety
in data and to include data expected to be difficult for the system. It allows
observing if expected representations of situation and context are produced for
given scenarios, as the developers are able to rapidly configure, drive through

and analyze scenarios. Furthermore, it allows seeing if expected information is
deduced.

7.1.3 Rationale Experiment 2

The purpose of the second experiment is to test the proof of concept on data
from authentic driving. The intention is to provide a larger scale, realistic testing
of the system. Therefore, the experiment will be conducted with data from the
actual simulator. While the first experiment serves to test edge cases, and check
for robustness, the second experiment is more geared toward typical use-cases
and evaluates the performance in normal use. Test subjects without knowledge
of the internal structure of the proof of concept, and who have to solve the
scenarios as they develop, serve as good examples of real users. Furthermore,
the more immersive experience of driving in a driving simulator is expected to
produce more realistic results, in comparison to those produced from a laptop
in experiment 1. Developer knowledge was required to evaluate the results and
internal representations of the first experiment, but in the second experiment,
professional driving instructors will serve as an evaluation of the results.

7.1.4 Data

All data was gathered from the driving simulator built by Way AS in Unity, de-
scribed in chapter bl Data for the first experiment was produced by running the
virtual simulator on a laptop. The reason is that it allowed for faster production
of data and to reduce the load on Way AS’ physical simulators, as stated above.
Data for the second experiment was produced by different test subjects driving
in Way AS’ physical simulators. These people were instructed to drive normally
in the simulator.

In both cases, the data output will be the same, an XML file containing the

74

information from their drive within the simulator. These files will be analyzed
independent from the simulator, and any feedback is provided textually in a
terminal window on the computer running the Virtual Driving Instructor proof
of concept implementation.

7.2 Experimental Setup

This section documents the setup of the experiments conducted to validate
the proof of concept system implementation. The different scenarios of the T-
intersection and the 4-way intersection are textually described and illustrated.
A small rationale behind each individual scenario of the second experiment
is given, while a general rationale is provided for the different configurations
utilized in the first experiment.

7.2.1 Experiment 1

As stated in the previous section, the experiments of experiment 1 were to be
run on a developer laptop. Contrary to in the experiments of experiment 2, each
scenario was to be run separately, meaning the virtual world of the simulator is
reset between each scenario.

As the rationale behind experiment 1 is testing a wide variety of situations,
to check the robustness of the reasoning logic, a decision was made to always
let the Ego approach the intersection from the left lane, while the other car
approaches from the middle lane. Fixing these variables in the set of possible
configurations was done to highlight the other aspects of the scenarios, like the
intended path and road signs applying. An illustration of the possible initial
positions is given in figure [7.1

The scenarios to be tested consist of 17 possible legal configurations of the Ego
turning to the right or driving straight on, and the other car turning left or right
if coming from the middle lane. The combinations also include configurations
of the Ego and other car either having right of way, having to yield, or there
being no road signs present. Furthermore, where possible, an attempt is made
to drive incorrect in the situation as to have the system generate the expected
feedback. The expected feedback is given in table below.

()

Ego Destination Other Path Ego Yield | Other Yield | Correct | Expected Violation Generation
Right Middle to Left RH RH Yes No
Right Middle to Left RH RH No Yes
Right Middle to Left ROW Y Yes No
Right Middle to Left Y ROW Yes No
Right Middle to Left Y ROW No Yes
Right Middle to Right RH RH Yes No
Right Middle to Right Y ROW Yes No
Right Middle to Right Y ROW No Yes

Straight Middle to Left RH RH Yes No
Straight Middle to Left RH RH No Yes
Straight Middle to Left Y ROW Yes No
Straight Middle to Left Y ROW No Yes
Straight Middle to Right RH RH Yes No
Straight Middle to Right RH RH No Yes
Straight Middle to Right Y ROW Yes No
Straight Middle to Right Y ROW No Yes

Table 7.1: The expected results of running the configurations of experiment 1
locally. The destination of the ego, the path of the other car, as well as their
respective right of way privileges: RH = right-hand rule, ROW = right of way,
Y = yield. Whether or not the scenario was driven in a correct manner is
indicated, as well as whether or not a generated feedback is expected.

76

Figure 7.1: The start positions of the T-intersection scenarios tested in experi-
ment 1. 17 possible legal paths through the intersection (i.e. no u-turns), were
tested, with different legal combinations of road signs. The Ego always starts
from the left, as indicated by the red arrow, while the other car starts from the
middle as indicated by the blue arrow.

7.2.2 Experiment 2, T-Intersection

The scenarios for experiment 2 included six scenarios of driving in a T-intersection.
The scenarios are displayed below in figure[7.2] A description of the T-intersection
scenarios is given below. Fach scenario is described textually, with the rules ap-
plying, as well as the rationale behind the given scenario.

Scenario 1 Here, the Ego approaches the intersection from the left lane, while
the other car approaches from the bottom lane (seen from above). In this
case, no road signs impose any yield-related traffic rules, hence the basic
right-hand rule applies. This means that the Ego has to yield for the other
car. The rationale behind this scenario is testing the system’s capability
of evaluating the basic right-hand rule.

Scenario 2 The second scenario has Ego approach from the right lane, while
the other car approaches from the left lane. Again, no road signs impose
any yield-related traffic rules so the basic right-hand rule applies. The
path of the Ego has the other car be to the right of the Ego, hence Ego
has to yield for the other car. The rationale behind this scenario is testing

7

the system’s capability of evaluating the right-hand rule in terms of paths
through an intersection.

Scenario 3 In this scenario, Ego approaches the intersection from the bottom
lane, while the other car approaches from the left. No road signs impose
any yield-related traffic rules, meaning the right-hand rule applies. In this
case, the Ego has the other car to the left, meaning it does not have to
yield for it. The rationale behind this scenario is testing the system’s
capability of evaluating the basic right-hand rule by being aware of it not
applying.

Scenario 4 This fourth scenario has the Ego approach the intersection from
the left lane, while the other car approaches from the bottom lane, like in
scenario 1. However, this time there are road signs imposing yield-related
traffic laws. The left and right lanes have right of way, while the bottom
lane has to yield for both of them. As the Ego vehicle has right of way,
it should not have to yield for the other car. The rationale behind this
scenario is testing the system’s capability of evaluating right of way.

Scenario 5 This scenario has the Ego approach from the right lane, while the
other car approaches from the left lane. The Ego vehicle is to turn to the
left, meaning that the other car will be to the right of it in the intersection.
Therefore, the Ego has to yield for the other car. The rationale behind
this scenario is testing the system’s capability of evaluating the right-hand
rule although road sign rules related to yielding are present.

Scenario 6 The final T-intersection scenario has the Ego approach from the
middle lane, with the other car approaching from the left. In this case,
there is a yield sign applying to the Ego, meaning it has to yield for
the other car. The rationale behind this scenario is testing the system’s
capability of evaluating having to yield when the yield sign is present.

78

GO LW IO L GEm Lo Lam 1om
(a) The T-intersection scenarios (1 through 3 from left to right) without any road
signs.

(b) The T-intersection scenarios (4 through 6 from left to right) with road signs, the
horizontal lanes having right of way, the vertical lane having to yield, as indicated by
the road signs.

Figure 7.2: The set of T-intersection scenarios as seen from a top-down view
within the simulator. The red line indicates the path of the Ego, while the blue
line indicates the path of the other car.

7.2.3 Experiment 2, 4-way Intersection

The scenarios of experiment 2 included four scenarios when driving in a 4-
way intersection. The scenarios are displayed below in figure As for the
T-intersection, a description of the scenarios is provided below. A notable dif-
ference between this and the previous set of scenarios is the addition of a fourth
lane, as well the left and right lane now having a yield sign, while the bottom
and top lanes have right of way.

Scenario 7 The first scenario of the 4-way intersection has the Ego approach
from the left with an intended path to the top lane, while the other car
approaches from the right with an intended path to the left lane. In this
case, as a having to yield sign is present in the lane of the Ego, the Ego
must yield for the other car. The rationale behind this scenario is testing
the system’s capability of evaluating having to yield with signs present, as
well as for the system to be able to handle the extended intersection.

Scenario 8 This scenario has the Ego approach from the top lane with an
intended path to the right lane, and the other car approaching from the
bottom lane with an intended path to the left lane. Furthermore, both of
the cars have right of way when entering the intersection. In theory, both
cars should be able to drive through the intersection without interfering
with each other due to their paths. The rationale behind this scenario is
testing the system’s capability of evaluating reasoning related to right of

79

way, as well as the system being able to handle the extended intersection.

Scenario 9 In the third scenario of the 4-way intersection, the Ego approaches
from the right lane with an intended path to the bottom lane, and the
other car approaches from the right lane with an intended path to the
bottom lane. Here the Ego has right of way, while the other car has to
yield. The rationale behind this scenario is further testing the system’s
capability of evaluating reasoning related to right of way, as well as the
system being able to handle the extended intersection.

Scenario 10 Finally, in the fourth scenario of the 4-way intersection, the Ego
approaches from the bottom lane with an intended path to the top lane,
and the other car approaches from the left lane with an intended path to
the right. In this case, the Ego has right of way, while the other car has
to yield. Again, the rationale behind this scenario is testing the system’s
capability of evaluating reasoning related to right of way, as well as the
system being able to handle the extended intersection.

(a) The two first 4-way intersection scenarios, scenario 7 to the left and scenario 8 to
the right.

(b) The two last 4-way intersection scenarios, scenario 9 to the left and scenario 10 to
the right.

Figure 7.3: The set of 4-way intersection scenarios as seen from a top-down view
within the simulator. The red line indicates the path of the Ego, while the blue
line indicates the path of the other car. The horizontal lanes have right of way,
while the vertical lanes have to yield, as indicated by the road signs

80

7.3 Experimental Results

This section documents general results seen in the testing of our proof of concept
system, by looking at different scenarios of driving through an intersection. Both
the results from experiment 1 and experiment 2 are provided below.

7.3.1 Experiment 1

The table of documents whether a violation was generated or not for each
of the configurations of the T-intersection that were run as acceptance tests in

experiment 1.

Ego Destination Other Path Ego Yield | Other Yield | Correct | Violation Generated
Right Middle to Left RH RH Yes No
Right Middle to Left RH RH No Yes
Right Middle to Left ROW Y Yes No
Right Middle to Left Y ROW Yes No
Right Middle to Left Y ROW No Yes
Right Middle to Right RH RH Yes No
Right Middle to Right Y ROW Yes No
Right Middle to Right Y ROW No Yes

Straight Middle to Left RH RH Yes No
Straight Middle to Left RH RH No Yes
Straight Middle to Left Y ROW Yes No
Straight Middle to Left Y ROW No Yes
Straight Middle to Right RH RH Yes No
Straight Middle to Right RH RH No Yes
Straight Middle to Right Y ROW Yes No
Straight Middle to Right Y ROW No Yes

Table 7.2: The results of running the configurations of experiment 1 locally.
The destination of the ego, the path of the other car, as well as their respective
right of way privileges: RH = right-hand rule, ROW = right of way, Y = yield.
Whether or not the scenario was driven in a correct manner is indicated, as well
as whether or not the system generated a feedback. The scenarios where the
system output a violation and it was expected have their text made bold.

As for speeding, this behavior was recognized by the proof of concept imple-
mentation several times throughout the scenarios. Each time the simulator log
file values resulted in a computed speed for the Ego that was above the current
speed limit in the Ego context, the system would recognize it being a speeding
violation.

81

7.3.2 Experiment 2

General trends were observed across the scenarios of experiment 2. Concrete
examples of these trends are illustrated through examples. These examples are
described textually, as well as displayed in three-part pictures capturing how
the scenario evolved over time.

The overall results are given in table below. This table contains the total
number of yield violations across all participants of experiment 2, per scenario.
Unfortunately, we had to exclude the data from test subject 11 due to a corrupt
video making it impossible to label or validate the results.

Scenario | Number Yield Violations

[t

© 00 O U= Wi
— —
OwwOO,_.OJOOCﬂ\]

—_
o

Table 7.3: The total number of yield violations discovered by the proof of con-
cept across all participants of experiment 2 per scenario.

There was discovered a pattern where the proof of concept gave feedback on
violations of yielding at the very beginning of a scenario in some instances.
These instances were suspected to be caused by a bug. In total, the bug was
identified 24 times across all of the scenarios, and it is illustrated in figure[7.8]in
a later subsection. Below, in table [7.4] follow the results with the bug filtered
out. The table also includes the percentage of agreement when compared with
the evaluation done by a human driving instructor. In the case of the system not
providing feedback, and the human driving instructor considering the handling
of yielding to be sufficient, they are said to agree. In the case where the system
recognizes a violation in terms of having to yield, and a driving instructor does
the same thing, they are said to agree. The table serves as an indication of the
system’s correctness, and the total agreement was 83%.

82

Scenario | Number Yield Violations | Expert Agreement
1 6 69%
2 1 92%
3 0 100%
4 0 100%
5 1 92%
6 10 42%
7 0 100%
8 1 91%
9 7 45%
10 0 100%

Table 7.4: The total number yield violations across all participants of experi-
ment 2 per scenario, along with the percentage of violations a human driving
instructor agrees with.

Again, for speeding, this behavior was recognized by the proof of concept imple-
mentation several times throughout the scenarios. Each time the simulator log
file values resulted in a computed speed for the Ego that was above the current
speed limit in the Ego context, the system would recognize it being a speeding
violation.

Scenario 6 - Not Adjusting Speed

This first situation, shown in ﬁgure as an instance of scenario 6 (ﬁgure,
illustrates the general situation where Ego has to yield and does not sufficiently
adjust their speed. Consequently, the car not having to yield for Ego all of a
sudden is required to brake to avoid a collision. In the situation of figure [7-4] as
well as similar situations where Ego has to yield and has a possible collision with
another car approaching the intersection, our system does register violations and
provides feedback.

Figure 7.4: This example of scenario 6 shows the Ego not yielding when sup-
posed to and having to compensate by braking hard. In this case, the proof of
concept system provides feedback about violation of having to yield.

83

Scenario 6 - Yielding Properly

The second situation, shown in figure as an instance of scenario 6 (figure
, illustrates the general situation where Ego has to yield and properly adjusts
their speed to allow other cars to drive by without interference. In this situation,
as well as similar situations, where the Ego has to yield for other cars, but Ego
speed is adjusted to avoid a collision, no possible collision relation is generated
by our system. Therefore, per definition, having to yield is not violated and our
system does not generate any violations or feedback.

Figure 7.5: This example of scenario 6 shows the Ego yielding when supposed to,
by adjusting speed appropriately beforehand. In this case, the proof of concept
system provides no feedback as there were no violations of having to yield.

Scenario 4 - Enforcing Right of Way

The third situation, shown in figure[7.6|as an instance of scenario 4 (figure[7.2)),
illustrates the general situation where Ego has right of way and disregards any
approaching vehicles to the intersection. In this situation, as well as similar
situations, the Ego does not technically have to adjust their speed for any other
car, as they should yield for the Ego. Furthermore, there is no violation of having
to yield as the ego has right of way. Therefore, even though a possible collision
relation is present, our system produces no violations and no feedback.

84

Figure 7.6: This example of scenario 4 illustrates driving on in the case of having
right of way when another car is approaching the intersection. In this case, the
proof of concept system provides no feedback as there were no violations of
having to yield.

Scenario 4 - Driving Passively

The third situation, shown in figure as an instance of scenario 4 (figure ,
illustrates the general situation where Ego has right of way, but considers the
speed of other approaching cars and ends up slowing down to let them pass. In
this situation, as well as similar situations, the Ego does not technically have to
adjust their speed for any other car, as they should yield for the Ego, but decide
to do so as they consider the other car approaching the intersection too fast. In
this situation, as well as similar situations where the Ego has right of way, there
is no violation of having to yield. Therefore, although the possible collision
relation is present, our system produces no violations and no feedback.

Figure 7.7: This example of scenario 4 illustrates stopping to let another car
having to yield for you pass, in the case of having right of way. In this case,
the proof of concept system provides no feedback as there were no violations of
having to yield.

85

Scenario 2 - Initial Acceleration

The very beginning of scenario 2 illustrates the general situation where the
Ego and another car approach the intersection. At this moment, the other car
accelerates to reach a predefined speed within the scenario, being arbitrarily
high for the very first moments of the scenario. In the cases where the straight
path from the other car and the Ego intersected, this resulted in a projected
collision and, therefore, a generated feedback from the system of Ego violating
having to yield in the cases where Ego had to yield for the other car. This
general scenario is illustrated in figure

Figure 7.8: Initial acceleration is very high initially when cars spawn within
the simulator, resulting in a possible collision and the system saying the Ego
violates having to yield. In this case, the car is not seen, but is at the end of
the road, in the lane opposite to the Ego.

Scenario 7 - Lane Adjustment

Another behavior observed was that when adjusting ones position lateral within
the lane, typically done before turning to indicate the intended path, this ac-
tion would result in feedback of violating having to yield for other cars in the
opposing lane directly in front. Similarly to the initial acceleration example in
scenario 2, this adjustment within the lane would project momentarily possible
collision in the future. This general situation is shown with an example from
scenario 7 in figure [7.9]

86

8'ms (260fps)

Figure 7.9: Adjustment of ones position in the lane, due to the intended path,
is an over-sensitivity within the system that results in the system saying the
Ego violates having to yield.

Scenario 9 - Other Car Collision Course With Ego

Finally, in scenario 9, a recurring situation was seen. Here, Ego has to yield
for the other car, with Ego starting in the right lane with an intended path
to the bottom lane, and the other car approaching from the bottom lane with
an intended path to the right lane. As Ego has to yield for the other car,
participants in the experiment would wait for the other car to drive through
the intersection. However, after exiting the intersection, the other car has a
projected collision in the future. Due to the Ego having to yield for the other
car, the system would generate feedback saying Ego violated having to yield in
this case. An example of this is shown in figure [7.10]

87

R LI 28 '
S 7 \\Mm'f"ua 7

A 160 7

5 N 2.

/3 Seo 100”7
4

£ Sw 200

AL A .

Figure 7.10: In scenario 9, the other car is on a collision path with the Ego, but
the system says the Ego violates having to yield.

Example of Speeding Feedback

Here we have included a picture from the proof of concept output after running
it on the data from test subject 11. In addition, to show what the system output
during a period of speeding would look like, it was also chosen to highlight two
other matters.

First, it highlights a trend of speed values having unexpected momentary vari-
ations. Although the actual driving simulator of Way AS provides speed values
for the Ego car, all speeds were calculated by the speed interpolation agent
based on the positional data coming from the simulator log files. As can be seen
in picture the momentary variation in speed values would differ by up to
4 km/t from one tick to the next, before returning to about the same value as
before.

Second, picture shows the frequency of which the system can give feedback
when violations occur. One can see that feedback is given with approximately
35 milliseconds intervals.

88

'_
I_
H
'_
I_
H
H
I_
H
H
I_
H
H
I_
I_
H
I_
I_
H
'_
I_
Her

Figure 7.11: This figure shows part of the output for test subject number 6,
provided in Norwegian. The picture shows speeding violations with the corre-
sponding speed across a single second within the simulator. One can observe the
general trend of speed having unexpected variations within a short interval, as
displayed here, the speed values can vary quite drastically momentarily. Also,
it is worth noting the frequency at which the system outputs feedback. The
numbers xx:yy:zzz is the time in minutes, seconds and milliseconds from when
the test drive started.

Test subject 11

Unfortunately, the video file recorded for the drive of test subject 11 was corrupt.
Hence, even though the results were recorded we were not able to evaluate the
results from the system, and the driving instructor was not able to comment on
the scenarios of test subject 11.

Simulator Sickness

Some people experience motion sickness from driving in the simulator, as men-
tioned in the first section of chapter Test subjects 4 and 14 experienced
motion sickness to the degree where we had to interrupt their drive. Conse-
quently, test person 4 only finished the first 4 scenarios and test person 14 only
finished the first 6.

89

Chapter 8

Evaluation and
Conclusion

This chapter contains the evaluation and conclusion of the work performed
in this thesis. The evaluation synthesizes the results of the experiments and
follows up with a discussion of them. The set of contributions from this thesis
is identified, and finally, a conclusion and future work are discussed.

8.1 Ewvaluation

This section will evaluate the results of each of the experiments conducted and
then proceed with a subsection on a general evaluation of the proof of concept
implementation.

8.1.1 Experiment 1

The initial results showed that the proof of concept sometimes gave very early
feedback of the driver not yielding properly, way too far away from the inter-
section. Some configurations of the first experiment initially showed that this
feedback was mainly produced when the other car would be oncoming to the
Ego, and is the result of predicting too far into the future. Therefore, a limit
to how far the possible collision agent would look into the future was added.
As described in chapter [6] this is based on the braking length given the current
speed of the Ego. It is noteworthy that the experiments themselves facilitated
looking too far into the future. Since each scenario started from a standstill and
began with rapid acceleration then the early prediction would use unrealistic
acceleration, as illustrated in a situation from experiment 2 in figure [7.8] of the

90

previous chapter. On the other hand, it may also have allowed for earlier detec-
tion of problems regarding the possible collision assessment used in the proof of
concept.

However, after adding this restriction of time in the future, we were pleased
to compare the feedback expected from table and the actual output docu-
mented in table In each of the scenarios where the authors attempted to
drive incorrectly, our system did provide feedback saying that having to yield
was violated. Furthermore, this took the context into account, saying that it
was due to the basic right of hand rule in the cases where no road signs applied,
and it was due to a yield sign in the case where yield signs imposed having to
yield.

An important note about these experiments of experiment 1, as mentioned in
the previous chapter, is that they were driven by the developers of the proof
of concept implementation. Therefore, they are aware of what is required for
the system to provide feedback on yielding having been violated and can adapt
their driving accordingly. Though a subjective evaluation by the authors, we do
consider the ”correct” scenarios to represent a normal way of driving through
the intersection in a correct manner. Similarly, for the incorrect examples,
we consider these representatives of situations where a driver does not drive
according to having to yield for the other car.

8.1.2 Experiment 2, T-intersection

The T-intersection of experiment 2 encompassed scenarios 1 through 6. As can
be seen from the results of table in the previous chapter, the violations rec-
ognized by our proof of concept implementation were in scenarios 1, 5 and 6.
There was only a single violation recognized in scenario 5.

Further investigation showed that the single violation in scenario 5, where a
test subject actually drove outside of the road thereby missing the trigger pro-
viding them with right of way. This meant that technically, with regards to
yielding, the scenario was the exact same as scenario 2. However, the violation
was identified closer to the intersection, being regarded as an example of the
general situation where the Ego adjusts its lateral lane position as shown in
figure [7.9] As expected, the human driving instructor did not consider this a
valid feedback. The lane adjustment leading to a projected collision in the near
future is discussed further in the next section.

For the scenarios where several violations were recognized by our systems, how-
ever, the human driving instructor agreed with 69% of the violations in scenario
1, and only 42% of the violations in scenario 6. The result from scenario 1
indicates a decent degree of correctness in our system, while 42% in scenario
6 is terrible. For scenario 6, guesswork would outperform the proof of concept

91

system. These scenarios will be subject of the discussion later in in this chapter.

Though accuracy of 100% is ideal, an overall accuracy for the scenarios of ex-
periment 2 at 83% is quite decent. Scenarios 2 through 5 were considered clear
cut by the human driving instructor. The high agreement percentage of these
scenarios indicates that the system performs well in clear cut scenarios. While
the difficult situations may be the most interesting, it is also important that the
system masters the simple situations.

8.1.3 Experiment 2, 4-way intersection

The proof of concept did not alter its behavior or performance when adapted
for the 4-way intersection. Although moving from a T-intersection to a 4-way
intersection may seem like a small change, the fact that the proof of concept
kept its performance proved that it was able to generalize yielding concepts.

The 4-way intersection encompassed scenarios 7 through 10. Again referring to
the results of table the system recognized violations in scenarios 7, 8 and 9.

The single violation of scenario 8 proved to be an example of the driver again
missing the trigger providing them with right of way, again being subject to the
possible collision as a result of lane adjustment.

It turned out that the single violation of scenario 7 was due to the same reason.
In fact this is the exact scenario in figure[7.9] As this was not a single occurrence,
but actually proved to be a general problem across scenarios, ways of handling
a driver not passing through the trigger imposing right of way or having to yield
will be discussed below.

For the 7 violations recognized in scenario 9, the system would say the Ego
violated having to yield. In only 45% of these situations, the human driving
instructor agreed. This indicates a severe flaw in the logic of our application,
especially as the human driving instructor was able to see the entire situation in
his field of view due to it occurring very close the intersection, being independent
of the time when the cars are far from it. The example of this scenario was
illustrated in figure of the previous chapter. Clearly, the Ego is not at fault
here, but rather the other car having a momentary collision course with the ego
due to high speed when taking a turning. However, as the Ego has to yield for
another car, and has a possible collision with this car, which is currently in or
approaching the same intersection as the Ego, our system recognizes this as a
violation by Ego. This will be discussed below.

92

8.1.4 General Evaluation
Video and Log Offset

We used context updates to track the time offset between the video and the log
file. A context update would be made whenever the test subject passed a sign
or left the intersection. These are clear and frequent moments during the drive
of a test subject. When investigating the log file produced from experiments,
to validate the violations recognized by the system, we expected that the offset
would remain constant, thus only looked at the first context update as a refer-
ence. However, it was discovered that the offset in time between the video and
the log file changed over the course of a test drive. For example for test subject
7 the video was 7 seconds behind the log when he passed the first speed limit
sign, meaning the time 0:30 in the video was 0:37 in the log. Three minutes
later, at 3:28, the video and the log were in sync.

Yielding

From the overall results, it seems that the proof of concept’s notion of violating
having to yield corresponds well with that of human driving instructors. The
human driving instructor was mainly considering whether or not the Ego car
was disturbing the other car and considered any disturbance as a violation of
having to yield. The results confirm our initial beliefs that the possible collision
relation is a good indication, due to the threat of possible collision disturbing
the other car.

Speeding

Looking at speeding is trivial. The fact is that the system is able to keep track of
the currently applying speed limit on a road. Furthermore, the speed interpola-
tion agent of the proof of concept implementation keeps an interpolated value of
the speed of all cars. Therefore, whenever the Ego has a speed higher than the
speed limit of the context, they are per definition speeding. The system would
recognize this as an evaluation and provide feedback. This behavior worked as
intended 100% of the time.

8.2 Discussion

This section discusses important matters from the above evaluation and the
results of the previous chapter, to highlight areas of importance for future work

93

on the system and similar systems. Initially, the results of the experiments
are discussed in the context of the hypothesis, objectives, research questions
identified in chapter[I] Next, specific issues are discussed, and finally, a general
discussion is included.

8.2.1 Hypothesis, Objectives and Research Questions

Below is the summary copied from chapter |1l This subsection will consider each
of the objectives in turn, and look at their respective research questions, to see
if they have been answered to a satisfying degree through the implementation
and experimental results. An evaluation of our hypothesis will be left for the
conclusion.

Hypothesis A Virtual Driving Instructor System, using Al, can be used to
evaluate a driver’s behavior to give precise, justified, and understandable
feedback about a traffic situation the driver can use for improvement.

Objective 1 A Virtual Driving Instructor must be able to understand the sit-
uation and context.

RQ 1 How to represent both the situation and context that applies at a
given time in traffic?

RQ 2 How can missing information be inferred from domain knowledge,

and basic information of situation and context for a given time in
traffic?

Objective 2 A Virtual Driving Instructor must be able to evaluate driving
behavior.

RQ 3 Based on driver actions, can driving behavior be recognized and
represented?

RQ 4 How should driving behavior be evaluated with respect to a given
representation of traffic rules, situation, and context?

Objective 3 Feedback generated by a Virtual Driving Instructor must be un-
derstandable for humans with little to no understanding of Al.

RQ 5 When and how should a Virtual Driving Instructor generate feed-
back?

RQ 6 Given the way feedback is generated by a Virtual Driving Instruc-
tor, can it also be justified?

Objective 1

As the results of the experiments show a fairly high degree of correctness, the
proof of concept implementation seems to be able to represent the situation

94

properly. The rationale behind this argument is that a system not able to
understand the situation and context will not have any basis for feedback, but
as our implementation provided the correct feedback in most situations the
system understands both to an appropriate degree.

Research question has been answered quite clearly, the way to represent
the situation and context is through an ontology. The ontology consists of the
relevant parts of the situation and context and was able to infer violations when
they occurred.

Research question [RQ 2| was answered by the implementation of a multi-agent
system. Each agent is responsible for adding additional information for a more
extensive context and situation representation. Using basic information like
other car positions and which lanes they are in, as well as what road signs
apply, the system is able to infer which cars have a collision course with other
cars, as well as which cars are obligated to yield for others.

Objective 2

The system produces feedback, being the result of an evaluation based on how
a driver is behaving in the simulator. Hence the proof of concept was able to
evaluate driving behavior.

When it comes to research question the driver actions or inputs are real-
ized as behavior within the system. The system has rules defined for recognizing
behavior that violates the currently applying traffic laws, like violating having
to yield or driving at a speed above the current speed limit. These violating
behaviors have been defined within the agent system and ontology, which is how
they are recognized.

Research question has been answered by taking into account the cur-
rently applying context and situation of the Ego. Ego behavior is recognized
by higher-level agents in combination with the definition of behavior through
ontology violations. The sum of traffic rules, situation elements and context
serve to produce a set of relations that indicate which cars the Ego is obligated
to yield for, and if a possible collision relation is also generated, a violation is
produced.

Objective 3

The textual feedback from the system is shown in the example of figure [7.11]
using simple sentences in the proof of concept system.

Research question has been answered to a certain degree. When it comes
to how the Virtual Driving Instructor should generate feedback we have provided
it as textual feedback in natural language sentences for the proof of concept im-
plementation. However, it is provided as soon as it is generated in this proof of
concept. This contradicts the suggested solution in chapter |4} where we propose
giving feedback in situations of low stress, with a much lower frequency than

95

what was done in the proof of concept.

When it comes to whether the feedback can be justified, asked in research ques-
tion [RQ 6] the answer is yes. As our system keeps track of the current context
along with the situation, and all relations between the cars in the current situ-
ation, all information to provide justification is present. For now, in the case of
violating having to yield, we have settled with identifying how you are violating
having to yield (whether due to not respecting road signs or the basic right-hand
rule), as well as which car you should have yielded for in our proof of concept
implementation. However, the feedback could contain even more justification if
required due to the extensive internal representation.

8.2.2 Speeding

The success of providing feedback on speeding should be taken with a grain of
salt, as figure of chapter [7]illustrated that the interpolated values of speed
can have significant momentary variations. One could argue that as the tick
at which speed is computed within the simulator is below 100 ms, the effect of
such variations will not lead to speeding violations being omitted, as the value is
likely to return to its actual value. Still, this has propagating effects throughout
the system as both the possible collision agent and acceleration interpolation
agent depends on these speed values. Again, as stated in chapter [5] the op-
timal solution to such a problem would be having direct access to the actual
speed (and acceleration for the possible collision agent) values from the simula-
tor rather than having to compute them within the proof of concept, and the
values computed by our speed interpolation agent are possibly inaccurate due
to them being results of interpolation. Furthermore, having the speed values
coming directly from the simulator would lighten the computational load of the
system, thereby improving the performance.

The problem of providing feedback on speeding opens for more interesting chal-
lenges. Among these are how severe a violation has to be for a virtual driving
instructor to provide feedback on it. When displaying the experiment drives to
human driving instructors they would react when a person was either speeding
severely momentary or speeding slightly over a larger period of time. Therefore
how severe a violation must be for a virtual driving instructor to provide feed-
back should be investigated.

Based on this, a new issue arises, which is how often one should provide feed-
back. A suggestion based on |Arroyo et al| (2006 was given in chapter [4] of
based on all violations or recognized behavior up until some point is given as
soon as possible when being in a low-stress situation. This feedback should
highlight the most important aspects of driving to provide feedback on, given
the individual driver.

Another aspect of speeding is our solution treating it as trivially as it does.
This proves that our proof of concept does not over-complicate aspects of driv-

96

ing that do not need to be over-complicated. The rationale behind this relates to
Ockham’s razor, solving a problem with the simplest solution possible. Further-
more, it illustrated how the proof of concept can easily be extended to reason
about other more or less trivial behavior.

8.2.3 Having to Yield

When it comes to reasoning about having to yield, the experiments have re-
vealed three issues that need to be investigated further and be improved.

First of all, is the issue related to the initial acceleration of other cars within the
simulator. An example of such a scenario is shown in figure As stated pre-
viously, the possible collision relation is central to our reasoning about having
to yield, and the projected future state from this agent is affected by the initial
acceleration. There are several ways that could improve this, for instance, the
possible collision agent could have its computation split into several parts that
rather than trying to solve the general problem take the situation and context
into account. Furthermore, it could take into account the other car probably
not having constant acceleration, but stopping to accelerate once their speed is
at or slightly above their current speed limit. Another factor that could help
this logic is having access to the computes values from the simulator itself rather
than having an agent be responsible for interpolating the values of acceleration
(again the acceleration values are based on the interpolated values for speed).
The rationale behind why a change is needed is the following: feedback on some-
thing predicted too far into the future would confuse students. While some weird
or wrong feedback can be filtered by the student, it will still weaken the author-
ity of the system. Furthermore, a student will likely not be able to filter out
improper feedback as that would require expert knowledge that the student has
yet to learn. Even worse, the student is expecting to learn this expert knowledge
from the virtual driving tutor.

The second issue identified with reasoning about having to yield is that of sce-
nario 9 (shown in ﬁgure. Due to the other car being within the intersection
that the Ego is approaching, the Ego has to yield, and the other car having a
projected collision with the Ego. In this situation, it is clear that the other car
is crashing into the Ego, yet the system says Ego violates having to yield due
to a possible collision with a car Ego has to yield for. Clearly the logic is not
robust enough, and improvements must be made. However, we do not consider
this an indication of the suggested solution of chapter [4 being bad, but rather a
result of shortcomings in our proof of concept. As pointed out, possible collision
is a very complex concept to model and requires a more advanced agent, else,
other supporting concepts have to be included to capture more of the nuances
of the situation.

One suggestion, is making the possible collision agent more sophisticated, by

97

distinguishing between whether the Ego will collide with another car, if the cars
both collide with each other, or if the other car is colliding with the ego (as
here), and then disregard all scenarios where the other car is responsible for the
collision. The possible collision agent is discussed further, later on in this section.

The third issue if that of lane adjustment leading to a projected collision in the
future, as illustrated in figure This momentary change in the acceleration
due to positioning in lane leads to a projected collision in the future, and a
violation of having to yield being violated in our proof of concept system. Again
this must be improved, whether with a more sophisticated agent responsible for
computing the possible collision, or some other way. For instance, a momentary
violation of a traffic law lasting only one timestep within the simulator could be
disregarded, while a more clear violation of traffic laws persisting over several
timesteps should be recognized.

8.2.4 Driving Instructor Evaluation

Referring to the results of chapter the feedback from the system mostly
followed that which a human driving instructor would give. Still, there were
examples of the system providing feedback and the human driving instructor
not doing so. A notable difference was that the proof of concept implementation
proved to be a more defensive driver than the human driving instructor. A de-
fensive driver is typically extra careful and passive when interacting with other
entities in traffic. This tendency is illustrated through the worst agreement per-
centage of 42% for scenario 6 where inspection showed that the proof of concept
wanted clearer, earlier retardation than the human driving instructor. We be-
lieve that the percentage of the agreement does not serve the proof of concept
justice, as three factors were identified as potential causes for the disagreement,
apart from the possibility that the system actually outputs wrong feedback.

The first factor is that in these scenarios, the human driving instructor himself
told us that there was quite a bit of uncertainty due to the field of view and in-
formation available in the video recording. The human driving instructor would
not be able to see the other car approaching the intersection until either car was
very close to the intersection. The human driving instructor would have liked
to see the other approaching car much further away from the intersection to be
able to evaluate if the car interferes with the Ego or the Ego interferes with the
other car. A top-down overview of the entire situation was also suggested.

After this uncertainty was discovered, we asked whether or not the judgment
could have been different if the other car could have been seen earlier in the
situation, to which the human driving instructor said yes. Asking specific ques-
tions where we would inform him of the actual speed values and locations of the
car in the scenario indicated at just the edge of the field of view at a current
timestep made the human driving instructor provide the same feedback as the

98

system did in that situation.

This made us conclude that although there is a significant difference in the feed-
back of the system and the human driving instructor in scenario 6, and to some
degree in scenario 1, we should regard these result with some skepticism.

The second factor pertains to human driving instructor discretion. Often times
there is not a hard line between right and wrong. An example illustrating this
is that a momentary potential collision is not necessarily going to happen in
the future if both cars brake significantly. However, our implementation of the
possible collision agent assumes that speed and acceleration at a given moment
will remain constant, and therefore has a tendency to consider the collision as
probable in the cases where a driving instructor might not.

Thirdly, the human driving instructor was fond of discussing driving actions
in the context of hypothetical future situations, i.e. in terms of best general
practices. Even though there were no negative consequences of driver action
within a given scenario, the human driving instructor would still consider their
actions a violation of having to yield. This illustrates the need for adding a more
sophisticated approach taking best practices into account when evaluating yield
situations, either through introducing more agents, more sophisticated logic to
the responsible current agents or by allowing a higher abstraction level or the
tutor of the system make these considerations.

8.2.5 Feedback Frequency

The feedback shown in figure [7.11]shows how the frequency of speeding feedback
is extremely high. This proof of concept implementation has focused on showing
that our approach is able to provide feedback on traffic situations, but one
cannot give feedback whenever there is something wrong. The feedback has to
be spaced out, as a student can only take so much input at a time. The picture
shows feedback on speeding being given more than 20 times within the course of
a second. Also, giving the same feedback for each timestep it is generated could
cause the same feedback to be repeated way too often, turning the feedback into
spam. This could make a driver disregard it completely, filtering it out as noise.
On the other hand, seeing that the system is able to catch violations at such
a fine granularity is promising for further development. Still, careful thought
should be put into the frequency and manner of providing feedback.

8.2.6 General Topics
Being able to generalize is a key attribute of good artificial intelligence systems.

We consider the ability to generalize as one of the key attributes of a virtual
driving instructor. Therefore, we were pleased to see that the system handled

99

the change of intersection structure. It shows that the proposed solution sup-
ports generalization.

From the preliminary work, it was expected that the possible collision agent
would be key to the performance of any virtual driving instructor or an au-
tonomous car, hence also the proof of concept. While the agent developed for
the proof of concept proved adequate, we still believe there could be done some
improvements. However, we do not believe that making a stacked possible col-
lision agent is the way to go. There are simply too many and too complex con-
cepts within the assessment of possible collision. As an example, we predicted
if the position of two cars would overlap at some point in the future given their
momentous speed and acceleration. Only slight positional adjustments within
their lane may cause oncoming cars to hold true for the calculation, i.e. lateral
lane position adjustment. However, one is usually to assume that a car will try
to stay within their lane. Therefore, we think that a possible collision agent has
to take this assumption into account and such inclusion would improve feedback
regarding oncoming cars.

Based on the discussion of the issues seen with yield violations, we proposed
capturing the different aspects of possible collision should be handled by indi-
vidual agents. Then a higher level agent should use these agents to assess the
likelihood of a collision. Having to make changes like that shed light on the
high degree of modifiability and suitability of the proposed solution. No other
changes are needed than the decomposition of the possible collision agent, the
rest of the agents remain unchanged. As a side note, another consideration
generated by decomposing the possible collision agent would be to move onto a
numerical representation of possible collision.

Another aspect of the proof of concept system we would like to highlight is that
some traffic situations require discretion, whereas computers and systems like
our proposed solution usually fare better with absolutes. This was briefly dis-
cussed in the subsection of driving instructor evaluation. The need for discretion
is clear in the case of a possible collision. In our proof of concept implemen-
tation, this agent implements a general algorithm checking if the collision will
happen in the near future, where the near future is restricted by twice the time
it takes for the car to stop with its current speed and acceleration. In some
situations this computation works very well, as illustrated by the accuracy of
table [7.4] in which the human driving instructor agrees with the proof of con-
cept, but the fact this it is not 100% (like in scenarios 1 and 6) could be due
to the fact that this computation is not specific enough for all scenarios. There
is clear discretion present here, which in the words of the human driving in-
structors depends on several factors, like the speed of the cars, the speed limit,
the road surface, the weather, and probably even more factors. This type of
discretion is relevant for other agents to be implemented in a more full system,

100

but shows up most clearly in our possible collision agent in the proof of concept
implementation.

Finally, an overview of the status quo of the proof of concept implementation
is discussed. As of right now, the proof of concept should not be used as a
standalone system providing feedback to drivers, but rather be used as a sup-
plementing tool for a human expert (a driving instructor). There are several
reasons for this, as identified previously in this chapter. Among these reasons
are discretion, as well as the frequency feedback is provided at and the sensitiv-
ity of our possible collision agent in identified scenarios.

Weird or wrong feedback, which is currently present, would confuse a learner
driver. Furthermore, invalid feedback that can be recognized by drivers would
have the system lose credibility and the driver would not care to learn from it.
Therefore, the system could, in theory, be used to flag certain times in the drive
where it has recognized mistakes, and a human driving instructor could then
manually look at these situations to see if the feedback is valid or not. In this
scenario, the system would work more like a decision support system.

Another aspect of the status quo and rationale as to why it should be used as
a tool in its current state is that human driving instructors make drivers reflect
over their driving. The current proof of concept simply outputs a sentence say-
ing that a mistake was made in the current situation, as well as why it was a
mistake. This does not allow reflection. To be able to work as a standalone
system, the implementation could aim for a reflective dialogue with the driver
rather than providing direct feedback as it does now.

8.3 Conclusion

This thesis outlines a proposed solution for a virtual driving instructor. More-
over, it documents the implementation of a proof of concept system based on
the proposed solution of a multi-agent system using a blackboard architecture,
representing the situation, context, and traffic violations within an ontology.
Based on the assumption that a driver is driving according to the traffic laws
they are aware of, as well as the elements of the situation they have observed,
improper actions and behavior result from flaws in their situation awareness.
Furthermore, what mistakes are made should indirectly indicate the flaws in the
driver’s situation awareness.

Analysis and performance of the proof of concept suggest that keeping track
of driver actions and behavior, as well as having perfect situation awareness,
makes the system able to provide corrective feedback when appropriate to a
driver on the topics of violating having to yield and speeding.

The experimental results suggest that this proof of concept implementation has
some merit to it, but considerable work remains for a fully fledged virtual driv-
ing instructor to be implemented. An overall feedback agreement percentage

101

of 83% between the proof of concept implementation and a human driving in-
structor was observed. However, the agreement percentage could go as low as
42% in difficult situations.

Issues with the robustness of the proof of concept agent implementations were
also identified, especially regarding the sensitivity of the possible collision agent.
Furthermore, an issue with the video recordings of the experiments was iden-
tified. The human driving instructor requested a broader field of view and
reflected that he would probably have recognized more of the scenarios as vio-
lations if he was able to see the approaching cars further out from the intersec-
tion.

8.4 Future Work

The proof of concept implementation and the testing of it through the scenarios
of experiments 1 and 2 revealed a lot of information that can be used for further
improvement of this or similar systems. The information relating to future work
is categorized and discussed below. Both identified flaws, as well as proposed
additions of functionality, are documented.

8.4.1 General Work

First and foremost, we propose improving the video recording taken of a driver
driving within the simulator. There was a clear issue for human driving instruc-
tors to evaluate the scenarios presented within the experiments, as they were
unable to retrieve all the information they would like. We propose either having
a wider field of view, such that the information further to the left and right
of the car is available, or to also include a top-down view of each intersection
clearly showing any approaching cars, or other relevant elements.

The field of view solution resembles the task more closely as the view is the
same the driver has within the simulator. However, presenting a large field of
view video could skew the perception of speed and therefore reduce the quality
of evaluation. A top-down view of the entire traffic situation is able to maintain
the perception of speed, but issues could arise with it being a different point of
view than what a human driving instructor is used to.

Another issue identified early on was that of a memory leak within the ontology
representing the situation. While this was handled by proper garbage collection
within the application, problems could arise with more complicated scenarios
than that of a single intersection with only two cars present. Inspiration from
the solution in|Zhao et al.| (2017)), utilizing a temporary ontology, should lay the
foundation for solving such an issue if present in the future.

102

8.4.2 Simulator Data

There are several shortcomings in terms of the data our proof of concept system
was able to utilize in our experiments. First and foremost is the issue of not
having access to information about what indicator lights are currently indicating
for any car. This information allows drivers to infer other cars intended paths
ahead of time (given that they do use their indicator lights to indicate where
they are going). By integrating this information into the proof of concept the
foundation for reasoning about which cars in an intersection will have an in-
tersecting path with the Ego’s path is made available. Furthermore, indicators
solve the problem where our system had to propagate this information backward
in time, only having access to path information once cars actually have driven
through the intersection. Thus, indicators allow better reasoning about having
to yield in real-time and is something that should be implemented in the future.
Another detail related to ones intended path in a traffic situation is the lane
positioning, this can provide some of the same information as indicator lights,
and is another feature that a system could evaluate and provide feedback on.
We propose investigating lane positioning further.

Being able to provide feedback in real-time is significantly more likely to be
achieved once indicator light data is available, but another improvement that
could be made to the system would be parallelization. Currently, all agents sat-
isfied with a given set of information add their information to the blackboard
sequentially. In the future, all independent agents should be run in parallel to
better achieve timing requirements. We propose either running all agents until
all information has been computed for a given timestep, or providing a cut-
off when enough information has been added to infer a violation that requires
immediate feedback. The timing required to process each timestep should be
investigated in the future, along with the relative performance improvement of
parallelizing the set of agents.

8.4.3 System Improvements

We would like to start by discussing how and why to include new agents within
the system. As mentioned several times before, a virtual driving instructor is
only able to reason with what data it has access to. The perfect situation aware-
ness of the system is constrained by what aspects of the situation the simulator
data allows it to keep track of. Thus, if the system was to reason about some-
thing like the driver’s gear usage, an agent responsible for evaluating the gear
use would have to be added. Of course, this agent would require information
on which gear the driver currently uses, and probably other information like
their current RPM. Finally, the addition of axioms evaluating the performance
measure on gear-use by the agent would have to be added to the ontology.

103

This example illustrates the ease of extending the system, provided that the rel-
evant basic information provided from the simulator is available. When present,
one simply extends the system with the necessary agents able to add a more
rich description of the given information to the ontology and adding axioms to
the ontology to describe how to evaluate the given aspect of driving.

However, as the system grows the challenge of the relative priority of agents,
and their hierarchical organization could become a challenge.

The next point addresses the issue of possible collisions being computed on lat-
eral lane adjustments in scenarios of our experiments. In general, one expects
cars to follow their lanes. This knowledge was not utilized when it came to
predicting collisions. Cars probably following their lane should somehow be in-
cluded, either as part of predicting collision or as a separate notion that can
be included to determine if we care about the possible collision or not. This
improvement should make the system more robust for small alignment adjust-
ments inside a lane, identified as a general problem from the results of chapter
[7l Our suggestion is to leave possible collision as is and include the lane assump-
tion as a part of the blackboard through a higher level agent, able to moderate
the signal of the possible collision based on the current situation.

Another side to yielding violations was also identified through the driving in-
structor evaluation; yielding when one has right of way. This is challenging to
evaluate, and thus not included in this proof of concept due to time constraints.
However, a human driving instructor would make a learner driver aware that
such behavior slows down the flow of traffic, and is consequently a violation in
itself. Such behavior is hard to evaluate, as the driver could be slowing down
because the other driver does not show signs of yielding. This aspect of yielding
relates to driving safely, not directly to violating having to yield, which is an-
other reason why it was left out of this proof of concept. We do propose pursuing
solutions on how to evaluate approaching an intersection in a safe manner, apart
from the simple violation of having to yield, as this was something the human
driving instructor brought up when evaluating the scenarios of our experiments.

Something not addressed, as we were only considering a single intersection
within our scenarios, was what happens with the context after exiting the inter-
section. There are several possible cases here, where continuing on the road with
right of way should maintain this aspect of the driving context, but making a
turn should reset the context in the sense of right of way. Again, as our scenar-
ios only tested a single intersection we were not able to observe problems with
this lack of behavior, but for a later consistent and correct system, potentially
changing or maintaining parts of the driving context based on the incoming and
outgoing lanes one take in an intersection is required.

As a final note, if one intends to build a complete system based on the proposed

104

solution in this thesis, we think that incrementally playing with and adding
agents is the way to go.

8.4.4 Situation Awareness Assumption

This thesis assumed that incorrect actions were caused by incorrect situation
awareness in the driver. The validity of this assumption should, however, be
investigated further. Moreover, one should look into how precisely one can
identify the flaws in the situation awareness given the driver’s actions. Fur-
thermore, we propose designing experiments to test to what degree corrective
feedback improves a driver’s situation awareness.

8.4.5 Feedback and Driver Profiling

One of the challenges needing further investigation is the form of feedback. For
example, the feedback can be given as text on the screen. Another way is by
audio. One could even go to the length of making video reconstructions of
particular situations and show it to the student from a different view. The op-
portunities are many and all have their merits. We propose to look into the
strength and weaknesses of the different forms of feedback that can be given.

Another aspect is that of when to give feedback. Even the best advice is futile if
given at the wrong time. If the student is too focused on the driving situation,
then the student may not pay attention to the feedback. An interesting thought
would be to track the stress level of the student and try to time feedback with
less stressful situations, as suggested in |Arroyo et al.| (2006). On the other side,
if you wait too long to give feedback, then the student may have forgotten too
much of the situation that spiked the feedback, thus making the feedback less
effective as it is given out of context. However, this is just relevant for real-time
feedback during a driving session. It could just as well be that giving feedback
along with a video at the end of a session is the best time to give feedback.

Based on the discussion of feedback frequency in the previous section, we recom-
mend looking into how to aggregate feedback over multiple timesteps to build
higher-level feedback.

A simple suggestion is to look at changes like saying ”you are breaking the speed
limit” for each timestep to ”You have been driving over the speed limit for the
last minute”.

The Tutor-part of our proposed system should look into feedback generated over
time, and based on this provide feedback on more overarching tendencies of the
driving, like "You tend be hitting the brakes too aggressively”. Methods of

105

aggregating single instances of violations from a drive, to such feedback should
be looked at.

Human driving instructors do not only give feedback to students when they do
mistakes. Positive reinforcement is just as important as negative reinforcement
for some driving instructors. Our work has only been focused on detecting mis-
takes and giving feedback on those. There should also be conducted research
into giving appraise on good driving behavior. Then the results of this re-
search should be compared to the results of our research in providing corrective
feedback on improper behavior. Witnessing professional driving instructors in
action we suspect that a combination of positive and negative reinforcement
would yield the highest learning outcome for the average student.

The job of a driving instructor goes beyond teaching a student to drive legally.
Their job is to help students become the best drivers possible. This includes
teaching students in best practice driving. Therefore, we think it would be in-
teresting to investigate how to also be able to give feedback intended to just
improve a student’s driving skills. One could, for instance, look for tendencies
in a student’s driving such as the student often having sudden changes in brake
pressure and give feedback that one should usually brake smoothly or look fur-
ther ahead in traffic to adjust speed earlier. This would required performance
measures for each aspect of driving, like how early a student is able to locate
dangers within an intersection, their patterns in using the clutch, brakes, throt-
tle and gear, their RPM and gear-use, etc.

The sum of the above subsection is proposing that a sort of profiling of each
student is to be looked into. This matches what driving instructors continu-
ously evaluates during driver’s education, as they attempt to evaluate whether
a driver is in the very fresh state still learning how to drive the car, if they
are in a more intermediate state and should start looking into more advanced
aspects of driving, or if they are about ready to take their driver’s test. This
categorization of the student is based on performance measures across the di-
mensions mentioned above, as well as many more, and is something that should
be considered in the future for a fully autonomous virtual driving instructor
system implementation.

8.4.6 Instructor-Student Interaction

This thesis has been focusing on understanding traffic situations and detecting
when there are mismatches between expected and actual situations. In other
words on the world - virtual driving instructor interaction. There is however
another dimension of virtual driving instructors that need to be investigated,
the instructor-student interaction. While we looked into how to provide expla-

106

nations with our feedback, we did not go nearly enough into the depth necessary
to convey the feedback properly. Multiple challenges were identified in order to
ensure proper interaction with driving students. All of these should be sub-
ject to further investigation if one is to implement a successful full-scale virtual
driving instructor.

107

Bibliography

Arroyo, E., Sullivan, S., and Selker, T. (2006). Carcoach: a polite and effective
driving coach. In CHI’06 Extended Abstracts on Human Factors in Computing
Systems, pages 357-362. ACM.

Buechel, M., Hinz, G., Ruehl, F.; Schroth, H., Gyoeri, C., and Knoll, A. (2017).
Ontology-based traffic scene modeling, traffic regulations dependent situa-
tional awareness and decision-making for automated vehicles. In 2017 IEEE
Intelligent Vehicles Symposium (IV), pages 1471-1476. IEEE.

Corkill, D. D. (1991). Blackboard systems. AT expert, 6(9):40-47.

Dey, A. K. (2001). Understanding and using context. Personal and ubiquitous
computing, 5(1):4-7.

Dominguez, C., Vidulich, M., Vogel, E., McMillan, G., et al. (1994). Situa-
tion awareness: Papers and annotated bibliography. Armstrong Laboratory,
Human System Centre.

El Aeraky, S., Dollfuss, M., Kopciak, P. A., Kolar, P., and Daniela, H. (2016).
Virtual reality driving simulator prototype for teaching situational awareness
in traffic.

Endsley, M. R. (1988). Situation awareness global assessment technique (sagat).
In Aerospace and Electronics Conference, 1988. NAECON 1988., Proceedings
of the IEEE 1988 National, pages 789-795. IEEE.

Endsley, M. R. (1995). Toward a theory of situation awareness in dynamic
systems. Human factors, 37(1):32-64.

Erman, L. D., Hayes-Roth, F., Lesser, V. R., and Reddy, D. R. (1980). The
hearsay-ii speech-understanding system: Integrating knowledge to resolve un-
certainty. ACM Computing Surveys (CSUR), 12(2):213-253.

Fu, X. and Soeffker, D. (2010). Cognitive awareness of intelligent vehicles.
Technical report, SAE Technical Paper.

108

Geng, X., Liang, H., Yu, B., Zhao, P., He, L., and Huang, R. (2017). A scenario-
adaptive driving behavior prediction approach to urban autonomous driving.
Applied Sciences, 7(4):426.

Geyer, S., Baltzer, M., Franz, B., Hakuli, S., Kauer, M., Kienle, M., Meier, S.,
Weiigerber, T., Bengler, K., Bruder, R., et al. (2013). Concept and devel-
opment of a unified ontology for generating test and use-case catalogues for

assisted and automated vehicle guidance. IET Intelligent Transport Systems,
8(3):183-189.

Guarino, N. (1998). Formal ontology in information systems: Proceedings of the
first international conference (FOIS’98), June 6-8, Trento, Italy, volume 46.
10OS press.

Gusikhin, O., Filev, D., and Rychtyckyj, N. (2008). Intelligent vehicle sys-
tems: applications and new trends. In Informatics in Control Automation
and Robotics, pages 3—14. Springer.

Gutierrez, G., Iglesias, J. A., Ordonez, F. J., Ledezma, A., and Sanchis, A.
(2014). Agent-based framework for advanced driver assistance systems in

urban environments. In 17th International Conference on Information Fusion
(FUSION), pages 1-8. IEEE.

Huelsen, M. (2014). Knowledge-Based Traffic Situation Description, pages 93—
138. Springer Fachmedien Wiesbaden, Wiesbaden.

Hilsen, M., Zollner, J. M., and Weiss, C. (2011). Traffic intersection situation
description ontology for advanced driver assistance. In 2011 IEEFE Intelligent
Vehicles Symposium (IV), pages 993-999. IEEE.

Hwang, C. H., Massey, N., Miller, B. W., and Torkkola, K. (2003). Hybrid
intelligence for driver assistance. In FLAIRS Conference, pages 281-285.

Kappé, B., van Emmerik, M., van Winsum, W., and Rozendom, A. (2003).
Virtual instruction in driving simulators. In Driving Simulator Conference,
Dearborn, ML

Konstantopoulos, P. (2009). Investigating drivers’ visual search strategies: To-
wards an efficient training intervention. PhD thesis, University of Notting-
ham.

Len Bass, Paul Clements, R. K. (2012). Software Architecture in Practice -
Third Edition. Addison-Wesley.

Martelaro, N., Sirkin, D., and Ju, W. (2015). Daze: a real-time situation aware-
ness measurement tool for driving. In Adjunct Proceedings of the 7th Inter-
national Conference on Automotive User Interfaces and Interactive Vehicular
Applications, pages 158-163. ACM.

109

Marti, I., Tomas, V. R., Saez, A., and Martinez, J. J. (2009). A rule-based multi-
agent system for road traffic management. In 2009 IEEE/WIC/ACM Interna-
tional Joint Conference on Web Intelligence and Intelligent Agent Technology,
volume 3, pages 595-598. IEEE.

Matheus, C. J., Kokar, M. M., and Baclawski, K. (2003). A core ontology for
situation awareness. In Proceedings of the Sixth International Conference on
Information Fusion, volume 1, pages 545-552.

Mohammad, M. A., Kaloskampis, I., Hicks, Y., and Setchi, R. (2015). Ontology-
based framework for risk assessment in road scenes using videos. Procedia
Computer Science, 60:1532-1541.

Morignot, P. and Nashashibi, F. (2012). An ontology-based approach to re-
lax traffic regulation for autonomous vehicle assistance. arXiv preprint
arXiv:1212.0768.

Nii, H. P. (1986). Blackboard systems. Technical report, STANFORD UNIV
CA KNOWLEDGE SYSTEMS LAB.

Provine, R., Schlenoff, C., Balakirsky, S., Smith, S., and Uschold, M. (2004).
Ontology-based methods for enhancing autonomous vehicle path planning.
Robotics and Autonomous Systems, 49(1-2):123-133.

Radecky, M. and Gajdos, P. (2008). Intelligent agents for traffic simulation.
In Proceedings of the 2008 Spring simulation multiconference, pages 109-115.
Society for Computer Simulation International.

Raptis, D., Iversen, J., Mglbak, T. H., and Skov, M. B. (2018). Dara: assisting
drivers to reflect on how they hold the steering wheel. In Proceedings of the
10th Nordic Conference on Human-Computer Interaction, pages 1-12. ACM.

Regele, R. (2008). Using ontology-based traffic models for more efficient deci-
sion making of autonomous vehicles. In Fourth International Conference on
Autonomic and Autonomous Systems (ICAS’08), pages 94-99. IEEE.

Sharon, G. and Stone, P. (2017). A protocol for mixed autonomous and
human-operated vehicles at intersections. In International Conference on
Autonomous Agents and Multiagent Systems, pages 151-167. Springer.

Sipele, O., Zamora, V., Ledezma, A., and Sanchis, A. (2018). Advanced driver’s
alarms system through multi-agent paradigm. In 2018 3rd IEEFE International
Conference on Intelligent Transportation Engineering (ICITE), pages 269—
275. IEEE.

Sukthankar, R., Baluja, S., and Hancock, J. (1998). Multiple adaptive agents
for tactical driving. Applied Intelligence, 9(1):7-23.

Sun, J., Zhang, Y., and Fan, J. (2011). Smartagents: A scalable infrastruc-
ture for smart car. In 2011 12th International Conference on Parallel and
Distributed Computing, Applications and Technologies, pages 99-103. IEEE.

110

Tranvouez, E., Fournier, S., Espinasse, B., et al. (2013). A multi-agent system
for learner assessment in serious games: Application to learning processes
in crisis management. In IEEFE 7th International Conference on Research
Challenges in Information Science (RCIS), pages 1-12. IEEE.

Uschold, M., Provine, R., Smith, S., Schlenoff, C., and Balikirsky, S. (2003).
Ontologies for world modeling in autonomous vehicles. In 18Th International
Joint Conference on Artificial Intelligence, IJCAI volume 3.

Vacek, S., Gindele, T., Zollner, J. M., and Dillmann, R. (2007). Using case-based
reasoning for autonomous vehicle guidance. In 2007 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 4271-4276. IEEE.

Vlakveld, W. P. (2005). The use of simulators in basic driver train-
ing. In Humanist TFG Workshop on the Application of New Technolo-
gies to Driver Training, Brno, Czech Republic. Available at: www. escope.

info/download/research_and_development/HUMANISTA_13Use. pdf.

Weevers, 1., Kuipers, J., Brugman, A. O., Zwiers, J., Van Dijk, E. M., and
Nijholt, A. (2003). The virtual driving instructor creating awareness in a
multiagent system. In Conference of the Canadian Society for Computational
Studies of Intelligence, pages 596-602. Springer.

Zamora, V., Sipele, O., Ledezma, A., and Sanchis, A. (2017). Intelligent agents
for supporting driving tasks: An ontology-based alarms system. In VEHITS,
pages 165—172.

Zhao, L., Ichise, R., Liu, Z., Mita, S., and Sasaki, Y. (2017). Ontology-based
driving decision making: a feasibility study at uncontrolled intersections. IE-
ICE TRANSACTIONS on Information and Systems, 100(7):1425-1439.

Zhao, L., Ichise, R., Mita, S., and Sasaki, Y. (2014). An ontology-based intel-
ligent speed adaptation system for autonomous cars. In Joint International
Semantic Technology Conference, pages 397-413. Springer.

Zhao, L., Ichise, R., Sasaki, Y., Liu, Z., and Yoshikawa, T. (2016). Fast deci-
sion making using ontology-based knowledge base. In 2016 IEEE Intelligent
Vehicles Symposium (IV), pages 173-178. IEEE.

Zhao, L., Ichise, R., Yoshikawa, T., Naito, T., Kakinami, T., and Sasaki, Y.
(2015). Ontology-based decision making on uncontrolled intersections and
narrow roads. In 2015 IEEE intelligent vehicles symposium (IV), pages 83—
88. IEEE.

111

Appendices

112

Appendix A

Experiment Consent
Form

Below, in figure the schema test subjects would fill out and sign before
participating in our experiment is given. It includes some information about
the driver like their age, sex, simulator experience, number of years with a
drivers license as well as how they perceive their own driving skills.

Samtykkeerklaering

Ved signatur av dette dokumentet samtykker vedkommende til & veere testperson i et
eksperiment gjennomfert i forbindelse med en masteroppgave ved NTNU og i samarbeid med
Way AS. Testpersonen kan nar som helst trekke informasjonen sin og/eller fa utlevert all
informasjon lagret i forbindelse med eksperimentet.

All informasjon vil bli behandlet anonymt.

Eksperimentet vil besta av 5-10 minutter kjgring gjennom et veikryss i Way AS sin
kjgresimulator. Informasjon fra kjgreturen vil bli lagret til en fil og benyttet i testing av en virtuell
kjoreleerer. Kjgreturen vil ogsa bli tatt opp pa video. Videoen vil kun inneholde verdenen inne i

simulatoren og vil IKKE inneholder bilder av testpersonen.

Opplysningene under vil bli benyttet som bakgrunn for testinformasjonen.

Personopplysninger:

Kjenn: __

Alder: ____ ar

Forerkort (Ja/Nei): _

Ar med forerkort (evt. 0): __ ar

Kjoreferdigheter:

Erfaring med kjeresimulator:

Dato: Navn (blokkbokstaver): Signatur:

\ @NTNU

Kunnskap for en bedre verden

Figure A.1: The schema (in Norwegian) test subjects would fill out confirming
that we can analyze their data from the simulator test drive, along with some
attributes related to their driving, like experience with simulators and how long
they have held a drivers licence.

ii

Appendix B

Video and Log Files

Below is the URL to the data files from Experiment 2. It contains a set of folders
within Dropbox (Link to Dropbox folder) with the video recording of the test
subjects drive, as well as the corresponding XML log file being the basis for our
proof of concept evaluation of the drive.

URL to Dropbox folder:
https://www.dropbox.com/sh/v1z82ppo8ii83px/AABcS-sqnaZgMbImCOIz4qgpea?
d1=0

Remark: Due to an oversight the driver’s camera was left on for test subject
number 12. Although it was specified in the contract that the videos would not
include images of the test subject, he has agreed to let us use the video.

iii

https://www.dropbox.com/sh/v1z82ppo8ii83px/AABcS-sqnaZgMbImCOIz4qpea?dl=0
https://www.dropbox.com/sh/v1z82ppo8ii83px/AABcS-sqnaZgMbImCOIz4qpea?dl=0
https://www.dropbox.com/sh/v1z82ppo8ii83px/AABcS-sqnaZgMbImCOIz4qpea?dl=0

Appendix C

Proof of Concept Source
Code

The code for the proof of concept can be found at GitHub. We have made a
dummy user added as a collaborator to the repository containing the source
code of our proof of concept implementation.

This dummy user is accessed with the credentials below:

Username: WayMasterThesis

Password: VirtualDrivinglnstructor

We as the authors cannot guarantee that this dummy-user still has access to
the source code developed in collaboration with Way AS in the future, as they
might restrict access to it from the public. However, for now, this user should
have access to the VirtualDrivingInstructor repository containing the source
code of the proof of concept implementation used for the experiments in this
thesis.

iv

github.com

@NTNU

Norwegian University of
Science and Technology

1012NJ1SU] BUIAII 1BNIJIA B Bunuawa)dw|

	Introduction
	Background and Motivation
	Research Context
	Goals and Research Questions
	Research Method
	Contributions
	Thesis Structure

	Background Theory
	Context and Situation Awareness
	Ontologies
	Logic and Reasoning
	Blackboard Pattern

	Related Work and Motivation
	Structured Literature Review Protocol
	Identification of Research
	Selection of Primary Studies
	Quality Assessment
	Data Extraction from Primary Studies
	Data Synthesis

	Related Work
	Traffic Situation Ontologies
	Providing Feedback Based on Driving Performance
	Virtual Driving Instructors

	Motivation

	Proposed Solution
	Situation and Context Representation
	The Traffic Domain
	System Design
	Summary

	Simulator Description
	The Driving Simulator
	Available Simulator Data
	Simulator Data Shortcomings
	Simulator Additions
	Events
	Road Signs
	Road Network Information

	Proof of Concept Implementation
	Resolving Simulator Shortcomings
	System Requirements
	Architectural Drivers and Architecturally Significant Requirements
	Architecturally Significant Requirements
	Architectural Drivers

	Architectural Tactics
	Modifiability Tactics
	Performance Tactics

	Architectural Patterns
	Blackboard Pattern
	Singleton
	Factory Pattern
	Observer Pattern

	Views
	Logical View
	Process View
	Inconsistencies Between Views

	Agent Documentation
	Speed and Acceleration Interpolation Agents
	Possible Collision Agent
	Yield Relation Agent

	Architectural Rationale

	Experiments and Results
	Experimental Plan
	Overview
	Rationale Experiment 1
	Rationale Experiment 2
	Data

	Experimental Setup
	Experiment 1
	Experiment 2, T-Intersection
	Experiment 2, 4-way Intersection

	Experimental Results
	Experiment 1
	Experiment 2

	Evaluation and Conclusion
	Evaluation
	Experiment 1
	Experiment 2, T-intersection
	Experiment 2, 4-way intersection
	General Evaluation

	Discussion
	Hypothesis, Objectives and Research Questions
	Speeding
	Having to Yield
	Driving Instructor Evaluation
	Feedback Frequency
	General Topics

	Conclusion
	Future Work
	General Work
	Simulator Data
	System Improvements
	Situation Awareness Assumption
	Feedback and Driver Profiling
	Instructor-Student Interaction

	Experiment Consent Form
	Video and Log Files
	Proof of Concept Source Code

