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Abstract

Native-language identification (NLI) is the task of identifying an author’s first
language (L1) given only information expressed in the author’s second language
(L2). The task of NLI is important for educational purposes, as learning what
errors a student typically makes when writing or speaking in a foreign language
can help educators identify common patterns, and produce custom learning ex-
periences based on different L1s. NLI also has applications in forensic science,
author profiling, web-scraping, data collection, as well as detecting web fraud and
grooming.

Previous solutions to solve the task of NLI have mostly relied on traditional
machine learning techniques, with Support Vector Machines being the most pop-
ular choice. These traditional classifiers have been shown to consistently out-
perform deep learning based approaches on the task – possibly due to the lack
of labeled data. However, attention-based deep learning systems have recently
provided state-of-the-art results for a large number of natural language process-
ing tasks, and have become ubiquitous in sequence processing. Attention-based
systems do not rely on any form of recursion or convolution, which allows for
heavy parallelization and fast training of large models.

With the recent success of attention-based systems, as well as more labeled
NLI data now available, this Master’s Thesis explores how such attention-based
systems can be used to increase performance on the task of NLI. In particu-
lar, an experimental research approach is applied to empirically explore how
the attention-based system BERT – Bidirectional Encoder Representations from
Transformers – can be used to obtain state-of-the-art results in NLI.

BERT is first tested in isolation on the TOEFL11 data set, which has been
the de facto standard data set for training and testing of NLI systems since 2013.
Next, the model is tested on the novel, much larger Reddit-L2 data set, and is
shown to produce state-of-the-art results. BERT is then used in a meta-classifier
stack in combination with traditional techniques to produce an accuracy of 0.853
on the TOEFL11 test set. Finally, BERT is trained on more than 50 times as
many examples as have been used for English NLI before, to produce an accuracy
of 0.902 on the Reddit-L2 in-domain test scenario – beating the previous state-
of-the-art by 21.2 percentage points.
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Sammendrag

Morsmålsidentifisering g̊ar ut p̊a å identifisere en forfatters eller talers morsmål
(L1) basert p̊a tekster eller opptak gjort av denne personen p̊a et annet spr̊ak (L2).
Morsmålsidentifisering kan være viktig for pedagogikk, da å vite hvilke feil en elev
med et gitt morsmål typisk gjør n̊ar han eller hun skal lære et annet spr̊ak kan
hjelpe pedagoger med å kjenne igjen vanlige mønster og lage tilpassede lærings-
opplegg basert p̊a forskjellige spr̊ak. Morsmålsidentifisering har ogs̊a bruks-
omr̊ader innenfor kriminalteknikk, forfattergjenkjenning og datainnsamling, i til-
legg til å kunne brukes til å detektere digitalt bedrageri og barnelokking.

De tidligere beste løsningene for morsmålsidentifisering har i hovedsak basert
seg p̊a tradisjonelle maskinlæringsteknikker, primært støttevektormaskiner. Disse
tradisjonelle teknikkene har gang p̊a gang gitt bedre resultater enn løsninger som
baserer seg p̊a dyp-læring – trolig p̊a grunn av mangel p̊a annotert data for
morsmålsidentifisering. Oppmerksomhetsbaserte dyp-læring teknikker har dog
nylig blitt allestedsnærværende i sekvensprosessering, og oppn̊ar tidenes beste
resultater p̊a flere oppgaver innenfor naturlig spr̊akbehandling. Disse oppmerk-
somhetsbaserte systemene krever ingen rekursjon eller konvolusjon, som gjør at
systemene kan parallelliseres i stor grad og gjør det mulig å trene store modeller
raskt.

Med bakgrunn i den imponerende ytelsen til oppmerksomhetsbaserte dyp-
læring teknikker, i tillegg til at det n̊a finnes mer annotert data, utforsker denne
masteroppgaven hvordan slike oppmerksomhetsbaserte dyp-læring teknikker kan
anvendes for å øke ytelsen i morsmålsidentifisering. Mer spesifikt ser denne opp-
gaven nærmere p̊a hvordan det oppmerksomhetsbaserte systemet BERT – Bidi-
rectional Encoder Representations from Transformers – kan brukes, b̊ade alene
og i kombinasjon med eksisterende teknikker, for å oppn̊a bedre resultater innen
morsmålsidentifisering.

BERT taes først i bruk p̊a TOEFL11 datasettet, som har vært standard
datasett for morsmålsidentifisering siden 2013. Deretter anvendes BERT p̊a det
langt større datasettet kalt Reddit-L2, hvor modellen oppn̊ar “state-of-the-art”
resultater. Videre brukes BERT, sammen med tradisjonelle teknikker under en
meta-klassifikator, til å oppn̊a en treffsikkerhet p̊a 0.853 p̊a TOEFL11 testsettet.
BERT trenes s̊a p̊a mer enn 50 ganger s̊a mye data som har blitt brukt for
engelsk morsmålsidentifisering tidligere, og produserer en treffsikkerhet p̊a 0.902
p̊a det s̊akalte Reddit-L2 in-domain scenarioet – 21.2 prosentpoeng bedre enn
den tidligere beste treffsikkerheten oppn̊add.
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Chapter 1

Introduction

Native-language identification (NLI) is the task of identifying an author’s first
language (L1) given only information expressed in the author’s second language
(L2) [Malmasi and Dras, 2018]. For instance, given an English text or voice
recording by a person natively from Spain, the task is to identify that the author
is natively Spanish. In recent years native-language identification has blossomed
as a field within natural language processing (NLP).

NLI operates under the assumption that an author’s primary language will
dispose them towards particular language production patterns in their secondary
language [MacDonald, 2013]. This relates to cross-linguistic influence (CLI), a
key topic in the field of second-language acquisition (SLA) that analyzes transfer
effects from the L1 on later learned languages. The task of NLI is usually treated
as a supervised classification problem, requiring labeled data. Until recently the
TOEFL11 [Blanchard et al., 2013] data set has been the standard corpus for NLI,
concerning English learners of 11 different L1s. However, recent advances have
been made in auto-generating data based on social media users of high proficiency
[Goldin et al., 2018], resulting in a much larger data set with more languages to
classify. Current state-of-the-art approaches on the TOEFL11 data set reach over
0.88 accuracy in identifying the native language of the author using text only,
while the best results on more English-proficient social media users approaches
0.69 when evaluated on the same topics as trained on [Goldin et al., 2018].

While the field of NLI is evolving, so are advances in deep learning. Re-
cently, attention-based deep learning models have shown promising results on
various NLP tasks, and has become the de facto state-of-the-art in sequence-to-
sequence processing. Novel attention models, such as the Transformer [Vaswani
et al., 2017], rely solely on attention-mechanisms. Attention allows for heavy
parallelization in the training of the system, as no recurrence or convolution is

1



2 CHAPTER 1. INTRODUCTION

required, while still yielding state-of-the-art results.

BERT – Bidirectional Encoder Representations from Transformers – is a novel
language representation model based on Transformers. Using a network of trans-
formers, BERT obtains new state-of-the-art results on 11 natural language pro-
cessing tasks [Devlin et al., 2018].

Given the promising results of attention-based systems and the need for good
NLI systems, the main focus of this Master’s Thesis will be to explore how these
attention-based systems can be used to improve performance on the task of NLI.

1.1 Background and Motivation

NLI has applications both within second language acquisition and education, as
well as forensic linguistics and web-scraping.

Learning what mistakes an L1 speaker typically makes when writing or speak-
ing in a foreign language, L2, can help educators create custom tutoring experi-
ences and give feedback based on L1s, which can potentially help students learn
better and faster.

Forensics linguistics is the application of linguistics and science to aid in crim-
inal investigation. The field is a sub-branch of author identification, and NLI can
be a helpful tool in identifying what country an author is originally from. An
example is identifying texts of unknown authors. If culprits have left a ransom
note at a crime scene, NLI can help identify what country the perpetrators are
from, reducing the required search space and further aid the investigation. NLI
also has uses in other fields related to author profiling, such as plagiarism control,
which could be further extended to detecting web fraud and grooming.

Additionally, Goldin et al. [2018] argue that most of the English textual con-
tent on the Internet – the source of many of the machine learning corpora used
today – is created by non-native English speakers. This makes the task of iden-
tifying whether an author is native or not relevant. With this in mind, NLI can
be useful in web-applications, web-crawling and data collection to ensure high
quality data.

As mentioned in the introduction, attention-based learning models have shown
very promising results in NLP recently. BERT obtains state-of-the-art results
in tasks varying from question answering to sentence classification. These re-
sults, along with the possibility for heavy parallelization and optimization, make
attention-based systems an interesting candidate for solving the task of NLI.
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1.2 Goals and Research Questions

This Master’s Thesis has one main goal, which will be described below. In order
to reach this goal, three Research Questions have been composed. Answering the
three Research Questions should help concretize and reach the overall main goal.

Goal Explore how attention-based architectures can be used to improve perfor-
mance on the task of Native-Language Identification.

Given recent advancements in performance of attention-based systems on various
natural language processing (NLP) tasks, the main goal of this Master’s Thesis
will be to explore how these rather novel architectures can be used to improve
performance on the task of NLI. More specifically, the goal will be to explore how
BERT – a Transformer-based architecture built on attention – can be used for
the task.

Research Question 1 How do attention-based systems perform compared to the
current state-of-the-art with regards to the task of NLI?

The first Research Question will dwell on how the attention-based system alone
compares to the current state-of-the-art. Answering Research Question 1 will
help isolate and evaluate an attention-based system alone, before exploring how
such a system can be used to improve existing approaches.

Research Question 2 How robust are attention-based systems when tested on
different topics than that which the systems are trained on?

Today’s state-of-the-art systems are known for quite substantial drops in per-
formance when being tested on documents about topics which they have not
seen during training [Malmasi and Dras, 2018]. Research Question 2 will aim to
explore the robustness of an attention-based system across different topics, and
compare such a system to the current state-of-the-art.

Research Question 3 Can attention-based systems, in combination with tech-
niques used in the current state-of-the-art, improve performance on the task
of NLI?

While the attention-based system might perform well on its own, it will also be
of interest to explore how the system allows for improvements in combination
with existing techniques. All of the best NLI systems to date include some sort
of multi-classifier or ensemble based architecture. Answering Research Question
3 will enable the exploration of how attention-based systems can be used in such
ensembles to improve performance on the task of NLI.
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1.3 Research Method

In order to achieve the goal of the Master’s Thesis, an experimental research ap-
proach will be applied. Experiments using the same test data as related literature
will be carried out, evaluating both attention-based systems, current state-of-the-
art techniques, and the combination of the two.

1.4 Contributions

The main contributions of this Master’s Thesis are as follows:

1. A collection of experiments using BERT on the TOEFL11 data set, which
show that BERT alone is not able to compete with the traditional state-of-
the-art approaches for NLI on the TOEFL11 test set.

2. A meta-classifier architecture which uses both BERT and traditional clas-
sifiers as base classifiers, which produces an accuracy of 0.853 on the
TOEFL11 test set – closing in on the current state-of-the-art of 0.882.

3. A simple, yet effective scheme for dividing large documents for BERT, based
on heuristically splitting training documents into sub-documents, and using
a majority vote to recombine the predictions of the model.

4. State-of-the-art results using BERT on the novel Reddit-L2 data set, both
in- and out-of-domain, producing a 0.902 accuracy on the 10-fold cross-
validation in the Reddit in-domain scenario – a 21.2 percentage point im-
provement over the previous state-of-the-art.

5. An exploration of BERT’s robustness when trained on different topics than
tested on. This in form of experiments using BERT alone, as well as in a
meta-classifier stack, the latter which produces a final accuracy of 0.529 in
the Reddit-L2 out-of-domain test scenario – a 16.7 point improvement over
the previous out-of-domain state-of-the-art.

6. An exploration of ensembles and meta-classifiers for NLI, which shows that
the inclusion of BERT in these classifier stacks can improve the final ac-
curacy with up to 10 percentage points, depending on the task and base-
classifiers used.

7. A large experiment using 1.4 million, out-of-domain training documents,
for which BERT obtains a final F1 score of 0.847 on the entire Reddit-L2
in-domain data – a test set which contains more than 140 times as many
test cases as the original in-domain scenario.
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1.5 Thesis Structure

The Master’s Thesis is structured in the following manner:

1. Chapter 2 provides all the background theory necessary to understand the
rest of the Thesis. The chapter includes topics such as general machine
learning, machine learning models, deep learning, attention and natural
language processing.

2. Chapter 3 covers the related work carried out in the field of NLI and the
BERT model architecture. In addition, a motivation section is provided in
order to relate the findings of the literature review to the experiments of
the Thesis.

3. Chapter 4 covers the model architectures which will be used for the different
experiments.

4. Chapter 5 provides an experimental plan and the experimental setup used
for all experiments. The chapter ends with the results of all experiments
which have been performed.

5. Finally, chapter 6 evaluates and concludes the merits of the Master’s The-
sis in light of the results and findings of the experiments, and provides
suggestions for possible future work.



6 CHAPTER 1. INTRODUCTION



Chapter 2

Background Theory

In order to understand the field of NLI and attention, some background knowledge
in machine learning, natural language processing and deep learning is required.
This chapter will cover all of the concepts needed in order to understand the
content discussed in the remaining chapters. The background theory section has
been created in the following manner: When writing the Thesis, every time a term
or concept appears which is deemed to be within the scope of the Thesis – and not
assumed to be known beforehand by the reader – a section is created in this chapter
which covers said concept or term. This method is applied to ensure that all
background knowledge required to get a full understanding of the Thesis has been
covered, and to ensure that the background section does not contain unnecessary
information not relevant with regards to the rest of the Thesis. The background
theory section assumes that the reader is already familiar with mathematical fields
such as linear algebra and statistics.

2.1 Machine Learning

Machine Learning is a large field within Artificial Intelligence and is the study
and exploration of algorithms that can “learn” and make predictions on data,
without being explicitly programmed to do so [Goodfellow et al., 2016]. These
machine learning algorithms are typically divided into supervised and unsuper-
vised learning, though there exist other approaches. This Thesis will primarily
focus on the supervised learning algorithms, as the vast majority of work that
has been done on NLI treats it as a supervised learning problem. The goal of
machine learning is to use these learning algorithms to create a model which can
generalize and predict future, unseen data samples.

Supervised learning algorithms require labeled data, meaning that each ex-

7
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ample is labeled with the correct answer. If the goal is to predict whether an
image is an image of a cat or a dog, supervised learning algorithms require that
each image in the data set has a label marking it as either of the two classes.
The model will learn from this data, but it must also be assessed and evaluated
in a correct manner. For this reason, the data is typically split into three parts:
a training set, a development set (often also called validation set), and a test set.
The training set is typically the largest of the three, and contains the data the
model is allowed to train on. If the model was a student, the training set would
be example tasks handed out by the professor before an exam, with known an-
swers and solutions. The student would use these examples to learn how to solve
the example tasks when knowing the correct answer. Typically the training set
constitutes between 80% and 90% of the available data. The final partition, the
test set, can be viewed as the exam itself. Just as in real life, the student does
not train and learn during the exam, and the model will never see the test set
before the final evaluation. The development or validation set is mainly used for
hyper-parameter tuning and meta-optimization, which means tuning the parame-
ters the model takes as input. The validation set can loosely be viewed as taking
a practice exam before taking the actual exam which the student will be tested
on, in order to decide what parameters will help the model perform optimally on
the final test set.

2.1.1 Classification Tasks

In machine learning, a classification task is the problem of deciding to which of
a set of categories a new observation belongs, on the basis of a training set of
data containing observations whose category membership is known. In most of
the existing literature, NLI is treated as a classification task. In the case of NLI,
the observation is a text or document written in an authors L2, and the category
(or class) it belongs to is the L1 of the author.

2.1.2 Features and Feature Space

Prudent concepts in machine learning are features and feature space. Features
are simply the attributes of the data. Given a data set which consist of cats
and dogs, features could be the length of the nose, or the weight of the animal.
Depending on the data, perhaps dogs weigh more than cats, and dogs have longer
noses. Given the correct labels the model will be able to learn such relations, and
classify future examples correctly. Features are typically represented as vectors.
If the first axis is defined to be the length of the nose of the training sample, and
the second axis to be the weight, then an animal that has a 10.2 cm long nose

and weighs 23 kg would be represented as a vector equal to

�
10.2
23

�
. This is a
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simple example with only two dimensions, but the same principle applies as the
number of attributes and dimensions increase.

The feature space is the vector room of the feature vectors. The higher di-
mension of the feature vectors, the larger the feature space, and thus the more
possible feature-instances there are.

2.1.3 Feature Representations

In the above cats and dogs example, the raw attributes were fed into the fea-
ture vector representing the animal. However, some manipulation of the feature
vectors can map the vectors into a representation which is more meaningful to
a machine learning model. Some relevant techniques for achieving this will be
covered below.

Normalization

Normalization in the context of feature vectors means mapping real values into
values which are meaningful to the model. Typically this consists of mapping
unbound values to values between 0 and 1, or having all the values sum up to
1 in total. Among many others, a popular normalization technique in machine
learning is L2 normalization, which ensures that the squared values of all the
values in a vector sum to one.

One-hot-encoding

In classification tasks, a model is trained to recognize which category (or class)
a sample belongs to. A useful way of encoding the class to represent is via
one-hot-encoding. Given a set of classes – “cat”, “dog” and “fish” – a way of
encoding this mathematically could be to say that a label of 0 corresponds to
cat, 1 corresponds to dog, and 2 corresponds to fish. Mathematically this would
imply that dog has a larger value than cat, and that a fish has a larger value than
both cat and dog. This sort of value ordering makes little sense, and a better way
of representing a class is via one-hot-encoding. In a one-hot vector, all values are
set to zero except the value at the index of the represented class. For example,
with the same ordering as described above, the vector for cat, dog and fish would
respectively be represented as

• Cat =
�
1 0 0

�

• Dog =
�
0 1 0

�

• Fish =
�
0 0 1

�
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One-hot-encoding alleviates the model of the burden of learning an artificial or-
dering of the class labels, which typically improves performance of the model. It
is a common technique for representing classes and scales to an infinite number
of classes.

TF-IDF Weighting of Features

TF-IDF is a concept from the field of Information Retrieval, and stands for term
frequency-inverse document frequency [Spärck Jones, 1972]. TF-IDF is a numer-
ical statistic that is intended to reflect how important a word, or term, is to a
document in a corpus [Huq et al., 2018]. TF-IDF consists of the product of two
numerical terms, namely the term frequency (TF) and the inverse document fre-
quency (IDF). Given a term t and a document d, the term frequency is simply
how frequently the term appears in the document. This can be expressed in mul-
tiple ways, for instance binary (tf(t, d) = 1 if the term appears in the document,
0 otherwise), or the percentage of times the term appears. I. e., tf(t, d) = ft,d/T
where ft,d is the number of times the term appears in the document, and T is
the total number of terms in the document.

The IDF is a measure of how much information the term provides. For exam-
ple function words like “the” and “a” will have a high TF as they appear a lot in
most documents, but they provide little discriminating power. Common terms
like these are “promiscuous”, as they usually appear frequently in all documents.
IDF is the logarithmically scaled inverse fraction of the documents that contain
the word (obtained by dividing the total number of documents by the number of
documents containing the term, and then taking the logarithm of that quotient):

IDF(t,D) = log(
N

1 + numt,d∈D
) (2.1)

where N is the total number of documents, numt,d∈D is the total number of
documents where the term t appears, and the +1 is a smoothing constant for
avoiding division by zero if a term does not appear in any documents. IDF makes
intuitive sense as a term that appears in a lot of documents will have a low IDF,
but terms that only appear in a few selected documents (and thus is assumed to
have a higher discriminative power) will have a high value. Combining the two
concepts yields

TF-IDF(t, d,D) = tf(t, d) · IDF(t,D) (2.2)

which will have its highest value when t occurs many times within a small number
of documents, lower when the term occurs fewer times in a document or occurs
in many documents, and its lowest value when the term occurs frequently in all
documents.
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With regards to features, TF-IDF can be used to weigh each term in a vocab-
ulary, which means weighting each entry with its corresponding TF-IDF score.
For example, if each entry in a feature vector corresponds to one word in the
vocabulary, one way of representing a document is to simply count how many
times each word appears in the document, and set the corresponding value in
the feature vector to be this count. Depending on the vocabulary and document,
this vector would be rather sparse and might not carry much information for the
model to use. A more useful representation of this feature vector would be to
weigh each entry in the vector by the TF-IDF score of each word. This encapsu-
lates global information in each feature entry, and is a common feature weighting
and normalization scheme in many machine learning applications.

2.1.4 Ensemble Learning and Meta-Classifiers

Ensemble learning is the combination of several different models into one, hope-
fully better, model [Opitz and Maclin, 1999]. Intuitively, this can be viewed as
each different model having a set of hypotheses about the data. By having mul-
tiple models, not only can the total number of possible hypotheses be increased,
but the combination of these hypotheses can yield new hypotheses which were
not present pre assembling.

There exist many different ways of performing ensemble learning. One of the
most straight forward methods for ensemble learning is called bootstrap aggre-
gating, or bagging, where each model is trained on a unique subset of the full
training set.

Furthermore, once an ensemble has been built, there are several methods for
combining the outputs of the models into a single output. Examples include
majority voting where the label predicted by most of the models is selected as
the unified decision, as well as the mean probability decision, where each model
outputs the probability or certainty for each class, and the class with the highest
average probability across all classifiers is selected.

Meta-classifiers, or classifier-stacking, is a similar technique to ensemble learn-
ing, and concerns training classifiers on the outputs of other classifiers. It is an
advanced method that has proven to be effective in many classification tasks
[Malmasi and Dras, 2018]. Ensemble architectures can be both homogeneous,
where all classifiers in the ensemble have the same type, structure and param-
eters, as well as heterogeneous where the classifiers can be different from each
other.
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2.2 Models and Learning Machines

As the previous section covered the basics of machine learning, this section will
describe some traditional statistical models and learning machines which are com-
monly used both in NLI and in machine learning in general.

2.2.1 Logistic Regression

Logistic Regression is a technique from statistics which can be used in machine
learning for classification tasks. The maths behind logistic regression will not be
covered here, only a basic intuition of what the method does.

When using linear regression, the dependent variable is continuous and can
therefore be estimated using methods such as the least square method. In tasks
like classification, however, the dependent variable is discrete and categorical,
and methods such as least squares will fail. Logistic regression is a method for
binary classification, which aims to fit an objective function to the binary data
points in order to maximize the probability that the curve will correctly predict
the data [Goodfellow et al., 2016]. This maximum likelihood estimation is done
in an iterative manner. When using logistic regression for a classification task
which is not binary (i.e., there are more than two categories), one can either use
several logistic regression models and compare each output, or use an extension
of logistic regression called multinomial logistic regression, which can handle mul-
tiple categories. A positive attribute of logistic models is that the classification
is only a byproduct of predicting the probability of each class. This means that
logistic regression models can not only yield the most probable classification, but
also how probable or certain the model is that the given sample belongs to the
predicted class.

2.2.2 Naive-Bayes

Naive-Bayes classifiers [McCallum and Kamal, 1998] is not a single type of clas-
sifier, but a family of simple probabilistic classifiers operating under the same
probabilistic assumption. Naive-Bayes models assume that all features are inde-
pendent from each other, and applies Bayes Theorem based on this assumption.
Naive-Bayes models differentiate themselves from other popular models, as no it-
erative approximation is needed and the calculations required can be performed
in linear time. This makes Naive-Bayes models highly scalable and fast.

Given a class label y and a feature vector �x, the probability of the class given
the input vector under Bayes theorem can be written as

P (y|�x) = P (�x|y)P (y)

P (�x)
(2.3)
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The vector �x can be written as �x = (x1, x2 . . . xn). By substituting �x and ex-
panding using the chain-rule the same equation can be written as

P (y|�x) = P ( �x1|y)P (x2|y) . . . P (xn|y)P (y)

P (x1)P (x2) . . . P (xn)
(2.4)

As the denominator is constant for all input vectors, the equality can be replaced
with proportionality and the equation can be written as:

P (y|�x) ∝ P (y)

n�

i=1

P (xi|y) (2.5)

In the multiclass case, the problem can be reduced to finding the most probable
class. That is:

y = argmaxyP (y)

n�

i=1

P (xi|y) (2.6)

Finally, the probabilities P (xi|y) must be found. There are several ways to
calculate these values, but for classification problems it is common to draw these
values from a multinomial distribution. This is known as the multinomial Naive
Bayes classifier. To this day, Naive-Bayes classifiers still remain a popular baseline
method for text categorization [McCallum and Kamal, 1998].

2.2.3 Support Vector Machines

A Support Vector Machine (SVM) is a model for supervised learning which aims
to separate positive and negative samples in a feature space using a hyperplane.
The basic idea is to find the extremes of both the positive and negative sam-
ples, and then find the hyperplane separating these extreme samples with the
widest margin. These boundaries are called the support vectors. Any arbitrary
hyperplane that separates all samples would in theory do, but SVMs aim to
mathematically optimize the distance of the hyperplane to the closest samples
from both groups of samples, in order to maximize the probability that future,
unseen samples end up on the correct side of the hyperplane. In order to maxi-
mize the distance from the hyperplane to the support vector, SVMs use a kernel.
A kernel, in this context, is a mathematical function which defines the similarity
between two vectors. In regular linear SVMs, the kernel function will simply be
the inner product of the two sample vectors, which is the similarity between two
vectors in the original space, represented as a scalar. The idea of Support Vector
Machines emerged in Cortes and Vapnik [1995], though Cortes and Vapnik had
allegedly been working on the idea since the 1960s. Today SVMs are used for a
wide range of tasks in machine learning, and have proven very powerful in many
classification tasks.



14 CHAPTER 2. BACKGROUND THEORY

Figure 2.1: A visualization of a Linear Support Vector Machine in two dimensions,
separating green and yellow data points.

A 2D visualization of a linear SVM can be seen in figure 2.1. Linear Support
Vector Machines (who use the inner product as their kernel function) will be able
to separate data which is linearly separable. However, linear SVMs will struggle
when the data is not linearly separable. In order to combat this problem, a
method called the kernel trick is applied. The kernel trick is to change the
kernel function used – i.e., how the similarity between to samples is defined — in
order to map the data samples to a higher dimensional space, where the samples
actually are linearly separable. There exist several kernel functions, including
the polynomial kernel which maps the feature space into a higher dimension
polynomial, as well as others such as the Radial Basis Function (RBF) and the
Gaussian kernel function. Similarly to logistic regression, one can obtain the
certainty or probability that a given sample belongs to a certain class by looking
at the distance of the sample to the separating hyperplane.

String Kernels

A string kernel is a kernel function which measures the similarity of two strings.
Strings in this context are defined as a finite sequence of symbols that need not
be of the same length. A higher value as output indicates a higher similarity.
String kernels allow kernel based approaches such as SVMs to operate on strings,
without having to map the input strings into real-valued vectors of a fixed length
[Lodhi et al., 2002].
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The kernel is the inner product in the feature space generated by all sub-
sequences of length n. These sub-sequences consist of any ordered sequence of
length n found in the text, and does not need to be contiguous [Lodhi et al., 2002].
Less formally explained, these sequences can be viewed as character n-grams (see
section 2.5.2), but with the property that they do not need to appear next to each
other in the text as regular n-grams do. The idea is that the more sub-strings
two documents have in common, the more similar they are. In order to deal with
the fact that these sub-strings do not need to be contiguous, Lodhi et al. [2002]
introduce an exponentially decaying weighting factor, λ ∈ (0, 1), who’s exponent
increases the further apart the characters are.

An example would be the sub-string “c-a-r”, which is present both in the word
“card” and in the word “custard”, but with different weighting. For each such
substring there is a dimension of the feature space, and the value of the coordinate
depends on how frequently and how compactly the string is embedded in the text.

As a concrete example from [Lodhi et al., 2002] with n = 2, consider four
documents which contain one word each: “cat”, “car”, “bat”, “bar”. There are
eight different possible sub-strings across all these documents (c-a, c-t, a-t, b-
a, b-t, c-r, a-r, b-r), which means that the kernel function will operate in a 8-
dimensional space. The words would be mapped as shown in table 2.1, where φ is
the kernel function and the columns contain the value for each possible sub-string.

c-a c-t a-t b-a b-t c-r a-r b-r
φ(cat) λ2 λ3 λ2 0 0 0 0 0
φ(car) λ2 0 0 0 0 λ3 λ2 0
φ(bat) 0 0 λ2 λ2 λ3 0 0 0
φ(bar) 0 0 0 λ2 0 0 λ2 λ3

Table 2.1: An example of the kernel values for each document (row) with regards
to each possible sub-string (columns) using string kernels.

Note that λ2 > λ3 since λ ∈ (0, 1), so a lower exponent for λ indicates higher
similarity. The substrings which are not present in the document will have a
similarity of 0, which is the lowest possible similarity score. Thus each row of the
table is the feature vector for the respective word, so in this higher dimensional
space the document containing only the word “cat” would be represented as�
λ2 λ3 λ2 0 . . . 0

�T
. Using this, if one was to calculate the similarity/kernel

between document 1 (“cat”) and document 2 (“car”) one would simply take the
inner product of these two vectors: K(cat, car) = λ2 · λ2 + λ3 · 0+ λ2 · 0+ 0 · 0+
0 · 0 + 0 · λ3 + 0 · λ2 + 0 · 0 = λ2 · λ2 = λ4

In order to normalize this similarity one would divide it by the average simi-

larity between the words themselves, i.e., K(cat,cat)+K(car,car)
2 , which in this case
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happens to be K(cat, cat) = K(car, car) = (λ2)2 +(λ3)2 +(λ2)2 = 2λ4 +λ6, and

thus the final, normalized similarity becomes λ4

2λ4+λ6 = 1
2+λ2

Lodhi et al. [2002] also show another, slightly more comprehensive example
without showing the calculations for different values of n, namely

K(“science is organized knowledge”, “wisdom is organized life”) (2.7)

The decreasing values for this kernel, and values of n = 1, 2, 3, 4, 5, 6 are: K1 =
0.580, K2 = 0.580, K3 = 0.478, K4 = 0.439, K5 = 0.406, K6 = 0.370 which intu-
itively makes sense, as a lower value of n = 1 means that the two documents only
need to contain the same characters, whereas with a value of 6 the two documents
have to match to a much higher extent.

As one can imagine, performing all these computations becomes very costly,
and the matrix becomes huge as the value of n increases and the documents
become longer. In order to combat this, Lodhi et al. [2002] show how one can
calculate these kernels very efficiently (actually linearly in the document’s length)
using dynamic programming.

2.2.4 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a method for finding the best linear com-
bination of features which characterize or separate two or more classes. The idea
of LDA is to take a set of data points in a feature space where the data points
are not linearly separable, and project them down to a lower dimensional space
where they are linearly separable. In order to do this, LDA maps the features
into a new space where the distance between all the classes are maximized, while
the scatter (variation) within each class is minimized – intuitively bringing all
classes closer within themselves and as far away as possible from the other classes.
More formally, given two different classes of data points with mean µ1, µ2 and
standard deviation σ1,σ2 respectively, LDA aims to map the features into a lower
dimensional space where the following term is maximized:

(µ1 − µ2)
2

σ2
1 + σ2

2

(2.8)

The intuition is that the numerator should be as large as possible, and the denom-
inator as small as possible, effectively maximizing the distances between – and
minimizing the variation within each class – as was the original goal. LDA also
scales to higher dimensions, where one calculates a centroid between all classes,
and aim to maximize the distance between the mean of each cluster and this
centroid.
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Figure 2.2: A visualization of Kernel Discriminant Analysis.

2.2.5 Kernel Discriminant Analysis

Kernel Discriminant Analysis (KDA), also known as Kernel Fisher Discriminant
Analysis, is a kernelized version of LDA. This means that given the input space
(where the classes are typically not linearly separable) one uses a kernel function
to map them into a higher dimensional space where they (hopefully) are. Next,
LDA is applied in this higher dimensional feature space in order to bring the
features back into the original input space, but this time hopefully being linearly
separable. A visualization of this process can be seen in figure 2.2.

2.3 Evaluation of Models

Evaluation of machine learning models is essential. If the model is to be used on
real life tasks, a notion of how well the model is performing must be provided.
Several metrics are used in order to evaluate and assess the performance of a
machine learning model, some of which will be described below.

2.3.1 Accuracy

Accuracy is one of the simplest methods for measuring the performance of a
system. The accuracy of the model will simply be the fraction of correct classifi-
cations it makes out of the total number of examples it is being tested on. That
is:

accuracy =
num correct

total number of test examples
(2.9)
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Accuracy is a simple, yet effective measurement of how the model is performing
over all.

2.3.2 Precision and Recall

Precision and recall are two highly correlated measures of relevance, and are
frequently used in the field of Information Retrieval [Sasaki, 2007]. Precision is
the fraction of relevant instances retrieved among all retrieved instances, while
recall is the fraction of relevant instances retrieved out of all the relevant instances
that exist. If the instances in question are documents, precision is how much of
what the model has returned is actually relevant, and recall is how well the
model has covered all the relevant documents. Both precision and recall are
values between 0 and 1. A high recall value might be important when retrieving
medical or legal documents, as the user needs as many relevant documents as
possible, and can withstand quite a few irrelevant documents to obtain these. A
high precision is desirable when the user only wants what is relevant, but perhaps
does not need all the relevant documents.

The reason the two measurements are so intertwined is that if one wants
to maximize the recall metric, one can simply have the model return all the
documents (thus also returning all relevant documents and achieving a maximum
recall value of 1), but the precision will probably be low since a lot of irrelevant
documents are returned. On the other hand, if one wants to achieve a high
precision score, one can have the model just return one document that it is
absolutely sure about, which would make the precision 1 as all the documents
retrieved are relevant. However, the recall value would be low, as only a small
fraction of all relevant documents has been retrieved. Due to this, one might
want to maximize both precision and recall at the same time. For this purpose,
the F1 score exists, which will be covered in the following section.

2.3.3 F1 score

The F1 score is the harmonic mean of the precision and recall metrics [Sasaki,
2007]. It reaches its highest value of 1 when both precision and recall are perfect,
and 0 if both precision and recall are zero. It is calculated as follows:

F1 = 2 · precision · recall
precision + recall

(2.10)

The macro-averaged F1 score is calculated by first computing the F1 score for each
class, and then taking the average across all classes. For instance, each of these
classes in NLI would be the L1. The idea is to favor more consistent performance
across classes (L1s), rather than simply measuring global performance across
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all samples. A high macro-averaged F1 score therefore ensures that the model
is performing well across all classes, regardless of the size of the classes. This
because the average of a small class will have the same weighting as the average
of a class with many samples, making the macro-averaged F1 score suitable for
data sets with class-imbalances.

2.3.4 Cross-Validation

Cross-validation comes in several different variants and is a technique for assessing
how the results of a statistical analysis will generalize to an independent data set.
Using cross-validation can help evaluate whether the model is overfitting, and to
give an insight on how the model will generalize. This is often hard to do with
only one test set as one might run into issues like bias and high variance depending
on the selection of the test set.

K-fold Cross-Validation, combats this problem by dividing the training set
into k parts, validating it on each of the k parts, training on the remaining k− 1
parts. The overall performance can then be evaluated across the different folds,
and see if the results are consistently good – that the model is consistently stable,
and not just “lucky” on some parts. This ensures that all the data is used for
training (k − 1 times), and also being used for validation. This should reduce
overall bias and variance, and be a testament to whether the model actually gen-
eralizes well, regardless of what part of the data it is being tested on. There
are several ways of creating the folds in cross-validation. One technique is to
randomly shuffle the data set before dividing it. However, there exist more so-
phisticated variations such as stratified cross-validation, where what goes into
each separate fold is taken into consideration. For instance, on a binary data
set where each sample is labeled either true or false, one might want to divide
the folds so that each fold contains a roughly similar distribution of positive and
negative samples.

2.4 Deep Learning

In order to understand the attention mechanism of deep learning, the basics of
deep learning and sequence-to-sequence models must first be understood. The
following section will cover the basics of deep learning and attention, as well as
the advanced Transformer architecture which relies solely on attention.

2.4.1 Feed-Forward Neural Networks

Feed-Forward Neural Networks (FFNNs), also known as multilayer perceptrons,
are a form of artificial neural networks. Neural nets draw their inspiration from
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Figure 2.3: A typical feed-forward neural network composed of two layers. On
the left, every unit of the network is drawn. On the right a more condensed
drawing is composed of vectors representing each layers activation. Figure from
Goodfellow et al. [2016] with permission from Ian Goodfellow.

biology and the brain, in the sense that a FFNN consists of nodes similar to
the perceptrons of the human brain. Similarly to the brain, the perceptrons are
connected via weighted edges, and sorted in layers. Each node typically has a
weighted edge going out to every single node at the following layer, representing
a vector-to-scalar function. The neural net starts at its input nodes where each
node takes in a value of the input feature vector. These input values are then fed
through to the network by multiplying the input by each output weight at that
layer. The nodes in the next layer then take the weighted output of all incoming
weights as their input, and repeat the same process forward. The layers of nodes
which operate on the output of other layers, as opposed to processing the input or
output, are called hidden layers. More formally, for each neuron j, the outputted
value, vj , is calculated as follows:

vj = σj(
�

j�

wjj� · vj�) (2.11)

where wjj� is the weight from neuron j� to the neuron j, and σj is a non-linear
function of neuron j [Lipton et al., 2015]. This process calculation propagates
throughout all the hidden layers in the network until the final output layer is
reached, and the final result is outputted. A visualization of a neural net can be
seen in figure 2.3.

Taking a step back, the goal of a neural network is to approximate some func-
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tion f∗ based on training data. For a classifier, the function to optimize becomes
f∗(x) = y, where x is the input vector, and y is the target label. Neural nets
are called networks because this function is typically approximated by chaining
multiple functions together, e.g. f∗(x) = f (3)(f (2)(f (1)(x)). f (1) is the first layer
of the network, f (2) is the second layer of the network, and so on. The length of
this chain of functions is called the depth of the network, giving deep learning its
name. If all the functions of the chain are linear functions, the neural network
itself will be a linear function. This is a problem, as the network will not be
able to learn non-linear representations. For this reason, one ore more activation
functions are typically applied to different parts of the chain. These activation
functions are non linear, and are typically denoted as σ. Activation functions
will be discussed in more detail in section 2.4.6.

Viewing the network as a whole, the weights of all neurons at each layer can
be represented as vectors and matrices. As an example, a simple two-layered
neural net can be described as

f(x;W, c,w, b) = wTσ(WTx+ c) + b (2.12)

where w are the weights of the neurons of the second layer, W the weights of the
first layer, and c and b are linear biases. As can be read from the equation, the
two functions are still linear at their core, but the activation function, σ, allows
the second linear layer to operate on the non-linear output of the first layer.

The final output of the network can be compared to an objective loss function,
which outputs a single value indicating how far off the network was from the
correct output. The largest difference between the linear models discussed in
section 2.2 and neural networks, is that the non-linearity of a neural network
causes most loss functions to become non-convex. This requires neural networks
to be trained using iterative, gradient-based optimizers that merely drive the
cost function to a very low value, as opposed to the linear equation solvers and
optimization algorithms used in linear regression models and SVMs with global
convergence guarantees. The training algorithm is almost always based on using
the gradient to descend the cost function in one way or another [Goodfellow et al.,
2016].

The learning of the network is performed by adjusting the weighted edges
of the network. This is typically done by a technique called backpropagation
[Svozil et al., 1997]. Briefly, backpropagation calculates the gradient of the loss
function, L, of the network with regards to each weight in the network, and
adjust the weights in the direction that would reduce the loss proportional to
each weight’s contribution to the loss. The weights are typically then calculated
using gradient decent [Lipton et al., 2015] or other optimization methods (see
section 2.4.8).

Typically, the training of neural networks is performed in batches of training
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samples. Instead of calculating and adjusting the weights according to the loss
for each single training case, several training cases are sent through as batches.
Within each batch, the gradients are calculated and kept track of for each train-
ing instance, but the actual updating of the weights is not performed until the
entire batch has been processed. The weights are then simply updated using the
accumulated gradients obtained in within the batch [Goodfellow et al., 2016].
Training in batches reduces the computations needed for training neural net-
works, as the backpropagation step is not a trivial task, and performing it less
frequently reduces the number of computations required.

2.4.2 Recurrent Neural Networks

Recurrent neural network (RNNs) are a family of neural networks for processing
sequential data, with input of the form of a sequence of values x(1), . . . x(τ) Good-
fellow et al. [2016]. While standard feed-forward neural networks required a fixed
input, most recurrent networks can scale to much longer sequences than what
would be practical for networks without sequence-based specialization. Depend-
ing on how the network is built, most recurrent networks can process sequences
of variable length. To go from multi layer networks to recurrent networks, shar-
ing parameters across different parts of a model is required. Parameter sharing
makes it possible to extend and apply the model to examples of different lengths
and generalize across them [Goodfellow et al., 2016].

RNNs operate on a sequence which contains vectors at different time steps,
x(t), with the time step index ranging from 1 to τ . In recurrent neural nets, pa-
rameter sharing is done via recursion, where each hidden state is dependent on the
hidden state before it. This recursion is expressed by the following relationship:

h(t) = f(h(t−1),x(t);θ) (2.13)

where θ are the parameters of the model, and h represents the hidden state
vector.

Recurrent neural networks can be built in many different ways – essentially
any neural net based on recursion can be considered a recurrent neural net. A
simple RNN for classification can be built using the following update rules:

a(t) = Wh(t−1) +Ux(t) + b (2.14)

h(t) = σ(a(t)) (2.15)

o(t) = Vh(t) + c (2.16)

ŷ(t) = softmax(o(t)) (2.17)

where the input-to-hidden connections are parametrized by the weight matrix
U, hidden-to-hidden recurrent connections parametrized by the weight matrix
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Figure 2.4: A typical recurrent neural network which produces an output at each
time step. On the right, the network is unfolded and each node at each time step
is drawn. On the left a more condensed drawing is composed using a black box
to indicate the corresponding recursion. Figure from Goodfellow et al. [2016],
with permission from Ian Goodfellow.

W, and hidden-to-output connections are parametrized by the weight matrix V.
Using these rules, the network will start at the initial hidden state h(0), typically
initialized randomly, and for each time step update the next hidden state and
output, based on the previous hidden state in the input at time step t. The
softmax function will be covered in section 2.4.5. A visualisation of this particular
recurrent neural net can be found in figure 2.4.

The final hidden state produced by the network can be viewed as a lossy
summary of the input sequence, as it maps a sequence of arbitrary length,
x(t),x(t−1), . . .x(2),x(1), into a fixed length vector h(t).
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2.4.3 Layer Normalization

One challenge in neural networks is that each hidden layer is highly dependent
on the outputs of the previous layers. This can create problems like vanishing or
exploding gradients. In addition, training state-of-the-art, deep neural networks
is computationally expensive. One way to reduce the training time and sensitivity
of the network is to normalize the activities of the neurons.

Lei Ba et al. introduce layer normalization, a technique for normalizing the
input at each layer in the network. Layer normalization uses the distribution of
the summed input to a neuron over a single training case to compute mean and
variance, which are then used to normalize the summed input to that neuron.
Layer normalization computes this mean and variance from all of the summed
inputs to the neurons. Lei Ba et al. also give each neuron its own adaptive bias
and gain which are applied after the normalization, but before the non-linearity.

Empirically, layer normalization can substantially reduce the training time of
neural networks, and works for recursive neural networks as well.

2.4.4 Cross-Entropy Loss

The cross-entropy loss function, also known as log loss, measures the performance
of a classification model whose output is a probability value between 0 and 1 for
each class. In the binary case, for the predicted probability p for the correct class
y ∈ {0, 1}, the cross-entropy loss is given by:

Lce(y, p) = −(y log2(p) + (1− y) log2(1− p)) (2.18)

The intuition behind log loss is that it penalizes the model when the model is
correct in its prediction, but the predicted probability is not 1.0. The penalty
is even higher when the predicted label is incorrect and the probability for this
incorrect label is high.

For instance, if the model predicts a probability of p = 0.9 for when the correct
binary class label is y = 1, the log loss will be Lce(1, 0.9) = −(1 · log2(0.9) +
0) = 0.152. However, if the correct label was actually y = 0, the loss would be
Lce(0, 0.9) = −(0 + 1 · log2(0.1)) = 3.322. Thus the model is penalized more for
predicting a high probability for the 0 class. The cross-entropy loss function can
easily be extended to multiclass problems by applying the log loss function to the
predicted probability for each class and and the correct label, and sum up the
log losses for all classes.

2.4.5 The Softmax Function

In order to supply the cross-entropy loss function with the predicted probabili-
ties of the model, the softmax function is often used to map each class output
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Figure 2.5: A simple plot showing the different output values for different input
values for different activation functions.

to a probability. More formally, the softmax function is a mathematical function
which takes a K-dimensional, real valued vector as input, and produces a prob-
ability distribution of K probabilities. If a model produces a vector of K-values,
each value representing the value of a particular class, the softmax function maps
this vector into a K dimensional vector where each value will be in the interval
(0, 1). The function also normalizes these values so that the sum of the proba-
bilities will be 1. Given an input vector z of dimension K, the softmax function
is given by

σ(z)i =
ezi

�K
j=1 e

zi
(2.19)

2.4.6 Activation Functions

As mentioned in the introduction to neural networks, an activation function is
often applied to neurons. This activation function is typically a non-linear func-
tion, applied in order to enable the network to learn non-linear mappings. This
subsection will cover the relevant activation functions for this Thesis. A plot of
the different activation functions can be found in figure 2.5.
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Sigmoid Function

The Sigmoid activation function is a simple function which maps real values into
the interval (0, 1). The function is inspired by biology, where neurons are more
stimulated the higher the input value. The Sigmoid function is given by:

σ(z) =
1

1 + e−z
(2.20)

As the Sigmoid function maps values into the (0, 1) range, it can be a useful
function for predicting probability based output and has been applied successfully
in binary classification problems, modeling logistic regression tasks as well as
other neural network domains [Nwankpa et al., 2018].

A problem with the Sigmoid function however, is that negative output values
will often be mapped closed to zero. This causes major drawbacks and problems
such as gradient saturation, slow convergence and non-zero centred output. This
can cause the gradient updates to propagate in different directions [Nwankpa
et al., 2018].

Hyperbolic Tangent

The hyperbolic tangent function, or tanh, is similar to the Sigmoid function, but
maps all output values to the interval (-1, 1). The tanh function is given by

tanh(z) =
ez − e−z

ez + e−z
(2.21)

The tanh function combats the problem the Sigmoid function has with negative
values, as large negative values will be mapped close to -1 instead of 0, and has
been shown to give better training performance in multi-layered networks when
compared to the Sigmoid function. The tanh function has mostly been used in
NLP tasks and speech recognition tasks [Nwankpa et al., 2018].

Rectified Linear Unit – ReLU

A property of the tanh function is that it can only attain a gradient of 1 when
the input is 0. This makes the tanh function produce some dead neurons during
computation. A dead neuron is a condition where the activation weight is rarely
used because the gradient becomes zero. This dead neuron limitation of the tanh
function spurred further research in activation functions to resolve the problem,
which as a result gave birth to the rectified linear unit (ReLU) activation function.
As of 2018, the ReLU activation function is the most widely used activation
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function for deep learning applications [Nwankpa et al., 2018]. The function is
given by:

f(x) = max(0, x) (2.22)

The ReLU function is both faster and offers better performance and general-
ization in deep learning compared to the Sigmoid and tanh activation functions
[Nwankpa et al., 2018].

Gaussian Error Linear Unit – GELU

The Gaussian error linear unit, of GELU function, is a more novel, high-performing
activation function for neural nets [Hendrycks and Gimpel, 2016]. While the
ReLU activation function deterministically multiplies the input by 0 or 1, the
GELU function determine this zero-one mask stochastically and dependent upon
the input. Specifically, the GELU function is given by

GELU(x) = xP (X ≤ x) = xΦ(x) (2.23)

where Φ(x) = P (X ≤ x), and X ∼ N (0, 1) is the cumulative distribution func-
tion of the standard normal distribution. In this setting, inputs have a higher
probability of being “dropped” as x decreases, so the transformation applied
to x is stochastic, yet dependent on the input [Hendrycks and Gimpel, 2016].
Hendrycks and Gimpel [2016] estimate the GELU function as:

GELU(x) = 0.5x(1 + tanh(
�
2/π(x+ 0.044715x3))) (2.24)

Hendrycks and Gimpel show that the GELU function beats the popular ReLU
function.

2.4.7 Regularization

Regularization techniques in deep learning is a collection of method for reducing
over-fitting in neural networks. Over-fitting is simply when the model learns the
training data too well, while not being able to generalize and perform well on the
validation or test data. The most common techniques for achieving regularization
is to apply some sort of penalty to the loss function of the neural net. This
subsection will cover the relevant regularization techniques used in this Thesis.

Dropout

The dropout technique, as the name suggests, is to “drop” some neurons in the
network at each training step – i.e. setting their contribution to 0 [Srivastava
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et al., 2014]. Which neurons to drop is chosen at random each iteration with a
probability p, typically around the 0.1 to 0.2 range. Without dropout, neurons
can develop co-dependencies amongst each other during training, which limits
the individual power of each neuron, and can lead to over-fitting on the training
data. Dropout is applied in order to combat this effect, and has proven to be a
powerful technique for improving test accuracy in neural networks.

2.4.8 Learning Rate and the Adam Optimizer

Typically, neural networks use Stochastic Gradient Decent or other optimization
algorithms to minimize the empirical loss on the training data. Gradient decent
does this by minimizing the objective loss function of a neural network. At
each training step, the gradient of each weight of the model with regards to its
contribution to the total loss is calculated, and each weight is adjusted accordingly
in the opposite direction of the gradient. In other words, gradient decent follows
the direction of the slope of the surface created by the objective function downhill
[Ruder, 2016]. The learning rate, often denoted as α, indicates how large steps
the model should take when descending the loss-landscape, and is multiplied by
each gradient step. A large learning rate will help the model quickly reduce the
loss during the first steps of training. However, taking large steps will make
the decent coarse, and can lead to the model to getting stuck in local minima.
Stochastic gradient decent has trouble navigating ravines, i.e. areas where the
surface curves much more steeply in one dimension than in another. These ravines
are common around local optima, and causes oscillations across the slopes of the
ravine while only making hesitant progress along the bottom towards the local
minimum [Ruder, 2016]. A smaller learning rate can help mitigate the trouble
of navigating these ravines, as the model makes smaller steps within. Using a
smaller learning rate (typically values in the range between 0.01 and 0.0001, or
even smaller) will allow the model to search the loss-surface in a more granular
fashion. A smaller learning rate will make the model converge more slowly, but
provides a more thorough search of the loss-landscape, potentially leading to
better solutions.

The simplest form of learning rate is a simple constant which is multiplied
by all gradients. Other approaches include reducing the learning rate over time.
This helps the model reduce loss quickly in the beginning of training, and perform
a more granular search as it reaches lower surfaces of the loss search space. Over
time, more sophisticated methods for optimization have emerged. Next, the most
popular optimization scheme will be covered, namely Adam.
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Adam

Adaptive Moment Estimation (Adam) is a optimization scheme similar to gra-
dient decent, which computes adaptive learning rates for each parameter of the
model, based on the first and second moments of the gradients [Ruder, 2016].
Keeping track of the momentum of the gradients can help mitigate the ravine-
problem discussed above [Ruder, 2016]. In Adam, the first moments at time t,
mt, are the exponentially decaying average of past gradients, and the second mo-
ment, vt, is the exponentially decaying average of past squared gradients. More
formally, the moment vectors mt and vt are calculated as follows:

mt = β1mt−1 + (1− β1)gt (2.25)

vt = β2vt−1 + (1− β2)g
2
t (2.26)

where β1 and β2 are hyper-parameters with recommended values of 0.9 and 0.999
respectively, and gt is the vector of gradients. As the gradient moments are all
zero initially, Kingma and Ba observe that the moment vectors are typically
biased towards zero. In order to counteract this bias, the moment estimates are
bias-corrected as follows:

m̂t =
mt

1− β1
(2.27)

v̂t =
vt

1− β2
(2.28)

Finally, the model parameters, θ, are updated using the following equation:

θt+1 = θt − α
m̂t√
v̂t + �

(2.29)

where α is the learning rate, and � is a very small constant used for avoiding
division by zero – typically 10−8. Adam is one of the most popular optimization
schemes in deep learning, and is empirically shown to work well in practice and
compared favorably to other adaptive learning-method algorithms [Ruder, 2016]

2.4.9 Sequence-to-Sequence Models

In many NLP tasks the goal is to generate one sequence based on another se-
quence. An example is machine translation, where the goal is to generate a
translated sentence T2, based on the input sentence T1 of a different language.
Both sentences can be viewed as a sequence of words. A common architecture
to for solving this is sequence-to-sequence (seq2seq) modeling [Sutskever et al.,
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2014]. A seq2seq architecture consists of two modules: an encoder and a decoder.
The encoder is responsible for encoding the input sentence, T1, and producing an
encoded output representation of the input. The decoder then takes in this en-
coded representation of the input and generates an output sequence based on it.
This can for instance be done by using a RNN as the encoder, and another RNN
as the decoder. In machine translation, the encoder-RNN would take in a vector
representation of the input sentence, and feed it through itself, generating a new
hidden state for each input word based on the word and the previous hidden
state. When the encoder-RNN is done processing the input sequence, it will have
a final internal hidden state. This internal hidden state is then fed in as input to
the decoder-RNN. The decoder-RNN uses this hidden state as its initial hidden
state, as well as a start-of-sentence token as input to start generating the first
element of the output sequence (i.e one translated word). This process continues
until the decoder-RNN produces the end-of-sentence token, which indicates that
the full output sentence has been generated.

Trying to solve the same task with a single RNN would imply that the RNN
would have to produce one output token for each input token. Using a seq2seq ar-
chitecture enables the input- and output sequence to be of different lengths, as the
only input the encoder requires from the encoder is its final hidden state obtained
after processing the input sequence. Additionally, this architecture (hopefully)
enables the encoder to capture information from the entire input sequence and
make it available to the decoder, as opposed to having an RNN-produce the next
output-token based only on the previous input tokens. However, there are some
caveats to this approach, which will be discussed in the next subsection.

2.4.10 Attention

As discussed above, a sequence-to-sequence architecture enables the encoder
model to encode the entire input sequence into one, encoded hidden state rep-
resentation. This is a potential bottleneck for the performance of the system
[Bahdanau et al., 2014]. A problem is that the first words of the input sequence
become less pertinent, as they will have less impact on the final hidden state –
especially for longer inputs. Often, one of the first tokens of the input sentences
might be important for one of the later tokens of the output tokens. For instance,
when translating from English to German, a verb which appears early in an En-
glish sentence is often put at the end of a German sentence, creating a great
spatial difference between the two tokens, even though they are highly related.
A method for solving this problem is to use an attention mechanism.

The basic idea behind the attention mechanism is to not only feed the decoder
the final hidden output state of the encoder, but all of the hidden states the
encoder produces when processing the input sequence. By letting the decoder
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have an attention mechanism, the encoder is relieved from the burden of having to
encode all information in the source sentence into a fixed length vector [Bahdanau
et al., 2014]. Making all the hidden states available to the decoder enables it
to weigh each of the hidden states individually, thus deciding which parts of
the input sequence it wants to “pay attention to”. These weights are learned,
often using a feed-forward neural network within the decoder. After the decoder
has weighed each hidden state, the hidden states are run through the softmax
function, and one single vector is created where each hidden state is multiplied by
its softmax score. The decoder then calculates what is called the context vector,
which consists of the weighted sum of all the hidden state vectors multiplied
by their softmax score. This vector is then concatenated with the hidden state
that the encoder produces after processing the first start-of-sentence token. This
concatenated vector is finally fed thorough a FFNN, which then produces the
first output token. This output token is then fed into the decoder again, which
produces a new hidden state, and the same process continues until the end-of-
sentence token is produced.

Self-Attention

The attention mechanism allows the decoder to attend to different parts of the
input sequence by looking at the individual hidden states produced by the encoder
at each step. However, the encoder itself does not have any attention mechanism.
In order for the encoder to create even more meaningful representations of the
input sequence, “self-attention” can be applied within the encoder. Self-attention
allows the encoder to attend to all words in the input sequence for each word in the
input sequence. That is, the self-attention mechanism relates different position of
a single sequence in order to compute a representation of the sequence [Vaswani
et al., 2017]. For example, given the input sequence “The animal didn’t cross
the street because it was too tired”, the word it refers to the beginning of the
sentence, namely “the animal“. A standard RNN will be able to capture this to
some extent via its hidden state, but by giving the encoder an internal attention
mechanism it can pay more attention to specific words explicitly.

Self-attention is implemented using three weight matrices called the query, key
and value matrices, which are learned during training. For each word-embedding
in the input sequence, the word-representation is multiplied by the query weight
matrix in order to obtain a query vector representation of the current word.
This word, qn, will be the word being attended to at position n in the sequence.
Then, for all word-embeddings in the sequence, a key vector is calculated by
multiplying the vector representation of the current word with the key weight
matrix. Similarly, the value vector for each word is obtained by taking the dot
product of the word and the value matrix. Next, the query vector q1, the word
which the model is currently attending to, is multiplied by all key vectors in the
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Figure 2.6: An example of self-attention for the input sequence “Thinking Ma-
chines”. Figure from Alammar [2018], with permission from Jay Alammar.

sequence k1 . . . kn to obtain an attention score for each word. These scores are
then softmaxed, and multiplied by the corresponding value vector. The intuition
is that relevant words which the model should attend to will receive a high score,
while drowning out words which are irrelevant. Next, the softmax-weighted value
vectors are summed up to give a final, attention-encoded representation of the
input sequence at this position.

A visual dummy example of this process can be seen in figure 2.6. The example
shows how the self-attention encoded representation (z1) of the word “Thinking”
in the sequence “Thinking Machines” would have been calculated using dummy
values. The fifth step of dividing by

√
dk is specific to the Transformer architec-

ture, which will be discussed in the following section.

2.4.11 Transformers

Vaswani et al. [2017] proposed a new architecture called the Transformer, which



2.4. DEEP LEARNING 33

Figure 2.7: A visualization of the Transformer architecture. Figure from Vaswani
et al. [2017], with permission from Jakob Uszkoreit and Aidan Gomez.

relies solely on attention mechanisms. As the Transformer does not use recur-
rence nor convolution, most of the required calculations can be carried out in
parallel while still having superior quality compared to previous encoder-decoder
architectures [Vaswani et al., 2017]. A visual overview of the transformer archi-
tecture can be found i figure 2.7. As can be seen in the figure, the transformer is
an architecture composed of several sub-modules, each of which will be described
in more detail below.

The overall architecture of the Transformer is conceptually simple. The model
consists of N encoders and decoders, denoted by “Nx” in the figure. Each encoder
consists of a multi-head attention encoding layer as well as a feed-forward linear
layer. The multi-head attention layer will be described in more detail in the
following subsection, but for now it is sufficient to know that it uses self-attention
to create and encoded representation of the input sequence. After the multi-head-
attention layer has encoded the input, it is added to the original input. This can
be seen through a residual connection going around the multi-head attention
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layer. After the original and the encoded input has been added together, the
aggregated input is then normalized using layer normalization. This process is
illustrated by the “Add & Norm” box. This aggregated input is then fed into
a linear feed-forward layer, whos output again is added and normalized in the
same fashion as the output of the multi-head attention layer. This describes
one encoder. Multiple instances of this encoder architecture are then stacked N
times, where the next encoder takes the output of the previous encoder as input.

The stack of decoders is similar to the encoders, but with a few altered details.
The first difference is that the first multi-head attention layer is masked. This
multi-head attention layer processes the output embeddings, which are produced
by the model itself, starting with the start-of-sentence token. The term masking
simply means that attention values for words which have not been produced yet
are set to zero, which means that the decoder can only attend to words it has
already produced.

The second difference is that the second multi-head attention layer processes
the aggregated and normalized output of the first masked multi-head attention
layer, as well as the outputs of the encoder stack. This means that the entire
input sequence is first encoded by the encoders, and is then used as a “static”
input for all the decoders while the decoder stack processes the output sequence
in an auto regressive manner (meaning that each output token produced is fed
back as input while processing the next token). At the end of the decoder stack
there is a linear layer which maps the real valued output from the decoder to
a vector of a desired size. The size of this output vector can for instance be
the number of classes, if the Transformer is used for a classification task, or be
the same size as the output vocabulary if used for machine translation or other
sequences. This final output is then fed through the softmax function in order to
produce a probability for each class, or the probability of each word in the target
vocabulary.

Multi-Head Attention

The multi-head attention layer used in the Transformer architecture is simply
multiple instances of self-attention stacked on top of each other. This means
that each attention “head” has its own query, key and value matrices, which is
initialized randomly. This allows each head to project the input into different
representation sub-spaces, allowing for more complex attention. Ideally, this
would imply that one head perhaps learns to pay specific attention to, say, the
pronouns in the input sentence, while another head perhaps pays attention to
nouns.

The actual implementation of the Transformer is carried out using matrices
for the aforementioned vectors and the self-attention vectors. This means that
each the input, query, key and value vectors are all represented as matrices for
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more efficient calculations. Based on this, the self-attention steps described in
2.4.10 can be condensed into one simple calculation:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2.30)

Vaswani et al. hypothesise that, as the dot products grow large in magnitude,
they can push the softmax function into regions where it has extremely small
gradients. To counteract this effect, each output is scaled by a normalization
constant

√
dk – the square root of the hidden dimension of the transformer.

Positional Encodings

As the Transformer contains no recurrence nor convolution, the model will not be
able to make use of the ordering of the sequence. To fix this, some information
about the relative or absolute position of each token in the sequence must be
injected. Vaswani et al. solve this by adding positional encodings to the input
and output embeddings. This is done by using sine and cosine functions of
different frequencies:

PE(pos, 2i) = sin(pos/100002i/dmodel) (2.31)

PE(pos, 2i+ 1) = cos(pos/100002i/dmodel) (2.32)

where pos is the position of the word in the sequence, and i is the dimension of the
positional encodings (which will be the same dimension as the word embeddings,
for easy summation of the vectors). That is, each dimension of the positional
encoding corresponds to a sinusoid.

2.5 Natural Language Processing

Natural language processing (NLP) is the field of programming computers to
process and analyze large amounts of natural language data. As NLI is a sub-
field of NLP, it will be natural to cover the basics and the relevant features of
NLP. The following sections will discuss some traditional statistical features and
word representations of NLP, as well as more recent deep learning approaches.

2.5.1 Lemma and Function Words

When discussing NLI features, and NLP features in general, two central concepts
are lemmas and function words. A lemma is a word that one would find in a
dictionary, i.e., the root form of the word. For instance, run, runs, ran and
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running are forms of the same lexeme, and run is the lemma. Lemmas are for
instance very useful for search and querying, where one might want to return
a document which contains the same lemma, even though the query was in a
different tense than how it appears in the document.

Function words are words which contribute to the syntax rather than the
meaning or semantics of a sentence, such as “the” and “a”, etc. Typical function
word classes include articles, pronouns and conjunctions. In light of NLI, the
use of function words can be an indicator of how an author composes sentences
and the stylistic properties of their writing. In addition, function words are topic
independent, as they only carry information about how the author writes, and
not what the author is writing about.

2.5.2 N-grams

The construction of n-grams is an essential technique for text processing, and
is defined as a contiguous sequence of n items from a given sample of text or
speech. n-grams are typically constructed at either the word or character level.
An example of a word-level n-gram constructed from the sentence “the dog ate
the cat” would be every single word by itself when n = 1 i.e., “the”, “dog”, “ate”
. . . and so on. This is called a bag-of-words model, since the order of the words
is irrelevant, and it only models that a word has appeared, not what words it
appeared after. With n = 2, each word is concatenated with the word before it,
i.e., “the dog”, “dog ate”, “ate the”, “the cat”. n-grams where n > 1 are used
to capture the context a word or character appears in. An example of n-grams
for different values of n and the sentence “the dog ate the cat” can be found in
table 2.2.

n Character level n-grams Word level n-grams
1 t, h, e, , d, o, g, , a, t, e, . . . the, dog, ate, the, cat
2 th, he, e , d, do, og, g , a, . . . the dog, dog ate, ate the, the cat
3 the, he , e d, do, dog, og , . . . the dog ate, dog ate the, ate the cat
4 the , he d, e do, dog, dog , . . . the dog ate the, dog ate the cat
5 the d, he do, e dog, dog , . . . the dog ate the cat

Table 2.2: Comma separated character and word level n-grams for different values
of n, given the sentence “the dog ate the cat”.
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2.5.3 Part-of-Speech Tagging

Part-of-Speech (POS) tagging is the process of marking a word in a text as
corresponding to a particular part of speech, based on both its definition and its
context. That is, its relationship with adjacent and related words in the context
it appears in [Voutilainen, 2003]. Typically this includes tagging/classifying each
and every word with a predefined set of POS tags, i.e., “N” for “Noun”, “NP” for
“Noun Phrase”, “VP” for “Verb Phrase”, “D” for “Determiner” and so on. The
details of how to obtain such POS tags automatically will not be covered, but
typically they are deduced using supervised learning with training sets annotated
by humans. POS tags help disambiguate words, for instance by tagging words
like “milk” with either “V” or “N”, disambiguating whether it is meant as milk
in the noun form, or in its verb form “to milk something”.

2.5.4 WordPiece Tokenization

WordPiece tokenization is a technique for building vocabularies which are mean-
ingful to machine learning models from sub-word units. WordPiece tokenziation
is completely data-driven and guaranteed to generate a deterministic segmenta-
tion for any possible sequence of characters. The WordPiece model is generated
using a data-driven approach of training a language model to maximize the mod-
els likelihood of the training data, given an evolving vocabulary. Wu et al. deploy
a greedy algorithm and find that their models perform better using WordPieces –
possibly because the WordPieces provide an essentially infinite vocabulary with-
out resorting to characters only.

Wu et al. [2016] provide an example of a word sequence mapped to a Word-
Piece sequence to illustrate how such learned sub-word units of a particular sen-
tence might look:

• Jet makers feud over seat width with big orders at stake

• J et makers fe ud over seat width with big orders at stake

Here, the model has larned a vocabulary where the word “Jet” has been broken
into two WordPieces, “ J” and “et”, and the word “feud” has been broken into
“ fe” and “ud”. “ ” is a special character added to mark the beginning of a word.

2.5.5 Word Embeddings

Word embeddings are continuous vector representations of words [Mikolov et al.,
2013a]. Encoding words as vectors allows for mathematical operations on words,
and using high quality word embeddings usually increases performance over using
more traditional word representations such as simple n-grams [Mikolov et al.,
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2013a]. For instance, after learning word embeddings, Mikolov et al. [2013b]
report that the resulting vector after performing the calculation vec(“Madrid”) -
vec(“Spain”) + vec(“France”) is closer to vec(“Paris”) than any other vector in
the vocabulary.

Most of today’s word embedding approaches are based on using neural net-
works to learn the encoded real-valued vector representations of single words.
Two of the simplest approaches are the bag-of-words (BOW) model and the word
skip-gram model, often referred to as word2vec models. The BOW model sim-
ply trains a shallow neural network to predict a single word based on a context
window of surrounding words, where the words are typically one-hot encoded.
After training a neural language model in this fashion, the weights of the hidden
layer represent a vector space where each vector corresponds to a specific word
in the vocabulary. These vectors can then be used as word embeddings. The
word skip-gram model reverses the task of the BOW model, and predicts context
words based on the a single input word. Other neural networks such as RNNs
have also been successfully applied for learning word embeddings [Mikolov et al.,
2013b].



Chapter 3

Related Work and
Motivation

As the main goal of this Master’s Thesis is to explore how attention-based systems
can be used to improve performance on the task of NLI, two main fields of liter-
ature will be relevant: the general field of NLI research, and research conducted
on attention-based systems. In light of this, the literature review section has been
separated into two sections, namely NLI literature and attention literature. In
addition, a meta-section is included, which will aim to cover how the literature
review search was performed. Finally, the chapter is ended with a motivation sec-
tion which sums up the key takeaways of the literature review, and relates these
to the initial Research Questions, and the experiments which will be carried out
in the following chapter.

3.1 Literature Review

For attention related literature, most of the basics have been covered in the
background theory section. This includes the ubiquitous Transformer architec-
ture which relies solely on attention. As the Thesis started as a curiosity for
BERT – a Transformer based, deep learning architecture – and its possible ap-
plication for NLI, the attention literature review was accordingly performed in
a top-down approach: starting at the top with the recent Devlin et al. [2018]
article, reading the work which this article points to, carrying on all the way
down to Transformers, attention and sequence-to-sequence models.

As for the field of NLI, a general search was first conducted, based on pointers
from the Thesis’ Supervisor. The initial search showed that much of the work in

39
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the field of NLI is summed up in two shared NLI tasks – one in 2013 and one
in 2017. Both of these shared tasks contain results and comparisons of 29 and
19 different approaches to solve the task of NLI, respectively – a good starting
point. Similarly to the attention literature search, a top-down approach was
applied. The search started at these two shared tasks, with emphasis on the more
recent 2017 shared task. In practice, this includes considering the top contenders
of each shared task, exploring their approaches, then reading the relevant work
which these articles point to, and so on. As one of the Research Questions of this
Thesis is how attention-based systems can be used in combination with current
state-of-the-art approaches to improve performance on the task of NLI, the main
emphasis have been on the work which has given good results in forms of accuracy
or F1 scores. Most of the NLI literature share similar features, and much of the
work conducted during the 2017 shared task points back to the 2013 shared task.
As for NLI literature post 2017, a new search was carried out. This search was
simple, and involved querying the Google- and Google Scholar search engines
for “Native Language-Identification”, filtering out articles preceding 2018. Work
from pre 2013 has mostly been ignored as most of the successful approaches were
made during the two shared tasks. Most of the literature read has only been
concerned with NLI where English is the second language, as this is the language
for which there exists the most labeled data.

3.2 Native-Language Identification

The field of NLI is in a broader perspective quite young, and only gained serious
momentum during the previous decade. Most notably the field gained traction
after the work of Koppel et al. [2005], which according to Tetreault et al. [2013]
was the first in the field. Koppel et al. trained an SVM model on a vast amount
of features including POS tags, n-grams and grammatical errors on the ICLE
data set [Brooke and Hirst, 2013]. Since then there have been two major events
in the field of NLI, namely two shared tasks – the first one in 2013 and the
second in 2017. The first task held in 2013 had 29 teams from all over the world
participating, making it one of the biggest NLP competitions that year alone
[Malmasi et al., 2017]. The winning team achieved an accuracy of 0.836 on the
given test set. The second shared task of 2017 had 19 teams participating using
both written and spoken responses, with a winning accuracy of 0.932 using both
text and speech data, and an 0.882 accuracy when given essays only. These
two shared tasks helped unify the community and give a common platform for
evaluating and comparing different NLI systems.
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3.2.1 The 2013 NLI Shared Task

As NLI gained more traction as a field, one of the main problems up until 2013 was
that the field was lacking unification. There was no collective way of evaluating
different NLI systems, as many of the publications before 2013 had used different
sets of L1s, as well as different evaluation metrics. In addition, there was a lack of
data suitable for the task of NLI. As the field gained more interest as a sub-task
of NLP, the 2013 NLI Shared Task was held in order to address these problems.
The solution to the above mentioned problems was the creation of the TOEFL11
corpus [Blanchard et al., 2013]. This data set did not only bring more data to
the field, but provided a common set of languages to use for the task, as well as
evaluation standards that everyone would use, providing a common ground for
comparison of the different systems. The TOEFL11 data set will be described in
more detail in section 3.2.2.

The 2013 NLI shared task was divided into three sub-tasks, namely Closed-
Training, Open-Training-1 and Open-Training-2. Closed-Training was the main
task and the one that received the most submissions. This task consisted of
only using the training and development set, and nothing else. Conversely the
Open-Training-1 task allowed the use of any training data excluding data from
TOEFL11. The final task, Open-Training-2 allowed use of any data, including the
TOEFL11 data set itself. However, the Open-Training-1 showed that training on
external corpra while being tested on the TOEFL11 test set caused a significant
drop in accuracy. For instance, the winners of the Open-Training-1 task achieved
an accuracy of 0.565, as opposed to their 0.802 accuracy on the closed task.
When being evaluated using 10-fold cross-validation the winning team achieved
an accuracy of 0.846 using SVMs. Additionally, an observation made during
the 2013 task was that typically the teams that performed well with regards to
accuracy on the test set, also performed well when being cross-validated [Tetreault
et al., 2013].

The approaches used in the 2013 shared task will only be covered briefly, as
most of the best performing approaches were refined and used for the more recent
2017 shared task, with better results. These will be covered in greater detail in
section 3.2.4.

The overwhelming majority of teams participating in the 2013 shared task
used SVMs. Tetreault et al. [2012] additionally showed that performance could
be increased by using ensemble methods for combining classifiers. The most
common features used during the 2013 shared task were word, character and
POS n-grams. Four of the top five teams used at least word 4-grams, and some
as high as 7 and 9 [Malmasi et al., 2017].
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3.2.2 TOEFL11

The TOEFL11 data set [Blanchard et al., 2013] consists of English essays writ-
ten by people with different first languages for a college-entrance test, and stands
for the Test of English as a Foreign Language. The data set was the first data
set created specifically for NLI. The corpus contains 1,100 essays per language
sampled, which is aimed to be distributed as evenly as possible across 8 different
tasks/topics. Each essay is also labeled with the score it got, ranging from low,
medium or high. The 11 languages included in the corpus are Arabic (ARA), Chi-
nese (CHI), French (FRE), German (GER), Hindi (HIN), Italian (ITA), Japanese
(JAP), Korean (KOR), Spanish (SPA), Telugu (TEL) and Turkish (TUR). A full
overview of the languages as well as how many essays per prompt (topic), per
language available in the corpus contains can be found in table 3.1. During the
2013 shared task the TOEFL11 data set was split into three parts: one training
part consisting of 900 essays per L1, one development set consisting of 100 essays
per L1, and the remaining 100 essays were put into the test set [Blanchard et al.,
2013].

Language P1 P2 P3 P4 P5 P6 P7 P8
Arabic 138 137 138 139 136 133 138 141
Chinese 140 141 126 140 134 141 139 139
French 158 160 87 156 160 68 151 160
German 155 154 157 151 150 28 152 153
Hindi 161 162 163 86 156 53 158 161
Italian 173 89 138 187 187 12 173 141
Japanese 116 142 140 138 138 142 141 143
Korean 140 133 136 128 137 142 141 143
Spanish 141 133 54 159 134 157 160 162
Telugu 165 166 167 55 169 41 166 171
Turkish 169 145 90 170 147 43 167 169
Total 1,656 1,562 1,369 1,509 1,648 960 1,686 1,683

Table 3.1: The number of essays per language per prompt/topic featured in the
TOEFL11 data set. Figure from [Blanchard et al., 2013]

3.2.3 Between Shared Tasks

In between the 2013 shared task and the 2017 one, there was another related task
focusing on spoken responses in 2016, called the Computational Paralinguistics
Challenge [Malmasi et al., 2017]. This challenge was designed to explore speech-
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based NLI in more detail. The data set provided contained 64 hours of speech
from 5,132 non-native speakers of English. This results in roughly 45 seconds
per speaker, which represented the same L1 languages as the TOEFL11 data set
from 2013. Unfortunately it was not possible to distribute the raw speech data,
so the data set consisted of textual transcripts as well as speech vectors called
i-vectors. The winning team achieved an accuracy of 0.813 on this speech data
alone [Malmasi et al., 2017]. It is sufficient to know that an i-vector is a vector
of fixed length (in this case 800), which has been created as a lower-dimensional
representation of high-dimensional sequential recordings of speech data. They
were originally created for use in speaker recognition, and later used for language
recognition.

Another important event in between the two tasks was that Ionescu et al.
[2014] beat the previous best results from the 2013 task using string kernels.
However, as these results were further improved using similar techniques in a
submission for the 2017 shared task, the approach used will be covered in the
following section.

3.2.4 The 2017 NLI Shared Task

The 2017 shared task was similar to the 2013 task, but aimed to utilize the new
speech data available in combination with text for NLI. With 19 participating
teams, the task was divided into three tracks: NLI for essay only (i.e., the same as
the 2013 task), NLI for the spoken response only (which would be the same as the
CPC speech challenge from 2016 mentioned above), and the new contribution of a
combined task using both text and speech, dubbed the fusion track. Submissions
in the fusion track showed that combining written and spoken responses provides
a large boost in prediction accuracy for NLI systems [Malmasi et al., 2017].
Another trend from the 2017 shared task was that ensemble-based systems were
again shown to be the most effective in all tasks.

Malmasi et al. also state that another motivation for the 2017 shared task was
the rapid growth of deep learning methods for NLP during the time slot between
the two tasks. Despite this, typically a lot of the same features were used in 2017
as were used in 2013, and SVMs were still the most popular approach. Just like in
2013, there were closed and open versions of the different tasks regarding the use
of external data. However, possibly due to the significant drop in accuracy seen
in the 2013 shared task, there were no submissions in the open competition. In
contrast to 2013, the 2017 competition did not only use accuracy as its evaluation
measure, but the official evaluation metric was macro-averaged F1 score. All the
participating groups were placed into tiers based on how well they performed.
Each tier was statistically significantly different from the other tiers, while the
groups within the same tier were calculated to be statistically similar, despite
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having slightly different scores.

There were some primary trends observed in the 2017 shared task for NLI.
First of all, again similarly to the 2013 task, most results showed that multiple
classifier systems were effective, i.e. ensembles and meta-classifiers. Almost all
of the top ranking teams employed some type of multi-classifier system [Malmasi
et al., 2017]. Next, lexical n-grams were empirically the best single feature type.
Evidence from various participants suggested that high-order character n-grams,
as high as n = 10, were extremely useful for the task. Character n-grams were
assumed to be especially efficient as they capture sub-word (morphological) in-
formation, as well as dependencies between words. A slight performance boost
could also be gained by using syntactic features. Furthermore, feature weighting
schemes were important. Many of the top teams applied some form of feature
weighting, typically TF-IDF feature weighting. Regarding the speech-based sys-
tems, acoustic features seemed to be highly informative. The fusion of textual
and speech features gave the overall best results. Furthermore, contrary to the
initial motivation of the 2017 shared task, traditional classifier models continued
to dominate over deep learning models. As will be discussed below, Ircing et al.
[2017], as well as others, assume that this was due to the size of the TOEFL11
data set, and that more training examples could help deep learning models per-
form better.

In the following sections, some of the specific submissions for the 2017 shared
task will be covered in detail, as these approaches are still prevalent in the cur-
rent state-of-the-art of the field, and therefore relevant for answering Research
Questions 1 and 3. The teams UnibucKernel and CEMI both placed in the top
1 tier on the fusion-track, making them both state-of-the-art on the fusion-track
for the TOEFL11 data set in 2017. In addition, ItaliaNLP – the winners of the
essay-only track – will be described, as it is the best performing system on the
TOEFL11 data set so far.

3.2.5 UnibucKernel – 2017 Shared Task Winners

UnibicKernel [Ionescu and Popescu, 2017] were the overall winners of the fusion
track, and also won the speech-only track with a top F1 score of 0.932. The
solution also achieved an F1 score of 0.867 in the closed essay track, which placed
the UnibicKernel in the top tier in this category as well – making the system
statistically as good as the winners, ItaliaNLP.

The results of Ionescu and Popescu were achieved by extending the previous
approach, found in Ionescu et al. [2014], using multiple kernel learning and kernel
discriminant analysis. In the initial experiments on the development set, the team
tried both KDA and another binary classifier called Kernel Ridge Regression
(KRR). However, KDA beat KRR in all cases, which was consistent with the
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previous results of Ionescu et al. [2014]. For this reason, KDA was used for the
remaining experiments. Furthermore, three different kernels were experimented
with: a character n-gram presence kernel, an intersection string kernel, as well as
the RBF kernel. In addition, squared versions of each kernel were also included,
as well as different combinations of all them. Only the best performing kernel
will be covered, namely the first mentioned character n-gram presence bit kernel.
This character n-gram presence bit kernel is defined as follows:

k0/1n (s, t) =
�

v∈�
n

inv(s) · inv(t) (3.1)

where s and t are strings (or documents), present in an alphabet
�

, that is
s, t ∈ �∗

, and the function inv(x) is 1 if string v occurs as a sub-string in
x, and 0 otherwise. Basically what this kernel function does is to define the
similarity between two strings s, t as the binary sum of all n-grams which are
present in both s and t, for all possible n-grams. In other words, this kernel is a
feature map that associates each string to a vector of dimension |� |n containing
the presence bits of all its sub-strings of length n. Ionescu and Popescu also
extended this idea to blended spectrum kernels, which simply takes into account
n-grams of different lengths and sums the corresponding kernels. So for instance,
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strings of different lengths, a normalized version of the kernel was used, defined
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Note that k̂ indicates that the normalized version of the kernel. This was the
kernel used for the text based essays in the data set. The i-vectors were first
normalized using the L2 normalization, then the Euclidean distance was com-
puted between each pair of i-vectors, and then the RBF kernel was employed to
transform the distance into a similarity measure, which is defined as follows:

k̂i-vec(x, y) = exp(−

��m
j=1(xj − yj)2

2σ2
) (3.3)

where σ was tuned in a set of preliminary experiments. Their final and best result

was a combination of three kernels, namely k̂
0/1
5−9+k̂

0/1
5−7+k̂i-vec, where summing up

kernels or kernel matrices is equivalent to feature vector concatenation [Ionescu
and Popescu, 2017].
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3.2.6 CEMI – Second place winners using stacked FFNNs

Finishing in the same top group as UnibucKernel was CEMI [Ircing et al., 2017]
with a F1 score of 0.926 in the fusion track. CEMI obtained their best results
using a neural network based meta-classifier, meaning that they used several
isolated feed-forward neural network models, each trained on a separate feature
type. Features included word, character and POS n-grams, plus i-vectors. Finally
the outputs were fused using softmax to predict the final label.

CEMI used TD-IDF weighting, capping the length of the feature vector by
picking the top 30, 000 features entries sorted by descending TF-score. Ircing
et al. report that using a size larger than 30, 000 did not increase performance.
LDA was used for normalizing the i-vectors. Different ensemble architectures
were tested, both homogeneous and heterogeneous. The homogeneous version
worked best on the fusion track while a heterogeneous version worked well on the
speech track. Very deep architectures were also employed, such as convolutional
neural nets, DenseNets and ResNets. However, the simple FFNN was found to
beat all of these models – possibly due to the size of the data set. Such deep
architectures have a lot of weights that need to be learned, and need a lot of data
in order to do so [Ircing et al., 2017].

Ircing et al. performed a thorough analysis of their results using local inter-
pretable model-agnostic explanations (LIME). The analysis showed that typically
certain content words can leak important information about the author. Typi-
cally, if the essay contained for example the words “Japan” or “Japanese”, then
the author was often from Japan, and similarly for other countries. The analysis
also shows that spelling mistakes and typos have origin in the L1 language. For
instance, it was common for Italians to write the word “public” as “pubblic”,
from the Italian word “pubblico”. Similarly for French authors, a common mis-
take was spelling “example” as “exemple”, from the French word “exemple”. As
other shared task participants noted, close to 50% of the error confusions were
between Hindi and Telugu. Ircing et al. assume that this was because the L1
speakers of these languages have gone through the same educational system in
India.

3.2.7 ItaliaNLP – Winners of the essay track

The team called ItaliaNLP won the essay-only track of the 2017 with a F1 score
and accuracy of 0.882, which currently is the highest score achieved on the essay-
only TOEFL11 test set. To obtain these results two stacked SVM-classifiers were
used: One trained at the sentence level, and one trained on the document level,
using the output of the sentence classifier as input, as well as the features from
the documents themselves [Cimino and Dell’Orletta, 2017]. The features used
were similar to the ones used by other systems: lexical features such as the text
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length, average word length, character n-grams, function words, word n-grams
and lemma n-grams. In addition both morpho-syntactic features such as POS
n-grams, as well as syntactic features such as linear dependency n-grams were
used.

3.2.8 NLI with User Generated Content

Quite recently, as in November 2018, Goldin et al. [2018] tried the task of NLI
in a new environment using the large social media data set called the Reddit-L2
data set. In the experiments Goldin et al. used a simple regression classifier for
all experiments. The main focus was not to build a new classifier for NLI, but
to do feature exploration on the novel Reddit-L2 data set, as well as experiment
with possible features specific to social media. The following subsection will cover
the Reddit-L2 data set in more detail.

The Reddit-L2 Data Set

The Reddit-L2 data set1 used by Goldin et al. [2018], is a novel data set originally
created by Rabinovich et al. [2018]. The data is collected from a social media
site called Reddit. Reddit is a platform where users can subscribe to areas of
interest – so called “subreddits” [Singer et al., 2014]. The topics of subreddits
range from very general topics such as “pictures”2 and “science”3 all the way
to specific and obscure niche subreddits such as “birds with arms”4, which is a
subreddit created for posting pictures of birds that have been photoshopped to
look like they have arms. In other words the texts produced by users of Reddit
cover a very wide range of different topics. Within each subreddit, users can
post both links and content such as videos and images, which other users can
comment on. The site also features a voting system where other users can up-
and down vote the content and comments of other users. Included in all these
sub-communities there are some subreddits dedicated to Europe. Namely:

• /r/europe

• /r/AskEurope

• /r/EuropeanCulture

In these subreddits, the users can optionally provide a so-called flair which is a
tag to indicate which country the user is from. This flair can be used to directly

1http://cl.haifa.ac.il/reports/L2/index.shtml
2www.reddit.com/r/pics/
3www.reddit.com/r/science/
4www.reddit.com/r/birdsWithArms/
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infer the users L1. Rabinovich et al., the creators of the data set, performed
experiments to assure the reliability of these labels, and Goldin et al. [2018]
performed further measures to ensure that the labels are correct. In addition,
Goldin et al. argued that incorrect labels will only function as noise to the model,
making the task harder if so.

While previous data such as the TOEFL11 data set contain texts written by
learners of English, many of the Reddit-L2 authors are close to fluent in English.
This makes the task of performing NLI on this data set even more challenging.
The data set consists of texts the users have produced in the Europe-related sub-
reddits, as well as texts written in other subreddits. While the three European
subreddits typically focus on topics related to Europe, additional subreddits can
have virtually any topic. The data collected from the European-themed subred-
dits is deemed the in-domain data, while the data collected outside of these is
called the out-of-domain data. The text data is separated into chunks, where
each chunk contains 100 sentences from a single user. After pre-processing and
removing users with less than 100 sentences (1 chunk), the data set consists of
roughly 200, 000, 000 sentences and 3 billion tokens across 29 native countries,
from 34, 511 unique users.

Downsampling of the Reddit-L2 Data Set While the Reddit-L2 data set
is large, the number of users varies a lot between countries, making the data set
imbalanced with regards to classes. To combat this problem, Goldin et al. [2018]
performed downsampling of the data. As the same downsampling will be used
for the later experiments, the process will be explained in this section.

First and foremost, the downsampling starts by grouping the 29 native coun-
tries into 23 languages in total. This includes labeling users from the countries
Ireland, UK, US, New Zealand and Australia into English, Austria and Germany
into German, and Spain and Mexico are grouped as Spanish. After grouping,
the full list of languages is English, German, Dutch, French, Polish, Romanian,
Finish, Swedish, Spanish, Greek, Portuguese, Estonian, Czech, Italian, Russian,
Turkish, Bulgarian, Croatian, Norwegian, Hungarian, Lithuanian, Slovenian and
Serbian.

Furthermore, to achieve class balance, the number of users per label is capped
at the number of users the label with the fewest users has. Lithuania and Slovenia
have the fewest in-domain users (both 104), so for all other labels which have more
users than this, 104 users are randomly selected for the label and the rest are
discarded. This results in 104 ·23 = 2392 unique users, as there are 23 labels and
104 users per label. However, the number of chunks per user within each label is
still uneven. To mitigate this, for each user, the median of the number of chunks
for all users is randomly selected. For the in-domain scenario, the median is 3
chunks per user, and in the out-of-domain scenario the median is 17 chunks.
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Feature Set NLI Accuracy
Char. 3-grams 62.06
Token unigrams 31.26
Spelling 27.74
Grammar errors 8.36
Function Words 20.15
POS 3-grams 13.30
Sentence length 4.79
Social network 5.75
Subreddits 74.46

Table 3.2: The results obtained in Goldin et al. [2018] when running features
individually on the Reddit-L2 corpus using logistic regression.

Evaluation

Goldin et al. [2018] used different evaluation strategies for the in-domain and
the out-of-domain scenario. In both scenarios, the initial downsampling was exe-
cuted, resulting in 2392 users total for each scenario. In the in-domain example,
cross-validation was carried out by training on 90 % of the users in each fold, and
testing on the remaining 10%, using only the in-domain data. Though it is not
directly specified in the original paper, it is assumed that the reported accuracy
is the average accuracy over these 10 folds.

For the out-of-domain scenario, 10% of the 2392 users were randomly selected
uniformly across L1s. These 10% out-of-domain texts functioned as the test
set. Then, the in-domain chunks of the remaining 90% of the users were used
for training. This random sampling was carried out 10 times, and the average
accuracy of the 10 runs was reported. Consequently, Goldin et al. [2018] never
used the out-of-domain chunks for training, only for evaluation.

Features

As the main goal of Goldin et al. [2018] was to explore the novel data set, a
description of the features used and results follows. A summary of all the features
reported and their individual accuracies can be found in table 3.2.

Content features: Content features are features which capture information
about what the author was writing about. For instance – as was observed during
the 2017 shared task – authors of chunks that contain many words such as “Paris”
or “Japan” tend to be from the corresponding countries (France and Japan,
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respectively). The content features used in Goldin et al. [2018] were

• Character 3-grams (top 1000 most frequent)

• POS 1-grams (top 1000 most frequent)

Spelling and grammar features: Also included were features that could be
inferred from an automatic spell checker, as it was hypothesized that native
speakers tend to make less grammatical and spelling errors than non-natives.
However, Goldin et al. do not mention the effect of web-browser spell checks,
which could possibly help users spell words correctly which they might otherwise
have misspelled. The spelling and grammar features included were:

• Edit distance. Average Levensthein distance between the original word
and the correction offered by the spell checker, for all words in a chunk, as
a feature.

• Spelling errors. Insertions, deletions and substitutions that yield the
correct word from the misspelled word were extracted and used as features.
This feature was limited to only the top 400-most frequent letter-to-letter
substitutions.

• Grammar errors. This feature was expressed as a binary feature vector
of length 2000, where each entry was one of the grammar rules obtained by
the automatic spell checker.

Content-independent features: As opposed to the content-dependent fea-
tures, some features are connected to how the author writes in general, regardless
of the topic he or she is writing about. These features tend to capture more of
the stylistic properties of the author, not what the text is about. The content-
independent features used by Goldin et al. [2018] were:

• Function words. This feature was calculated by using the frequencies of
the 400 most common function words.

• POS 3-grams. The normalized frequency of the top 300 most frequent
POS 3-grams in the data set.

• Sentence length. The average length of the sentences in the chunk.
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Social network features: In addition to the general NLI features listed above,
Goldin et al. [2018] also experimented with social network specific features. As
these features are not directly related to NLI in general, they will only be covered
briefly. The features included the overall score users have based on up- and down
votes from other users, the average score of the user per submission, the average
number of submissions, the average number of comments, as well as the thirty
most frequent subreddits the user had visited, compared to the most popular
subreddits for each country.

Results

The performance of the logistic regression system was measured in accuracy,
both in- and out-of-domain. Initially, each feature was considered individually, in
domain, giving an intuition of their individual contribution to the overall results.
The accuracy contribution of each individual feature set can be found in table
3.2. Some of the features alone performed barely over the random baseline, as
the random baseline with 23 languages is 1/23 = 0.043.

Furthermore the content features alone were tested in-domain and out-of-
domain, and the accuracy dropped to nearly half when being tested outside the
European domain. The content-independent features performed worse in general,
but the drop in accuracy was not as substantial when tested out-of-domain. These
results were expected, as the content dependent features reap benefits mostly
when inside the domain, but lose their ability to discriminate once taken outside
the domain. The grammar and spelling errors performed similarly to the content-
independent features.

The most visited subreddits feature performed stunningly, both in and out of
the domain. However, as the authors acknowledge, this feature is not only specific
to the particular data set, but as many users tended to frequent subreddits specific
to their country (someone from Norway might be subscribed to /r/Norway for
example) this feature often contained the correct label itself. This allowed the
model to peek at the correct labels in many cases, which explained why the
Subreddit-feature alone could achieve such high accuracies.

Acknowledging this caveat, Goldin et al. reported the results of using all fea-
tures, excluding the Subreddit feature. Removing the Subreddit feature yielded
a final accuracy of 0.690 in the in-domain scenario, dropping down to 0.36 when
tested out-of-domain.

3.2.9 NLI with Classifier Stacking and Ensembles

Malmasi and Dras [2018] performed a systematic examination of ensemble meth-
ods for NLI, in addition to evaluating deeper ensemble architectures such as
classifier stacks. Malmasi and Dras [2018] presented a set of experiments using
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three ensemble-based models, testing each with multiple configurations and al-
gorithms. The experiments included a rigorous application of meta-classification
models for NLI, and achieved state-of-the-art results on several large data sets,
evaluated both intra-corpus and cross-corpus.

In the initial experiments, Malmasi and Dras [2018] experimented with sin-
gle SVMs and logistic regression models on the TOEFL11 test set, for different
feature types. The feature types used were character 1-3 grams, function word
1-2 grams, lemmas 1-2 grams and word 1-2 grams. Additional features such as
POS tags and context-free grammar rules were also used, but did not perform
too well compared to the other features. The initial experiments showed that the
SVM model performed better than the logistic regression model, and SVMs were
consequently used as the base classifier for the rest of the experiments.

Next, the base SVMs were used in a voting ensemble. The mean probability
voting rule performed best, closely followed by the plurality vote and median
probability vote.

Next, a selection of meta-classifiers were applied to both the discrete one-
hot-encoded outputs of the base models, as well as the continuous probability
outputs. Two important trends were observed based on the meta-classifier ex-
periments: The meta-classification results were better than the ensemble com-
bination methods alone, and the meta-classifiers trained on continuous output
performed better than the discrete label counterparts. Malmasi and Dras [2018]
assume the latter was because the continuous outputs of the base models provided
the meta-classifier with more information than using discrete outputs. SVMs lin-
ear regression meta-classifiers performed well, while using a FFNN meta-classifier
performed slightly below the other models. However, the best performing meta-
classifier was LDA, which obtained an accuracy of 0.868 on the TOEFL11 test
set.

Furthermore, experiments using ensembles of meta-classifiers were also carried
out. The experiments showed that bagging ensembles performed best empirically,
and again that an ensemble of meta LDA classifiers obtained the best results. In
fact, the ensemble of LDA meta-classifiers obtained an accuracy of 0.871 – close
to the state-of-the-art accuracy of 0.882 obtained by ItaliaNLP on the same test
set during the 2017 shared task [Cimino and Dell’Orletta, 2017].

Malmasi and Dras performed additional experiments on other copra of both
English and other language, both intra-corpus and cross-corpus, and achieve
state-of-the-art results on these as well.

3.3 BERT

Devlin et al. [2018] introduce a new attention-based language representation
model called BERT, which stands for Bidirectional Encoder Representations
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Figure 3.1: A comparison of a left-to-right model on the right, compared to
the bidirectional BERT architecture on the left. Figure from Devlin et al. [2018],
with permission from Jacob Devlin.

from Transformers. BERT uses multiple layers of Transformer-models to en-
code sequences into meaningful representations. These representations can be
pre-trained on general tasks, and can later be fine-tuned with just one additional
output layer. This additional layer can be used to create state-of-the-art models
for a wide range of tasks, without substantial task-specific architecture modifi-
cations. Devlin et al. show that BERT is empirically powerful on tasks ranging
from question answering to natural language inference.

Similar fine-tuning approaches have been made previously. However, a ma-
jor limitation for these approaches has been that standard language models are
unidirectional. This limits the choice of architecture that can be used during pre-
training, and can severely restrict the power of the pre-trained representations
[Devlin et al., 2018]. This because every token can only attend to previous tokens
in the self-attention layer of the Transformer. In order to address the issue of
bidirectionality, Devlin et al. introduce a new, multi-layered bidirectional archi-
tecture, as well as two unsupervised tasks which require the model to attend to
the entire sequence, not just predecessing tokens. These two pre-training tasks
will be described in more detail in section 3.3.2. A visualization of how BERT’s
bidirectionality differs from previous systems can be seen in figure 3.1.
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Figure 3.2: An overview of how BERT’s input embeddings are composed. The
final input sequence is a result of the concatenation of position embeddings, A
and B segment embeddings, and WordPiece token embeddings. All three types
of embeddings are learned during training. Figure from Devlin et al. [2018], with
permission from Jacob Devlin.

3.3.1 BERT Model Architecture

BERT mainly consists of multiple layers of fully connected Transformers. The
general architecture is illustrated on the left in figure 3.1. Devlin et al. [2018]
provide and experiment with two versions of the BERT model. The first one
is called BERT-base, and consist of 12 layers (Transformer blocks), where each
Tranformer has 12 attention heads, as opposed to the 8 attention heads used
in Vaswani et al. [2017]. The hidden size is set to 768, which yields a total
of 110 million parameters. The next model, named BERT-large, consists of 24
Tranformer layers, a hidden size of 1024 and 16 attention heads per Transformer,
resulting in a total of 340 million parameters.

BERT uses WordPiece token embeddings as input, with a vocabulary of
30, 000. In addition to just learning the token embeddings, BERT also learns
two segment embeddings, EA and EB , as well as position embeddings. The final
input is created by concatenating the three embedding types into a single input
sequence, as shown in figure 3.2. The two segment embeddings, EA and EB ,
allow BERT to handle both single sentence input, as well as sentence pairs. This
is done by separating sentence pairs by a special separator token ([SEP]) and
adding embedding EA to the embeddings which belong to the first sentence, and
EB to the tokens belonging to the second sentence. For single sentence inputs,
the EB embedding is not used, and only the EA embedding is added. For the
pre-trained models, positional embeddings are learned for sequence lengths of up
to 512 tokens.

The first token of every sequence is always the special classification embed-
ding, [CLS]. For text classification, the final hidden state is the output of the
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Figure 3.3: An illustration of how BERT is used for text classification. A single
sentence (a sequence of tokens) is fed as input and processed into embeddings.
These embeddings are fed through the network of transformers, and the final
hidden state of the first transformer is used for text classification. Figure from
Devlin et al. [2018], with permission from Jacob Devlin.

Tranformer corresponding to the [CLS] token. This process is illustrated in figure
3.3. This final output can then be used for other classifiers for text classification
or other purposes.

3.3.2 BERT Pre-Training Tasks

As mentioned initially, BERT is pre-trained on two different tasks, both of which
require the model to attend to both the right and left context of the target. In
the first task, the language model masks some of the tokens of the input, and the
objective is to predict the original vocabulary id of the masked word based only
on its context. Unlike left-to-right language model pre-training, this objective
allows the resulting presentation to fuse the left and the right context.

In practice, 15% of all WordPiece tokens are masked at random, and the
model is trained to predict the masked words based on the entire sentence. A
problem with this approach is that there is a mismatch between the pre-training
and fine-tuning, since the [MASK] token never appears during fine-tuning. In
order to mitigate this effect, the masked word is not always replaced by the
masked token. Instead, some minor alterations are made. More specifically, the
language model performs the masking in the following way:

• Pick 15% of the tokens at random.
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• 80% of the time, replace the word with the [MASK] token.

• 10% of the time, replace the word with a random word in the vocabulary.

• 10% of the time, keep the word unchanged.

The purpose of the final 10% is to bias the representation towards the actual
observed word. Devlin et al. [2018] report that the random replacement does
not seem to hurt the language understanding capability of the model, as the
replacement only occurs for 1.5% of all tokens, (10% of 15%).

The second task is called next sentence prediction, a binary task which jointly
pre-trains text-pair representations. The task is simple, yet effective: given two
sentences A and B in the corpus, predict whether sentence B is the succession
sentence of sentence A. During pre-training, the model is trained on sentence
pairs where 50% of the time sentence B is the actual sentence following A, and
50% of the time it is not. Devlin et al. [2018] report between 0.97 - 0.98 accuracy
on this task after pre-training.

The pre-training of BERT was carried out using the two abovementioned tasks
on the concatenation of two corpra. The first is a corpus called the BooksCorpus
(800 million words), and the second one is the English Wikipedia (2,500 million
words). The pre-training was carried out on 4 cloud TPUs (Tensor Processing
Units) in Pod configuration, resulting in 16 TPU chips total. Under these set-
tings, the training of BERT-base and BERT-large took 4 days each, and the final
pre-trained models were made publicly available 5 for anyone to use.

3.4 Motivation

Now that the best performing systems of NLI and the details of the attention-
based BERT architecture have been covered, a brief section has been dedicated
to sum up the findings of the literature review and to motivate the experiments
of the next chapters. Some important observations made in the literature review
were:

1. The best performing systems for NLI to date all use some kind or ensemble
or classifier-stacking approach [Malmasi and Dras, 2018; Malmasi et al.,
2017].

2. Some of the most common features for NLI are character-, word- and lemma
n-grams [Malmasi et al., 2017]. Additionally, content dependent features,
such as function words, seem to suffer less when being tested in a different
domain than trained in [Goldin et al., 2018].

5https://github.com/google-research/bert
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3. Deep learning has not yet proven to be able to beat traditional classifiers
on the task of NLI. It is hypothesized that this is due to the lack of data
available for the task [Ircing et al., 2017].

4. The recent release of the Reddit-L2 data set provides a lot more data for the
task of NLI. The data includes texts of more proficient writers of English
[Goldin et al., 2018].

5. The novel, attention-based, deep learning architecture named BERT has
empirically been shown to provide state-of-the-art results on several NLP
tasks Devlin et al. [2018].

These observations bring up some interesting questions. First of all, if BERT
provides state-of-the-art results on several NLP tasks, can it do the same on
the task of NLI? One problem with applying BERT to NLI is that the lack of
data could be a challenge, as with previous deep learning approaches. However,
with the much larger Reddit-L2 data set now available, the problem of lacking
data can be mitigated. Furthermore, as ensemble methods and meta-classifiers
have proven to increase performance on the task of NLI, can ensembles combining
both the traditional state-of-the-art techniques as well as BERT yield even better
performance?

All of these concerns are highly relevant for reaching the main Goal and
answering the Research Questions of this Thesis. The following chapter will
propose a BERT-model suited for the task of NLI, as well as two meta-classifier
architectures combining BERT and traditional classifiers.
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Chapter 4

Architecture and Model

The following chapter describes three model architectures which will be used in
the experiments in chapter 5. First, a stand-alone BERT architecture suited
for the task of NLI will be covered in section 4.1. This model will be used to
answer Research Question 1 and 2, which are concerned with how attention-
based systems perform on the task of NLI in isolation. Next, section 4.2 proposes
two architectures, namely a meta-classifier architecture and an ensemble of meta-
classifiers. These stacked classification architectures use traditional techniques in
combination with BERT in order to answer Research Question 3, regarding how
attention-based systems can be used in combination with existing techniques in
order to increase performance on the task of NLI.

4.1 BERT Model Architecture

The overall BERT architecture consists of the pre-trained BERT-base model
provided by Devlin et al. [2018], as well as a linear layer put on top of the model,
as suggested by Devlin et al.. While the BERT model is pre-trained, the linear
layer must be trained from scratch for each classification task. The linear layer
is randomly initialized at the start of training.

For each example instance, the sequence is fed through BERT, and the pro-
duced output is fed through the external linear layer. Thus the linear layer has
an input size the same as the BERT hidden size output. The output size of the
linear layer is set to be the same as the number of labels for the relevant task
(11 for TOEFL11 and 23 for Reddit-L2). The BERT-base model and the linear
layer are then trained trained together using the cross-entropy loss with regards
to the correct label.
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4.1.1 BERT Casing

In all experiments, the uncased version of BERT has been used, meaning that
the BERT model has only been trained on lowercase text. The reason the cased
version of BERT has not been used is to reduce the complexity of pre-processing
tokenization, as well as reducing the number of experiments required.

It is hypothesized that using the cased version of BERT for NLI might be
beneficial in some cases, but at the expense of other practicalities. For instance,
in English, the names of the months are always capitalized (January, February
and so on), while in Norwegian they are not. Cases like this could perhaps help
the model when discriminating L1s to some extent. For instance, an author with
Norwegian as their L1 might forget to capitalize the name of the months when
writing English, which is information the model could utilize.

However, retaining capitalization would also increase the vocabulary size, as
all words containing capitalized words would require an embedding of their own.
Alternatively, keeping the vocabulary size fixed would simply reduce the number
of unique words available, as one word would have to be represented both in
lower- and upper case. For the above-mentioned reasons, all experiments are
limited to the uncased version of BERT.

4.1.2 BERT Hyper-Parameters

When obtaining state-of-the-art results on several NLP tasks, Devlin et al. use
the same hyper-parameters for all experiments, except for three: The batch size,
the Adam learning rate, and the number of epochs. For these remaining values,
Devlin et al. provide the following possible ranges which they found to work well
across different tasks:

• Batch Size 16, 32

• Learning Rate (Adam) 5e-5, 3e-5, 2e-5

• Number of epochs 3, 4

The experiments using the BERT model will follow these recommendations,
only varying the three hyper-parameters listed above. The rest of the hyper-
parameters will remain fixed. A full list of the hyper parameters of the BERT-
model can be found in table 4.1, with parentheses indicating ranges of possible
values. The only hyper-parameter which will not follow the recommended value
is the maximum sequence length, which has been set to the largest possible value,
512 – the reason for which will be described in more detail in the following section.
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Hyper Parameter Value Description
Hidden Layers 12
Hidden Size 768

Heads 12
Number of attention
heads per transformer.

Epochs (3, 4)
Learning rate (5e-5, 3e-5, 2e-5) The initial learning rate for Adam.
Batch size 16

Maximum sequence
length

512
The maximum total input
sequence length after
WordPiece tokenization.

Warmup proportion 0.1
Proportion of training to perform
linear learning rate warmup for.

Gradient
accumulation steps

1
Number of steps to
accumulate before performing
a backward/update pass.

Table 4.1: The hyper-parameters used for BERT in all experiments, unless stated
otherwise. Parentheses indicate a range of possible values.

4.1.3 Deciding BERT’s Maximum Sequence Length

One of BERT’s hyper-parameters is the maximum input sequence length, for
which the recommended value is 128. However, for a text document classification
class such as NLI, this is not ideal. Most documents available in the NLI-data
sets contain far more tokens than 128, which means that a lot of information in
each document will be thrown away if this value is used. In order to get a notion
of how long each document in the available data is, the average and maximum
number of WordPiece tokens per document has been counted and calculated in
table 4.2. For the TOEFL11 data set, almost 99% of all documents contain more
than 128 tokens. However, less than 5% of the documents have more than 512
tokens. The 5% of documents which have a sequence length longer than 512 will
lose some information, but the effect on performance should be negligible. For
this reason, the maximum sequence length for BERT has been set to 512 for
all experiments, in order for BERT to take full advantage of the documents in
their entirety. 512 is the maximum possible value for the sequence length, as the
pre-trained model has not been trained for longer sequences. For the Reddit-L2
data set, however, each document far surpasses 512 tokens. For this reason, the
documents will have to be split up into texts of roughly 512 tokens in order to
not waste data.
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Data Set Max. Tokens Avg. Tokens >128 >512
TOEFL11 910 369 98.94% 4.9%
RedditL2 18149 2072 100% 100%

Table 4.2: Table showing the maximum and average number of WordPiece tokens
per document in the TOEFL11 training set and Reddit-L2 in-domain data set.
Columns 4 and 5 show the percentage of documents which have a sequence length
greater than 128 and 512, respectively.

4.1.4 Memory Issues and Batch Size

When implementing the BERT model, some preliminary experiments were run
to check whether the code compiled. During these preliminary experiments it
became clear that BERT-large with a maximum sequence length of 512 caused
memory issues with the GPUs available (see section 5.2.4 for more information
on the resources available). Changing the batch size to 32 for BERT-base also
caused the same memory errors. With a sequence length of 512, the largest
models able to run with the resources available were BERT-base with a batch
size of 16 or less, and BERT-large with a batch size of 1. Any batch size larger
than 1 with a sequence length 512 caused the aforementioned memory issues.

For this reason, all experiments will only use the BERT-base model, except
for one: running BERT-large with a batch size of 1, mostly as a curiosity. This is
unfortunate, as Devlin et al. [2018] report that BERT-large provides a significant
boost in performance over BERT-base, even for small data sets. Additionally, as
BERT-base with a batch size of 32 caused the same issues, only batch sizes of 16
or smaller were considered.

4.2 Meta-Classifier Architectures

As the main goal of this Master’s Thesis is to explore how attention-based systems
can be used to improve performance on the task of NLI, and Research Question
3 is specifically concerned with how an attention-based system can be used in
union with the current-state-of-the art approaches, two novel architectures are
proposed. The architectures are both heavily inspired by the classifier-stacking
of Malmasi and Dras [2018], but include BERT as an optional base-classifier.
The first architecture is a stacked-architecture consisting of homogeneous base
classifiers, which combined output is fed into a meta-classifier, which provides
the final decision of the stack. The second architecture is similar to the first, but
instead of using a single meta-classifier, an ensemble of meta-classifiers is applied
to provide the final decision of the stack.
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4.2.1 Meta-Classifier Architecture

An illustration of the proposed meta-classifier architecture can be found in figure
4.1. The inclusion of BERT as a base-classifier is optional, indicated by stippled
lines. The stack starts at the left of the illustration, where all T base classifiers
are fed the raw text input. The base classifiers are all homogeneous, except
for BERT. Each base classifier is trained on different feature types, which is
indicated by the preliminary Fi boxes, which transform the raw text into different
types of feature-vectors. After training, each base classifier produces a vector of
probabilities for each class. Malmasi and Dras [2018] experiment with using
both the continuous probability output of the models as well as the discrete one-
hot encoded representation of the labels, and find that outputting continuous
probabilities yields better performance in general. Based on this observation, the
meta-classifier architecture will do the same. Next, all the probaility vectors are
concatenated, creating a 1 x T ·num classes or a 1 x (T+1) ·num classes vector,
depending on whether BERT is included or not. Finally, the meta-classifier is
trained on the concatenated output of the base classifiers and the original training
labels, to produce a single prediction per example instance.

4.2.2 Ensemble of Meta-Classifiers Architecture

An illustration of the proposed stack with an ensemble of meta-classifiers can
be found in figure 4.2. Most of the architecture’s details are the same as the
single meta-classifier architecture described in the previous subsection. The key
difference is that the single meta-classifier is replaced with an ensemble of meta-
classifiers. These meta-classifiers are put together in a bagging-ensemble, where
all models are trained on different subsets of the outputs of the base classifiers.
The bagging ensemble has been chosen as it was the best performing ensemble
found in Malmasi and Dras [2018].
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Figure 4.1: An illustration of a meta-classifier stack. All base classifiers, in-
cluding BERT, are fed the same input. The concatenated output is fed into the
meta-classifier which produces the stack’s final decision.
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Figure 4.2: An illustration of a stack with an ensemble of meta-classifiers.
All base classifiers, including BERT, are fed the same input. The concatenated
output is fed into the ensemble of meta-classifier which produces the stack’s final
decision.
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Chapter 5

Experiments and Results

The following chapter will present all experiments, and their corresponding re-
sults. First, an experimental plan is proposed. In this section each experiment,
as well as what Research Question the experiment is designed to answer, is ex-
plained in detail. Next follows a section covering the details of the experimental
setup, including technologies used and the environment the experiments were run
in. Finally, the results of each experiment are presented and briefly discussed.

5.1 Experimental Plan

5.1.1 Baseline Experiments

The first experiment will simply work as a baseline for comparison of future
results. For this initial experiment, a simple multinomial Naive-Bayes and an
SVM classifier will be trained and evaluated on the unigram representation of the
documents. As in Malmasi and Dras [2018] and other work, the unigram feature
vector will be normalized using the TF-IDF score of each word. The Baseline
Experiments will be carried out on both TOEFL11 and the Reddit-L2 data sets.
The exact details of the data used will be covered in the following experiments.
Naive-Bayes will be used as a baseline, as it is a common baseline classifier for
text-classification tasks. Additionally, an SVM will serve as a more demanding
baseline – as the related work section has shown that simple SVM architectures
already work quite well on the task of NLI. Word unigrams have been chosen since
it is a simple feature type, well suited for baseline experiments. Additionally, the
random baselines for each test scenario will be provided. The random baselines
are the probabilities of guessing the correct prediction by choosing any of the
given classes at random.
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5.1.2 Experiment 1 – Initial Experiments

Experiment 1 is designed to directly answer Research Question 1 – how an
attention-based system alone performs on the task of NLI. For these experi-
ments, BERT will be trained and tested, both on the TOEFL11 data set and the
Reddit-L2 in-domain scenario. Additionally, these initial experiments will serve
as an indicator of what hyper-parameters the model performs best under.

Experiment 1a

As most of the related literature trains on the TOEFL11 training set and eval-
uates on the official TOEFL11 test set, an initial experiment following the same
setup using BERT will be carried out. This initial experiment will give an in-
dication of how an attention-based architecture performs on the task of NLI in
isolation. The results obtained in Experiment 1a should be directly comparable
to the results reported by most of today’s systems. In this initial experiment,
the BERT model described in section 4.1 will be used, and all hyper parameters
will be set to the default values listed in table 4.1 from section 4.1.2. How-
ever, the hyper-parameters with several recommended values (sequence length,
learning-rate and the number of epochs) will be varied, one parameter at a time.
As discussed in section 4.1.4, running any BERT model with a batch size larger
than 16 caused memory issues with the devices available. Because of this, the
initial batch size will be kept constant at the recommended value of 16, and only
the number of epochs and the learning-rate will be varied. Additionally, a learn-
ing rate of 4e-5 will be added for completion, and 5 epoch experiments will also
be run in order to see to what extent the model is overfitting as the number of
epochs increases. With 3 possible epoch values and 4 different learning rates to
choose from, a total of 3 · 4 = 12 different experiments must be run. After these
initial experiments have been carried out and the best performing settings have
been found, experiments using batch sizes below 16 will be run in order to explore
the impact of the batch size. Additionally, mostly as a curiosity, the BERT-large
model will be run with a batch size of 1, under the optimal parameter settings
found for BERT-base, to see if a larger model yields better results.

Experiment 1b

Similarly to Experiment 1a, the same experiment will be carried out on the
Reddit-L2 in-domain data set. In order to make the results comparable to other
work carried out on the same data set, the same downsampling and 10-fold cross-
validation as the in-domain scenario described in Goldin et al. [2018] will be per-
formed. Due to the size of the data set and the fact that 10-fold cross-validation
requires training a model 10 times, only one experiment will be carried out for the



5.1. EXPERIMENTAL PLAN 69

Sub-Chunk Sub-Chunk Pred. Chunk Pred. Correct
username_chunk1_0 English English English
username_chunk1_1 English English
username_chunk1_2 German English

Table 5.1: Table showing an example of how the heuristically split sub-chunks
are recombined into a single prediction for the original chunk as a whole by
majority vote. In this example, the sub-chunk accuracy would be 2/3 = 0.667,
while the accuracy evaluated on the original chunk would be 1/1 = 1.0.

Reddit-L2 data set, as opposed to running the 12 experiments from Experiment
1a twice with new data. Instead, the hyper-parameter settings which performed
best on the TOEFL11 data set in Experiment 1a will also be used for the Reddit-
L2 experiments.

Division of Sub-Chunks for Reddit-L2 As discussed in section 4.1.4, all
documents in the Reddit-L2 data set have far more tokens than BERT’s maximum
sequence length of 512. For this reason, a heuristic division of the documents will
be applied. The heuristic will simply be to divide all examples into smaller sub-
examples (or sub-chunks) with a length of roughly 512 tokens by splitting on
spaces. For instance, if a user with the username username1 has a chunk_1

with 1500 tokens in total, this chunk would be divided into three sub-chunks of
roughly 512 tokens each, namely: username1_chunk1_0, username1_chunk1_1
and username1_chunk1_2. After training has been performed on the sub-chunks,
evaluation will be carried out both on the individual sub-chunks, and on the
recombination back into the original chunks. The latter will be done by using
a majority vote based on each sub-chunk prediction, for the entire chunk. An
example of this recombination can be found in table 5.1. In this example, the
model predicts two parts of the original chunk to be English, and the final part
of the chunk to be German. This would give a sub-chunk accuracy of 2/3 =
0.667. However, as English is the most predicted label for all the sub-chunks,
the majority prediction for the chunk as a whole would be English, which gives
a correct prediction for the document and a chunk accuracy of 1/1 = 1.0. Ties
are broken randomly. It is important to notice that the previous work on the
Reddit-L2 data set done by Goldin et al. [2018] evaluates on the prediction of
each chunk. For this reason, the accuracies obtained at the chunk level will be the
comparable measurement of the systems performance, not the ad hoc sub-chunks,
which have only been created in order to fit the limitations of BERT.
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5.1.3 Experiment 2 – Testing Out-of-Domain Robustness

Experiment 2 is designed to directly answer Research Question 2 – how an
attention-based system performs on the task of NLI when tested on documents
concerning topics different from what it was initially trained on. In order to
explore this, the out-of-domain experimental setup described in Goldin et al.
[2018] and explained in section 3.2.8, will be followed, using the same BERT-
architecture as in Experiment 1a and 1b. The model will be trained on the
in-domain data, and tested on out-of-domain data of different users. Again the
model will be trained under the optimal hyper-parameter settings found in Ex-
periment 1a. This way, the results will be directly comparable to the in-domain
results obtained in Experiment 1b, which will show how much the model suffers
when trained out-of-domain.

5.1.4 Experiment 3 – Combining Attention With State-of-
the-Art Techniques

Experiment 3 is designed to answer Research Question 3 – whether the com-
bination of an attention-based system and the techniques used in the current
state-of-the-art can improve performance on the task of NLI. Experiment 3 will
use the meta-classifier and ensemble of meta-classifiers architectures described in
section section 4.2.1 and 4.2.2, respectively. A grid search over several hyper-
parameters will be carried out, namely the different base classifiers, different
types of features per base classifier, and the maximum number of features per
base classifier. First, the different models and feature types will be explored in-
dividually, in order to assess their individual contribution to the meta-classifier
or ensemble. Both SVMs and FFNNs will be used as base classifiers. SVMs,
as the literature review showed, are still the most popular and best performing
classifiers for NLI. FFNNs have been included as they are typically quick to train,
and showed promising results in Ircing et al. [2017]. As for features, word 1-3
grams, character 1-4 grams and lemma 1-2 grams will be used, in addition to the
content-independent function word 1-2 grams. The features chosen are based on
the features used in Ircing et al. [2017] and Malmasi and Dras [2018]. Similarly to
Malmasi and Dras [2018], the main focus will not be on feature exploration, but
instead using a predefined set of features, and evaluating whether the inclusion
of BERT can improve the results obtained by these features alone.

After the individual base classifiers have been assessed, the continuous out-
puts of the models will be used as input for the single meta-classifier, as well
as for the ensemble of meta-classifiers. In these experiments, both SVMs and
FFNNs will be tested as meta-classifiers. All experiments will be run on both
the TOEFL11 data set and the Reddit-L2 data set – both in- and out-of-domain.
The meta-ensemble will have the same structure as the best performing ensemble
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described in Malmasi and Dras [2018]. That is, a bagging ensemble using 200
meta classifiers, each trained on 80% of the total training data. All experiments
will be run both with and without the inclusion of BERT as one of the base
classifiers. The latter will allow for evaluation of whether the attention-based
classifier can help improve performance on the task, as opposed to only using
traditional techniques.

5.1.5 Experiment 4 – More Data

While the Reddit-L2 data set is huge compared to previous data sets used for NLI,
most of the data is discarded when performing downsampling. The downsampling
is done in order to maintain class balance. However, using evaluation metrics
which take class imbalance into consideration – such as the macro-averaged F1

score – the problem of class imbalance can be mitigated. As discussed by Ircing
et al. [2017] and others, lack of data is hypothesized to be one of the main reasons
traditional models still perform better than deep learning models.

In light of this, experiment 4 will be concerned with utilizing as much data as
possible. Experiment 4 will be to train BERT on the out-of-domain Reddit-L2
data, and then use the entire in-domain data set for testing. This experiment
will show how the same attention-system as used in Experiments 1a, 1b and 2
performs with more data available. Additionally, training on only the out-of-
domain data will display how the system reacts when trained on a wide range of
topics, and tested on different ones.

The out-of-domain training data will be engineered to be roughly 10 times
the size of the in-domain test set in order to maintain a fair training-to-test
ratio, and will be balanced to contain roughly the same number of examples per
label. In practice, this is done by capping the maximum number of training sub-
chunk examples per label to be 80, 000. This heuristic division will cause some
class-imbalance in the training-data, as some languages have less than 80, 000
sub-chunks. The most extreme case is Slovenian, which has 24, 787 sub-chunks
available out-of-domain. This issue will have to be tolerated, however, as the
intent of Experiment 4 is to explore how more data can impact the performance
of the system. An alternative solution would be to set the cap at 24, 787 sub-
chunks per class. This would result in 24, 787 ·23 = 570, 101 training sub-chunks,
as opposed to close to three times as many when setting the cap at 80, 000.
Setting the cap at 80, 000 might bias the model towards the largest classes such as
English, Dutch and German. However, as most classes contain more than 80, 000
sub-chunks, the problem should not be too significant. Additionally, using macro-
averaged F1 as the evaluation metric will measure the model’s performance with
the same weighting for each class, accounting for such a bias to some extent.
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5.2 Experimental Setup

In order to make the results provided reproducible, the following section is ded-
icated to the details of the experimental setup used, in addition to libraries and
tools used for the implementation of all experiments. The code for the entire
Master’s Thesis is readily available at GitHub1.

5.2.1 BERT Implementation

BERT was implemented using PyTorch2, an open source deep learning platform,
and the PyTorch implementation of BERT3. The latter is a PyTorch clone of the
official BERT implementation4 released by Google for a different deep learning
platform called TensorFlow. The PyTorch implementation has empirically been
shown to give comparable results as the original implementation, and uses the
same pre-trained BERT models as provided by Devlin et al. [2018].

5.2.2 SVM, FFNN and Other Tools

All traditional classifiers were implemented using the open source Scikit-Learn5

(Sklearn) Machine Learning library. In addition, Sklearn was used for feature
manipulation, such as tranforming text into TF-IDF weighted vectors, etc. For
SVMs the default parameters of Sklearn6 were used, but with a linear kernel, as it
was the kernel used for all base classifiers in Malmasi and Dras [2018]. All FFNNs
were run with the default parameters of Sklearn7, unless specified otherwise. For
manipulation of data and keeping track of the outputs of the base classifiers, the
open source Pandas Data Analysis library8 was used. For basic text-processing
and feature manipulation (such as creating function and lemma words) the open
source Natural Language Toolkit (NLTK9) was used.

5.2.3 Data Sets

For all experiments, either the TOEFL1110 or the Reddit-L211 data set have been
used, both of which are openly available. Regarding the TOEFL11 data set, the

1https://github.com/stianste/BERT-NLI
2https://pytorch.org/
3https://github.com/huggingface/pytorch-pretrained-BERT
4https://github.com/google-research/bert
5https://scikit-learn.org/stable/
6https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
7https://scikit-learn.org/stable/modules/generated/sklearn.neural network.MLPClassifier.html
8https://pandas.pydata.org/
9https://www.nltk.org/

10https://catalog.ldc.upenn.edu/LDC2014T06
11http://cl.haifa.ac.il/projects/L2/index.shtml
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raw text documents have been used. As for the Reddit-L2, the Reddit-L2 chunks
were used, as in Goldin et al. [2018].

5.2.4 Environment and Resources

All experiments were carried out on the NTNU HPC Idun Cluster12. Running
jobs on Idun allows for the use of two GPUs, both with 16 GB each, which were
used for all experiments which required training of BERT. For most jobs, 64 GB
RAM was sufficient, but for the largest job (Experiment 4) 128 GB RAM was
needed in order to keep both BERT and all the data in memory. Running BERT
on TOEFL11 for 5 epochs typically took 2-3 hours, while the final experiment
using millions of Reddit-L2 examples took more than 6 days to run.

5.3 Experimental Results

5.3.1 Results of Baseline Experiments

Classifier / Data Set Naive-Bayes SVM Random Baseline
TOEFL11 Test 0.559 0.726 0.091
Reddit-L2 0.377 0.716 0.043
Reddit-L2† 0.350 0.574 0.043
Reddit-L2* 0.176 0.400 0.043
Reddit-L2*† 0.169 0.322 0.043

Table 5.2: Table showing the accuracies obtained by the baseline classifiers when
trained using TF-IDF weighted unigrams on the TOEFL11 and Reddit-L2 data
sets. Asterix indicates the out-of-domain scenario of Reddit-L2, and † indicates
that the model was evaluated on sub-chunks. For TOEFL11, both classifiers
were trained on the training set and evaluated on the TOEFL11 test set. For
the Reddit-L2 experiments, the average accuracy over a 10-fold cross-validation
is reported.

The results of the Baseline Experiments can be found in table 5.2. Both classifiers
clearly perform better than the respective random baslines, and the SVM clearly
outperforms the Naive-Bayes classifier, as expected based on related work. The
simple unigram SVM baseline outperforms the best accuracy of 0.690 obtained
on the Reddit-L2 in-domain scenario using logistic regression in Goldin et al.
[2018]. The unigram SVM also beats the previous best out-of-domain score of

12https://www.hpc.ntnu.no/display/hpc/Idun+Cluster
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0.362 with an accuracy of 0.4. The accuracy of both models drop when tested
in the out-of-domain Reddit-L2 scenario, and further drops when the models are
evaluated on the more granular sub-chunks.

5.3.2 Results of Experiment 1a

Learning-rate / Number of epochs 3 4 5
2e-5 0.749 0.760 0.759
3e-5 0.746 0.765 0.777
4e-5 0.736 0.760 0.761
5e-5 0.734 0.746 0.765

Table 5.3: Table showing the accuracies obtained by BERT for different number
of epochs and learning rates, trained on the TOEFL11 training set and evaluated
on the TOEFL11 test set.

The results of training and testing BERT on TOEFL11 can be found in table
5.3. The results are also visualized in figure 5.1. As can be seen in the figure,
increasing the number of epochs typically increases the final accuracy, regardless
of the learning-rate used. The best results are obtained using a learning-rate
of 3e-5 for 5 epochs, with a final accuracy score of 0.777. Under these hyper-
parameters, the model obtained a final training loss of 0.110, and an evaluation
loss of 0.824. Out of curiosity, the same experiment was also run with the same
parameters for 10 epochs, in order to see how the model performs after an even
higher number of epochs. The 10 epoch model achieved an accuracy slightly
below the best one at 5 epochs, with a training loss of 0.004. However, the final
evaluation loss increased from 0.824 to 1.140 on the test set. The fact that the
training loss tends to zero after 10 epochs, while the evaluation loss is higher than
what it was at 5 epochs, indicates that the model overfits on the training data
and is not able to generalize with a higher number of epochs. For this reason,
the number of epochs have been kept to 5 for the remaining BERT experiments.

Results of Varying the Batch Size

After the initial experiments were run with a constant batch size of 16, the same
model was run with different batch sizes under the optimal settings – a learning-
rate of 3e-5 and the number of epochs set to 5. The results obtained under these
settings with different batch sizes can be found in table 5.4. There seems to be
no indication that a higher or lower batch size is better or worse. For this reason,
the remaining experiments were run with a batch size of 16 in order to keep the
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Figure 5.1: A plot showing the accuracies obtained by BERT on the TOEFL11
test set with different learning rates and total number of epochs.

Batch Size 1 2 4 8 16
Accuracy 0.770 0.747 0.770 0.757 0.777
Macro F1 0.769 0.746 0.769 0.757 0.777

Table 5.4: Table of the different accuracies and F1 scores obtained by BERT-base
on the TOEFL11 test set for different batch sizes.

training time as low as possible, without encountering memory issues or reducing
model performance. Additionally, the F1 score is reported. The F1 score of the
model is typically almost identical to the accuracy of the model. This turned
out to be consistent across most experiments run, which agrees with the findings
from the 2017 Shared NLI Task [Malmasi et al., 2017].

BERT-Large Results

As described in the experimental plan, an experiment running BERT-large with
a batch size of 1 was also carried out. BERT-large was trained and evaluated
on the TOEFL11 data set, using the best performing learning-rate and number
of epochs found for BERT-base, namely 3e-5 and 5, respectively. Unfortunately,
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under these settings, BERT-large was not able to converge. After 5 epochs,
BERT-large outputted the same probability for each L1 for all test cases, causing
the model to predict the same label (Korean) for all cases. As the test set has the
exact same number of examples per language, this resulted in a final accuracy
equivalent to the random baseline of 1/11 = 0.091.

In order to combat this, BERT-large was run with both a smaller and larger
learning rate in order to see how the model learns. With a larger learning-rate
of 5e-5, the model was still not able to produce any useful output after 5 epochs.
With a learning-rate of 2e-5 however, the model produced a final accuracy on the
TOEFL11 test set of 0.759 and an equivalent F1 score. BERT-base with a batch
size of 1 obtained a final accuracy of 0.770. In other words, BERT-large does
not seem to provide any significant benefit over BERT-base for the TOEFL11
data set after 5 epochs and a batch size of 1.

5.3.3 Results of Experiment 1b

The results of running BERT on the Reddit-L2 in-domain scenario can be found
in table 5.5. After downsampling the data set and splitting all documents into
sub-documents of max 512 tokens, there were roughly 18, 300 training examples
and 1943 test cases per fold. Both sub-chunk and chunk/document accuracy is
reported. After recombining all sub-chunks, there was an average of 500 test
chunks per fold. The final average accuracy across the ten folds was 0.805 –
a substantial improvement over the current state-of-the-art accuracy of 0.690
reported by Goldin et al.. When evaluating on each individual sub-chunk, the
final accuracy drops to 0.651. This indicates that the model predicts parts of
the chunks incorrectly, but performs well on the documents/chunks as a whole
using majority vote. The model seems to be performing rather consistently across
different folds.

5.3.4 Results of Experiment 2

The results of running BERT in the out-of-domain Reddit-L2 scenario can be
found in table 5.6. The final average over random 10-fold cross-validation was
0.502 – a clear improvement over the single SVM baseline of 0.4. The result is
also a substantial improvement over the current state-of-the-art of 0.362 obtained
in Goldin et al. [2018]. Additionally, it should be mentioned that the train-test
split in the out-of-domain scenario might be regarded as unfavorable. After
downsampling, the 10% out-of-domain chunks used for testing outnumber the
90% in-domain chunks used for training. In fact, most folds had between 16, 000
and 16, 500 training examples, but somewhere in between 20, 000 and 21, 000 test
cases. It is common to have the training set be between 5 and 10 times as big as
the test set, but with the out-of-domain scenario the training set is around 0.785
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Fold number Sub-Chunk Accuracy Chunk Accuracy
1 0.682 0.850
2 0.636 0.824
3 0.646 0.771
4 0.645 0.825
5 0.656 0.822
6 0.639 0.810
7 0.668 0.780
8 0.630 0.802
9 0.656 0.761
10 0.657 0.801

Final average 0.651 0.805

Table 5.5: Table of the different accuracies and obtained by BERT on the
Reddit-L2 in-domain scenario for different cross-validation folds.

Fold number Sub-Chunk Accuracy Chunk Accuracy
1 0.411 0.515
2 0.406 0.483
3 0.394 0.509
4 0.405 0.499
5 0.405 0.506
6 0.392 0.508
7 0.389 0.496
8 0.408 0.490
9 0.408 0.501
10 0.382 0.513

Final average 0.400 0.502

Table 5.6: Table of the different accuracies and F1 scores obtained by BERT on
the Reddit-L2 out-of-domain scenario for different cross-validation folds.
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times as big as the test set. This makes for a rigorous evaluation scenario, as the
system is tested on more cases than that which it is trained on.

Comparing the out-of-domain results with the in-domain results of Experi-
ment 1b, BERT’s accuracy drops from 0.808 to 0.502, a 1−(0.502/0.808) = 37.9%
relative drop in accuracy. This, as opposed to the 1−(0.362/0.690) = 47.5% rela-
tive drop in accuracy obtained in Goldin et al. [2018], indicates that BERT might
be more robust than logistic regression when tested off-topic.

5.3.5 Results of Experiment 3

Next follows the experiments of using a meta-classifier and an ensemble of meta-
classifiers on both the TOEFL11 and Reddit-L2 data sets. First, the results
of each base-classifier trained on a different feature type are presented. Next,
the results of using different meta-classifiers based on the outputs of the base
classifiers are reported, both with and without BERT. Following these results are
the results of using an ensemble of meta-classifiers. First, the results obtained on
the TOEFL11 data set are reported, followed by the Reddit-L2 results.

SVM FFNN
Feat/ Max 5000 10000 30000 inf 5000 10000 30000 inf
CHAR2 0.549 0.549 0.549 0.549 0.566 0.561 0.564 0.569
CHAR3 0.700 0.704 0.703 0.703 0.726 0.735 0.743 0.733
CHAR4 0.728 0.744 0.759 0.758 0.735 0.758 0.789 0.795
WORD1 0.715 0.728 0.731 0.727 0.732 0.755 0.761 0.757
WORD2 0.633 0.695 0.731 0.729 0.677 0.715 0.766 0.775
WORD3 0.517 0.570 0.608 0.590 0.507 0.578 0.647 0.655
LEMMA1 0.712 0.707 0.705 0.705 0.720 0.743 0.745 0.742
LEMMA2 0.667 0.699 0.740 0.744 0.665 0.745 0.763 0.763
FUNC1 0.405 0.405 0.405 0.405 0.418 0.415 0.401 0.405
FUNC2 0.475 0.482 0.485 0.485 0.446 0.465 0.476 0.482

Table 5.7: Table showing the accuracies obtained by each base-classifier for
different features on the TOEFL11 test set. The maximum number of features
vary between 5000, 10, 000, 30, 000 and no limit.

Results of Individual Base Classifiers on TOEFL11

The accuracies obtained by each base classifier for different feature types on the
TOEFL11 test set are included in table 5.7. All classifiers were run with the TF-
IDF weighted representation of each feature-type, with the maximum number of
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features per example capped at 5000, 10, 000, 30, 000 and no limit. Furthermore,
a visual representation of the different feature types for the SVM base classifier
can be seen in figure 5.2, and the FFNN in figure 5.3. As can be read from the
results, the single best performing feature type using both SVM and FFNN was
character 4-grams. The SVM model seems to favor feature vectors of size 30, 000,
while the FFNN tends to perform better with no feature limit. For this reason,
in the following experiments, the max features size has been set to 30, 000 and
infinite for the SVM and FFNN, respectively. It is hypothesized that the FFNN
is better at filtering out the noise obtained by including more TF-IDF features,
while still finding useful information when using more than 30, 000 features.

Word 3-grams perform surprisingly bad when compared to word 1- and 2-
grams. Additionally, as related work suggests, the content-independent function
word features perform far worse than the content-dependent features.

Figure 5.2: A bar diagram showing the different accuracies obtained by a single
SVM model for different feature types and maximum number of features values
on the TOEFL11 test set.
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Figure 5.3: A bar diagram showing the different accuracies obtained by a sin-
gle feed-forward neural net for different feature types and maximum number of
features values on the TOEFL11 test set.

Meta-Classifier Results

The result of training a meta-classifier on the continuous probability outputs of
the 10 base classifiers from the previous experiment can be found in table 5.8.
The inclusion of BERT means appending the n classes logit outputs of BERT
to the training and test data. Experiments were also carried out normalizing
BERT’s output using softmax and raw probabilities, but using the raw logit
output performed better over all. Perhaps surprisingly, FFNNs perform best
both as base-classifier and meta-classifier, and the final accuracy obtained by
using FFNN base classifiers and BERT with a FFNN meta-classifier is 0.853 –
closing in on the current best text-only score achieved on the TOEFL11 test set
of 0.882 by Cimino and Dell’Orletta.

The inclusion of BERT seems to have a significant impact on the performance
of the meta-classifier. Using SVMs as base and meta-classifier, the final accuracy
obtained increases from 0.756 to 0.794 – an improvement of 3.8 percentage points.
The FFNN trained on the SVM base classifiers seem to reap even more benefits
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Base Classifier / Meta-Classifier SVM FFNN
SVM 0.756 0.745
SVM + BERT 0.794 0.791
FFNN 0.819 0.825
FFNN + BERT 0.838 0.853

Table 5.8: Table showing the different accuracies for different combinations of
base classifiers and meta-classifiers. SVMs were run with a maximum of 30, 000
features, while the FFNN models were trained on an unlimited number of fea-
tures.

Base Classifier / Meta-Classifier Ensemble SVM FFNN
SVM 0.755 0.801
SVM + BERT 0.798 0.823
FFNN 0.827 0.808
FFNN + BERT 0.849 0.851

Table 5.9: Table showing the different accuracies for different combinations of
base classifiers and ensemble meta-classifiers obtained on the TOEFL11 test set.
SVMs were run with a maximum of 30, 000 features, while the FFNN models
were trained on an unlimited number of features.

when including BERT, increasing from 0.745 to 0.791 – an improvement of 4.6
percentage points. The best final classifier also goes from an accuracy of 0.825
to 0.853 – a 2.8 percentage point improvement.

Ensemble of Meta-Classifiers Results

The results of training an ensemble of meta-classifiers can be found in table 5.9.
Surprisingly, the results of running an ensemble of meta-classifiers is similar to
just using a single meta-classifier. However, the inclusion of BERT causes a
significant increase of 4.3 percentage points for the best performing ensemble.
Experiments using LDA as the meta-classifier were also carried out, but pro-
vided disappointing results, a lot lower than the best single base classifier. It
is hypothesized that this low performance is due to the issue of collinearity of
the features used. Using a more diverse feature set might have made LDA a
more viable candidate, both as a single meta-classifier and in an ensemble. As no
improvement was observed using an ensemble of meta-classifiers, the remaining
experiments were carried out using a single FFNN meta-classifier.
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Results of Meta-Classifiers on Reddit-L2

Using the stack which performed best on the TOEFL11 data set – that is, the
FFNN meta-classifier trained on the outputs of the base FFNN classifiers and
BERT – the same setup was run on the Reddit-L2 in- and out-of-domain scenar-
ios.

Meta-Classifier In-Domain Results Running the same 10 folds as the pre-
vious in-domain experiment, the final ensemble, without BERT, obtained an
accuracy of 0.765 and an F1 score of 0.764. Running the same ensemble with
BERT, over the same 10 folds, yielded an accuracy of 0.818, and an F1 score
of 0.815. In other words, BERT provides the ensemble with an absolute boost
of 5.3 percentage points. Compared to the accuracy of 0.805 obtained by BERT
alone on the same task in Experiment 1b, the ensemble provides BERT with an
overall increase of 1.3 percentage points. Based on this, it might seem like BERT
is doing most of the heavy lifting in the ensemble in the in-domain scenario,
though BERT does receive a minor performance boost when used together with
the ensemble.

Meta-Classifier Out-of-Domain Results The final average accuracy over
the same 10 out-of-domain folds which were used in Experiment 2 obtained by
the meta-classifier was 0.452, without using BERT. Including BERT in the en-
semble yielded an average accuracy of 0.529 and an F1 score of 0.530 – an im-
provement of 7.7 percentage points as opposed to not using BERT. The results
seem comparable to the in-domain results, as the final meta-classifier accuracy is
slightly higher than the accuracy obtained by using BERT alone – from 0.808 to
0.815 in the in-domain scenario – and 0.502 to 0.529 in this case. The latter is
an increase of 2.7 percentage points.

5.3.6 Results of Experiment 4

Experiment 4, as described in section 5.1.5, was concerned with using as much
data as possible from the out-of-domain part of the Reddit-L2 data set, and test
BERT on the entire in-domain part. After applying the construction described in
section 5.1.5, the data set consisted of 1, 491, 198 training examples (sub-chunks)
and 282, 385 test sub-chunks. After recombining the sub-chunks into the original
chunks, there were a total of 71, 716 test chunks – far more than the roughly
500 test chunks per fold in the in-domain scenario of Goldin et al. [2018] and
Experiment 1b. The final accuracy obtained by BERT on all of the 71, 716
test chunks in the in-domain Reddit-L2 data set was 0.861. For comparison,
the Naive-Bayes unigram baseline classifier from the Baseline Experiments was
trained and tested on the same data, and achieved an accuracy of 0.278. The
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SVM baseline classifier was also run on the same data, but unfortunately the
model was not even close to finishing training after 4 days, and was therefore
cancelled after reaching the maximum time limit. It would be preferable to
have the SVM baseline accuracy as well, in order to evaluate how good the final
accuracy actually is.

Label Train. Sub-chunks Test Sub-chunks Test Chunks
English 80, 000 80, 000 19,938
German 80, 000 38,442 9930
Dutch 80, 000 20,291 5240
French 80, 000 15,172 3889
Polish 80, 000 15,071 3814
Romanian 80, 000 13,232 3271
Finish 80, 000 11,129 2767
Swedish 80, 000 10,469 2686
Spanish 80, 000 9192 2258
Greek 71, 365 7802 2030
Portuguese 80, 000 7176 1747
Estonian 38, 371 6156 1585
Czech 59, 332 5908 1520
Italian 80, 000 5884 1470
Russian 55, 948 5248 1391
Turkish 59, 089 5039 1317
Bulgarian 40, 792 4291 1067
Croatian 49, 558 4121 1057
Norwegian 80, 000 4068 1056
Hungarian 49, 333 3930 1040
Lithuanian 47, 559 3710 1016
Slovenian 24, 787 3108 869
Serbian 35, 064 2946 758
Total 1,491,198 282,385 71,716

Table 5.10: Table showing the number of sub-chunks available in the Reddit-L2
in-domain data set for different labels. English has far more sub-chunks than any
other label. Additionally, the number of out-of-domain training sub-chunks are
included.

However, as mentioned in section 5.1.5, the in-domain test set is not fully bal-
anced with regards to classes, so the accuracy achieved might have been arti-
ficially high. Table 5.10 shows the different number of chunks and sub-chunks
per label. English clearly has the most labels, and constitutes 27.8% of the test
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labels. This is expected, as all users from Ireland, UK, US, New Zealand and
Australia are grouped into this label. The same principle applies for the second
largest label, German, which consists of all users from Germany and Austria.
However, the final macro-average F1 score obtained was 0.847, indicating that
the model is performing well over all classes. Thus the final accuracy obtained
does not seem to be artificially high, though the slightly lower F1 score might in-
dicate that the model has trouble with some classes. The confusion matrix of the
predicted outputs on the in-domain test set can be found in figure 5.4. As can be
read from the matrix, the model seems to be slightly biased towards predicting
English as opposed to other labels. The model often predicts English when the
correct label is French or Dutch. Interestingly, the model confuses Norwegian
with Swedish, and vice versa, both of which are also mistaken for English in 4%
of the cases. As for the classes with the fewest training and test instances, such
as Serbian, Slovenian and Lithuanian, the model seems to have no problem with
these classes as they obtain 0.86, 0.85 and 0.91 accuracy internally within each
class, respectively. In fact, both Turkish and Estonian have rather few training
examples, and less than 1600 test cases, but the model achieves 0.98 and 0.94 in
classifying these labels, respectively.

When evaluating the same model on the same 10 folds used in the in-domain
scenario in Experiment 1b, the model obtained a final accuracy of 0.902, and
an F1 score of 0.901. This task can considered to be easier than the task of
predicting the in-domain data set as a whole, as the average number of test cases
per fold in Experiment 1b were roughly 500 chunks, as opposed to the 70K test
cases when testing on the entire in-domain set. However, the 10 downsampled
folds from Experiment 1b are both balanced for classes and averaged over 10
runs, making the task non-trivial. The final accuracy of 0.902 obtained when
trained on more data, as opposed to training on roughly 18, 000 examples per
fold as in Experiment 1b, indicates that BERT thrives with more data available.
This despite the fact that the out-of-domain examples used for training contain
no specific topic.
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Figure 5.4: Confusion matrix of the predictions made by BERT on the entire in-
domain Reddit-L2 data set, after training on the out-of-domain data. The values
are normalized to be from 0 to 1, indicating how many of the model’s predictions
are made for which label. The matrix has been rotated for readability.
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Chapter 6

Evaluation and Conclusion

Now that the results have been presented, the following chapter is dedicated to
evaluating the findings of the results in light of the initial Goal and Research
Questions. Furthermore, a discussion section is dedicated to the discussion of the
implications of the results, as well as discussing additional questions which might
have arisen based on the findings. Finally, the contributions of this Master’s
Thesis are summarized, and the Thesis is ended with suggestions for future work
in light of the findings.

6.1 Evaluation

Looking back to the introduction, this Master’s Thesis was written with a single
goal in mind: Explore how attention-based architectures can be used to improve
performance on the task of Native-Language Identification. This section will
first evaluate the initial Research Questions, and finally evaluate whether the
answers to the Research Questions have contributed to reaching the overall Goal.

6.1.1 Evaluation of Research Questions

Research Question 1 How do attention-based systems perform compared to the
current state-of-the-art with regards to the task of NLI?

Experiment 1a and 1b were directly designed to answer Research Question 1.
The results of Experiment 1a showed that BERT-base with the standard hyper-
parameters and a learning-rate of 3e-5, was able to obtain an accuracy of 0.777
on the TOEFL11 test set, beating all the initial baselines of the Baseline Experi-
ments. However, comparing this result to the current state-of-the-art on the task

87
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with an accuracy of 0.882 [Ircing et al., 2017], the single BERT model is not able
to compete. In fact, as the results of the individual base classifiers in Experi-
ment 3 showed, a single FFNN trained on TF-IDF weighted character 4-grams
achieved an accuracy of 0.795, beating BERT by 1.8 percentage points. Thus
BERT’s performance is not at the level of the state-of-the-art on the TOEFL11
test set.

Experiment 1b, however, showed that BERT was able to obtain a final average
accuracy of 0.805 over 10-fold cross-validation on the same Reddit-L2 in-domain
scenario as in Goldin et al. [2018]. This is a clear improvement over the previous
state-of-the-art of 0.690, by 11.2 percentage points. It should, however, be men-
tioned that the previous state-of-the-art results were obtained during a feature
exploration of the data using logistic regression. In other words, the previous
state-of-the-art was not a very demanding accuracy to beat. In fact, the Baseline
Experiments showed that a single SVM trained on the TF-IDF unigram scores of
each document obtained an accuracy of 0.716 and also beats the original state-
of-the-art score. Regardless of the lacking demands of the state-of-the-art, an
accuracy of 0.805 for a 23-way classification task is a clear improvement over
the random baseline of 0.049.

Furthermore, Experiment 4 showed that when BERT was trained on 1.4 mil-
lion out-of-domain training sub-chunks, and evaluated on the same 10 folds as
the original in-domain scenario, the model was able to obtain an impressive ac-
curacy of 0.901. Using more data helped improve the results obtained by BERT
by almost 10 percentage points, even though the training data contained a huge
selection of different topics. This accuracy is surprisingly high, and raises ques-
tions as to whether the in-domain data overlaps with the out-of-domain data.
The loading of the data was separated in two distinct folders, however, so the
only way this is possible is if the original data set contains overlap. Another
possibility is, as some of the users have entries both in- and out-of-domain, that
the user has mentioned their username in the texts, leaking information from
the training to test data. However, it is not very likely that a user would be
mentioning their own username, and if so, this should be the case for very few
examples.

Additionally, when evaluated on the entire in-domain test set as a whole (70K
test cases versus roughly 500 test cases for each fold in the previous in-domain
scenario), BERT was able to obtain an accuracy of 0.861 – even higher than
when trained and tested in the smaller in-domain scenario. Unfortunately, the
latter is not directly comparable to any related work, as the entire in-domain part
of the data set has never been used for testing before. However, it is expected
that the latter task is more demanding than the initial in-domain task, as it
contains 140 times as many test cases as each fold in the original in-domain test
scenario. The performance of BERT with more data available indicates that
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BERT’s performance increases with more data, regardless of what topics it is
trained on.

Based on the results obtained, a question which arises is why BERT performs
better on the Reddit-L2 in-domain test set than it does on the TOEFL11. As
the Reddit task contains more than twice as many labels, one would expect the
task to be harder for the model than training and testing on the TOEFL11 data
set. This question will be discussed further in the discussion section.

Research Question 2 How robust are attention-based systems when tested on
different topics than that which the systems are trained on?

Experiment 2 was directly designed to answer Research Question 2. Comparing
the out-of-domain results obtained in Experiment 2 with the in-domain results of
Experiment 1b, BERT’s accuracy dropped from 0.808 to 0.502, a 37.9% relative
drop in accuracy. Compared to the current state-of-the-art, which drops from
0.690 to 0.362 – a 47.5% relative drop in accuracy – BERT seems to be more
robust than logistic regression when tested on different topics than that which
it was originally trained on. Again however, the original state-of-the-art was not
too demanding. Furthermore, it should be noted that the out-of-domain task
from Goldin et al. [2018] is a quite demanding machine learning task, as the test
cases outnumber the training instances by roughly 25%. The lacking performance
of both the baselines, BERT, meta-classifiers and the previous state-of-the-art,
might be more of a testament to the imbalance of the task, rather than the task
of training and testing on different topics.

Furthermore, as discussed under the evaluation of Research Question 1, when
training BERT out-of-domain and testing in-domain, the model produces very
promising results. The model seems to have no problem with being trained on
different topics than it is tested on, as long as there is enough data available. A
problem with Experiment 4, however, is that the testing is done in-domain. Being
tested in-domain should be an easier evaluation scenario for the model than if it
was tested out-of-domain. In retrospect, the model should also have been tested
out-of-domain, on chunks it has not been trained on. One idea would be to take
the model which was trained on the out-of-domain data, and test on remaining
examples which were not present in the training data. This would not be possible,
however, as for 11 of the 23 languages, all out-of-domain chunks were used for
training. Using the remaining chunks of the out-of-domain data would produce
a small and highly unbalanced test set, missing half of the classification labels.
Alternatively, cross-validation or a similar technique could have been applied in
order to make the results complete. However, as a single model took 6 days to
train, a 5- or 10-fold cross-validation scheme would simply not have been feasible
with the time and resources available. Regardless, testing the model on much
more in-domain data should still be a testament to how the model performs when
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testing on different topics than that which it is trained on.

Research Question 3 Can attention-based systems, in combination with tech-
niques used in the current state-of-the-art, improve performance on the task
of NLI?

Experiment 3 was directly designed to answer Research Question 3. Experi-
ment 3 shows that the inclusion of BERT in traditional meta-classifiers or en-
sembles made a significant contribution to the performance of the system. The
meta-classifier experiments showed that a FFNN, trained on the outputs of 10
base FFNNs with different feature types, produced an accuracy of 0.825 on the
TOEFL11 test set alone. With the inclusion of the logit outputs of BERT, how-
ever, this accuracy increased to 0.853, an improvement of 2.8 percentage points.
For the weaker performing meta-classifiers and ensembles, the inclusion of BERT
was shown to increase the system’s performance with close to 5 percentage points.
The results also showed that the best ensembles and meta-classifiers performed
better than BERT alone on the TOEFL11 test set. For the Reddit-L2 in-domain
scenario, the increase in performance with inclusion of BERT was as much as
5.3 percentage points, and 7.5 percentage points for the out-of-domain scenario.
Empirically, the combination of traditional classifiers and BERT can be used to
produce better results than any of the individual classifiers.

Experiment 3 brought up some interesting questions. First of all, why did the
word 3-grams perform worse than the word 1 and 2-gram features for both base
classifiers? Furthermore, as opposed to the findings of the literature review, why
did the FFNN generally obtain higher accuracies than the SVM? Even more im-
portant is the question of why the ensemble of meta-classifiers showed no increase
in performance as opposed to using a single meta-classifier. Lastly, why did the
promising LDA-classifier, which Malmasi and Dras [2018] reported to be the best
meta-classifier, not give good results? All of these questions will be discussed in
the following discussion section.

6.1.2 Evaluation of the Main Goal

With background in the results obtained when answering the three Research
Questions, an exploration of how an attention-based system can be used to im-
prove performance on the task of NLI has been carried out, which completes the
main Goal of this Master’s Thesis. The experiments show that the attention-
based BERT architecture was not able to give state-of-the-art results on the
TOEFL11 test set alone, but when combined with traditional classifiers, BERT
increased the accuracy from 0.825 to 0.853 – closing in on the current state-of-
the-art of 0.882. Using more features and other state-of-the-art techniques might
have increased these results further. Furthermore, the attention-based system
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was shown to produce a state-of-the-art accuracy of 0.902 on the cross-validation
Reddit-L2 in-domain scenario, without training on any in-domain examples. Ad-
ditionally, BERT gave a state-of-the-art accuracy of 0.502 on the out-of-domain
Reddit-L2 scenario, which was further increased to 0.529 when including BERT
as a base classifier for a meta-FFNN classifier. BERT was also shown to obtain an
accuracy of 0.861 and an F1 score of 0.847 when tested on the entire, unbalanced
Reddit-L2 in-domain test set, without ever seeing an in-domain example during
training. The results show that BERT and attention based systems do have mer-
its for the task of NLI. More specifically, the findings indicate that deep learning
is still beaten by traditional classifiers on the TOEFL11 test set. However, with
much more data from authors who are proficient in English now available in the
form of the Reddit-L2 data set, deep learning and attention-based systems can
be viable candidates for solving the task of NLI.

6.2 Discussion

6.2.1 Discussion of Meta-Classifiers

A peculiar trend observed in the base classifier experiments of Experiment 3 was
that the FFNN tended to favor no limit of the number of features available.
Conversely, Ircing et al. [2017] report that their FFNNs did not receive any
improvement when using more than 30, 000 features. It is hypothesized that as
the increase was minuscule, it was considered to be non-significant. This probably
because training time from 30, 000 features to unlimited increases dramatically,
without providing much of a performance boost.

The next observation made was that the base classifiers trained on word 3-
grams performed far worse than the smaller word grams. It is hypothesized that
this might be due to the nature of TF-IDF weighting, as there are many more
possible word 3-grams in the vocabulary, yet they might not be very unique with
regards to documents. This can cause both a low TF and IDF score, making many
of the features similar, resulting in less discriminatory power for the model. A
different normalization scheme might have been favorable for word n-grams with
n > 2.

The next interesting observation made was that the FFNNs tended to per-
form better than SVMs, despite that most related literature use SVMs. This is
probably due to the lack of hyper-parameter tuning of the SVMs. As mentioned
in section 5.2.2, the hyper-parameters of the SVM were set to be the default
parameters of Sklearn. The intention was to mimic the SVMs of Malmasi and
Dras [2018] as closely as possible, but as the article provides little information
about the hyper-parameters used, the default parameters of Sklearn were used.
One problem might have been the one-vs-rest vs the one-vs-one hyper-parameter.
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Whereas Malmasi and Dras [2018] used the one-vs-rest approach for all experi-
ments, Sklearn forces this hyperparameter to be one-vs-one when SVMs are used
in a multi-class setting. This, as well as the lack of experimentation with other
hyper-parameters might explain why the SVMs did not perform as well as ex-
pected. It should also be noted, however, that Ircing et al. [2017] had great
success in applying FFNNs on the TOEFL11 data set. The fact that SVMs are
the most popular classifier for NLI does not exclude FFNNs as a viable candidate.

Furthermore, why did LDA perform far worse than the other meta-classifiers,
when Malmasi and Dras [2018] found it to be the best? The answer for this
question lies in collinearity. LDA does not handle collinear variables well, which
the outputs of the base classifiers are expected to be, as the output of the different
labels are highly correlated. After consulting the original authors about the
collinearity of the LDA classifier, Shervin Malmasi responded:

“For LDA, I recall that the feature representation was very important.
This depends on what you are using as as base classifier. If it’s a max-
margin method (e.g. SVM), then you can change the distance values
for each class to probabilities using something like Platt scaling. You
can also try other types of feature scaling, e.g. min-max scaling or
z-scores.

The collinearity will not be completely eliminated. The amount of
diversity in the feature space depends on the inputs you use. You
can trying having a good mix of syntactic and lexical features as base
classifiers to increase diversity.”

The first part is taken into consideration by Sklearns probability-outputs. How-
ever, applying the normalization schemes suggested might have helped. Using a
more diverse feature set for the base classifiers might have made a great difference
in combatting the collinearity of the training-inputs. In fact, the only syntactical
feature used was function word grams – the rest were lexical features. Increasing
the number of syntactic features might have increased LDA’s performance.

Next, why does an ensemble of meta-classifiers not perform better than a
single meta-classifier? Contrary to the results of Malmasi and Dras [2018], there
was no clear gain in performance when applying a single meta-classifier as op-
posed to using a bagging ensemble of meta-classifiers. This is interesting, as the
experiments and setup are quite similar. However, looking more closely at the
results of Malmasi and Dras [2018], the increase in accuracy when going from
a single meta-classifier to an ensemble of meta-classifiers is only present for the
LDA meta-classifier. For instance, the final SVM meta-classifier obtains 0.852 on
the TOEFL11 test set, and the final meta-ensemble of SVM classifiers obtains the
exact same accuracy. The same applies to the two other regressor meta-classifiers.
In other words, the benefit of applying an ensemble of meta-classifiers in Mal-
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masi and Dras [2018] was only present for the LDA. Thus, the lack of increase
in performance when using an ensemble of meta-classifiers as opposed to using
a single one is actually expected for the SVM and FFNNs used. It is possible
that the expected increase might have been present if an LDA meta-classifier was
used, given that the previous issues mentioned were fixed.

Finally, it would have been interesting to incorporate some of the systems
which provide state-of-the-art accuracies on their own in the ensembles used. For
instance, training the string-kernel models used in Ionescu and Popescu [2017] and
the stacked SVM-classifiers of Cimino and Dell’Orletta [2017], and introducing
them to the ensemble might have further increased the final performance of the
system.

6.2.2 TOEFL11 Versus Reddit-L2 Results

Why does BERT perform better on the Reddit-L2 in-domain data than the
TOEFL11 test set, even though the latter only contains half the number of pos-
sible labels? The reasons for this could be many. First of all, the Reddit-L2
contains text written by authors proficient in English, while TOEFL11 contains
text from learners of English. The texts written by the more proficient English
writers might be closer to the texts which BERT was pre-trained on – English
Wikipedia. A hypothesis is that the TOEFL11 data set contains many more
spelling mistakes than what the Reddit-L2 data set does. This both due to the
higher proficiency of the Reddit-L2 users, but also because when the Reddit-L2
documents are written, the authors often have spellchecks and other tool avail-
able in their web-browsers. A higher frequency of misspelled words can cause
the WordPiece representations used by BERT to be different from that which
it was pre-trained on, and might cause odd WordPiece sequences unfamiliar to
the model. Put more simply, the problem might be that BERT does not handle
spelling errors too well. This issue might be mitigated by taking the pre-trained
BERT models and train them further on data containing spelling mistakes, using
the unsupervised classification tasks described in section 3.3.2, before fine-tuning
for classification. This would provide a custom BERT model where the embed-
dings have been trained to include spelling mistakes.

Another reason for the performance difference might be that the Reddit-L2
data set contains the label “English”, while the TOEFL11 data set does not.
Having one of the labels be the same as the L2 makes part of the task a binary
classification task of “native or not”, which is not “pure” NLI. This makes the
23-way classification task a bit easier, and might explain why the task might not
be as hard as first perceived. However, the final F1 score produced by BERT
on Reddit-L2 is still high, indicating that the model is performing well across all
classes. Furthermore, the Reddit-L2 accuracies increased when evaluating on the
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original chunks, not the artificially created sub-chunks. This observation could
indicate that the model benefits from larger documents, and that splitting and
recombining them by majority vote can be beneficial. Applying a similar scheme
to the TOEFL11 data set might have improved results. For instance, BERT could
have been trained with a maximum sequence length of 128, or at the sentence
level, training on TOEFL11 sub-chunks and recombining in the same fashion
as was done using the Reddit-L2 data. In fact, if the Reddit-L2 chunks were
the same size as the TOEFL11 texts, the correct initial in-domain accuracy of
Experiment 1b would have been the sub-chunk accuracy of 0.65. In which case,
the TOEFL11 results would have been considered to be better. Thus document
size is assumed to play a pertinent role in the performance of BERT. Further
motivating the importance of text granularity is the best performing text-only
system on the TOEFL11 test found in Cimino and Dell’Orletta [2017], which uses
a stack of SVM-classifiers, where one SVM is trained at the sentence level, and
one at the document level. The same scheme could have been applied to BERT
on the TOEFL11 data, training both at the sentence level and the document
level.

6.3 Contributions

The contributions of this Master’s Thesis are manifold. First of all, the Master’s
Thesis is the first so far to apply BERT to the task of NLI. An exploration using
BERT on the TOEFL11 data set has empirically shown that BERT alone is not
able to compete with the traditional state-of-the-art approaches for NLI on the
TOEFL11 test set under the settings used. However, a meta-classifier architecture
which uses both BERT and 10 traditional classifiers trained on different features
was provided, which produced an accuracy of 0.853 on the TOEFL11 test set –
closing in on the current state-of-the-art of 0.882.

The Reddit-L2 experiments showed that BERT can produce state-of-the-art
results on the novel Reddit-L2 data set, both in- and out-of-domain. This with
great results, and as much as 0.902 accuracy on the 10-fold cross-validation for
the Reddit in-domain scenario, as opposed to the previous best of 0.690 – a 21.2
percentage point improvement. The Reddit-L2 experiments also provide a simple,
yet effective scheme for dividing large documents for BERT, based on heuristically
splitting training documents into sub-documents, and using a majority vote to
recombine the predictions of the model.

An exploration of BERT’s robustness when tested out-of-domain was also
provided, showing that the model is more robust to topic differences than pre-
vious approaches on the Reddit-L2 data set. This both in form of BERT alone,
achieving an out-of-domain accuracy of 0.502, and a meta-classifier stack, which
produced a final accuracy of 0.529 – a 16.7 point improvement over the previous
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out-of-domain state-of-the-art. The latter experiment also uncovered an imbal-
ance in the out-of-domain train-test split described by Goldin et al. [2018], where
the test cases typically outnumber the training instances.

Furthermore, the Thesis provides a thorough discussion as to why BERT
performs so much better on the Reddit-L2 data set than the TOEFL11 data set,
and presents a hypothesis that this is due to the number of spelling mistakes
found in the TOEFL11 data, in addition to the document granularity of which
the model is trained on.

The Thesis provides an exploration of ensembles and meta-classifiers for NLI,
and shows that the inclusion of BERT in these classifier stacks can improve the
final accuracy with up to 10 percentage points, depending on the task and base-
classifiers used.

Finally, a large experiment with 1.4 million, out-of-domain training documents
is provided, for which BERT obtains an F1 score of 0.847 on the entire Reddit-L2
in-domain data – a test set which contains more than 140 times as many test cases
as the original in-domain scenario. The final experiment was also done by training
out-of-domain on a wide range of topics, displaying the model’s robustness and
indifference to topics given large amounts of data.

6.4 Future Work

As BERT obtained such promising results on the Reddit-L2 in-domain data set,
future work would include looking into how to increase the accuracy on the
TOEFL11 test set, as this still is the standard data set to use for NLI. The
main focus of the future work would be to look into continuing the pre-training
of BERT on parts of the TOEFL11 data set, in order to learn embeddings of
spelling errors and other attributes of the data, before training for classification.
Next, looking further into how the TOEFL11 data is used with BERT would be
of importance. It would be interesting to train BERT on TOEFL11 using smaller
training examples, for example splitting documents into sub-documents with a
maximum sequence length 128, or at the sentence level, and then recombining
the predictions in the same fashion as was done for the Reddit-L2 sub-chunks.
Using smaller text pieces would also allow for running BERT-large with a shorter
sequence length and larger batch sizes, without requiring more computing power.
With more power available, running BERT-large with a sequence length of 512
would also be feasible. In addition, it would be interesting to carry out more
experiments using both the cased and uncased versions of BERT, in order to see
whether this impacts the performance of the model. Furthermore, opening up
the attention mechanism and looking at what parts of the input sequence the
model is paying attention to could be used to give new insights in the field. This
sort of analysis would also be useful in educational platforms, and the findings
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could potentially be used to help educators of different languages.
Regarding the ensembles and meta-classifiers, future work would be to include

other state-of-the-art systems, such as string-kernel SVMs and more features,
which could possibly improve results further.

Additionally, with the novel Reddit-L2 data set available, deep learning mod-
els are again a viable option for NLI. For this reason, a new Shared Task for NLI
using the Reddit-L2 data or equivalent could lead to interesting advances in the
field. Producing a common train-test split for the Reddit-L2 data set would help
the community explore novel approaches with more data available, and make the
results comparable – just like the TOEFL11 data set did in 2013. Additionally,
future work would also include training and testing on the Reddit-L2 data set
when excluding all English examples. This would remove the “native or not”
element of the task, making it a more pure NLI task. Removing English would
also make the Reddit-L2 results more comparable to TOEFL11 results.

The size of the Reddit-L2 data set could also be increased by further web-
scraping. Not only would this yield even more data, but it would help balance
out the label imbalances the data set currently has. This would also allow for the
creation of a more balanced out-of-domain scenario, where the training examples
are not outnumbered by the test examples. Furthermore, future work would
include looking into how the Reddit-L2 data could be pre-processed for better
results. For instance, as the data is created online, chunks often contain URLs
etc., which might function as noise to the model. Performing a proper exploration
of the data and pre-processing could help further increase the quality of the data.

Finally, training and testing cross-corpus from the Reddit-L2 data to the
TOEFL11 data would possibly expose new insights in the field of NLI. For in-
stance, training on the Reddit-L2 data and testing on the TOEFL11 test set
would yield results which would be directly comparable to previous work done on
the TOEFL11 data set. This would enable a closer look at the role of misspelled
words and data size in NLI, both for attention-based systems and traditional
classifiers. The main obstacle for such a cross-corpus experiment would be that
the Reddit-L2 data set currently does not contain all the languages present in the
TOEFL11 data set. However, this problem could be solved by the aforementioned
web-scraping extension of the Reddit-L2 data set.
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