
Software Requirements Engineering

A Case Study of a Startup

Norwegian University of Science and Technology
Department of Computer Science

Supervisor: Eric Monteiro

Master of Science in Technology in Computer Science

Erlend Morthen

Submission date: 12 June 2019

ii

Abstract

The results confirm the informal, dynamic and rudimentary software development
practices shown in literature to be followed by startups. Requirements engineering is
done ad-hoc, processes are tried out and either rejected or accepted and change as
the context changes. This reflects the high degree of reactivity in startups. Speed vs
correctness are competing qualities of the product development as the company goes
from being an early stage startup to gaining maturity and stability. A step towards
achieving speed in the right direction is to involve developers in product development
through deliberate and systematic communication of information relevant to decision
making of the product development.

Studies in requirements engineering in the context of agile software development and
software startups analyze the field as a set of distinct, partly sequential, activities,
typically elicitation, documentation, estimation, prioritization and validation. How-
ever the study reveals that the activities are done holistically, without strict frames.
Such requirements engineering can be considered as being a process rather than a
set of static activities: The relation between the field’s constituents playing a larger
role than its constituents considered in isolation.

Requirements engineering is an improper word for what it encompasses in the context
of software engineering generally and software startup engineering specifically. I
propose Software Activity Handling as the new term for the knowledge area encom-
passing requirements collection, elicitation, specification, documentation, prioritizing
and validation.

iii

iv

Sammendrag

Forskningsprosjektet bekrefter de uformelle, dynamiske og rudimentære praksisene
fulgt av oppstartbedrifter som finnes i litteraturen. Kravbehandling(requirements
engineering) er gjort ad-hoc, prosesser prøves ut og beholdes eller forkastes ettersom
bedriftens kontekst forandrer seg. Dette reflekterer den store graden av reaktivitet i
oppstartsbedrifter. Fart kontra riktighet er kvaliteter i konflikt for produktutviklingen
ettersom bedriften går fra å være tidlig-fase til å oppnå mer modenhet og stabilitet.
Et steg mot å oppnå fart i riktig retning er å involvere utviklere i produktutviklingen
gjennom bevisst og systematisk kommunikasjon av informasjon som er relevant for
avgjørelser relatert til produktutvikling.

Litteraturen innen kravbehandling i kontekst av smidig programvareutvikling og
oppstartsprogramvarestartups analyserer feltet som et sett av distinkte, delvis sekven-
sielle aktiviteter, som kravinnsamling, -utvelgelse, -spesifikasjon, -dokumentering,
estimering, prioritering og validering. Dette studiet viser at kravbehandling er gjort
helhetlig, uten strenge rammer mellom aktivitetene feltet består av. Kravbehandling
som dette kan ses på som en prosess, snarere enn en samling statiske aktiviteter:
Avhengighetene mellom feltets bestanddeler spiller en større rolle enn bestanddelene
sett isolert.

Requirement engineering er en misvisende term for hva det innebærer innen pro-
gramvareutvikling generelt og oppstartsprogramvareutvikling spesielt. Jeg foreslår
Software Activity Handling som den nye fagtermen for kunnskapsområdet som
består av kravinnsamling, -utvelgelse, -spesifikasjon, -dokumentering, estimering,
prioritering og validering.

v

vi

Preface

This research project has been done during the academic year of 2018/2019 as
a cooperation between Norwegian University of Science and Technology and an
anonymous startup called "Blueberry", a growing software startup building products
based on machine learning. Hours of literature studies, observations, interviews, and
analysis of these have resulted in the document you are now about to enjoy.

I would like to express my gratitude to the group of people allowing me to do this
project - all the people behind "Blueberry". Witnessing the journey the company
has gone through has been tremendously interesting, not to speak of inspiring. I
wish you all the best, and good fortune in the years to come.

Next, my supervisor Eric Monteiro at the department of Computer Science at NTNU
deserves my deepest thankfulness. As an experienced guide throughout the entire
project period, he has provided invaluable tips and feedback on the path that has
been created along the way.

Erlend Morthen June 2019

vii

Contents

Abstract iii

Preface vii

Contents ix

List of Figures xi

1 Introduction 1

1.1 Motivation . 1

1.2 Research Questions and Objectives 2

1.3 Document Outline . 2

2 Theory 3

2.1 History of Software Development Methods 3

2.2 Agile Software Development . 4

2.3 Software Startup Engineering . 8

2.4 Requirements Engineering . 10

3 Research Method 17

3.1 Data Collection . 17

ix

3.2 Data Analysis . 22

3.3 Reflections and Research Limitations 23

4 Results 27

4.1 Context . 27

4.2 Requirements Process . 32

5 Discussion 45

5.1 Elicitation . 45

5.2 Prioritization . 47

5.3 Dependencies and Methodology . 51

5.4 Terminology . 53

5.5 Research Limitations . 54

6 Conclusion 55

6.1 Further Research . 56

References 57

x

List of Figures

2.1 The Waterfall Model . 4

3.1 Data Sources . 19

3.2 Interviewees during pilot study . 21

3.3 Interviewees during master thesis . 21

3.4 Research Themes . 23

4.1 Evolution of Tech Team Members . 30

4.2 Product Creation Flow and Related Agents 31

4.3 Example of Requirement Presentation in Trello 37

4.4 Example of Trello Board with Emoji Estimations 39

xi

Chapter 1
Introduction

1.1 Motivation

The startup scene keeps growing and so does the need for reliable and applicable
knowledge. Research on the field is slowly picking up in speed and gaining maturity,
but many questions remain unanswered for most startups, who strive to find purpose
and direction in the chaotic world they operate in.

Whereas software startup engineering is a relatively new field of research, the knowl-
edge area of agile software development just turned 18 years old. Although having
different points of origin, they share some fundamental aspects, such as the search for
reactivity and speed. The overlap between the two fields has grown further with the
popularity of Lean Startup(Ries et al., 2012), calling for iterative working method.

Requirements engineering, a category of software development, a scientific field
traditionally associated with extensive projects with large and detailed upfront re-
quirement analysis phases, has recently become a subject of research also within
startups(Startup-Organization, 2019). Previous research has referred to require-
ments engineering activities are amongst the most problematic encountered by
startups(Klotins et al., 2019b). This is perhaps not surprising, as the road to deter-
mining what a startup should do goes through the field of requirements engineering -
calling for further research in the field.

In addition to entrepreneurs and people with interest in software startups, this paper
will hopefully be of value for any professional working with product development,
managers, designers or developers.

1

CHAPTER 1. INTRODUCTION

1.2 Research Questions and Objectives

In order to frame the research project, one main research question:

RQ1: What are the practices of requirements engineering in a growing startup?

In order to treat this question, I will answer three sub questions:

RQ1.1: How does requirement elicitation and prioritization take place?

RQ1.2: How are the activities within requirements engineering related with each
other?

RQ1.3: Are the activities within requirements engineering dependent on other aspects
of software development?

1.3 Document Outline

The paper is organized as a traditional master thesis: Firstly, an introduction
providing a quick impression of the research project, as well as a presentation of the
research question. Thereafter, a review of the relevant literature is provided, followed
by a chapter on research methodology. The data collected from the case study is
then presented. The discussion, an analysis of the case results and the literature,
is then provided, before finally concluding on the research project and suggesting
further research in the field.

2

Chapter 2
Theory

2.1 History of Software Development Methods

As software development has gone from non existent to being an established scien-
tific field during the last decennials, so has the need for structuring the software
development. Software development occurred for the first time in the 1940s and 50s,
mainly in fields of academia or military. Despite the nature of these organizations,
methodologies as we know them today were practically non-existent; code was written
ad-hoc, or principles for management were borrowed from other fields, with only a
few exceptions(Benington, 1983).

A few decennials later, Boehm predicts that the software costs would exceed hardware
costs in a large development project for the American air force(Boehm, 1983), and
very large commercial IT projects occur for the first time. The need for optimizing
software development(SD) becomes evident. Formalizing the planning phases before
starting to implementing became was established as best-practice, as time spent on
planning what to do would save significant time later, when doing it. The consensus
tended towards a plan-driven approach.

The best-known example of such methodology is the waterfall model, originally
presented by (Royce, 1987). Used commonly throughout the 80s and 90s, it is today
generally looked upon as outdated. A common misconception sometimes leading to
oversimplified and trivial conclusions of the type “hence is agile methods the better
option”, is that the waterfall model lacks feedback loops, implying a low degree of
flexibility during the project cycle. Stated already in the original paper(Royce, 1987),
the feedback loops were explicitly considered: The waterfall model, as originally
described, allows feedback and reiterations between consecutive elements in the
waterfall, as in figure 2.1. Water, interestingly enough never mentioned in the
original paper, can indeed flow upstream in Royce’s model. Despite the common

3

CHAPTER 2. THEORY

critic of imposing inflexibility to projects, the waterfall model is still in use with
success(D. Linthicum, 2016), suggesting that some of the categorical critic found of
the methodology in the popular literature has been undeserved.

Figure 2.1: The Waterfall Model

Could there be too much of a good thing? Probably so, as one later could observe
reactions to the somewhat rigid, plan-driven approaches. As the field of SD ma-
tured and competition rose between an increasing number of actors on the global
development scene, new properties like speed and flexibility became new important
properties for IT projects. One new methodology was the Spiral Model, presented
in 1985, combining iterative work, i.e. doing a number of tasks in repeated cycles,
and risk-driven development, in the meaning of letting the level of risk dictate what
to do in the next cycle, and how. Each cycle, or 360 degree portion of the spiral,
involves a number of defined tasks, such as determining objectives, alternatives and
constraints, risk analysis and prototyping.

The work methodologies behind the large projects mentioned above implied a con-
siderable work effort going to requirements and documentation. It also had the
property of creating a sequential work flow, meaning finishing one part of the work
flow before starting a new one. An oversimplified example of this would be to finish
all planning of a software system before implementing it, and thereafter finishing all
code writing directly contributing to the product before writing any tests. It can be
tempting to ask the following questions: How does one handle changing requirements
after the planning phase? When is the team going to adjust the product based on
feedback, if any? Does the fact that one has not yet dived into the context through
the implementation phase affect the quality and applicability of the documentation
resulting of the planning phase?

2.2 Agile Software Development

The term “agile process” was coined in the early 90s by the research group “Agile
Manufacturing Enterprise Forum, AMEF” at Lehigh University(Creating the agile

4

2.2. AGILE SOFTWARE DEVELOPMENT

library : a management guide for librarians 1998), advocating for a transition from
mass production to agile manufacturing(Nagel, 1992) in an attempt for USA to
regain the industrial leadership lost during the previous decennies. Realizing the
similarity to the Japanese lean manufacturing established in the 50s, they summarize
the difference as “Lean is a response to competitive pressures with limited resources,
agile is a response to complexity brought about by constant change.” (Dove, 1993).
Fairly clear, but the terms lean and agile even today get mixed up.

A few years later M. Aoyama used the term for the first time in the context of
software development(Aoyama, 1998), but it was not until 2001 that the term got
well-known and given a meaning that would resonate in the developer community.

As a reaction to the process-heavy approach of the 80s software development, new
working methodologies aiming at improving the making of software for all stake-
holders emerged. Extreme programming, SCRUM, Crystal and Adaptive Software
Development where software development methods invented in the 90s having in
common that they focus more on adapting to change and less on initial planning.
The emergence of these methodologies should been seen in light of the era that
software development(SD) was in at the time - the internet boom created demands
for software at speeds the community had witnessed before.

This movement led amongst others to the meeting of a group of important de-
velopers and thought leaders in 2001 creating what got to be named "The Agile
Manifesto"(Agile Manifesto 2001). The group represented a selection of modern
methodologies. The agile manifesto’s core values stated below are often referred to
as a reference to agile software development(ASD) principles.

Individuals and interactions over processes and tools
Working software over comprehensive documentation

Customer collaboration over contract negotiation
Responding to change over following a plan

Sometimes mistaken for advocating the elimination of process overhead (the final
clause of the manifesto "That is, while there is value in the items on the right,
we value the items on the left more." being ignored), it expressed the signs of the
new times in a manner that representatives from different new methodology schools
could agree on, and has since experienced a tremendous resonance within software
development community.

2.2.1 Scope

"When topics are fuzzy, underlining the boundaries and what lies within these
boundaries become almost as important as understanding the intricacies of the
individual constituents”. The topic of ASD is indeed fuzzy: “To state that a particular

5

CHAPTER 2. THEORY

method is or is not agile is almost meaningless given the lack of consensus on what
the term "agile" refers to” (Conboy, 2009). A recurring problem of identifying ASD is
the lack of a clear-cut definition the software community agrees upon. The principles
from the manifesto are frequently referred to, and it seems to be generally agreed
that responsiveness, collaboration and a low degree of planning are central to ASD
In this paper, the following definition(Abrahamsson et al., 2017) is suggested:

"What makes a development method an agile one? This is the case when software
development is incremental (small software releases, with rapid cycles), cooperative
(customer and developers working constantly together with close communication),
straightforward (the method itself is easy to learn and to modify, well documented),
and adaptive (able to make last moment changes)."

It might just as well be interesting to notice what is not part of the definition.
Implementations of the above principles are not stated. This implies that standup or
retrospective meetings, instructions for pair-programming, task management boards
or other practical instructions are not part of agile in its essentials. Nor does it
specify any degree of "process light or heaviness".

Concepts which are central to ASD existed in the software industry before the
term agile was coined(Agile Software Development: Current Research and Future
Directions 2010), such as the spiral model discussed above. Despite its popularity
growing in the field of software development, agile methods have proven its relevance
to other sectors(Sutherland, 2016). DevOps, aiming to unite development and
operations, has experienced increasing popularity the last few years and arguably
may have taken the buzzword-throne after agile. Significant research effort is done in
the field of Large Scale Agile, as well as in company-wide agile adoption, not limited
to software development.

Given the opacity of the theme, discussing agile in broad terms risks losing interest.
On the other hand, investigating well-defined, specific aspects of SD, with ASD as a
backdrop, makes sense.

Adopted to such an extent throughout the industry, agile methods have not lacked
critics. One of the main points of critic is the evangelical approach some seem to
have to ASD. The following sections present some of critics towards agile methods:

2.2.2 The Agile Hype

The massive adoption of agile development methods reported in the State of Agile
Report 2017 can to some extent be explained by the hype that some claim the
phenomenon has become. Organizations may fear being viewed as outdated and
consequently label activities not having much to do with agile, as being agile. Other
software organizations may state that they follow agile principles when implementing
isolated sub concepts. Having a daily meeting while standing up, standup meetings,

6

2.2. AGILE SOFTWARE DEVELOPMENT

does not make the software development agile.

Organizing software development, or organizing any other activity for that sake, is a
field in which the optimal practices may not be evident. Involving social aspects,
some may miss the clarity of natural sciences. Left in the “landscape of confusion”,
one may turn to commonly adopted methods in search of answers - the result being
superficial, suboptimal adoptions of agile. The hype has led to criticism towards
what some consider a dilution of the phenomenon(Tracz, 2015) - in the sense that if
you can use a word to describe anything, as discussed in the “Scope of Agile” section,
what is then the word’s value?

2.2.3 Always Appropriate?

One of ASD’s core advantages is the ability to adapt to change in either requirements
or in the surrounding environment. Under the conditions where the requirements can
be determined in advance, and of static requirements in a predictable environment,
following a plan-driven approach will be advantageous, e.g. by creating more pre-
dictability in for the stakeholders(B. Boehm, 2002). The same goes for a certain type
of environments - in (safety) critical projects, it needs to end with the fulfillment
of a certain number of non-negotiable requirements. Under such conditions, the
advantages of planning will outweigh those of adaptability(B. Boehm, 2002).

How software development best can be organized depends on the context, including
the culture, both specific to the company and to what is specific to the country or
region. ASD originally flourished in the United States, a country in many aspects
different from where this case study is carried out, Norway.

One can argue that some of the needs creating room for the success that agile has
been are stronger in the United States than in Norway. Firstly, agreements are more
commonly based on formal contracts, in many cases leading to more overhead.

Secondly, the degree over hierarchy is lower in Scandinavian countries than in many
others. A low degree of hierarchy promotes informal, and perhaps closer, dialogue,
both internally and towards customers. This is further accentuated by the factor
of organization or enterprise size. A small startup is generally less formal than an
established corporation.

“Agile and traditional methods will have symbiotic relationship in which factors such
as number of people in the team, application domain, criticality and innovativeness
will determine the process to select.”(Cohen et al. 2004), was stated in 2004, but one
can assume that it still in 2019 holds its validity.

7

CHAPTER 2. THEORY

2.2.4 Chaos versus Agile

As agile was born as a reaction to overly process heavy methods, it happens that
some justify the lack of planning by “being agile”. This obviously is not correct
- planning and structure are required for the core concepts of agile like customer
cooperation and incrementality to be followed.

2.3 Software Startup Engineering

Software development(SD) in the context of startups has a number of fundamental
differences from SD in established organization, affecting the choice of which develop-
ment method to follow. Startups often live in a land of uncertainty, and the need for
speed and adaptability are important. The popular “Lean Startup”(Ries et al., 2012),
accentuating the value of iterative work and adaptability based on frequent customer
feedback, hence shares some of the underlying principles of ASD: adaptability, or
simply agility, and close customer collaboration, rather than upfront planning.

Current needs are prioritized over those of tomorrow to a greater extent than within
large organizations. This gets visible through pragmatic technology choices, allowing
for “hacky code” (Dalal, 2019) which provides working features today, but to some
extent leaving technologic debt, i.e. issues which need to be dealt with later. Spending
resources on writing code that allows for future scalability and modifiability may also
be down-prioritized. While large organizations may have an “old” existing code base,
i.e. legacy code, startups often start from at tabula rasa, providing more freedom in
their technology choices. (Pantiuchina et al., 2017)

Software startups operate under conditions of extreme uncertainty, which is actually
what defines a startup according to Ries(Ries et al., 2012). The world appears
less predictable than in the environments of established firms. According to the
principles of lean startup, this calls for incentives to deliver quicker and test new
features faster than what one would in older companies. The need for speed calls
for shorter iterations and frequent feedback, and less for thorough implementations
which need to function properly forever. Taking into account that a number of
the future features will prove to be irrelevant, extensive use of prototypes and beta
versions makes sense.

Startups tend not to follow established process frameworks, leaving more liberty and
allowing for customized and dynamic work methods in its ways of working.(Berg
et al., 2018), (Klotins et al., 2019a). This is partly due to the changing environments
under which they operate: The number and type of customer varies quickly, competi-
tors may show up, the need for and number of employees with new competences can
suddenly increase. Startups use lightweight process which allow for rapid changes in
both its product and its process (Berg et al., 2018). Another reason can simply be a

8

2.3. SOFTWARE STARTUP ENGINEERING

matter of size - startups generally have few employees. Hence may frameworks for
systematic information sharing and documentation lose its interest.

A recent multi case study investigating 88 startups, identifying the challenges amongst
software startups presented the following challenges startups recurrently encounter:
(Klotins et al., 2019a):

• A time-consuming and expensive mimimum viable product,MVP, is a sign of
poor technology choices and over scoping, the first start-up antipattern.

• Lack of customer interest in the product could be rooted in a failure to establish
a feedback loop earlier, the second start-up antipattern.

• Difficulties to scale product into new markets could stem from lack of organiza-
tional support, the third start-up antipattern.

• To save time and resources and greatly improve chances of a successful project
launch in start-ups, the focus should be on better engineering, not more of it.

A slightly older, two-case study (Giardino, Wang, et al., 2017) of software startups
which failed, presents the following reasons for doing so:

• The two case companies showed initial evidences of a lack of systematic feedback
from customers to improve their market understanding.

• As team dimension is concerned, in order to have the focus and the ability
to evaluate risks, Carmel suggests that entrepreneurs need to look for a well
formed, skilled core development team, rather than just a set of product ideas
and features.

• One of the key determinants of success in startup companies is the passionate
behaviour of the founders.

• Indeed, over time learning progress slowed down and the two startups were
only concerning how to gather more and more customers. However, improving
customer acquisition before problem/solution fit has been premature, because
users were not hooked to the product.

2.3.1 Phases of a Startup

There are a number of models for classifying startup maturity(Gralha et al., 2018).
A framework proposed by Blank(Blank, 2003) suggests that companies first should
make an effort finding the problem/solution fit, focusing on customers rather than on
the product and, if applicable, its technology. This phase includes testing the riskiest

9

CHAPTER 2. THEORY

hypotheses by implementing a first solution. Only after iterations in this phase and
gaining a thorough understanding of the problems to be solved, and how, should
the startup move on to focus on building the product that will solve real customer’s
needs, i.e. finding the product/market fit. If the company does not achieve this, it
should go back to phase one, or pivot (Giardino, Wang, et al., 2017).

A framework for classifying a startup’s phase, still proving its relevance 20 years
after being published, is the four phase model(Crowne, 2002): i) Startup, being
the period between product conception and the first sale. ii) Stabilization, from
the first customer takes delivery of the product, until when the product is stable
enough to be commissioned for a new customer without causing any overhead on
product development. iii) Growth follows and lasts until market size, share and
growth rate have been established and all business processes necessary to support
product development and sales are in place.

Known challenges to the growth period are that the product development depends
on a small number of skilled individuals who become a bottleneck in all activities.
Their skills and knowledge are not available in the market place. There is no plan
to develop these skills in new recruits. Another challenge occurs when the product
pipeline is empty, or when the company cannot meet demand for information on
future product developments. Few product startups are able to transcend their first
success and generate a stream of new products. "Whilst there is no substitute for
inspiration here, this must be combined with a robust process to capture product
ideas, develop them and choose between competing ideas"(Crowne, 2002).

iv) Maturity is, according to Crowne, the final phase in a startup life, and is
characterized by the traits of a mature organization rather than a startup.

The hunter-gatherer cycle(Nguyen et al., 2015) is a different conceptual model of
the evolution of software startups: “emphasis on a hunting cycle when generating
ideas, eliciting requirements and customer development predominate, followed by
a gathering cycle when the product-market fit becomes better understood and
activities of requirements description, prototype implementation, automated testing
and system integration dominate while the hunting continues, bringing innovation to
the product”.

2.4 Requirements Engineering

Before discussing the field of requirements engineering, it’s worth looking at the
name the field has been given, as the term is somewhat misleading: Requirements
can intuitively be associated to the documentation of the expectations of a clearly
defined artifact, rather than the broader meaning adopted in recent literature,
such as “Requirements are a specification of what should be implemented in a
software”(Heikkila et al., 2015). The second half of the term can also be seen as being

10

2.4. REQUIREMENTS ENGINEERING

misleading: Despite being a field of knowledge arguably closer to process management
than to technology, it, perhaps counter intuitively, is called an engineering domain.

2.4.1 Agile Requirements Engineering

Agile requirement engineering(ARE) can be defined as the following(Heikkila et
al., 2015) “In agile RE, the requirements are elicited, analyzed and specified in an
ongoing and close collaboration with a customer or customer representative in order
to achieve high reactivity to changes in the requirements and in the environment.
Continuous requirements re-evaluation is vital for the success of the solution system,
and the close collaboration with the customer or customer representative is the
essential method of requirements and system validation.”

Two systematic reviews have investigated the effects of ARE: (Inayat et al., 2015)
and (Heikkila et al., 2015). Both reviews expresses the recurrent advantages of ARE
compared to traditional RE, as well as the new challenges introduced by ARE. The
conclusions are generally similar, affirming the validity of the results. ARE generally
solves the following challenges frequently encountered by traditional RE:

• Lowering the communication gap

• Overscoping: the RE requires more than the team can deliver

• Requirements validation: difficult to validate requirements before it’s too late

• Unreliable and lengthy documentation: a massive document which is not
updated

• Solving rare customer involvement

• A reduced tendency to overallocate development resources

• Responsiveness to change

, as well as finding that agile RE posed a number of new practical challenges:

• Minimal documentation and tacit requirements knowledge

• Customer availability

• Budget and schedule estimation, and imprecise effort estimation

• Inappropriate architecture

• Neglecting non-functional requirements

11

CHAPTER 2. THEORY

• Customer inability and agreement

• Contractual limitations and requirements volatility

• Requirements change and change evaluation

2.4.2 Requirements Engineering in Software Startups

Even though software startups not necessarily follow agile principles in their work
flow, they have a common contextual denominator, leading to a few similar needs.
Both startup and agile teams will have to decide what to implement in each iteration
and which requirements will deliver the maximum value to customers(Melegati et
al., 2019). Software startups are not agile by nature, but they share a set of common
characteristics, and agile software development has become so popular and accepted
that a considerable portion of startups will be inspired by what appeared radical
not many years ago. Hence will literature from both startup engineering and agile
software development be relevant for papers studying startup engineering.

A study investigating 88 experience reports from startups revealed, after coding the
collected data and grouping after number of knowledge areas(KA) within software
startup engineering, that software requirements engineering is both the most discussed,
and having the most quotes related to negative impact on the product: Requirements
engineering the major challenge, if not a pain point, for software startups(Klotins
et al., 2019b).

(Gralha et al., 2018) provides a framework for categorizing requirement engineering
in startups along 6 dimensions: Requirements artifacts, Knowledge management,
Requirements-related roles, Planning, Technical debt and Product quality. Specifi-
cally for the dimension regarding planning, the report provides the three following
phases i) In the earliest stage of a startup, planning in non-existent or minimal.
Initial users/clients are found, and reactions from these early adopters is an important
factor in the future development. ii) A growing customer mass leads to a richer
backlog, and planning becomes monthly or quarterly. Schedules generally remain
loose, releases often not planned. iii) The third and final phase is where planning
becomes strategic and aligned with vision.

Requirements engineering has traditionally been associated with large, process-heavy
projects, spending much time and resources upfront to the implementation phase. A
list of final and relatively detailed requirements was provided in an early stage of the
project.

The process of producing this is what is known as requirements engineering, and
can be decomposed into a number of activities: elicitation, negotiation, analysis,
specification and validation of requirements. Agile software development, addressing
the problems associated with too much upfront planning through collaboration and

12

2.4. REQUIREMENTS ENGINEERING

adaptability, should then be in opposition to the traditional take on the field. So
how does requirements engineering play out in an agile context? Both agile and lean
startup principles in practice lead to projects being executed in iterations, including
deployment, testing, feedback and consequently possibly refinement or readjustments
of the requirements. During the first iteration, only high level requirements are
defined, whereas the detailed are only determined during the iterations to follow.

A 2019 report on software startup engineering presents the following critical remarks
on startups practices: (Klotins et al., 2019b) "... However, the applied requirements
engineering practices are often rudimentary and lack alignment with other KAs. As
a consequence, inadequacies in requirements engineering hinder other engineering
activities and might lead to unwanted technical debt, poor product quality, and
wasted resources on building irrelevant features."

2.4.3 Market Driven Requirements Engineering

For many businesses, what is to be implemented is made for a known customer or
user, or for a well-defined purpose. This can be the case for e.g. a software company
writing a new internal application for a client company. The RE involved in this
activity can be characterized as customer-driven(Regnell, 2005).

When the customer is not defined or known, for instance when being the first one
to offer a product/service in a new market segment with uncertainty, or when
offered to an open marketplace, the process of requirements engineering can be
categorized as market-driven(Regnell, 2005). Software startups often find themselves
in this category (Rafiq et al., 2017). One may differentiate between two main
drivers for development of a product: Market pull i.e. a need from the market,
and tech push i.e. new technology providing new opportunities previously unknown
to the market. When the software produced is aimed at being offered to an open
marketplace rather than to one specific customer, the RE process can be categorized
as market-driven(Regnell, 2005).

2.4.4 Requirements Elicitation

Requirements elicitation represents practices to collect requirements and to identify
sources from where engineers can collect requirements(SWEBOK 2004 2005), also
known as "requirements gathering". Technology focused companies often neglect user
feedback in favor of inventing requirements internally. This is partly due to difficulties
obtaining feedback on a new product that is unknown for a market(Medeiros et
al., 2017), and partly due to focus on technology rather than actual customer
needs(Karlsson et al., 2007).

Customer input is reported as an essential part of requirements engineering, even

13

CHAPTER 2. THEORY

though it is reported as complicated due to physical distance and vague understand-
ing of the target market. A commonly reported difficulty is to create an engaged
community of early customers of the product. This community facilitates require-
ments elicitation, validation and other activities were direct customer feedback is
essential.

Collecting requirements from defined, explicit clients may prove to be easier than
in the market-driven context. "Traditional requirements elicitation techniques, in
which elicitation sources are customers or users, are not appropriate to elicit market-
driven requirements, because in market-driven requirements there are no specific
customers or users until or unless the product is released or at least beta version is
handed over to a set of customers. Often market-driven requirements are invented
initially. The invention process is inspired by business strategies and the vision of a
product-to-be.”(Klotins et al., 2019b)

Some reports have stated concern in that agile software development lacks concern on
data structures: “There is concern in defining the conceptual model in a systematic
way together with user stories. Sometimes, the data entities are generated from
the classes defined in the source code. It may end up creating an unstable data
model"(Inayat et al., 2015).

2.4.5 Requirements Documentation

The hundred long pages requirements documents resulting from extensive upfront
analysis pages are less common nowadays. Jørgensen(Jorgensen, 2016) concludes that
a recurring factor in successful large IT projects is flexibility and agility, including
extensive documentation.

Startups and agile project share characteristics when it comes to requirements
documentation. Startups tend to have shallow documentation, and so does agile
teams, compared to traditional approaches(Melegati et al., 2019).

A common tool for requirements documentation in agile software development is user
stories, expressing wishes on the format as a X I want to see Y, such as as a user I
would like to see the weather forecast, or as an administrator I would like to edit
member’s permissions. Widely accepted as format for documenting requirements as
of 2019, it provides enough information to developers to implement software. It’s
worth noting that use cases state what is to be developed, not how: A use case will
never specify the technical architecture, and most will consequently be insufficient
as documentation in most cases. User stories are targeted to customers and cover
simple functional requirements. They do not address system and non-functional
requirements that are also required for coding, testing and maintaining(Medeiros
et al., 2017).

14

2.4. REQUIREMENTS ENGINEERING

2.4.6 Requirements Prioritization

Release planning is related to requirements engineering, and requirements prioritiza-
tion in particular(Klotins et al., 2019b), as it concerns the set of requirements to
be delivered to the customer and provide competitiveness to the market. Klotins
distinguishes between two main approaches startups follow when planning product
releases: 1) frequently releasing small increments and 2) delivery of a fully-fledged
product. The former is related to continuous requirements validation and may allow
for quick product direction adjustment. Challenges for following this approach are
the overhead associated with each release, and dependencies between them.

The latter involves a risk of having put the effort of implementing irrelevant features.
Companies may want to polish their product before release, wishing to keep or attract
customers in the competitive market it likely operates in. Companies collecting early
user feedback and have launched a less complete product, report fewer difficulties in
marketing the product(Klotins et al., 2019b).

More frequent releases has the advantage of allowing for more frequent feedback on
features, if these are collected and measured. It is hence related to requirements
validation, i.e. does the client or user accept what is implemented. Frequent releases
often implies less risk associated with each delivery - each release containing fewer
changes. A disadvantage is the overhead associated with each new delivery, including
the risk of errors related to the release.

A recurrent method used by startups is to have a higher level management define
milestones, then let development or product team determine the task implementation
orderMelegati et al. (2019).

2.4.7 Non-Functional Requirements

Requirements may generally be categorized in functional and non-functional require-
ments(NFRs), sometimes called quality attributes. Whereas the requirements in the
first category are reflected in new functionality to the product, the latter concerns
aspects such as usability, security, performance or compatibility.

Neglected non-functional requirements is found to be one of the challenges of agile
requirements engineering(Inayat et al., 2015), partly due to the extensively used user
stories, generally covering only functional requirements.

15

CHAPTER 2. THEORY

16

Chapter 3
Research Method

3.1 Data Collection

3.1.1 Research Phases

The data collection period lasted throughout most of the pilot study, from September
to December 2018, as well as during the master thesis, from January to April 2019.

The pilot study was to a large extent spent acquiring a foundational understanding
of the case as well as the theory. Scoping the research project proved to be amongst
the major challenges, and the main themes and research questions were determined
towards the end of the project.

The master thesis was a continuation of the work done during the pilot study.
Understanding of both case and theory was brought into the thesis. The themes
determined during the autumn, i.e. documentation on estimation and requirements,
as well as agile software development in established organizations, served as a starting
point for the new phase.

3.1.2 Principles for Data Collection

Yin(YIN, 2011) provides three principles to follow in order to improve case study
research quality:

17

CHAPTER 3. RESEARCH METHOD

Multiple Sources of Evidence

Data triangulation is the rationale for using multiple sources of evidence: Any
case study finding is likely to be more convincing if it is based on several different
sources. Information sourcing from one document or interview is not sufficient to
base an information on. This was achieved by backing up claims from interviews with
relevant data from documents or by observing discussions of same themes during
meetings. Most often was done by collecting various’ peoples views on the theme
during interviews, in search of patterns or to confirm that there was no pattern.
An examples of this is the question on how the roadmap is interpreted by different
team members: open ended questions about the roadmap was asked during different
interviews, the document itself was investigated, and roadmap related meetings were
observed. In sum, this lead to a solid base for understanding and analyzing the
subject.

A Case Study Database

Case studies have been criticized for lacking transparency regarding what and how
raw data led to the themes and conclusion. One counter measure of this is to separate
clearly between the processed data in the report, and the raw data, as well as making
the raw data available for the reader. All interview records, meetings notes, and a
log of other interesting events throughout the data collection period are available at
request, but for confidentially cannot be published.

A Chain of Evidence

The collected material is documented in the Data Collection chapter and the most
relevant parts of this is repeated in the Discussion chapter.

3.1.3 Data Sources

Six sources of evidence for case studies are presented in Case Study Research
(YIN, 2011), as listed below.

Archival records were not relevant to the project as the relatively young company had
few or no archival records available. Physical artifacts are objects such as devices,
tools or an instrument, and were considered irrelevant to the research of a digital
company.

The below sections describe the used data sources:

18

3.1. DATA COLLECTION

Figure 3.1: Data Sources

3.1.4 Documentation

A number of documents served as sources of data for the research project. Calendars
were used to investigate if, when and between whom meetings would take place.
The task management system Trello provided data in a number of ways: Feature
documentation, task estimation, how features were split into tasks and how task
relevant information was communicated through the system. The documentation
platform Google Drive was used to look into design documents, as well as some
architectural and technical documentation. The communication channel Slack, was
rich on information and provided insight in discussions on features, and equally
important, the culture of the company. Finally the roadmap viewer on the web
platform Airfocus documented the roadmap.

3.1.5 Direct Observation

Direct observation is done by a passive observer. During the research project it
took place as meeting observations which were held throughout the project period.
A weekly tech team meeting, in which team wide themes were discussed, was the
most currently observed meeting. Other observed meetings included gatherings of
developers working together on a feature and team(a vague concept) meetings.

Whereas the interviews described below always would lead to generation of interesting
data, it could happen that meeting proved to have little relevance to the research
project. The observer being a fly on the wall, the themes discussed were not influenced
by the researcher. 6 meetings where (directly) observed during the pilot study, 9
during the master thesis.

19

CHAPTER 3. RESEARCH METHOD

3.1.6 Participation Observation

Being employed as a part time employee during the most of the project led to
both advantages and challenges for the research project. Distinguishing between
the role of an employee and that of a researcher was explicitly expressed towards
colleagues early autumn 2018. Time spent working was clearly separated from time
spent researching - for colleagues to know when they had to deal with the different
roles. The agreement of the two disjoint roles proved to be theoretical: In practice,
knowledge from work time inevitably, and luckily, affected the research. Meetings
being attended as an employee typically would generate ideas for further research.

Getting familiarized with the company and other employees was a major advantage
for the data collection. Blending in during meeting observations was easier, and a
tone of trust could be established during interviews. The issues of participation are
discussed in below in “Reflections and Research Limitations”.

3.1.7 Interviews

Interviews were the main source of data. Before each interview, an information
letter, approved by NSD(Norsk senter for forskningsdata n.d.), about the research
project was handed out, stating that the participation in the research project is
voluntary and anonymous. Questions were intended to be reaching wide, allowing for
unexpected answers or reflections. Interviews were typically ended with “any other
comments concerning what we have discussed?”, to which interesting statements
often followed.

Perhaps did interviewees see the interviews and the research project as a medium
to communicate opinions on organizational issues, which would be rarely discussed
during the daily work.

A total of 16 interviews were held throughout the pilot study and master thesis.
Interviews have been the main source of data for the research project. Several
interviews were held at the company office, lasting from 20 to 90 minutes. Interviews
were semi structured: Each interviewee was encouraged to “freely speak his mind”.

The interviewing skills improved significantly during the data collection period. A
main factor was the recording and transcription of interviews during the last months
of the project. Recording the interviews rather than writing quotes down improved
attention, and better questions. Transcripts led to more precise registration of the
statements. Data which at interview time would not appear interesting might do so
later, retrievable in the transcripts.

Another factor was the increased understanding of the subjects being discussed.
Theoretical and general knowledge improved, and so did the understanding of the

20

3.1. DATA COLLECTION

case being studied. This was reflected in better questions and understanding of the
answers during interviews.

Tables 3.2 and 3.3 summarize interviews and interviewees. Interviewees are identified
with same name in the pilot and the thesis, e.g. alpha remains the same throughout
the project.

Figure 3.2: Interviewees during pilot study

Figure 3.3: Interviewees during master thesis

Some individuals were interviewed several times: alpha(four times), gamma(three
times), epsilon(twice). Repeated interviews typically went further in depth of themes
discussed earlier, or on themes containing conflicting views between colleagues.

All interviews were semi structured, but they were gradually focused on narrower
themes with time throughout the project, going in depth rather than width.

21

CHAPTER 3. RESEARCH METHOD

3.2 Data Analysis

Qualitative data analysis is the determination of patterns and themes, or categories,
within the data. The categories can be determined based inductively on the collected
data or based deductively on existing theories found in existing research. Most often,
as is the case of this research paper, are the categories determined by a combination
of the two.

The determination of the categories was a process spanning from the beginning until
a few weeks after the data collection period:

Data is not collected completely randomly. During meetings, a researcher notes
what he/she considers relevant for the research project. Among the vast amounts of
documents available, only a few are chosen as basis for the research. And interviewees
respond to the questions being asked by the interviewer. Thus will the data collected
inevitably be coloured by the researcher already at “the source”.

A typical scenario of this is that a quote occurring at a meeting or interview triggers
the researcher’s curiosity, and lead to related questions during the same or later
interviews, generating more data about that theme, i.e. inductive data analysis. A
theme may also generate research on related existing research, i.e. deductive research,
which in its turn may turn into new questions for interviews. Thus are the categories
a result of the interaction between the inductive and deductive approach to data
analysis.

The categories have varied throughout the research period spanning from September
2018 to June 2019, and so has the understanding of the theory behind it. Finding
a correct scope for the research project unfortunately was a challenge during the a
surprisingly large portion of the research period. This was party due to a lacking
understanding of the field in the beginning, and the preparatory research project
largely consisted of getting insight in both the theory of the field, as well as getting
necessary insight in the case.

The scope initially started as agile software development in a growing startup, but it
would show that the theme was too broad, combined with the fact that agile software
development is a vague theme, both in the current research and as perceived by the
research subjects. A number of categories, related to agile software development(ASD)
in various degrees, were determined and discussed. The categories, and the theoretical
insight who followed served as a platform for further research during the master
thesis period lasting from January to June 2019. The research themes for the thesis
were yet to be determined. Inspired by what agile principles tell us about work flow,
an iterative approach was chosen to the master period: two iterations of a “data
collection - literature research” cycle was done. After the first cycle, a number of
categories were determined, partly overlapping with the ones from found in the pilot
study.

22

3.3. REFLECTIONS AND RESEARCH LIMITATIONS

Figure 3.4: Research Themes

Literature research led to insight in the decomposition of the requirements process
into defined phases: elicitation, prioritization, estimation, documentation, amongst
others. Together with the statements and occasional disagreements of the research
objects, a main research theme of requirements as a process was selected. The data
indicated exactly this: Requirements undergo phases in which they are handled
in different manners, and debated upon. One requirement could be interpreted
differently by different members of the team.

An important characteristic of the theme is that it assumes requirements to be a
process, i.e. dynamic, rather than a static product. For an fruitful analysis to take
place, dependencies between the phases, as well as with activities outside the boarder
of requirements engineering must also be taken into account. The term requirements
is here used in a broad sense, including wishes of all formats from clients, ideas for
new features to the product from within the team, non-functional requirements and
even software bugs.

After the first iteration of the two iterations of the research work in the master
thesis, one category was chosen to serve as main theme and perspective for further
data collection and literature research: Requirements as a process. Data from what
was originally considered another theme, as well as from the pilot study, such as
Estimation, would also become part of the main theme, by being relevant to the
main theme. Seeing this data in the light of the new main theme, as well as with
new insight in related theory, renewed its relevance to the research.

3.3 Reflections and Research Limitations

One method for evaluating the research project is by following the seven principles
described in (Klein et al., 1999) for evaluating interpretive field studies in information
systems, serving as a framework for assessing the case study:

The Fundamental Principle of the Hermeneutic Circle: Hermeneutics is the
branch of knowledge related to interpretation. The hermeneutic circle, foundational
to all work of hermeneutic nature, suggests that our comprehension constantly moves

23

CHAPTER 3. RESEARCH METHOD

from seeing "the thing" as a whole, and understanding "the thing" by considering its
parts. Throughout the study period, the researcher’s knowledge on ASD, requirements
engineering and software engineering has been changed and improved. Consequently,
so has the understanding of both the literature and the case under study. The
understanding of the subject as a whole, has in its turn influenced the understanding
of elements of the research project. Several times, the same texts or quotes have
been interpreted with new eyes, reflecting new understanding of the subject.

There were three main phases of improved understanding of the research topics: the
pilot project and the two iterations during the master thesis.

The Principle of Contextualization Suggests that research needs to include
critical reflection on the background of the case, so that the intended audience may
see how the current situation emerged. Highly relevant to this case, information on
the background of the case has been included in the “Context” section of the “Case
Results”. A challenge of the research project has been to separate between data
(a) irrelevant context, (b) relevant context, and (c) having direct relevance to the
research theme.

The Principle of Interaction between the Researchers and the Subjects
This principle requires critical assessment of how the results were socially constructed
through the interaction between researcher and subjects. The researcher’s own ideas
must be critically assessed for research to be valid.

A deliberate effort was made by the researcher during interviews in order not to ask
questions which would generate answers being advantageous for the research project.
This was partly achieved by asking open-ended questions, in the shape of objectively
presenting a defined theme, and asking for thoughts or opinions related to the theme.
Further in depth questions would be asked depending on what the interview subject
would state.

Throughout the majority of the project period, the researcher has been spent the
days at the office. The advantage of getting unique insights in the case is contrasted
by the inconvenience of losing objectivity while studying the case. A factor further
accentuating this inconvenience is the fact that the researcher has been employed
as a part time developer in the enterprise being studied during the research period.
A significant and deliberate effort has gone into separating these roles. It has been
clearly communicated, amongst others by separating between “research days” and
“work days”.

Principle of Abstraction and Generalization The principle is especially inter-
esting for case studies with few unique, or isolated, properties like the one described
in this paper. From the concrete observations and consequent analysis, what can be
induced as lessons for the general case, providing new insights for future cases? The
general perspective is presented both in the intro and in the conclusion.

Principle of Dialogic Reasoning The impression and understanding of require-

24

3.3. REFLECTIONS AND RESEARCH LIMITATIONS

ments engineering and agile software development evolved during the research period
- from superficial and without having much experience to a thorough insight in the
field. This was due to the data collection phases, the investigation of relevant research,
and the play between these, as explained in both “The Fundamental Principle of the
Hermeneutic Circle” and in “Data Analysis”.

Principle of Multiple Interpretations In interpretive research, one allows for
multiple subjective realities, being highly relevant for a case study like this one.
Research subjects may for different reasons have different perceptions of one thing.
It is the researches work to allow for and interpret the different versions given. This
is especially relevant for the historical reconstruction of this study, mainly based on
interviews.

Principle of Suspicion There may be systematic bias in the data collection. Tech
team members of Blueberry may for example present versions of phenomena providing
prettier images of themselves than what others would do. The role of the product
manager and tech leads were especially prone to this - this research paper to some
extent being an study of their work.

25

CHAPTER 3. RESEARCH METHOD

26

Chapter 4
Results

This chapter reflects all the data collected during the case study which is relevant
to the research. First comes a section providing information on the context of
the company, including a short summary of its history. Next comes the section on
requirements process: starting with placing the relevant activities in context with each
other, as well as in the perspective of other aspects of software development, before
looking at separate aspects of requirements engineering: Elicitation, Documentation,
Estimation, Prioritization and Validation. Data collected concerning non-functional
requirements, an own category of requirements, is treated separately.

4.1 Context

4.1.1 Historical Background

The anonymous software startup "Blueberry" was founded in late 2016 by two
individuals who currently have the positions of chief exectutive officer CEO and chief
product officer CPO, and quickly experienced growth. The company offers products
based on machine learning technology currently made use of by a large number of
customers. The main field of application is in customer services - automating part
of the service requests by end users, it frees companies’ resources previously spent
manually responding to users’ questions. Doubling its number of employees during
the summer of 2018, it currently employs approximately 35 people, of which 15 are
tech team members, i.e. developers, designers, product manager or CPO. Other
employees include sales, content writers and other managers.

The total developer workload is to some extent a reflection of the number and size of
new clients. Adapting and integrating the core product with new clients’ platforms
require work, as well as preparing the platform for more traffic. Some developer

27

CHAPTER 4. RESULTS

workload is independent of the number of clients - new features need to be added to
the platform, as well as improvements of the machine learning algorithm, the core
technology.

Blueberry has gone from being an early stage startup to being a mature startup. The
rest of this chapter contains the results from the data collection, with a description
of today’s practice as well as of Blueberry’s past.

4.1.2 Evolution of Blueberry’s Tech Team

Blueberry’s software development can grossly be divided into three main periods:
the early startup period, the establishing period and the mature startup period.

The early startup period lasted roughly from the startup’s very beginning until late
2017. The tech team was generally informally organized, with the number of tech
team growing from 1 to 5 people.

“Things were less organized than today, everyone worked with a bit with everything.
Meetings and discussions were done when needed, across the desk”, states one of the
early developers, and continues “The workload was generally reasonable, but could
exceptionally grow bigger with very long evenings. A few times dangerous bugs did
occur, without this causing too much trouble”.

Documentation was written when needed for external communication, but rarely and
not systematically for communication amongst colleagues. Tasks where informally
defined, estimated and prioritized.

The establishing period lasted approximately from late 2017 until the summer 2018,
marked by the engagement of new and previously experienced tech members. The
company consequently experienced important changes, the new team members
bringing new competence to the team.

“Deployments were too risky and tests rarely implemented. Errors which could
have been avoided occurred. The early developers were competent, but generally
lacked experience with handling larger software systems” states one of the members
engaged during this period, and adds that the risky deployments were suboptimal as
it lowered the delivery frequency and hence slowed the development. Consequently,
a deployment pipeline with automated checks and tests was set up, formalizing
mechanisms which earlier had been done inconsistently. Tests got more common,
and separated testing environments were created. Requirements to documentation
on each git pull requests were introduced, standardizing the development further.
“Urgent fixes, putting out fires, subsequently got rarer than prior to the introduction
of the new employees” confirms an early hired tech team member.

Except from git pull requests documentation, the tech team generally had little

28

4.1. CONTEXT

formalized documentation. Estimation was not formalized and requirements handled
ad-hoc. The same was the case for sprint organization, or more correctly the absence
of such: tasks were generally effectuated when needed and at clients’ deadlines,
without setting internal temporal limitations for work units.

Together with a growing number of clients, an external factor affecting the workflow
was the startup’s funding mid 2017, when Blueberry got additional financial support
from an investor. From being dependant on clients, implementing features at their
request without much negotiating power, Blueberry after the funding had a financial
margin to rank features in a strategic manner. From basing projects on clients’
request, living from hand to mouth, Blueberry could plan strategically for themselves,
resulting in new organizational challenges.

Some characteristics have marked the company since the beginning. It’s worth
noting that the tech team is culturally homogeneous. Males, sharing a relatively
similar cultural background, they have chosen to work in a startup. The cultural
homogeneity of Blueberry affects the office culture and consequently the ways of
communication. A shared cultural background facilitates informal communication
and suggests that the need for formal documentation decreases.

“For now it’s comfortable, but we may miss out of acid tests down the road. The
shared informal knowledge of heterogeneous, often small organizations is highly
efficient, but will probably be inconvenient during future knowledge transfer to new
employees or external agents”, states the product manager.

4.1.3 Tech Team Members and Size

Attracting clients and investors, the startup has grown and undergone fundamental
changes, and still does. While the tech team, i.e. the developers and designers,
earlier consisted of a few early hires, it currently has employees in a conventional
sense, like considering the work as a job rather than a life project. This includes
working predictable hours and having a predictable salary.

A majority of the tech team members are employed directly from universities, which
bachelors degree, master’s degree or PhD: Out of 15 tech team members 6 have
significant previous work experience. Except for the use of one technologist during a
period mid 2017, Blueberry has not employed any external resources.

In August 2018, Blueberry hired a product manager(PM), responsible amongst other
things for coordinating the increased development workload and product related
client contact.

29

CHAPTER 4. RESULTS

Figure 4.1: Evolution of Tech Team Members

4.1.4 Product

Due to the anonymity of the company, specifics on the company and the product
cannot be stated here. With the exception of a few other activities, the tech team’s
activity consists of working on and improving the product platform. It is on this
platform the content is added, of which the end users get value from. The content are
generally specific to each client, and one client may use a number types of content.
Both internal and external, i.e. employed in Blueberry or nor, content writers work
on the platform. Internal content writers work only a few meters away in the open
landscape office, allowing for quick communication and easy testing of potential
changes to the platform made by the tech team. When a type of content is ready to
be launched the client releases it as part of its web site, and the end user uses the
integration with Blueberry’s product on the clint website.

The product is thus a combination of the platform and the content and abilities
of the types of content, added by Blueberry or by the client. Early April 2019, a
CEO states both towards customers and in internal meeting that “the end user is to
be in focus” for the next period, indicating that the company is keen on achieving
constructive interaction between both customers and end-users. The ones paying for
their service are other companies, thus making it a business to business, B2B, agent.

Blueberry is a product company, the platform being its main asset. This affects the
relationship with the clients. As will be described later may clients’ wishes for the
product differ from what Blueberry believes to be the best in the long run.

30

4.1. CONTEXT

Figure 4.2: Product Creation Flow and Related Agents

4.1.5 Personnel Structure and Workflow

“We have tried out different ways of working since Blueberry was launched, but
we’re still without a formal process. We need to adapt to individuals, who differ in
how they work optimally. There’s much good intuition in the team, that we rightly
should make use of.” “Neither do we have someone, or a lead, that knows a given
methodology really well. If there was such a person, forcing such a process over our
heads, it could work out really well for some people here, and not at all for others”.
He continues “We’re flexible in that we adapt, both product and process, to new
situations.”

The same message was expressed by a significant number of tech team members
during interviews - Blueberry has been, and still is, flexible to its approach to
structure and process. “We try something out, and if it doesn’t work out, we adjust
quickly”, states another tech team member. This was confirmed through observation:
Work methods were flexible rather than written in stone.

“I suspect we are more difficult to manage than the other devs”, states one of the two
developers in the team responsible for developing a core technology for the product.
“What we’re doing is basically experimentation, and it’s difficult to know what a new
idea results in, not to speak of estimation.” He continues “I’m not quite sure who’s
actually in charge of us now.”

Two tech leads were chosen in january 2018 among the tech team members, to do
coordination work. “Having tech leads allows for quicker decisions, we don’t have to
discuss things for weeks anymore”, states one of the tech leads.

The product manager that was hired from outside the organization during the summer
2018 was intended to do much of the tech leads’ tasks. For a number of reasons, this
did not work out as intended: “The PM’s role was too largely defined, and he did not
have time to follow up on the tech side. Also coming from outside the organization,

31

CHAPTER 4. RESULTS

jumping in as the head of a team probable added to some disagreement. He tended
towards a top-down style, while the tech team generally wished it otherwise.“

4.2 Requirements Process

Through data collection as well as through insight gained through investigating
literature on the subject, it was found that the data could be collected and analyzed
through the lense of Requirements as a Process. This implies considering requirements,
defined below, as dynamic rather than being a static or final product. In Blueberry
requirements were indeed dynamic and flexible: Modified as they went from an initial
idea or request from a customer until finally implemented by one or more developers.

4.2.1 Definitions

A feature is a functionality on the platform.

A task is a work unit to be done by a tech team member, generally represented by a
card on the task management system Trello.

A requirement is, at its most basic, a property that must be exhibited by something
in order to solve some problem in the real world. It may aim to automate part
of a task for someone to support the business processes of an organization, to
correct shortcomings of existing software, or to control a device, amongst other
things(SWEBOK 2004 2005).

4.2.2 Agile and Requirements

Before going in depth into the stages of requirements engineering, it’s worth taking
a look at what the research objects thinks of agile software development(ASD):
Tech team members’ view on what agile is, and whether Blueberry follows agile
principles or not, varies and reflects that the term agile has a vague meaning. “What
is agile?”, one person asks, while another states “I hardly dare to use the word
agile, it can mean anything”. A third person states “Modern tech startups to some
extent implicitly follow agile principles - also inspired by literature such as Lean
Startup”(Ries et al., 2012).

However, one of the disagreements within the company, on the degree of up front
planning and specification vs iterations and flexibility, goes to the core of ASD -
upfront planning and documentation vs iterations and flexibility on the other hand.

“Agile is nice and reactive, and one gets to develop lots of nice and user friendly

32

4.2. REQUIREMENTS PROCESS

features. But how do these features relate to the direction one wants the product
to go in? I don’t think it takes into account all the context necessary for the right
decisions to be made“, and continues “agile is nice in the short run, but lacks the
view of the long run big picture”, states the product manager.

The PM expresses concern with the prioritization of requirements when implementing
in an iterative and feedback based manner: “what the users want is not equal to
what the long term goal is. Developer don’t necessarily have the holistic approach to
product development”.

Speaking more generally on agile, he expresses “Following agile for the sake of having
a well determined development method is not interesting. Whats works the best
in practice is interesting, not the academic purity of it. Product output is all that
matters, in the end”.

“As I see it, iterative work and MVP bases workflow is the manifestation of agile”,
states a tech team member. The following section treats exactly this, documenting
how minimal viable product(MVP), iterative work and upfront planning are dealt
with in the case.

4.2.3 Minimum Viable Product, Iterations and Upfront Plan-
ning

“The pm had a different approach to iterative work vs upfront planning from many
of the tech team members.” states one tech team member. “Time was spent in
management planning upfront and detailing requirements, time that could have
been used implementing the stuff. The detailed requirements did partly prove to be
unuseful, as they further down the road could prove irrelevant.”, he continues.

“We generally have relatively few really hard deadlines, compared to other companies.”,
states a tech team members, perhaps indicating that he has a different perspective
than the product manager on relation. “I believe that high speed solves many issues,
through shorter feedback loops”, he continues.

At three occasions during meetings within the tech team, tech team members with
special responsibilities pushed ons keeping ambitions for the first versions of new
features down. “Let’s make an ugly first version, and see how it works out with the
internal users.”, one member expresses during a meeting. “We’re very inspired by the
lean-startup approach”, another tech team member states.

“I’m very fan of the MVP way of working with features, it makes develop what’s need
needed, not more. You reach the goal quicker than if you spend time on planning
upfront.”

“For certain tasks, it’s not easy to work iteratively. For certain core product features,

33

CHAPTER 4. RESULTS

the entire feature needs to be implemented before it can be tested - large amounts of
data is needed, the infrastructure needs to be in place, etc.”, states a developer.

“Also when clients are very clear and specific in their requirements, we try to
implement features iteratively. The wishes are seen as part of the bigger picture -
perhaps the need of the client can be met by solving the problems by other means
than what they expected, means which also solve other customers’ problems. Thus,
it makes sense to work iteratively on these, originally clear cut and static, tasks as
well. For new features that are not related to the product and anyhow would not
affect other clients, such as integrations, I guess it could make sense, but these tasks
are rare”.

“What is an MVP, really? I think we lack some reflection on this, and a process
of defining this. What the MVP varies from feature to feature, and it’s difficult to
define. It’s true that the scope of the MVPs has swelled at several occasions”, states
a tech team member.

An example of this was occurred during the autumn 2018: A new feature was to be
released, the final deadline being a presentation for partners and clients of Blueberry,
this presentation being a few months later. The feature was initially a renewal of
the interface design, roughly estimated to require a month of work. The scope of
the delivery increased in scope throughout the project. “The project lived in its own
universe. There were no releases during the project.”

Another developer states that as that feature included an upgrade of the underlying
framework, making it difficult to put into production only parts of it.

“Productivity was low at the end of the project, devs were working on tasks with
low priority, perfectioning a feature that had not yet been launched”, states a tech
team member, and continues “We are aiming to release more often to customers now.
We should get better at iterating over features - together. Alone, one typically loses
perspective”, states a tech team member.

Both MVPs and entire features have at a number of occasions become more extensive
than anticipated. “It’s unfortunate, as it slows us down” states a tech team member.
“A consequence of that requirements aren’t clearly stated”, states the PM.

A member of the core technology team states that they generally have a list of
features and improvements they work on. Another member of the team explains
it differently: “There’s no formal process on how we handle our tasks in the core
technology team (of two developers). It’s mainly just experimentation”, states one
developer.

34

4.2. REQUIREMENTS PROCESS

4.2.4 Requirements Elicitation

Product Roadmap

The roadmaps is a overview of the new main features to be implemented during a
given time period in the future, normally from three to six months ahead. It provides
some five to fifteen items to be worked on simultaneously.

The roadmap is determined by the CPO together with a product manager, tech,
design and sales leads. Elements to be added in the roadmap is based on the following
sources:

• Analysis of competitors

• Feedback and wishes from clients

• The vision - “what culture do we want to be”

• Customer support channels

• Ideas generated internally

These sources overlap with those of the trello cards. Roadmap elements are debated
between “managers and leads“ before being determined, whereas some of the trello
tasks are less refined.

“We’ve used the roadmap actively since the end of 2018, and it will hopefully become
a (even) more important part of the developer’s consciousness”, states a tech team
member.

In addition to roadmap elements, there are a number of future features which have
been discussed and planned for. These elements are registered in the same platform
as the roadmap.

Product Vision

Several tech team members expresses that the company’s own wishes for the product,
compared to those of the clients, are selected and prioritized higher than before. “In
the early days, there were no clear product vision. Currently, we have the resources,
both finances and resources, to choose for ourselves what the next feature should be.
”, states the CPO. “We now have the guts to challenge or customers and even turn
down requests for features, and I’d say that’s a major strength”, states the PM.

An effort is made in order to determine and communicate the future of the product on
a higher, more abstract level. The company has meetings where all people involved

35

CHAPTER 4. RESULTS

in the company, including investors participate communicate and discuss the future
of the product. Still, as of late March 2019, the product vision statement was still in
the progress of being made and communicated within the company. There is come
disagreement on the degree of communication of the future plans for the product
“Our roadmap spans a few months ahead of time. I can’t say we have vision other
than that”, states a member of the sales team.

Other Requirements

While the main features are elicited and prioritized through the roadmap, many of
the tasks do not originate from the roadmap. These tasks are

• Bug fixes

• Wishes for smaller features from inside or outside the company

• Requirements from clients which cannot wait until the next 3 month slot in
the roadmap is ready

• Tasks related to non-functional requirements

After being handled, if needed, by one or more tech team members, tasks are
consequently put in the “Incoming” column in a Trello Board. “Passing new tasks
through the Incoming column gives us some slack and allows us to lower our shoulders
while working. It makes us not forget things and it’s a quite easy method to prioritize
items. Seeing the tasks from a distance, and discussing them with others might put
them in a different light. Perhaps the task wasn’t as important/urgent as one first
thought?”, states the PM.

One the other hand, this process adds a delay to the implementation of a feature:
the time until the next weekly prioritization meeting, and potentially the time until
a developer is available for a new task.

The PM expresses some concern when requirements are communicated directly from
clients or sales to the developers. “We try to avoid sending requests directly to the
tech team, it should rather be processed by someone who has the overview. It’s ease
to get stressed up a client contacts you with requests or issues. One may forget to
ask questions such as “How important is this, actually? How important is this client,
really?”

Some work that is done can be of considerable size, but still neither elicited by the
team nor formally documented or prioritized. “What I work on now is on my own
initiative, I’m now working on it together with a colleague. That kind of work is
typically done in the evenings or weekends, so that I can prove that it’s working” The
task was related to the changing the underlying framework of a part of the platform,
making future features or changes easier to implement.

36

4.2. REQUIREMENTS PROCESS

4.2.5 Requirements Documentation

Feature requirements were during the autumn 2018 documented on a trello card
representing the feature. Such a Trello card would serve as base for new cards
representing subtasks of that feature, each subcard being linked to the main card,
for traceability and task logging. The requirement was structured in three sections
What, Why and How. This system was introduced by the product manager, and
implemented for most features and teams, but not all. After the beginning of 2019,
when tech leads were appointed and the product manager moved into a role closer
to client contact, this system ceased to be followed - reflecting the different views on
the topic in Blueberry.

The roadmap mentioned above informs about the main features to be implemented
at a certain point in time. Its elements are loosely defined, and are described by
short snippets, 1-10 sentences of texts. Elements are in principle already elicited and
prioritized when listed in the roadmap. During a planning meeting held after a busy
period with a major deadline, where part of the plan for the future was to be set, the
CPO states: “As you can see there’s already a roadmap, but the roadmap elements
are so widely defined features that we need to refine them before they can serve as
tasks”, indicating that roadmap to some degree is a work-in progress plan, rather
than something written in stone. “Yes, there’s a roadmap. But the understanding
of the roadmap and its features varies within the team. People may have different
understanding of a feature.”, states the PM.

Figure 4.3: Example of Requirement Presentation in Trello

“We’ve recently introduced a new system for the features to be added, called design
documents, which is to be used for features with at least some complexity. It should
give an overview and discussion of a feature, including user experience. ” states a
tech lead. “The design doc should serve as a basis for implementing the feature,

37

CHAPTER 4. RESULTS

from which we can generate smaller tasks, starting with a minimal viable product
idea(MVP)“. He continues “the design doc should be a dynamic document, modified
along the way”. “It involves, like traditional requirements, upfront work. I guess the
difference lies in it being flexible, not written in stone from the beginning.”

“The motivation of the design documents is to get all facts on the table, make
them available easily for everyone, to create a platform on which we can think the
feature through(for data structures, user stories, mockups. . .) before jumping into it.
Feedback gathered during the implementation phase may also be put there.”

“The user stories are made use of as it provides the right extent of specificity and
flexibility - the goals are defined, but it does not specify details on how it should be
implemented”. “When splitting into smaller tasks in the planning phase, and then
doing them one by one during the project, you risk losing an essential view of the
bigger picture during the implementation phase.”

The change log of the design docs reveals that the design documents are used by a
small number of tech team members (observation made approximately a month after
they were introduced).

“Creating a 10 page requirements document partly based on assumptions on what
the product will be doesn’t make sense to me. In my experience it’s more efficient to
get going right away. Like the period we’re in right now: I’m so busy I don’t have
the time to use or update the design documents”.

“For the client project I’m working on now, some documentation and messages are
written down in different channels, some are in emails, and some are in the head of
people. So it’s important that we speak together”.

4.2.6 Requirement Estimation

One factor affecting the prioritization of features to be implemented is how much time
and/or resources one thinks the task will take, in other words what one estimates
the task will require of time and resources. During meetings, the term “low-hanging
fruit” has repeatedly been mentioned, signifying features which are easy or quick to
implement and useful for the users of the product, indicating that estimation is done.
So is the case with an attribute to roadmap, elements, done below.

For data collection and analysis, it has been separated between estimation of larger
features, typically roadmap elements or larger requests from customers, and estima-
tion of individual tasks, typically a card in Trello.

Estimation of both large and small units of work is to a large extent done informally,
based on intuition. However, the company have introduced frameworks for estimation,
as explained and discussed here:

38

4.2. REQUIREMENTS PROCESS

Approximately half of the elements on the roadmap are marked with two numbers
ranging from 0 to 100 - one reflecting cost, proportionally reflecting the estimated
relative time for developing it, the other being the value it will add to the product.
By combining the value added and cost factors, one could easily find which features
to implement, and which to leave out. “There’s not yet a formalized way of how
and who decides the cost estimate”, states the CPO. Roadmap elements tend to be
loosely defined, making estimation more challenging.

Regarding larger features, typically coming from the roadmap, one tech team member
states ”I typically intuitively know whether something will take one or six months.
Often, features including much front-end take much time, with a lot of back-and-forth
during the project. Back-end tasks are often more straight-forward.”, states a tech
team member.

Concerning estimation of (smaller) tasks, a different framework was tried out: Mid
2018, a long debate on how to best estimate the time needed for the work to be done
was held, and the team landed on the “moon emoji” system - ranking a Trello card
from taking 1 to 5 days. After the system being introduced, it was generally followed
and well accepted. The system provides estimation for cards, not features, generally
consisting of one or more cards. A few months later, the emojis are not appearing
quite that frequently, but are still to some extent made use of.

Figure 4.4: Example of Trello Board with Emoji Estimations

The tech team expresses various opinions on systematic estimation, and an overweight
of the interviewees express uncertainty of its purpose: “Appreciate estimating, in
that it makes me plan the tasks, and split up things if work units are too large.
Motivating with many small, rather than one big.”, states a junior developer. “But
it’s difficult to estimate, as even small things often can get more complicated than
foreseen”.

The emojis added a playful tone to the estimation process, making it feel less heavy:
“The emojis are working rather good. Not too stressful, in that I estimate in days,
not in hours. It’s abstracted away from hours, and I also forget that it is related to
days”.

Two tech team members expresses uncertainty or disagreement with estimation: “I’m
uncertain about this. No examples of negative consequences of not using it - it’s
useful in some cases, while the product manager wanted to use it for all tasks”, states
one tech team member. Another tech team member states: “Estimation makes no
sense. All my experience has proven that the human is unable to estimate within

39

CHAPTER 4. RESULTS

precision that makes estimation useful”.

4.2.7 Requirement Prioritization

Roadmap elements are prioritized by the CPO together with the leads of each team
in the company. When the tech team is ready to implement a new roadmap feature,
tech team members pick a new roadmap element. How this new feature is further
handled is up to the developer(s) handling the feature.

Roadmap features are often then decomposed into Trello board cards by either the
tech leads or the developer being assigned to the task, and generally worked on
immediately or shortly after.

The Trello tasks(cards) in the incoming column are handled and prioritized during a
weekly tech team meeting. Cards are, depending on the priority and the urgency,
either deleted or put in one of three columns, loosely defined as follows:

• Up Next: Top priority, tasks to be done next

• Later: Mid priority - Tasks to be done when “up next” tasks are done

• Planning/Backlog: Tasks to be done at a later point

A developer normally picks tickets from “Up next” when he has finished an earlier
task, but this is not a strict rule. If a developer rather wish to pick a ticket from
Later or Planning/Backlog, he is free to do so.

This, together with the freedom during the picking of elements from the roadmap,
implies a large degree of freedom, and less top-down control from: “Developers
freely chose which tasks to work on and how they want to do it. It should give
motivation and creating a feeling of ownership to the product.”, explains a tech team
member/tech lead.

A result of this pipeline is that tasks stack up in the three columns mentioned above,
depending of the load of the incoming column - the developers can only handle so
many tickets, whereas the requested work load is unlimited. The team thus regularly
reassess the Later and Planning/Backlog columns, either deleting cards or giving
them higher priority, typically moving them into Up Next or directly In Progress.

“Not implementing all tasks created all tickets related to a feature during the planning
or implementation phase of that feature is good - some of them probably proved less
important than new tasks who showed up later. Others might have proved irrelevant
after feedback from the customer”, one tech team member states.

40

4.2. REQUIREMENTS PROCESS

“Some tasks are obviously hot fixes that need to be done right away - if we discover
an urgent bug, we won’t wait for the weekly meeting to fix it.”.

During one meeting, the process of offering a service to the client, a tender, affected
the requirement and task prioritization(the tasks in that case being related to
scalability) - the alternative making sense from both a technical and product point
of view got lower priority than expected, after the PMs information on the tender.

4.2.8 Requirement Validation

Validating requirements in Blueberry most often meant testing early versions, MVPs
of a feature, or a the feature after it was considered done.

New features go through a quality assurance process in the “staging” environment
of the product. A slack channel for notifying internal users that they should test
the new feature provides an easy way for the tech team to test new features. A
template for testing instructions is included on each new testing request. This is
done as quality assurance, when the feature is assumed to be more or less ready.

When first versions (MVPs) are done, this is tested on internal users of the platform,
and occasionally on external, i.e. customers. Some customers get access to a
beta-version of the platform, gaining early access to features.

Blueberry get feedback on the product from internal users as well as external users
through the customer support channel, i.e. email, and through the product manager,
who is in direct contact with the customers as well as in close dialogue with the sales
team.

The company otherwise have little formalized processes for testing features, or
checking with customers if ideas for features(not yet implemented) would be of value
- depending on the feature, the customer, or other factors.

4.2.9 Non-Functional Requirements

One way of categorizing requirements are separating between functional and non-
functional requirements. Functional are related to functionality or behaviour, such
as “allow users to send personal messages in the platform”. The latter are related to
the criteria that judge the operation of the system, such as “the server should be
able to handle until x requests/second”.

Blueberry does not formally distinguish between functional and non functional
requirements, FRs and NFRs. However, roadmap features, in principle being the
most important tasks, are exclusively functional, potentially leading to a systematic

41

CHAPTER 4. RESULTS

underpriorization of NFRs. “The features related to the NFRs aren’t much to brag
about in front of clients. . . Or perhaps it is, when I think of it.”, states a tech team
member.

Even though NFRs generally do not gain formal priority in the roadmap or in the
task management system, they still get it done: “Lately, we’ve organized theme days
for non-functional requirements, as these tend not to be prioritized in the daily work.
One for UX, one for testing and one for scalability on our platform.”, states a tech
team member. Blueberry did not experience any issues with scalability with its
product, despite having clients with numerous and frequent users.

“Concerning security - here I suspect that we’ll at some point run into some unpleasant
surprises”, states a tech lead. “A lot of security features are stuff you won’t notice
that you’re missing. E.g. email notification whenever someone logs onto your account
from a new device.”, he continues, suggesting that security often is not considered or
prioritized. No security breaches, data leakages or longer periods of down-time were
reported, however, indicating that despite somewhat informal approach to security,
this lead to no issues.

During the autumn 2018, requirements related to GDPR were elicited, prioritized
and implemented. “That kind of pressure forced us do the stuff, so it was actually
helpful”.

“There hasn’t been much focus on NFR here. We’re very fortunate to have customers
who send us those kinds of requirements - they may seem annoying, but they make
us sharper”, states the PM.

One way of prioritizing NFRs have been to organize semi regular workshops themed
around such matters. After a theme day on scalability, one client requests data on
how many concurrent sessions the platform can handle. The client’s question lead to
further investigation, and a load limiter on the API was implemented, reducing the
risk for attacks such as DOS (also implying that it earlier had been vulnerable to
such attacks).

“A right balance NFR and FR is obviously optimal. A stable product, which proves
to be completely useless is obviously not interesting”, states the PM.

Parts of the discussions around scalability and infrastructure are held without the
CPO’s or the PMs involvement, thus not becoming a part of the overall plan for the
product, such as the roadmap.

The lack of extensive formalized NFRs in the company could potentially lead to
technical debt, but data generated from observations and documents did not indicate
this being a considerable problem. “It’s difficult to say whether more work earlier
would have saved us more time later, but I don’t think it has crossed my mind that
it would“, states one developer, and continues “I’m fan of not doing things before it’s
actually needed, and I can’t say we’ve experienced major issues or challenges due to

42

4.2. REQUIREMENTS PROCESS

technical debt”. The PM states “we haven’t suffered much from not prioritizing NFR
more earlier.” This indicates that technical debt has not been a pain point, despite
NFRs not being formally prioritized.

43

CHAPTER 4. RESULTS

44

Chapter 5
Discussion

The discussion consists of the findings relevant to a selection of isolated aspects of
requirements engineering: Elicitation and prioritization. The discussion on priori-
tization also contains two sub categories: Those of estimation and non-functional
requirements. A discussion of how the aspects of requirements engineering relate
to each other, as well as to other aspects of software development and startup
engineering follows.

5.1 Elicitation

The flexibility towards work method is also reflected in the requirements elicitation
techniques in Blueberry. The requirements elicitation methods are mainly informal,
which is common in software startups(Berg et al., 2018).

The case results revealed a number of sources for requirements, and for elicitation
of these: The roadmap, provided by managers and tech/design leads, provides the
larger features to be implemented. It is not written in stone however, as it was
observed that such elements were changed or removed, while according to the time
plan was in progress.

A number of case participants report their satisfaction with being less reactive than
previously, leaving space for the company’s internal long term wishes: "...we now
can challenge customers and even turn down requests for features, and I’d say that’s
a major strength", states one tech team member. This can partly characterized as
Blueberry going from customer-driven to market-driven requirements engineering,
partly due to an increasing number of customers and partly due to the company
gaining maturity and developing an established plan for the product - a direction
for the company to follow in the long term. This comes in addition to the financial

45

CHAPTER 5. DISCUSSION

strength and stability gained by the company lately.

The overall plan of the product’s future is discussed in company wide meetings. The
product vision, and the understanding has gained clarity within in the company, but
as of March 2019, three years after the startup being founded, an explicit product
vision statement was still not stated, being work in progress. There is disagreement
on the clarity of the product’s future, its direction, or the underlying plan for the
future - some claim its properly communicated while others experience it otherwise
. This could have negative consequences for the company in the phase it’s in:
The company largely relies on tacit knowledge, and developers currently are given a
relatively large degree of freedom for what they want to do: illustrated, amongst other
things, by the fact that developers generally pick tasks from the task management
platform by themselves. Klotin’s conclusion on common requirements challenges in
startups confirms Blueberry’s challenge: "... the applied requirements engineering
practices are often rudimentary and lack alignment with other knowledge areas. As
a consequence, inadequacies in requirements engineering hinder other engineering
activities and might lead to unwanted technical debt, poor product quality, and
wasted resources on building irrelevant features." (Klotins et al., 2019b).

While a challenge frequently encountered amongst startups is difficulties in engaging
an early community of engaged customer, providing valuable feedback and require-
ments validation generating new requirements to be elicited(Klotins et al., 2019b),
Blueberry has not lacked a customer and user mass from which it can collect ideas
for further product development from.

A factor complicating the company’s requirements elicitation is that it is partly
operating within a new field of knowledge and technology: tech-push and market-pull
are two main drivers, and Blueberry is considerably driven by the former. Being near
the frontier of its domain, the world is unpredictable, hindering long-term planning
of the totality of the company’s activities.

The company got an increasing awareness of the use of MVPs, and to keep the
scope of features down at the beginning. Although it in practice proved to be
more difficult define; "What is an MVP, really? I think we lack some reflection on
this, and a process of defining this. What the MVP varies from feature to feature,
and it’s difficult to define." states on developer, and also suggests that this issue
has caused a number of features to grow in scope. This clearly resonates with
the recurrent challenges found in the study of 88 startups (Klotins et al., 2019a):
"A time-consuming and expensive MVP is a sign of poor technology choices and
overscoping, the first start-up antipattern.". This can also be seen in light of the
findings from (Giardino, Paternoster, et al., 2016): While startups wish to follow the
theory from Lean Startup, they find it hard to apply them.

46

5.2. PRIORITIZATION

5.2 Prioritization

What determines an item’s priority is not only the value it at some point will provide,
but also the cost of implementing it, which is found by estimation. Before beginning
the discussion of prioritization, we will say a few words about estimation:

Estimation has been found to serve a number purposes: Primarily its role is to allow
for the tech team in general and managers specifically to know how much time a
task requires. This is done for resource allocation, as well as to inform clients on
how much time it takes before a requested feature is delivered, being prioritization.
Generally, all large features to be implemented are present in the roadmap, even
though it could occur that roadmap elements were removed.

Secondly, a developer expressed the advantage of estimation in relation to planning
how to work on a task: Being forced to think through what a task would require
had a positive impact on the implementation phase.

While serving for different purposes, explicit estimation concretely takes place in two
ways: Estimation of defined tasks, ready to be effectuated. These are typically items
in the task management systems, generally taking from an hour to a few weeks to
implement. This estimation is done sporadically through a moon emoji system: The
larger the moon, the more time the task will require, ranging from one to five days.

The second category of estimation concerns larger units of work. A new feature, a
major change in the layout, or architectural or infrastructural changes are examples
of these. This tasks typically span from a week to several months of work. One tech
team member stated “I typically intuitively know whether something will take one or
six months”, describing such features. Such estimations are in Blueberry generally
used for features documented in the road-map, where requirements estimation takes
place through the cost and gain indexes. “There’s not yet a formalized way of how
and who decides this cost estimate”, states the CPO. It is generally determined by
management, and resonates with practices found in literature(Melegati et al., 2019):
Management determines milestones, whereas developer or product team decides on
the task implementation order.

The disagreement concerning estimation observed in the case, as well as a feeling of
uncertainty of the purpose of estimating, is nothing new in the industry of software
development. Estimation is difficult, and often produce estimates which turn out to
be far from the actual resources and time spent. “In order to know which resources
we have available in the future, and when features that clients have requested will
be ready, we need to estimate”, stated one tech team member. However, concerning
the estimation of tasks was somewhat incomplete, i.e. occasionally only some of
the tasks related to one feature were estimated. When parts of a feature remain
unestimated, the feature as a whole is in practice not estimated - and would loose
interest for planning and prioritization purposes.

47

CHAPTER 5. DISCUSSION

A recurrent issue was that of tasks taking more time than expected, due to changes in
requirements, growing scope or other reasons. No temporal limit was set, consequently
the incentives to hurry up were fewer. One way to resolve this issue is to introduce
the extensively used sprints, as used in the Scrum method. Short work cycles with
defined goals, providing a framework for reevaluation of the the product and its
scope during projects. On the other hand, the absence of defined sprints omits the
problems of Parkinson’s law : "work expands so as to fill the time available for its
completion”, e.g. when the tasks of a defined sprint are done and the team keeps
perfectioning a feature instead of moving on to new and more productive tasks.

While working on a feature, the understanding of the feature may evolve, and hence
may the prioritization of the tasks change. "Not implementing all tasks created all
tickets related to a feature during the planning or implementation phase of that
feature is good - some of them probably proved less important than new tasks
who showed up later. Others might have proved irrelevant after feedback from the
customer", states a tech team member, when discussing a project which grew out of
scope, both in time and product scope. This speaks in favor of more reevaluation of
the current work being done - or shorter cycles in an iterative work flow.

Prioritization also takes place during the weekly tech team meeting, when trello
tasks are put in columns such as “up next” or “later”. In addition, a developer
generally chooses which tasks to effectuate himself, picking from any column in the
task management system rather than “up next”. The developers are hence free to
choose, and is given a large degree of freedom, giving both responsibility and power
of the product development.

An interviewee speaks of a feature which has been implemented, after being informally
prioritized by the tech team. “What are the consequences for later development?
And maintenance costs? How will it affect users’ overall interaction with the product,
currently and in the future? This in my opinion hasn’t been thought through”. Less
planning generally leaves more freedom and responsibility to the developers, calling
for empowerment of these. A crucial component of empowerment is the transfer
of product relevant knowledge: What is the overall product vision? What are the
future plans of the product? What is next year’s market segment? In the case,
people report differently on what is communicated of the product development, or
feature prioritization, relevant information. Parts of the findings indicate some of the
knowledge is not sufficiently expressed and communicated throughout the company,
given the large degree of developer freedom.

The company makes efforts to share this knowledge, e.g. through company wide
meetings where also investors are present, where the future of both the product
and the company is discussed. However, some data indicates that parts of the
information is not sufficiently communicated: an explicit product vision statement
was not communicated as of early 2019. The opportunities of the new technology
the company is creating and basing the business case makes the road towards the
company’s future more difficult to foresee. The customer and end user segment was

48

5.2. PRIORITIZATION

not clearly defined as of the end of the data collection period. In that sense Blueberry
is, while having a number of stable and satisfied customers, still in aresearch phase.

Parts of the information stemming from other requirements elicitation sources are to
some extent not communicated: being competitor analysis, dialogue with managers
of clients, or feedback from clients given to sales to the sales team. Whereas some is
the knowledge is successfully communicated through the weekly product meeting,
meetings between management and tech leads, or other fora, some information does
not flow so easily - amongst other thing due to the lack of a formal development
method framework, and of written documentation.

Requirements prioritization being a recurrent issue of requirements engineering in
agile software development(Heikkila et al., 2015), these issues are not unique to
Blueberry.

A part of prioritization is to plan what to is to plan and decide what to make when,
and when to release it, i.e. release planning, which will be discussed in the following
section.

5.2.1 Release Planning

One point of discussion in Blueberry has been on the dimension of planning vs.
feedback based, which is a core element of agile principles e.g. in the agile manifesto
with responding to change over following a plan. Arguments for planning have been
improved predictability for management and thorougher processes of requirements
elicitation, documentation and prioritization. The lack of plan lead to the imple-
mentation and deployment of features which one tech team member questions with
“What are the consequences for later development? . . . This in my opinion hasn’t
been thought through.”

The majority of the tech team disagreed with the increased upfront planning, consid-
ering that too much of the anticipated details would later, during development time,
prove irrelevant. As one developer states it “time was spent in management planning
upfront and detailing requirements, time that could have been used implementing
the stuff. The detailed requirements were partly useless, as they further down the
road could prove irrelevant”.

The disagreement partly stems from the different viewpoints of the roles within
the tech team. Some are concerned with customers and the customers’ wishes for
product delivery, implying a wish for a degree of predictability. Others mainly see
the disadvantages of upfront planning, such as the parts of it which end up proving
irrelevant.

Planning releases ahead requires that there will be something valuable to the cus-
tomer/end user release. In the example of the core technology team, working on new

49

CHAPTER 5. DISCUSSION

technologies, this proved more complicated than in the case of the rest of the tech
team, who generally work on conventional full stack web development. Cutting-edge
technologies are unpredictable, and the work may be characterized as research, or
experimentation. The difficulties associated with less predictability raises concern
amongst one tech team member: It’s challenging to manage, and the effect of some
degree of lack of timeboxing, i.e. working without a fixed temporal framework, can
have negative effects on development speed. Seen in perspective, the core technology
work is not an isolated and extreme example of the craft software development, but
rather a interesting example of software development in a startup environment, with
the property of unpredictability being more explicit than normally. Ries characterizes
startups as operating under extreme uncertainy(Ries et al., 2012) well describes
well the company at its birth, but as of early 2019 the company is generally stable
in terms of product, customers and hence income. However, the core technology
activities still experience the uncertainty and unpredictability of startup.

5.2.2 Non Functional Requirements

An own category of requirements to be taken into account when being handled are
non-functional requirements: Non-functional requirements (NFR) is in literature
presented as one of the challenges of agile requirements engineering, partly due to the
extensively used user stories(Inayat et al., 2015). Also in Blueberry, NFRs have been
given less explicit priority than functional, with the exception of user experience due
to active designers and front-end developers. Some tech team member are concerned
with and work for an improved security of the company’s applications, but it is
security features are rarely explicitly prioritized and planned for. One (perhaps
pessimistic) tech team member states “Concerning security - here I suspect that we’ll
at some point run into some unpleasant surprises”, suggesting that lack of focus on
security will bite them in the back.

Architectural decisions, and questions of how much load the the main application
should be able to handle, are also expressed in a lesser degree than “normal features”,
to some extent compensated for by regular workshops themed around such matters.
These are theme days primarily focused on specific features. The workshop’s effect
was reported to be varied: Some workshops result in valuable change, while others
provide less permanent effects.

One might intuitively suspect that the lack if focus and prioritization on NFRs lead
to trouble, and technical debt, down the road, but the observations prove otherwise.
No major issues related to tech debt have been observed. Concerning scalability, no
severe issues have been reported, despite clients with large amounts of users. The
same goes for security issues, data breaches or down time of essenial applicacations.
This confirms the "Startups reward hacky code”(Dalal, 2019), and one may question
whether Blueberry should, at some occasions, produce “hackier code”, meaning
producing quicker at the price of lower quality. Faster development time would

50

5.3. DEPENDENCIES AND METHODOLOGY

allow for quicker feedback, potentially providing information on which features to
developer further and which ones to drop. Insight in and consciousness on which
parts of Blueberry’s product need to be solid, and which part allow hackier code,
would in this case be necessary.

5.3 Dependencies and Methodology

Characterizing and framing Blueberry’s software development is challenging. Blue-
berry is a young company still in the process of establishing its ways of working,
making it more difficult to categorize and characterize. That Blueberry changes its
work methods as the number of clients and employees keep increasing is a finding of
its own: it lays in its dynamics and flexibility rather than in static methods, and
Blueberry is rightly doing so. This is backed up by the relative inexperience of the
tech team members, with a slight majority of the employees having little or no prior
work experience before entering the company. This is in line with findings from
literature: Due to the changing and uncertain environments, their small size and the
need for speed, software startups are reactive in their processes(Berg et al., 2018).

On the other hand, the number of tech team members remained the same from
September 2018 to April 2019, without landing on a well defined work flow - Blueberry
has struggled in finding its optimal ways of working. "... we try out new methods
until landing on one method that will accepted for a longer period of time and in a
number of contexts.", states a tech team member, reflecting both that the context
is changing, and that Blueberry has struggled to establish an underlying working
framework that is accepted by and well functioning with the team. One example
of this is the upfront requirements documentation in the task management system
which were generally not accepted, followed by the dynamic design documents being
introduced by the end of the data collection period, not immediately adopted by the
tech team.

The variability in work methods, as well as a lack of rigour, requires a larger degree
of tacit knowledge within the team than if the work flow was formalized, exemplified
through the statement of a developer, concerning the documentation and knowledge
sharing of a project: “... some informations are written down in different channels,
some are in the head of people...”. As found in (Klotins et al., 2019b), where the
technical debt of the investigated cases only became problematic only after hiring new
people, the lack of an established work flow may become especially problematic in
relation to new hires. It can also prove more challenging in engaging junior developers:
It was observed that the junior developers were generally less participating during
meetings, indicating less engagement in process matters.

As seen in the literature chapter, there exists a number of framework for categorizing
or determining which phase a startup is in(Tripathi et al., 2018). For context, it’s
worth placing Blueberry in the frameworks. This provides insight in which challenges

51

CHAPTER 5. DISCUSSION

startups in similar phases have encountered, and how to solve them.

In Crowne’s four phase model(Crowne, 2002), Blueberry can be sorted and placed
as being in the third phase, growth: “This phase begins when the product can be
commissioned for a new customer without creating any overhead on the development
team. It ends when market size, share and growth rate have been established and
all business processes necessary to support product development and sales are in
place”. Blueberry appears to be encountering some of the difficulties described by
Crowne, associated with the growth stage, but also challenges related to Crowne’s
other stages, as described in the theory chapter. One challenge is that of the lack
of a "robust process to capture product ideas, develop them and choose between
competing ideas". Blueberry’s challenge does not lay in the lack of ideas for further
development, but rather a framework for handling them: parts of activities concerning
documentation, prioritization and validation is to some extent done ad-hock, rather
than following a strict framework. This comes at the price of potential suboptimal
product development, as well as disagreements, as some matters do not get thoroughly
discussed throughout the company.

When building new products, Blank suggests that startups should focus on finding
the problem/solution fit through investigation with customers and/or users and
prototyping before finding the right product/market fit(Blank, 2003). Blueberry
has had a number of paying and satisfied customer, and a number which keeps
increasing. It has hence found a good problem/solution fit, and has largely also
found its product/market fit. Startups are generally not offering one single and
atomic product, however. Blueberry has numerous possible features which may be
implemented, and it has challenges finding the right problem/solution fit for the
additional features even though it has proceeded correctly with its initial product.
The problem/solution and product/market fit is hence an unuseful framework for
mature startups like Blueberry.

Blueberry passed a turning point during summer/fall 2018, when doubling the
number of members in the tech team. With a new size of 15 technologists, and the
proportion of employees with previous professional experience somewhat lower than
previously, the team needed more structure and formalisms than earlier. A product
manager was hired in the same period, amongst other things being responsible for
the necessary changes. Some of the changes generally met resistance, such as the
increase in upfront planning and systematic task estimation. The resistance can
partly be explained by, and seen in context of the original team having its old and
successful ways of working, potentially having an inherent resistance towards change.
The change resistance is enforced by the culture in the software industry calling for
flat hierarchies and more freedom to the ones effectuating the work - the developers.
Developers may disagree with the increased effort in process matter, resulting in less
time spent producing working software.

In Blueberry these phases often take place rather informally, without a strict frame
around the activity. With a stricter framing, it would from a research point of

52

5.4. TERMINOLOGY

view be easier to distinguish and analyse the separate phases, such as elicitation,
documentation, estimation, prioritization.

As seen in literature, it’s common to decompose the requirements engineering process
into separate phases such as the ones mentioned above(Tripathi et al., 2018). It
makes sense to split the process into logical units of activities, as it makes analysis
and discussions of the field more constructive. However, these components remain in-
terdependent of each other, and one risks losing important insight in the matter when
considering the components isolated. This speaks in favor of considering requirements
engineering holistically, or investigating requirements as a process. Whereas one in
literature can read about the set of discrete constituents of requirements engineering,
also in that related software startups, the observations proved otherwise. The process
of requirements engineering also was dependent on and affected other aspects of
software development methods, such as release planning. During the requirements
elicitation, there is already aspect of both estimation, through an initial impression
of the effort needed for the task to be done, and prioritization, as a number of
additional features to the product would simply not be taken into account due to
their irrelevance. Typically during iterative processes, requirements are elicited,
documented, prioritized, during each iteration, more or less formally. Requirements
validation, typically happening after the implementation of a prototype or an early
version might reveal bugs, which again generate tasks who are effectuated while
skipping a number of stages of a traditional requirements engineering.

5.4 Terminology

One way of describing Blueberry’s software development is determining to which
degree, and along which dimensions its software development can be categorized
as agile. Determining whether or not Blueberry can be characterized as agile in
general proved difficult, as well as having little interest. Views on agile software
development(ASD) were differing and generally showed that the term was so too
wide to make useful sense, indicated in quotes like “I hardly dare to use the word”.
This resonates with what was found by (Conboy, 2009), indicating that ASD has
become such a fuzzy subject that it has become difficult to discuss it. Combined
with its massive adoption in industry(State-of-Agile, 2018), this indicates that ASD
as of 2019 is difficult to express clearly, perhaps becoming more of a underlying
culture than clearly stated principles, and that the phenomenon is hyped. This calls
for more clarity when discussing agile methods in industry, in contrast to vague talk
about the matter, which seems to be common. A solution is to consider separate
aspects of ASD rather than the phenomenon holistically. The subject of discussion
should rather be the the distinct aspects of software development, rather than agile
software development in general.

Requirements engineering in the field of software is a somewhat misleading term.

53

CHAPTER 5. DISCUSSION

Requirements is used in a broad sense and roughly includes all potential tasks and
ideas for what is to be developed. Effectuated before implementation phase, it may
be seen as more of a management activity than related to what one associates with
engineering. The bad term, or misnomer, causes confusion when communicating the
knowledge area, and I propose Software Activity Handling as the knowledge area’s
new name.

5.5 Research Limitations

Descriptions of what has occurred during the case, collected through interviews, may
vary depending on the interviewee. The perceptions of reality vary according to the
individuals being interviewed. Another factor complicating the data collection and
following analysis is that what people say may differ from what they do. During
interviews, interviewees will have an inclination to present own actions as better
than what might have been the case. This creates a number of differing versions
of reality, as well as a tendency of prettified versions of own actions to be given
during given interviews. This occured at a number of occasions during interviews:
If not conflicting, fundamentally different versions of something was provided. The
different opinions on upfront planning and requirements documentation was an
example of this: the manager had a fundamentally different view compared to that
of a number of tech team members. Observations of meetings and documents play
an important role in adjusting for these differences, which need to be taken into
account before the analysis. In hindsight the data collection has been too broad.
Much time was spent collecting data which was not relevant to the research theme.
This can be explained by the lack of research experience by the researcher, as well as
a a continuous exploration and improvement of the field.

Although not a traditional field of knowledge within software development, and not
discussed in this paper, group dynamics affect the case results. How developers,
designers and managers interact affects how they work together, and consequently
how they act within the developer team. An especially fruitful cooperation between
two individuals positively impacting the work flow, or on the contrary, an unreported
conflict, would affect aspects of work flow investigated in this research project. This
poses generally a larger threat to single case studies like this one than in multicase
studies, where each individual, or data point, affects the case results more.

54

Chapter 6
Conclusion

The study has revealed that analyzing requirement engineering by considering static
and independent activities like elicitation, documentation, estimation, prioritization
and validation has its limitations. A more holistic approach will add more to
the research field: The dependencies between these aspects, as well as with other
knowledge fields related to requirements engineering like release frequency, iteration
frequency, degree of upfront planning and management style are considerable and
must be taken into account. The requirements engineering activities taking place
can be characterized as being a process.

Giving product development maximum speed on one hand, and achieving correctness
on the other, are conflicting interests . A developer-first approach, giving those who
build the power to work with limited management overhead comes at the risk of
having great speed in the wrong direction. Developer freedom, allowing for quick and
reactive development requires a high degree of tacit knowledge. In order to do so,
companies need to focus on systematic information sharing, and perhaps implement
frameworks for such. The information stemming from the sources identified in
requirement elicitation or sources need to be spread, as well as providing awareness
of the sources being used.

Software startups tend to follow agile principles, as they rely on their reactivity
rather than on upfront planning. However, as both criticized by case participants
and observed in industry, there’s a tendency to mix up agile and chaos - the lack
of systematic processes and deliberate and explicit choices around these are being
excused by (ab)using the agile label. The distinction between these seems difficult to
make, perhaps due to the phenomenon being hyped.

Software startups are not agile by nature. But they share common characteristics,
especially those stemming from the shared interest in speed, flexibility and reactivity.
In addition to the growing amount of literature from the field of startup engineering,
findings from agile software development can also apply for the knowledge area of

55

CHAPTER 6. CONCLUSION

startup engineering.

Requirements engineering is a bad term, a misnomer, for describing the knowledge
area it encompasses and creates unnecessary confusion, especially while communicat-
ing towards. I propose software activity handling as the new term.

6.1 Further Research

Software startups are continuing to mark society, and continues to gain presence
and popularity(TU, 2016). Research has been effectuated, some in the beginning of
the century, an increasing effort is done(Startup-Organization, 2019) by the research
community. The knowledge area is gaining maturity, but a lot remains to be done - for
companies like Blueberry, many questions remain unanswered and further guidance
in the unpredictable and chaotic environment they operate in is advantageous.

While this research paper has focused on requirement as a process, including the
dependence of the components constituting the field of requirements engineering, one
point of learning is that the breadth of the research has been made at the cost of depth:
Further literature research, data collection and analysis can be made in a number of
fields. Aspects of requirement elicitation such as requirement sources or selection,
and techniques for this have to some degree been investigated(Tripathi et al., 2018),
but need further investigation. The usage and consequences of non-functional
requirements in software startups seems largely undiscovered and undocumented, as
well as the potential link to technical debt.

All of the above must be done while keeping findings from both startup and agile
software engineering as backdrops, for different life cycle stages of startups. This
will help startups in specific context gain relevant knowledge.

56

References

Abrahamsson, Pekka et al. (2017). “Agile Software Development Methods: Review
and Analysis”. In:

Agile Manifesto (2001). url: www.agilemanifesto.org.
Agile Software Development: Current Research and Future Directions (2010). eng.

Springer Berlin Heidelberg: Berlin, Heidelberg. isbn: 9783642125744.
Aoyama, M. (1998). “Agile Software Process and its experience”. eng. In: IEEE

Publishing, pp. 3–12. isbn: 0818683686.
Benington, Herbert D. (1983). “Production of Large Computer Programs”. eng. In:

Annals of the History of Computing 5(4), pp. 350–361. issn: 0164-1239.
Berg, Vebjørn et al. (2018). “Software startup engineering: A systematic mapping

study”. eng. In: The Journal of Systems and Software 144, pp. 255–274. issn:
0164-1212.

Blank, S. (2003). The Four Steps to the Epiphany: Successful Strategies for Products
that Win. Lulu Enterprises Incorporated. isbn: 9781411601727. url: https:
//books.google.no/books?id=oLL2pjn2RV0C.

Boehm, B.W. (1983). “The Hardware-Software Cost Ratio: Is It a Myth?” In: Com-
puter 16(3). issn: 0018-9162.

Conboy, Kieran (2009). “Agility from First Principles: Reconstructing the Concept of
Agility in Information Systems Development”. eng. In: Information Systems Re-
search 20(3), pp. 329–354, 478. issn: 10477047. url: http://search.proquest.
com/docview/208160739/.

Creating the agile library : a management guide for librarians (1998). eng. Westport,
Conn.

Crowne, M (2002). “Why software product startups fail and what to do about it.
Evolution of software product development in startup companies”. eng. In: IEEE
International Engineering Management Conference. Vol. 1. IEEE, 338–343 vol.1.
isbn: 0780373855.

D. Linthicum, TechBeacon (2016). Back to waterfall: When agile and DevOps don’t
work well. url: https://techbeacon.com/back-waterfall-when-agile-
devops-dont-work-well.

Dalal, N (2019). In: url: https://hackernoon.com/four-startup-engineering-
killers-1fb5c498391d.

57

www.agilemanifesto.org
https://books.google.no/books?id=oLL2pjn2RV0C
https://books.google.no/books?id=oLL2pjn2RV0C
http://search.proquest.com/docview/208160739/
http://search.proquest.com/docview/208160739/
https://techbeacon.com/back-waterfall-when-agile-devops-dont-work-well
https://techbeacon.com/back-waterfall-when-agile-devops-dont-work-well
https://hackernoon.com/four-startup-engineering-killers-1fb5c498391d
https://hackernoon.com/four-startup-engineering-killers-1fb5c498391d

REFERENCES

Dove, R. (1993). Agile Defined. url: http://www.parshift.com/Files/PsiDocs/
Pap930701Dove-BeginningTheAgileJourney-A%20Hewlett%20Packard%20Guidebook.

pdf.
Giardino, Carmine, Nicolo Paternoster, et al. (2016). “Software Development in

Startup Companies: The Greenfield Startup Model”. eng. In: IEEE Transactions
on Software Engineering 42(6), pp. 585–604. issn: 0098-5589.

Giardino, Carmine, Xiaofeng Wang, and Pekka Abrahamsson (2017). “Why Early-
Stage Software Startups Fail: A Behavioral Framework”. In:

Gralha, Catarina et al. (2018). “The Evolution of Requirements Practices in Software
Startups”. eng. In: 2018 IEEE/ACM 40th International Conference on Software
Engineering (ICSE). ACM, pp. 823–833. isbn: 9781450356381.

Heikkila, Ville T et al. (2015). “A Mapping Study on Requirements Engineering in Ag-
ile Software Development”. eng. In: 2015 41st Euromicro Conference on Software
Engineering and Advanced Applications. IEEE, pp. 199–207. isbn: 9781467375856.

Inayat, Irum et al. (2015). “A systematic literature review on agile requirements
engineering practices and challenges”. eng. In: Computers in Human Behavior
51(PB), pp. 915–929. issn: 0747-5632.

Jorgensen, Magne (2016). “A survey on the characteristics of projects with success in
delivering client benefits”. eng. In: Information and Software Technology 78(C),
pp. 83–94. issn: 0950-5849.

Karlsson, Lena et al. (2007). “Requirements engineering challenges in market-driven
software development – An interview study with practitioners”. eng. In: Informa-
tion and Software Technology 49(6), pp. 588–604. issn: 0950-5849.

Klotins, Eriks, Michael Unterkalmsteiner, and Tony Gorschek (2019a). “Software
Engineering Antipatterns in Start-Ups”. eng. In: 36(2), pp. 118–126. issn: 0740-
7459.

Klotins, Eriks, Michael Unterkalmsteiner, and Tony Gorschek (2019b). “Software
engineering in start-up companies: An analysis of 88 experience reports”. eng. In:
Empirical Software Engineering 24(1), pp. 68–102. issn: 1382-3256.

Medeiros, Juliana et al. (2017). “An Approach Based on Design Practices to Specify
Requirements in Agile Projects”. In: Proceedings of the Symposium on Applied
Computing. SAC ’17. ACM: Marrakech, Morocco, pp. 1114–1121. isbn: 978-1-
4503-4486-9. doi: 10.1145/3019612.3019753. url: http://doi.acm.org/10.
1145/3019612.3019753.

Melegati, Jorge et al. (2019). “A model of requirements engineering in software
startups”. In: Information and Software Technology 109, pp. 92–107. issn: 0950-
5849.

Nagel, Roger N (1992). 21ST Century Manufacturing Enterprise Strategy Report.
Agile Mfg Enterprise Forum Bethlehem Pa. url: http://handle.dtic.mil/
100.2/ADA257032.

Nguyen, Anh, Pertti Seppänen, and Pekka Abrahamsson (2015). “Hunter-gatherer
cycle: a conceptual model of the evolution of software startups”. In: pp. 199–203.
doi: 10.1145/2785592.2795368.

Norsk senter for forskningsdata (n.d.). url: www.nsd.no.

58

http://www.parshift.com/Files/PsiDocs/Pap930701Dove-BeginningTheAgileJourney-A%20Hewlett%20Packard%20Guidebook.pdf
http://www.parshift.com/Files/PsiDocs/Pap930701Dove-BeginningTheAgileJourney-A%20Hewlett%20Packard%20Guidebook.pdf
http://www.parshift.com/Files/PsiDocs/Pap930701Dove-BeginningTheAgileJourney-A%20Hewlett%20Packard%20Guidebook.pdf
https://doi.org/10.1145/3019612.3019753
http://doi.acm.org/10.1145/3019612.3019753
http://doi.acm.org/10.1145/3019612.3019753
http://handle.dtic.mil/100.2/ADA257032
http://handle.dtic.mil/100.2/ADA257032
https://doi.org/10.1145/2785592.2795368
www.nsd.no

REFERENCES

Pantiuchina, Jevgenija et al. (2017). “Are Software Startups Applying Agile Practices?
The State of the Practice from a Large Survey”. In: Agile Processes in Software
Engineering and Extreme Programming. Ed. by Hubert Baumeister, Horst Lichter,
and Matthias Riebisch. Springer International Publishing: Cham, pp. 167–183.
isbn: 978-3-319-57633-6.

Rafiq, U. et al. (2017). “Requirements Elicitation Techniques Applied in Software
Startups”. In: 2017 43rd Euromicro Conference on Software Engineering and
Advanced Applications (SEAA), pp. 141–144. doi: 10.1109/SEAA.2017.73.

Regnell (2005). “Market-Driven Requirements Engineering for Software Products”.
eng. In: Engineering and Managing Software Requirements. Springer Berlin Hei-
delberg: Berlin, Heidelberg, pp. 287–308. isbn: 9783540250432.

Ries, Eric and RIES ERIC (2012). Lean Startup. eng. Village mondial. 0. Pearson
France. isbn: 2744065080.

Royce, W (1987). “Managing the development of large software systems: concepts
and techniques”. eng. In: Proceedings of the 9th international conference on
software engineering. ICSE ’87. IEEE Computer Society Press, pp. 328–338. isbn:
0897912160.

Startup-Organization (2019). In: url: https://softwarestartups.org/.
State-of-Agile (2018). State of Agile 12th Edition. url: https://explore.versionone.

com/state-of-agile/versionone-12th-annual-state-of-agile-report.
Sutherland Takeuchi, Rigby (2016). Embracing Agile. url: https://hbr.org/2016/

05/embracing-agile.
SWEBOK 2004 (2005). eng. Place of publication not identified: Institute of Electrical

and Electronics Engineers, Inc. Staff.
Tracz, Will (2015). “Agile: The Good, the Hype and the Ugly, Written by Bertrand

Meyer”. eng. In: ACM SIGSOFT Software Engineering Notes 40(2), pp. 38–39.
issn: 0163-5948.

Tripathi, Nirnaya et al. (2018). “An anatomy of requirements engineering in software
startups using multi-vocal literature and case survey”. eng. In: Journal Of Systems
And Software 146, pp. 130–151. issn: 0164-1212.

TU (2016). In: url: https://www.tu.no/artikler/enorm-okning-i-startups-
flere-ser-at-de-ma-skape-sin-egen-arbeidsplass/346300.

YIN, ROBERT K (2011). “Case Study Research”. English. In: Modern Language
Journal 95. issn: 0026-7902.

59

https://doi.org/10.1109/SEAA.2017.73
https://softwarestartups.org/
https://explore.versionone.com/state-of-agile/versionone-12th-annual-state-of-agile-report
https://explore.versionone.com/state-of-agile/versionone-12th-annual-state-of-agile-report
https://hbr.org/2016/05/embracing-agile
https://hbr.org/2016/05/embracing-agile
https://www.tu.no/artikler/enorm-okning-i-startups-flere-ser-at-de-ma-skape-sin-egen-arbeidsplass/346300
https://www.tu.no/artikler/enorm-okning-i-startups-flere-ser-at-de-ma-skape-sin-egen-arbeidsplass/346300

	Abstract
	Preface
	Contents
	List of Figures
	Introduction
	Motivation
	Research Questions and Objectives
	Document Outline

	Theory
	History of Software Development Methods
	Agile Software Development
	Software Startup Engineering
	Requirements Engineering

	Research Method
	Data Collection
	Data Analysis
	Reflections and Research Limitations

	Results
	Context
	Requirements Process

	Discussion
	Elicitation
	Prioritization
	Dependencies and Methodology
	Terminology
	Research Limitations

	Conclusion
	Further Research

	References

