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Abstract

In this thesis, I describe two experiments related to the use of entangled photon pairs within
metrology and quantum key distribution (QKD). In relation to metrology, we investigate
a clock synchronization scheme based on the coincidence detection of entangled photons.
With the high pair rates of modern entangled photon sources, timing uncertainties due to
jitter in the photon detectors and data acquisition system can be made almost arbitrarily
small. We show that our setup is able to measure the time drift between remote clocks
within 1 ps over sampling times smaller than 1 s, essentially being limited by the 1 ps
counting resolution of our time tagger units. Within the laboratory frame, we perform
a proof-of-principle test, intended to explore the synchronization scheme as a tool for
measuring gravitational time dilation. This inevitably failed due to the required stability of
our rubidium standard atomic clocks. Nevertheless, the synchronization scheme is shown
to accurately measure the frequency instability of our timing standards, demonstrating
that the scheme is feasible to work over larger height differences or with more stable
clocks. Additionally, as a sanity check of the photon source, the presence of polarization
entanglement was verified with a Bell inequality test showing a maximal violation of S =
2.81± 0.01.

The second experiment I describe is dedicated to the implementation of a free-space QKD
link, stretching 10.2 km across the skyline of Vienna. We investigate here a noise robust
QKD protocol, based on hyperentangled photon states analyzed with a post-selection free
Franson interferometer. With proof-of-principle measurements from the lab, Franson in-
terference is demonstrated with a visibility of 92%. I further discuss the design choices
that were made in order to prepare the receiver module for a free-space link. In terms of
this, ensuring the transmission stability of the link despite the effects of atmospheric turbu-
lence is a prominent engineering challenge. The magnitude of turbulence across our link
is assessed with a differential image motion monitor (DIMM) integrated in the receiver
module. For the long-term stability of the link, I present a bidirectional tracking scheme,
correcting the angle of our transmitter module and receiver module in a closed feed-back
loop to ensure optimal transmission stability.





Sammendrag

I denne masteroppgaven beskriver jeg to ulike eksperimenter relatert til bruken av sam-
menfiltrede fotonpar for metrologi og kvantenøkkeldistribusjon. Innenfor metrologi un-
dersøkes et oppsett for å synkronisere klokker basert på koinsidensmålingen av sammen-
filtrede fotoner. Med dagens lyssterke kilder av sammenfiltrede fotoner kan usikkerheten i
deteksjonstid fra støy i fotondetektoren og signalbehandlingselektronikken gjøres nærmest
vilkårlig lav. Vi viser at oppsettet vårt er i stand til å måle avviket mellom to uavhengige
klokker med en presisjon innenfor 1 ps over måleperioder mindre enn 1 s, hvor tidsop-
pløsningen til den elektroniske tidtakeren på 1 ps er den fundamentale flaskehalsen. I et
konseptbevis tester vi dette prinsippet i laboratoriet, med en intensjon om å måle tidsdi-
latasjonen fra gravitasjonsfeltet til jorden. Dette feilet på grunn av stabiliteten som krevdes
av de rubidium-baserte atomklokkene. Likevel viser eksperimentet at vi nøyaktig kan måle
frekvensavviket til de to klokkene, noe som demonstrerer at forsøket kan fungere over
større høydeforskjeller eller med mer stabile klokker. For å verifisere at kilden vår pro-
duserer sammenfiltrede fotoner viser vi i tillegg et maksimalt brudd med Bells ulikhet på
S = 2.81± 0.01.

Det andre eksperimentet jeg beskriver er dedikert til oppsettet av en protokoll for kvan-
tenøkkeldistribusjon over en atmosfærisk forbindelse, som strekker seg 10.2 km langs
himmelen over Wien. Her undersøker vi en støy-robust protokoll, basert på sammenfil-
trede fotonpar i flere frihetsgrader, som vi analyserer med et modifisert Franson interfer-
ometer. Oppsettet ble først implementert i laboratoriet, hvor vi kunne påvise interferen-
skontrast på 92%. Videre diskuterer jeg designvalgene som har blitt gjort for å forberede
oppsettet for bruk i en atmosfærisk forbindelse. En fremtredende ingeniørutfordring i
forbindelse med dette er å sørge for stabil signaloverføring tross påvirkningen fra en tur-
bulent atmosfære. Omfanget av den atmosfæriske påvirkningen på signalet kvantifiseres
ved hjelp av en «differential image motion monitor» (DIMM), som er bygd inn i oppsettet
til mottakermodulen. For stabiliteten til signaloverføringen over lengre tidsperioder ble
et to-veis «tracking»-system utviklet, som kontinuerlig korrigerer vinkelen til sender- og
mottakermodulen for å optimere signalstyrken.
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Chapter 1
Introduction

Characterized by its many counterintuitive phenomena, quantum mechanics opens up a
strange world in which particles act as waves, where its attributes such as position, mo-
mentum and energy must be described by superpositions over all possible states, and where
probabilities govern the outcome of measurements. Nevertheless, its predictions led to the
development of breakthrough technologies such as the laser, transistor and atomic clock,
without which fibre-optic networks, modern computers and precise GPS navigation tools
would not have existed. To date, our continued improvement in the engineering of quan-
tum states on the single particle level promise a new wave of applications finding its way
into mature technology.

A concept that will be central in the next generation of quantum technologies is a phe-
nomena known as quantum entanglement. Quantum entangled states are systems of two
or more particles, where the properties of the particles are completely unknown until a
measurement of either particle determines the state of both. As the phenomena persists re-
gardless of their physical separation, this leads to surprising and controversial conclusions
such as the apparent non-local (faster-than-light) interaction between the two particles,
which is why the phenomena historically has played a central role in the interpretation
of quantum mechanics. Today, entanglement is more precisely considered in terms of
non-classical correlations — i.e. correlations that can’t be explained without quantum
mechanics — and can be experimentally verified by violating so-called Bell inequalities,
devised by John S. Bell in 1964 [2]. Since then, numerous experiments have verified the
existence of quantum entanglement in a wide range of systems, including photons [3–12],
cold atoms [13, 14] and superconducting circuits [15, 16]. Although no superluminal in-
teraction is needed to explain these experiments, the alternative interpretation states that
the common sense notion of realism — that a physical system holds definite properties
independent of our observation — must break down. Whichever it is, quantum entangle-
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ment certainly places high on the hierarchy of exotic quantum phenomenons. Despite this,
it is a cornerstone in promising technologies such as quantum computing and quantum key
distribution (QKD).

Early stage quantum phenomena tests has predominantly been carried out on photon states.
This can in part be traced to their ease of production, but maybe more importantly to their
weak interactions with surrounding environment, making it far easier to manipulate and
conserve photonic quantum states than with alternative systems. Consequently, the first
wave of new generation quantum technologies is likely to be based on quantum optics, as
the barrier between the shielded environment of the laboratory and the real world is far
smaller. Perhaps the most prominent of these technologies is quantum key distribution,
where the quantum mechanics of photon states are utilized to establish the distribution of
unconditionally secure encryption keys between two parties.

Within this thesis, I’ve explored experimental methods to produce, manipulate and mea-
sure entangled two-photon states in multiple degrees of freedom. With this as a basis, I
give insight into two experiments I’ve contributed to at the Institute for Quantum Optics
and Quantum Information (IQOQI) in Vienna over the last year, one of which is related to
entanglement within metrology, the other to QKD.

The thesis will be structured accordingly: First, I present a general introduction to the
theory of quantum mechanics, focusing on the photon, its degrees of freedom and the
concept of entanglement in photon pairs. Chapter 3 will be dedicated to experimental pro-
cedures for producing and verifying two-photon entanglement, including the theoretical
framework of spontaneous parametric down-conversion (SPDC), the Sagnac source, po-
larization analyzing modules and the Franson interferometer. In Chapter 4, I present the
first of two experiments, where I explore the intrinsic time correlations of entangled pho-
ton pairs and the feasibility of using it as a tool for measuring gravitational time dilation.
Finally, in Chapter 5 I describe preliminary results in the attempt to establish a 10.2 km
long free-space link across the skyline of Vienna, in which photons entangled in both the
polarization and temporal degree of freedom are envisioned as information carriers in a
QKD protocol.



Chapter 2
Theoretical Framework

In this thesis, the concept of quantum entanglement in two-photon systems plays a fun-
damental role. An understanding of this phenomena requires a brief introduction into the
mathematical framework of quantum mechanics. I therefore use this chapter to present
the most important building blocks to the concepts we will use to describe quantum optics
experiments, focusing on the photon and its potential in the point of view of quantum in-
formation science (QIS). The contents of this chapter are firmly rooted in a multitude of
standard quantum optics textbooks [e.g. 17–21].

2.1 The Quantum Nature of Light

The physical theory of light has seen drastic paradigm shifts throughout history. In the
classical theory of electromagnetism, light takes the shape of waves, propagating through
space according to Maxwell’s set of equations [22]. With Einsteins bold interpretation
of the photoelectric effect in one of his 1905 Annus Mirabilis-papers however [23], a
new picture of light emerged, now consisting of discrete quantas of particles called pho-
tons. This new picture marked the advent of quantum mechanics, and with it a quite
confusing view of light, exhibiting something of both a wave-like and particle-like na-
ture. This wave-particle dualism becomes evident in the standard quantization procedure
of the electromagnetic field, where the classical fields of Maxwell’s equations are quan-
tized into quantum mechanical field operators. The essence of this procedure is to expand
the electromagnetic field into a set of orthonormal field modes that are solutions to the
Maxwell equations. For a freely propagating electric field in space-time, denoted by posi-
tion and time coordinates (r, t), these modes are plane waves with different momenta k,
frequency ω and polarization λ, and the electric field operator Ê(r, t) takes the form (see
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e.g. [17, 24])

Ê(r, t) = Ê+(r, t) + Ê−(r, t)

= i
1

(2π)3

�
d3k

�

λ

�
1

2
�ωk(�kλâkλe

i(kr−ωkt) − â†kλ�
∗
kλe

−i(kr−ωkt)),
(2.1)

where Ê+(r, t) and Ê−(r, t) denotes the field spectra with positive and negative frequency
modes. With this equation, some important properties of photons can be deduced. First
of all, the photon as a concept arise from the association of the field mode amplitudes
âkλ and â†kλ with the respective creation and annihilation of photon states with momenta
k and polarization λ. This motivation comes from the expression for the Hamiltonian
energy, which with the current form of the electric field takes the form [21]

Ĥ =

�
d3k

�

λ

�ωkâ
†
kλâkλ. (2.2)

The energy increases with discrete increments of �ωk — the energy of one photon — times
the operator combination â†kλâkλ, which effectively counts the number of photons in the
(k,λ) mode. The wave-particle dualism is then beautifully described within Eq. (2.1).
The wave-like properties are encoded in the field modes, while the particle-like nature is
encoded in the creation and annihilation operators.

Secondly, from Eq. (2.1) we can read of the four independent degrees of freedom of the
photon, namely the polarization λ — arising from the independent directions of oscillation
encoded in �kλ — and the three components of the momentum vector k, which we due to
the relation ω = c|k| can divide into its transverse parts k⊥ and the frequency ω. These
independent degrees of freedom are the choices we have to encode information in photons.
How to produce, manipulate and measure these properties are therefore important research
areas within quantum information science.

2.1.1 States in Hilbert Space

We refer to field modes with distinct polarization, frequency and momenta as photon states.
As long as no interactions regarding photon creation and annihilation is involved, manipu-
lation of photon states can be described within the framework of non-relativistic quantum
mechanics. Formally, this mathematical formalism is that of vectors and vector operations
in the linear unitary vector space called Hilbert space, H. A single photon state is labeled
by Dirac vectors |Ψ� = |λ,ω,k⊥�, where we demand that the projection of |Ψ� onto its
adjoint vector �Ψ| = |Ψ�∗ yields 1, i.e. that the state is normalized. This requirement is



connected to an essential feature of quantum mechanics, namely its probabilistic nature.
This is in turn reflected in Born’s rule for quantum measurements, which states that the
probability of a measurement of the initially prepared state |Ψ� to yield a different state
|Φ� is obtained by the square-modulo of the projection

PΨ(Φ) = | �Φ|Ψ� |2. (2.3)

An essential feature of Dirac vectors is that they are basis-independent, and a state |Ψ�
may therefore always be decomposed into a set of orthonormal basis vectors {|ψn�}

|Ψ� =
�

n

cn |ψn� , (2.4)

where cn = �ψn|Ψ� are complex probability amplitudes. The equivalence of different
basis choices is a key concept in quantum mechanics, as will be evident throughout this
chapter.

The Density Operator The formalism of Dirac vectors in Hilbert space is sufficient to
describe quantum mechanics in terms of pure quantum states. An experimenter neverthe-
less has to deal with statistical uncertainties in how a state is prepared, and how it is altered
throughout the experiment. Whenever the experimenter lacks complete knowledge on the
system, it is better described as a statistical ensemble of pure quantum states, so-called
mixed states. This prompts the use of the density operator

ρ̂ =
�

n

pn |ψn� �ψn| , (2.5)

which describes a sum of pure quantum states |ψn�, with corresponding weights pn rep-
resenting the statistical distribution of the ensemble. The projection operators P̂n =
|ψn� �ψn| can be identified as measurement operations on the prepared state, querying
whether or not the state is in the basis state |ψn�. The expectation value of such a mea-
surement on the mixed state described by ρ̂ is found by the tracing operation

�P̂n� = Pρ̂(ψn) = Tr{ρ̂P̂n}, (2.6)

returning the weight pn.



2.2 The Photon as Information Carrier

Photons are in many ways the ultimate information carrier of our world. For one part, it is
hard to conceive a faster way of transferring information than by the speed of light. Adding
to this, the four degrees of freedom (DOF) of the photon provide ample opportunities for
information encoding, which due to their weak interactions with the environment make
it possible to transmit states over long distances without the information encoded in them
being destroyed along the way. Due to this, light is already extensively used as information
carrier in modern telecommunication technologies, such as fiber-optic networks and Wi-
Fi, connecting all laptops and smartphones to the internet. Although these devices rely on
the principles of quantum mechanics to work, the information encoding itself uses purely
classical properties of light. The potential of photons as information carriers goes much
further than this however, and this is in large due to its quantum nature.

To see how the quantum nature of light can be exploited, we must understand the spe-
cial characteristics of the independent DOF. Generally, the complete Hilbert space of the
photon is the composite of the respective Hilbert spaces of each DOF

H =
�

i

Hi = |λ� ⊗ |ω� ⊗ |k⊥� , (2.7)

and we may therefore discuss photon states like |λ� on its own, implying that different
polarization states are equal in all other regards.

2.2.1 Photon Polarization

The polarization of the photon arise from a freedom in the direction of oscillation of the
electromagnetic field. This freedom makes up a two-dimensional state space, and can
therefore always be represented as a superposition of two basis vectors. A common choice
is the horizontal |H� and vertical |V � linear polarization states, which makes up what one
may define as a computational basis. These two states are orthonormal, meaning that we
can use Eq. (2.4) to form a completely general polarization state

|Ψ� = c0 |H�+ c1 |V � . (2.8)

This type of two-level state holds a special place in quantum information science, as it
represents a qubit — the quantum analog to a classical bit of information. This is easily
seen by identifying the horizontal state with |0� and the vertical state with |1�. The qubit
state is however distinctly different from the classical bit, as it is able to represent both
states simultaneously.



The space of basis choices for the two-level qubit state is elegantly visualized by the Bloch
sphere, Fig. 2.1. The normalization of the complex coefficients |c0|2 + |c1|2 = 1 implies
that the polarization states can be represented as points on the surface of a sphere, and can
thus be parameterized by polar angles (2θ,φ)

|Ψ� = cos θ |H�+ eiφ sin θ |V � . (2.9)

Figure 2.1: The Bloch sphere serves as a geometrical illustration of the space of pure polarization
states.

Convention is to define the three axes of the Bloch sphere as the eigenvectors of the three
Pauli matrices {σ̂1, σ̂2, σ̂3}. These three sets of eigenvectors make up three basis choices,
known as the horizontal-vertical (H/V) and diagonal-antidiagonal (D/A) linear polarization
bases and the left-right (L/R) circular polarization basis. The relation of the two new basis
choices to the computational basis is

|D� = 1√
2
(|H�+ |V �) |A� = 1√

2
(|H� − |V �) (2.10)

|R� = 1√
2
(|H�+ i |V �) |L� = 1√

2
(|H� − i |V �) (2.11)

A central feature of the H/V, D/A and L/R states is that they form a set of mutually unbiased
bases (MUBs). The outcome of a state measured in a MUB is completely random, hence
destroying the information kept in the prior prepared state. This is quickly seen by doing
a projective measurement of the state |D� onto the H/V basis, yielding



PD(H) = | �D|H� |2 =
1

2
, PD(V ) = | �D|V � |2 =

1

2
(2.12)

indicating that the outcome is completely random. More general polarization measure-
ments can be described by the operator

σ̂n = |n+� �n+|− |n−� �n−| , (2.13)

where |n+� and |n−� are the two possible eigenstates of a measurement along the direc-
tion n = (sinφ sin 2θ, cosφ sin 2θ, cos 2θ) on the Bloch sphere

|n+� =
�

cos θ
sin θeiφ

�
, |n−� =

�
sin θ

− cos θeiφ

�
. (2.14)

The concept of MUBs is key to many QKD protocols, naming the standard BB84-protocol
[25] as an example, where a random change in the preparation and measurement basis of
the photon is used to place bounds on the information eavesdroppers can extract. Perhaps
even more fascinating is the concept of quantum erasure of which-path information. In-
terference caused by multiple photon pathways, for example through a Young double-slit
setup, can be erased by marking the separate paths by the photons polarization (see e.g.
[26]). Removing the which-path information, e.g. by projecting the polarization onto a
MUB, then restores the interference. This concept is applied in the post-selection free
Franson interferometer, described in Section 3.4.1, which we in turn use in our experi-
mental setup in Chapter 5.

Traditionally, quantum optics experiments have focused mainly on the polarization state-
space of photons. Partly, this can be attached to the simplicity of the two-dimensional
state-space, while mainly it has to do with the ease of which polarization states can be
manipulated and measured. Any measurement basis may be realized by a combination
of birefringent wave-plates and a polarizing beam splitter (PBS). Birefringent wave-plates
are optical components where the refractive index is different along two perpendicular
axes. Orthogonal polarizations obtain different phase as they travel through the media, and
the wave-plate can therefore transform between polarization states. In a half-wave plate
(HWP), the relative phase shift of the two axes is π

2 . By rotating the HWP by an angle
Θ between its fast axis and the horizontal component of polarization, it can transform
between all linear polarization states

HWP (Θ) |H� = cos 2Θ |H�+ sin 2Θ |V �
HWP (Θ) |V � = sin 2Θ |H� − cos 2Θ |V � . (2.15)

As a PBS is an optical component that transmits |H� states and reflects |V � states, a photon
detector in the reflected and transmitted arm can be associated with a measurement in the



H/V basis. By inserting a HWP in front, we can rotate the measurement basis between
all linear polarization states. Similarly, a quarter wave-plate (QWP) can be used to obtain
circular polarizations.

2.2.2 Spectral and Temporal Modes

In contrast to polarization, the spectral/temporal modes of the photon inhabit an infinite-
dimensional Hilbert space. Exploiting this is a natural goal of QIS, as it allows one to
extend the qubit state to d-dimensional qudit states, able to contain log2 d bits of informa-
tion. As frequency and time are conjugate variables related through the Fourier transform,
we might interchangeably talk about spectral and temporal modes (TMs) of the photon.

An artifact of the free field expansion we started with (Eq. 2.1) is that the basis choice
resulted in modes with definite frequency. This is only possible due to the completely
delocalized nature of the space-time coordinates of plane waves, which does little to elu-
cidate the rich structure of temporal modes the photon may inhabit. In the more general
picture, the photon must be localized within some time and space in our experimental
setup. This can be realized by representing the spectral/temporal states as superpositions
over monochromatic states {|ω1� , |ω2� , |ω3� , ...} with some arbitrary weighting function
fj(ω)

|ψj�TM
=

1

2π

�
dωfj(ω)â

†(ω) |0� , (2.16)

requiring only that the weighting function is normalized. Equivalently, we can represent
this as superpositions over states {|t1� , |t2� , |t3� , ...}, indicating the presence of a photon
at time ti

|ψj�TM
=

�
dtf̃j(t)â

†(t) |0� , (2.17)

where the corresponding weighting function f̃j(t) is the Fourier transform of fj(ω). En-
coding information in orthogonal TM states, for example by a basis of Hermite-Gaussian
weighting functions, is a concept that only in recent years have gained traction [27, 28].
The idea is however intriguing, as a large set of TMs may be distributed in a single spa-
tial mode, thus proving very suitable for use in single-mode optical fibers. In contrast to
polarization however, manipulation of TMs are difficult, and require the use of nonlinear
optics phenomena such as three-wave mixing [29]. Therefore, it is likely still a way to go
until this formalism is mature.

In this thesis, we will rather investigate a scheme called time-bin encoding. These type
of protocols typically utilize an unbalanced Mach-Zehnder interferometer to split a single



temporal mode into a superposition of both interferometer paths, which we may denote by
short |S� and long |L�

|ψ�time−bin = |S�+ eiφ |L� . (2.18)

The quantum information is then encoded in the relative time-of-arrival of the photon,
which due to the digital nature of data acquisition must be split into discrete time-bins.
This type of encoding is especially appealing in entanglement based setups, where the
intrinsic time correlations between two entangled photons can be used to expand the time-
bin state into higher dimensional qudits. The Franson interferometer realizes exactly such
a scheme, and is discussed in more detail in Section 3.4.

2.2.3 Spatial and Momentum Modes

The spatial modes of the photon, related to the momenta through the spatial Fourier trans-
form, sums up the last possibility for information encoding in single-photon states. I men-
tion them here only for completeness, as they will not be relevant for this thesis. This DOF
draws many parallels to the temporal modes, in that a basis choice of Hermite-Gaussians
or Laguerre-Gaussians reveal a rich structure of orthonormal field modes, which we re-
fer to as the orbital angular momenta (OAM) of the photon. Encoding information in the
OAM of photons has received considerable interest in the later years [30], as they too
inhabit an in principle infinite-dimensional Hilbert space. Furthermore, it can be manipu-
lated with stationary optical elements, such as spatial light modulators. Some drawbacks
of this encoding is that they cannot be implemented with single-mode optical fibers and it
is susceptible to turbulence in free-space links.

2.3 Quantum Entanglement in Two-Photon Systems

A central feature of this thesis is the concept of quantum entanglement in pairs of photons.
In a general sense, a two-photon state is said to be entangled when the composite state
cannot be factorized into a tensor product of the two individual photon states, A and B

|Ψ�AB �= |Ψ�A ⊗ |Ψ�B . (2.19)

Consequently, the two-photon state must be considered as a whole, regardless of the physi-
cal separation between the individual photons. As such, quantum entanglement represents
a phenomena that thoroughly challenges our intuitive picture of the world, and that sparked



one of histories most famous scientific debates. To see why, I first introduce the four max-
imally entangled Bell states

|Ψ±� = 1√
2
(|H�A |V �B ± |V �A |H�B), (2.20)

|Φ±� = 1√
2
(|H�A |H�B ± |V �A |V �B). (2.21)

The Bell states are maximally entangled in the sense that a measurement on photon A
unequivocally determines the polarization of photon B. The expected outcome of any
measurement on the individual photons however is completely random. Information lies
in the perfect correlation between the states. Classically, it is easy to imagine a similar
state occurring from our incomplete knowledge of the system. A statistical mixture of the
two product states |H�A |V �B and |V �A |H�B would evidently give the same results, thus
simply reflecting our incomplete knowledge of the initial state of the system. The con-
clusive difference from the correlations found in quantum entangled systems first become
evident when we change between the measurement bases. More generally, as shown by
the CHSH-version of the famous Bell inequality [31], classical correlations in the presence
of two different bases choices of the measurement operators (σ̂A

a , σ̂
B
b ) and (σ̂A

a� , σ̂B
b�) must

always yield correlations bounded by

| �S� | = |E(a,b)− E(a,b�) + E(a�,b) + E(a�,b�)| ≤ 2, (2.22)

where we used the notation E(a,b) = �σ̂A
a σ̂

B
b �. The fundamental assumptions in the

derivation of this inequality is that our universe exhibits two concepts known as locality
— that interactions are limited by the speed of light — and realism — that it is possi-
ble to assign properties to a particle independent of our observation. However, using the
quantum mechanical formalism for polarization measurements, restricting for simplicity
the measurement basis to the plane of linear polarizations on the Bloch sphere, the direc-
tions a,b, a�,b� can be identified with angles α,β,α�,β�, which for the values α = 0◦,
β = 22.5◦, α� = 45◦, β� = 67.5◦ violates the inequality with a maximum value of
| �S� | = 2

√
2.

The paradox is now apparent. As far as we know, there is no fundamental force mediating
any photon-photon interaction. Furthermore, the assumptions of relativity is that the speed
of any such force is limited by the speed of light. Yet, changing the measurement basis
of one photon, somehow affects the outcome of a measurement on its entangled partner
in a way that cannot be reconciled with locality and/or realism. This apparent impossi-
bility was also the famous position of Einstein [32], which used it as an argument for the
incompleteness of quantum mechanics — notably, 29 years in advance of Bell’s famous
inequality [2], and 37 years before the first experimental tests by Freedman and Clauser
[4] verifying the violation. To date, quantum entanglement has been consistently veri-
fied in a plethora of experiments, using the entire spectra of photon degrees of freedom,



ranging from polarization [3–8], momentum [10, 11], energy-time [9] and even with the
simultaneous entanglement in all of them [12].

Loopholes A common issue in verifying Bell inequalities is that of getting rid of loop-
holes in the experimental assumptions. Some known loopholes are the fair sampling loop-
hole — regarding the assumption that the subset of photons that are detected are represen-
tative for the entire ensemble — the freedom-of-choice loophole — that the experimenter
is truly free to make random basis choices — and the locality loophole — that the two de-
tection events are causally disconnected in the space-time metric. Numerous experiments
have gone to great lengths to limit the plausibility of such loopholes [e.g. 6, 7, 13, 33], and
as so I will not pay any considerable interest in them for the rest of this thesis.

Entanglement Witnesses Violating Bell inequalities is only necessary to prove the in-
consistency of quantum mechanics with localism and/or realism. However, assuming the
validity of quantum mechanics, this imposes an unnecessary strict criteria if the only goal
is to verify entanglement, in which it is only necessary to be able to distinguish the entan-
gled state from a mixed state. For the two-photon polarization entangled state, a sufficient
condition is that the entanglement witness W is negative

W =
1

2
− 1

4
(1 + VH/V + VD/A + VL/R), (2.23)

where VH/V , VD/A and VL/R denotes the entanglement visibility in the H/V, D/A and L/R
bases. The visibility here is an experimental quantity, that denotes the contrast between
the measured polarization coincidences in each basis. For a |Φ+� state, this quantity is
expressed as

VH/V =
CCHH + CCV V − CCHV − CCV H

CCHH + CCV V + CCHV + CCV H
, (2.24)

where the coincidence count, CCij , is the number of simultaneous photon detection events
with polarizations i, j ∈ {H,V }, and similarly for the other bases. It is clear that an av-
erage visibility of 33% in each basis is necessary to verify entanglement. Experimentally,
it is usually more convenient measuring the visibility in two bases only, posing the some-
what stricter requirement of 50% average visibility. In general, constructing entanglement
witnesses is a challenge that will vary with the specific entangled state one considers. For
a thorough discussion on the issue I refer to [34].

Relevance to Quantum Information Science Entanglement has during the last decades
been verified in numerous experiments, and while the initial motivation has been from a
fundamental physics standpoint, it has gradually become apparent that entanglement holds
great technological promise. Within QIS, it has found applications in hot research topics
such as quantum computing [35], teleportation [36] and quantum key distribution [37].
For our purposes, I will describe an experiment (Chapter 5) where entanglement is used



as a resource for a quantum key distribution protocol, and we will look at states entangled
in both polarization and time-bins simultaneously — so-called hyperentanglement. This
principle is quite straightforward, as the two degrees of freedom simply factor out into
separate entangled states, e.g.

|Ψ� = |Ψ+�pol. ⊗ |Ψ+�time−bin

=
1

2
(|H�A |V �B + |V �A |H�B)⊗ (|t1�A |t2�B + |t2�A |t1�B)

(2.25)

In the scheme we explore in Chapter 5, the polarization DOF will act as an ancilla for
the time-bin DOF, increasing the noise robustness and information capacity of the QKD
channel.





Chapter 3
Toolbox for Two-Photon
Entanglement Experiments

In this chapter I present conventional experimental tools for producing and verifying en-
tanglement in pairs of photons. First, I describe the theoretical framework of the sponta-
neous parametric down-conversion (SPDC) process, known to produce states of entangled
photon pairs in all degrees of freedom. To produce co-propagating polarization entangled
pairs, this is usually implemented in a Sagnac loop configuration, which I explain next.
The remainder of the chapter is dedicated to interferometric designs that can verify the
presence of polarization entanglement and energy-time entanglement.

3.1 Producing Entangled Photon Pairs

Developing stable and efficient sources for photon entanglement is an important step for
the maturity of QKD. The arguably most popular technique to date is the process of spon-
taneous parametric down-conversion, which is also the source of use in this thesis.

3.1.1 Spontaneous Parametric Down-Conversion

In the SPDC process, a single pump photon is down-converted into two photons of lower
energy, conventionally called signal and idler photons. The process is strictly a quantum
mechanical phenomena, as the effect arise from the spontaneous interaction of the pump
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photon with the signal and idler vacuum fields. This is made possible by the nonlinear
polarization response of certain crystals, such as beta barium borate (BBO), potassium
titanyl phosphate (KTP) and lithium niobate (LN) to name a few. The polarization of
crystals describes the behaviour of its internal dipoles to an external electrical field. For
crystals where third and higher order contributions are negligible, the nonlinear part of the
polarization vector P can be written

PNL
i (r, t) =

�
dt1dt2χ

(2)
ijk(r, t− t1, t− t2)Ej(r, t1)Ek(r, t2) +O(E3), (3.1)

where χ is known as the susceptibility, or response function, of the material. As the rele-
vant interaction describes the creation and annihilation of photons, we must use the field
operator formalism to derive the SPDC two-photon state. We find the relevant terms by
considering the Hamiltonian of the electromagnetic field in a non-magnetic, but dielectric
medium [20]

HEM ∝
�

d3rE(r, t) ·D(r, t), (3.2)

where D(r, t) = �0E(r, t) + P(r, t). We can here use the field operators introduced
in Eq. 2.1, only altering the relationship |k| = n(ω)ω/c, where n(ω) is the refractive
index of the crystal. This expression now describes all possible second order non-linear
interactions in the crystal. We’re only interested in the interaction where one pump photon
is down-converted into a signal and idler photon, and are therefore left with the SPDC
Hamiltonian

ĤSPDC ∝
�

d3rÊ−
p Ê

+
s Ê

+
i . (3.3)

The SPDC process can be categorized into type-0, type-1 and type-2, according to the
relation of the polarization between the pump, signal and idler photons, as illustrated in
Fig. 3.1. To obtain the resulting state of any of these is a matter of time evolving the
initial state, consisting of the pump field and the signal and idler vacuum fields, with
some assumptions on the geometry of the system. This derivation is rather lengthy, and is
described in detail in a number of sources [e.g. 20, 38–40]. For a type-2 process, where
the signal and idler occupy orthogonal polarization states, the SPDC state takes the form

|Ψ�SPDC ∝
�

dωsdωiΦ(k
⊥
s ,k

⊥
i ,ωs,ωi) |k⊥

s ,ωs, Vs� |k⊥
i ,ωi, Hi� , (3.4)

where Φ(k⊥
s ,k

⊥
i ,ωs,ωi) is the joint-spectral amplitude



Figure 3.1: (a) Illustration of a typical crystal geometry. The complex phase-matching conditions
define a set of emission cones assigned to the signal and idler photons. The conservation of trans-
verse momenta restricts the emission of the signal and idler photons along conjugate points on their
respective cones. (b) The SPDC process can be categorized into three types according to the rela-
tion between the polarization of the incident pump photon to the polarization of the signal and idler
photons.

Φ(k⊥
s ,k

⊥
i ,ωs,ωi) ∝ Ep(k

⊥
s + k⊥

i )αp(ωs + ωi) sinc(ΔkzL/2). (3.5)

The distribution of transverse momenta of the pump field Ep(k
⊥
p ) = Ep(k

⊥
s + k⊥

i ), en-
sures the conservation of transverse momenta along emission cones for the signal and idler
modes, while the spectral distribution αp(ωp) = αp(ωs + ωi) ensures energy conserva-
tion. The final term is known as the phase-matching condition, and ultimately controls the
emission probabilities of each |k⊥

s ,ωs, Vs� |k⊥
i ,ωi, Hi� state. Maximal efficiency requires

that Δkz = 0, where

Δkz = kzp(ωi + ωs,k
⊥
i + k⊥

s )− kzi (ωi,k
⊥
i )− kzs(ωs,k

⊥
s ). (3.6)

However, nonlinear crystals typically suffer from chromatic dispersion, meaning that the
refractive index is dependent on the frequency of the photon modes. Consequently, the
phase-matching condition is not easily realized under the condition of energy conservation,
which we can see from rewriting the phase-matching requirement

n(ωp)ωp

c
=

n(ωi)ωi

c
+

n(ωs)ωs

c
. (3.7)



For type-1 and type-2 sources, this can be solved by utilizing the birefringence of the
crystals. By adjusting the angle of the optical axis of the crystal in respect to the pump,
signal and idler field, one can engineer the dispersion of the different frequencies to be
cancelled out by the dispersion of different polarizations caused by the birefringence. This
results in certain emission cones for the signal and idler photons, where the SPDC process
is phase-matched (see Fig. 3.1). A more common technique today is the periodic poling
of the electric susceptibility tensor χ(2). By engineering the nonlinear crystal such that the
sign of the susceptibility switches with a certain period 2π

Λ , the phase-matching condition
takes the form

Δkz = kzp(ωi + ωs,k
⊥
i + k⊥

s )− kzi (ωi,k
⊥
i )− kzs(ωs,k

⊥
s )−

2π

Λ
. (3.8)

By carefully adjusting the poling period, one can design crystals that allow efficient down-
conversion for specific operational temperatures and emission angles. This is known as
quasi-phase-matching, and is typically utilized in Sagnac configurations, where it is nec-
essary to use crystals that allow co-propagating signal and idler modes.

3.1.2 Entanglement from SPDC

In principle, it is possible to obtain entanglement in all degrees of freedom from the SPDC
process. For momentum and polarization modes however, this require superpositions of
certain emission events along the signal and idler cones (see e.g. [41]), and is not nec-
essarily realized when the crystal is engineered for co-propagating modes. Energy-time
entanglement on the other hand is intrinsic to the process. This is straight forward to
see, as the joint-spectral amplitude Φ(k⊥

s ,k
⊥
i ,ωs,ωi) makes it impossible to factorize the

two-photon state into separate Hilbert spaces. The nature of energy entanglement can be
thought of from the perspective that the signal and idler photons initially have uncertain
frequencies due to the many ways of dividing the pump frequency. However, since the
sum of the two frequencies must add up to the pump frequency, measuring the energy of
one photon instantaneously determines the energy of its partner.

The temporal shape of the SPDC function can be derived by assuming a shape of the
spectral distribution of the pump field. All SPDC sources in this thesis use continuous-
wave (cw) pump lasers that can be approximated as nearly monochromatic modes such
that αp(ωi + ωs) ≈ δ(ωi + ωs). It is then convenient to introduce the frequency deviation
from the pump frequency Ω = ωs − ωp (= ωp − ωi), in order to rewrite the SPDC state
(omitting spatial and polarization terms)

|Ψcw� ∝
�

dΩΦ(Ω) |Ω�s |−Ω�i . (3.9)



Using the formalism of Section 2.2.2, we can then define temporal wave-packets for the
signal and idler modes [24, 39]

A†(T ) =
1√
2π

�
dΩ

�
Φ(Ω)ei(ωp/2+Ω)T a†(ωp/2 + Ω), (3.10)

which yields the cw-SPDC state in terms of temporal wave-packets

|Ψcw� ∝
�

dTe−iωpT |T �s |T �i . (3.11)

The physical picture of energy-time entanglement in the SPDC process may then equiv-
alently be considered as a large uncertainty in the creation time of the signal and idler
modes, essentially limited by the coherence time of the pump field, which collapses once
one of the photons are detected. As the two photons are created simultaneously, a detec-
tion of one entangled photon should always lead to a so-called coincidence detection of the
other. The efficiency in which photon detection events lead to coincidence detection will
generally depend on the experimental setup however, as less than unity coupling efficiency
and detector sensitivity leads to loss of coincidence events.

3.2 The Sagnac Source

As polarization entanglement does not appear from the SPDC process in the case of co-
propagating signal and idler modes, most modern experimental setups use the Sagnac
configuration to overcome this. The principle of this source design relies on the indistin-
guishable superposition of two SPDC modes. The maximally entangled Bell state

|Ψ+� = 1√
2
(|Hs, Vi�+ eiΦ |Vs, Hi�), (3.12)

may for example be realized by superimposing two SPDC modes, |Hs, Vi� and |Vs, Hi�,
created in a type-2 process. However, this requires that the joint-spectral amplitudes,
ΦHsVi and ΦVsHi , of each SPDC pair are identical, as only then the spectral amplitudes
can be factorized out to give the entangled state. Although this can be done in several ways,
e.g. with a crossed crystal configuration [38], the Sagnac loop is particularly appealing as
it achieves the matching of the joint-spectral amplitudes from the intrinsic symmetry of its
setup, which is illustrated in Fig 3.2. Furthermore, the Sagnac source has the advantage of
a rather high conversion efficiency [38, 42, 43].



Figure 3.2: A type-2 nonlinear crystal (NLC) is pumped in the counter-clockwise (a) and clockwise
(b) loop directions by splitting the diagonally polarized pump beam with a polarizing beam splitter
(PBS). See the text for further explanation.

In the Sagnac configuration, a diagonally polarized pump photon |D� is directed towards a
PBS. The pump photon is therefore split into a superposition of its horizontal and vertical
component, travelling the loop in opposite directions. The horizontal component is trans-
mitted, propagating clockwise through the loop, while the vertical component is reflected
into the counter-clockwise direction. A half-wave plate oriented at 45◦ flips the vertical
component to horizontal, such that both components are horizontally polarized when they
pump the crystal. The SPDC interaction in a type-2 nonlinear crystal then creates the
ΦHV |Hs� |Vi� two photon state, with identical joint-spectral amplitudes for both pump
directions. The clockwise oriented photon pair then passes the half-wave plate, flipping
the polarizations of the signal and idler photon. After traversing the PBS once more, each
two-photon state is split up, such that the two components |HiVs� and |ViHs� of the now
maximally entangled Bell state exit the PBS in separate spatial modes. At this point, it is
worth mentioning that the process is completely identical for type-0 and type-1 sources,
with the only exception that the entangled pair will exit in the same spatial mode, meaning
that non-degenerate frequency modes usually must be used to decouple the photons, e.g.
with a dichroic mirror.

Finally, an additional advantage of the Sagnac setup is the ease of which the phase Φ
between the two-photon states can be tuned, as it simply is a sum of the pump phase φp

and the passive contribution from dispersion in the PBS.

3.3 Polarization Analyzing Module

A polarization analyzing module is a photon detection module able to verify a polarization
entangled state. This is commonly referred to as a Alice-module and/or Bob-module due to
its frequent use in QKD setups, where communication takes place between two hypotheti-
cal parties named Alice and Bob. An entanglement witness for polarization entanglement



was already presented in Eq. 2.23, which relies on basis measurements in the three H/V,
D/A and L/R MUBs. As it rarely poses an issue to obtain high polarization visibilities, it
is slightly easier to implement measurements in the H/V and D/A bases only, yielding the
witness

W =
1

2
− VH/V + VD/A

2
. (3.13)

Consequently the average visibility in the two bases must exceed 50 % to verify entan-
glement. An implementation of the necessary setup to perform these measurements is
illustrated in Fig. 3.3. It begins with a 50-50 beam splitter (BS), working as a passive dis-
tributor between the two measurement bases. The transmitted arm goes to a PBS, where
horizontally polarized photons are transmitted and vertically polarized photons reflected,
thus working as a projection operation in the H/V basis. In the reflected arm of the BS,
a half-wave plate set at 22.5◦ first shifts the polarization to the D/A basis, subsequently
impinging the photons on a PBS in the H/V basis. The operation of the HWP together
with the PBS is equivalent to a measurement operation in the D/A basis. In order to mea-
sure the visibilities of entangled polarization states, the coincidence counts between each
single-photon counting module (SPCM) in the two separate modules must be compared
(see Eq. 2.24).

Figure 3.3: Illustration of a typical setup for a polarization analyzing module, measuring photon
polarizations in the H/V and D/A bases. A single-mode (SM) fiber and an in-fiber polarization
controller (PC) are typically used in the connection from the source to the module. The setup is
further explained in the text.



3.4 The Franson Interferometer

The Franson interferometer, suggested by J.D. Franson in 1989 [44], provides a way of
verifying energy-time entanglement in photon pairs. I will here first present the original
idea by Franson, before I in Section 3.4.1 discuss a modified setup without some of the
post-selection issues the original experiment contains.

Franson originally envisioned a three-level atomic system with an initially long decay time
τ1 and subsequently a much shorter decay time τ2. The two photons are thus highly cor-
related in time, as the detection of one photon causes the initially large uncertainty in
detection time of the other photon to collapse. The same argument applies for the SPDC
entangled state, which we for consistency will consider in this derivation. The setup Fran-
son devised, Fig. 3.4, consists of two equally unbalanced Mach-Zehnder interferometers,
with long and short arms Li, Si and locally variable phase shifts φ1,φ2. The path length
difference ΔL = Li − Si must be long enough to rule out single-photon interference in
each Mach-Zehnder interferometer, i.e. longer than the signal and idler coherence length,
li,sc , while being shorter than the coherence length of the pump beam, lpc , such that inter-
ference in the coincidence counts between the two interferometers are possible

li,sc ≤ ΔL ≤ lpc . (3.14)

The study of coherence is a large topic in its own right, and I refer to [e.g. 17, 43, 45, 46] for
a more in depth discussion. For our purposes it is enough to state that the coherence time
usually is inversely proportional to the bandwidth of the spectral mode of the state, τc ∝
1/Δω. For the signal and idler photons, this is dependent on the shape of the joint-spectral
amplitude, which yields a broader bandwidth than the nearly monochromatic pump laser,
and thus shorter coherence time, satisfying the criteria for Franson interference.

The non-local interference properties of the Franson interferometer arise from the superpo-
sition of possible photon paths, that interfere within the coherence time of the pump laser.
Let |ψ(ri, t)� denote the state of each photon wave-packet at position ri, corresponding to
one of the four detectors i ∈ {D1, D

�
1, D2, D

�
2}. This superposition can for each photon

be expressed as a sum of the two possible photon paths

|ψ(ri, t)� =
1√
2
(|Si�+ eiφi |Li�), (3.15)

where φi is the local phase shift applied along the long arm. As the state |Li� is simply a
time evolution of the incident field, the two states are related through

|Li� = eiφieiωΔT |Si� , (3.16)



where the phase shift ΔΦ = ωΔT , with ΔT = ΔL/c, is the phase shift from the freely
propagated field along ΔL.

The coincidence rate between detectors at position i, j is then given from calculating the
expression

Rc
i,j = �ψ(ri, t)ψ(rj , t)|ψ(ri, t)ψ(rj , t)� . (3.17)

Writing out this equation gives rise to four separate terms, corresponding to the four dif-
ferent path combinations of the signal and idler photons, which we can denote as |Ss, Si�,
|Ss, Li�, |Ls, Si� and |Ls, Li�. The two terms with different paths do not give rise to inter-
ference, as the detection events are distinguishable in their arrival time. The two remaining
terms are indistinguishable since the coherence time of the pump is larger than ΔT . This
result in a coincidence rate between detectors D1 and D2 of the form [44]

R1,2
c =

1

4
cos2(

φ1 + φ2 + ωpΔT

2
), (3.18)

Noticeably, this is the same cos2-form of the coincidence rates one obtains for polarization
entangled states when rotating the measurement basis (see Section 4.5.2). However, the
original Franson interferometer has a serious setback in terms of using it as a test of Bell’s
inequality. Mainly, this has to do with the non-interfering background of 50 % of the
photon detection events due to the |Ss, Li� , |Ls, Si� paths. This creates a loophole for
which local hidden-variable theories can be created [e.g. 47, 48].

Figure 3.4: Illustration of a Franson interferometer. An entangled photon source (EPS) passes
photons to separate unbalanced Mach-Zehnder interferometers. The path length difference in each
interferometer is such that single-photon interference is impossible, while shorter than the coherence
length of the pump laser. A local phase shift can be adjusted in each interferometer, showing that
the local measurement settings of each observer affect the coincidence rates in a non-local way.



3.4.1 The Post-Selection Free Franson Interferometer

Figure 3.5: The post-selection free Franson interferometer uses polarizing beam splitters and polar-
ization entanglement as an ancilla to remove the non-interfering background of the original setup.
Which-path information is then destroyed by measuring the polarization in a mutually unbiased
basis, restoring interference.

In order to get rid of the non-interfering background in the original Franson setup, the
post-selection free Franson interferometer (see Fig. 3.5) utilizes the idea of destroying
which-path information by measuring polarization in mutually unbiased bases [43, 49, 50].
This is done with the help of a hyperentangled state

|Ψ� ∝ 1√
2
(|HiHs�+ |ViVs�)⊗

�
dTe−iωpT |T �s |T �i . (3.19)

Due to the nature of the entangled polarization state and the polarizing beam splitters, the
signal and idler photon will now either both take the short path or both the long path, such
that the events with distinguishable arrival time simply does not exist anymore. The state
after the unbalanced Mach-Zehnder interferometers can then be written as

|Ψ� ∝ |HiSi� |HsSs�+ eiΦ |ViLi� |VsLs� , (3.20)

where the extra phase shift as before corresponds to the free field propagation along the
long paths, in addition to the local phase shifts φ1 and φ2

Φ = (ωp/2 + Ω)ΔT + (ωp/2− Ω)ΔT + φ1 + φ2 = ωpΔT + φ1 + φ2. (3.21)

The two different paths are however not anymore indistinguishable, as the polarization
of each photon labels the path taken, and any interference can therefore not arise from
this state. However, as mentioned before, which-path information can be destroyed by
measuring in mutually unbiased bases. In the post-selection free Franson interferometer,
we can do this by first transforming the polarization by a half-wave plate oriented at 22.5◦

with respect to the horizontal axis, such that |H� → |D� and |V � → |A�



HWP (22.5◦) |Ψ� = |DiSi� |DsSs�+ eiΦ |AiLi� |AsLs� , (3.22)

before the state is projected onto its horizontal and vertical components by a PBS. The
coincidence rate between D1 and D2 corresponds to a measurement of two horizontally
polarized photons, which returns the same coincidence rate as before

Rc
1,2 = | �HiHs|Ψ� |2 =

1

4
cos2(

φ1 + φ2 + ωpΔT

2
). (3.23)





Chapter 4
Feasibility of Measuring Time
Dilation with the Two-Photon
Coincidence Peak

Photon pairs produced in SPDC sources exhibit temporal correlations in their detection
times within 1 ps. This offer the attractive possibility of using the detection times of en-
tangled photon pairs for time synchronization between remote locations. Utilizing time-
correlated SPDC pairs for remote clock synchronization is not a new idea, and has for
exampled been explored in [51–54]. The motivation behind this chapter is rather to in-
vestigate the same principle as a tool for time and frequency metrology. This becomes
especially interesting as we already are at an era where QKD is being launched into space
(see e.g. [55–59]). At these scales, it is feasible that time dilation effects enters the region
of timing resolutions in modern QKD setups. To explore this topic, I first provide a brief
introduction into the concept of gravitational time dilation and timing standards, before the
principle of using entangled photons for remote clock synchronization is discussed. The
setup we use for this experiment also provided a nice opportunity to test the theoretical
predictions on polarization entanglement, which is why I include a section on the viola-
tion of Bell’s inequality. Finally, a series of results from the clock synchronization test
is presented, which we use to discuss the concept as a tool within metrology on a larger
scale.
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4.1 Background: Time Dilation and Timing Standards

The gravitational potential of earth cause clocks at different height in the potential field
to tick at different rates, an effect known as gravitational time dilation. For small height
differences near earth’s surface, the effect can be derived in the weak-field limit, giving
the expression [60]

δf

f0
=

gΔh

c2
, (4.1)

for the fractional frequency shift δf/f0 = (f1 − f0)/f0 of two clocks separated by a
height Δh, with c being the speed of light and g the gravitational acceleration at earth’s
surface. This corresponds to a fractional frequency shift of 1.1× 10−16 per meter of
height difference. Such minuscule frequency differences makes the effect experimentally
challenging to verify, requiring extremely accurate time standards.

A time standard is simply an oscillator able to produce a reference frequency, joined by
a counting mechanism, and can be anything from a normal pocket watch to a modern
atomic clock. Developing accurate time standards is an important research topic in its own
right, and one that has seen tremendous advances over the last century. Time accuracies
comparable to the effects of time dilation was first possible to produce with the invention
of the atomic clock in the 1950s, the fundamental principle of which is to stabilize the
frequency of a laser, with hyperfine transition lines in atoms as highly accurate reference
frequencies.

Two key parameters in the characterization of clocks is the accuracy and the stability.
Whereas accuracy refers to the closeness of the clock frequency to the predicted fre-
quency of the transition line, stability refers to the variation in clock frequency over time.
Although both have complex characteristics, they are intrinsically dependent on the fre-
quency and linewidth of the transition, which together determine the relative uncertainty in
the reference frequency. A straightforward way of reducing this uncertainty is to increase
the frequency of the transition line, which is why clocks based on hyperfine transitions
in the visible frequency ranges, so-called optical clocks, are the next research step in the
continued improvement in timing standards.

The development of highly accurate atomic clocks made possible the famous Hafele-
Keating experiment in 1972 [61], where the predicted time dilation effects of both spe-
cial and general relativity was verified by comparing cesium based atomic clocks flown on
round trips around the earth, with identical clocks located at ground. The perhaps most im-
pressive measurement of gravitational time dilation to date was performed by researchers
at NIST [60], where they developed two optical clocks based on transition lines in 27Al+

ions. With frequency uncertainties below 10−16 — that is, an expected error of one second
every 10 quadrillion years — they managed to resolve the time dilation effect on a height
difference of 33 cm.



4.2 Assessing Clock Stability

Assessing the stability of different frequency standards is not a straightforward issue, lend-
ing to the fact that there is no ideal clock one can compare its performance to. Furthermore,
standard statistical tools to assert variations in data sets can not be used, as these require
noise distributions independent of the measurement time for the estimator to converge.
This is not the case in oscillators, which experience both white noise (independent of time)
and flicker noise, the latter varying with the frequency offset and therefore dependent on
the measurement time [62].

Allan Deviation The standard statistical tool for assessing oscillator stability is the Al-
lan deviation, σy(τ), which is a measure of the frequency stability of the clock in relation
to a reference clock. Let {y1, y2, ..., yM} be a set of fractional frequency offsets between
the observed clock and the reference clock, separated by a period of time τ . The Allan
deviation is then given by [62]

σy(τ) =

���� 1

2(M − 1)

M−1�

i=1

(yi+1 − yi)2 (4.2)

Measuring the Allan deviation over a range of measurement periods τ reveal the time de-
pendency of the clock’s stability due to different noise characteristics. Short-term stability
may be bad due to white noise, which averages out over longer periods causing better
long-term stability. On the other hand, frequency dependent flicker noise typically causes
the long-term stability to decrease at some point.

The clocks we will use as time standards for this experiment are commercial off-the-shelf
rubidium standard atomic clocks (FS740 GPS Time and Frequency System, see Fig. 4.1),
consisting of a 10MHz quartz oscillator disciplined on the 6 834 682 612Hz hyperfine
transition of 87Rb.

Figure 4.1: Image of the front panel of a FS740 GPS Time and Frequency System, taken from [63].

The listed Allan deviation of these atomic clocks are shown in Fig. 4.2. The claimed
fractional frequency deviation of the rubidium timebase is in the order of 1× 10−11 to



4× 10−13 over a range of τ = 1 s to τ = 10 000 s. This is interpreted as a root mean
square (rms) instability of ∼ 1× 10−11 in frequency samples 1 s apart, which due to noise
averaging improves to ∼ 4× 10−13 for frequency samples 10 000 s apart.

Figure 4.2: The Allan deviation of the FS740 GPS Time and Frequency System, as listed in [63].
The different plots correspond to the possible timebases offered by the system, where the green
rubidium line is the only of relevance here. The term free running means that the rubidium timebase
is not disciplined on the external GPS reference, which is necessary for our measurement.

4.3 Synchronizing Clocks with Entangled Photons

Due to the inevitable frequency instabilities, no two clocks will show the exact same time
over longer measurements. This creates the issue of establishing a common time standard
between remote locations, which in order to be synchronized requires knowledge on the
relative frequency drift of the respective clocks at each location. The synchronization
precision of a network of clocks can be improved by conditioning them on a more accurate
external time reference. This is for example routinely done with periodic signals from
Global Navigation Satellite Systems (GNSS) such as the GPS and GLONASS, consisting
of a constellation of satellites carrying highly accurate atomic clocks. Similarly, the remote
coincidence detection of photon pairs produced in the SPDC process may be used as a
synchronization tool to quantify the amount of which two remote clocks drift relative to
each other.

4.3.1 Temporal Correlations in SPDC Pairs

The coincidence detection of signal and idler photons in a SPDC state can be made more
precise through the second-order correlation function, which quantify the extent to which



remote photon detection events are temporally correlated. The expression in terms of
signal and idler fields is [46, 52]

g(2)(τ) = | �0| Ê−
s (t)Ê

−
i (t+ τ)Ê+

s (t)Ê
+
i (t+ τ) |Ψ� |2, (4.3)

where Ê
(−)
s,i (t) and Ê

(+)
s,i (t) are the free field operators (see Eq. 2.1), describing photon

detection events at respective times t and t + τ . This expression is calculated for a type-
2 SPDC source pumped by a cw monochromatic pump laser in [38, 46], yielding the
expression

g(2)(τ) ∝ |
�

dΩ sinc(Δkz(Ω)L) exp(−iΩ(τ))|2. (4.4)

The temporal range over which the detection time of two SPDC photons remains correlated
is therefore characterized by the joint-spectral amplitude of the SPDC state, which in turn
depends on the spectral bandwidth ΔΩ allowed by the complex phase-matching condi-
tions. For typical SPDC sources, the width of g(2)(τ) lies in the sub-ps range [38, 46, 52],
meaning that the detection times of the signal and idler photons are temporally correlated
withing less than 1 ps.

4.3.2 Timing Resolution of Photon Detection

The photon detection events has to pass through a signal chain typically consisting of the
photon detector and a time tagger module, which assigns digital timestamps to the analog
signals of the detectors. Both these components add an intrinsic timing uncertainty in
the detection event due to electronic jitter. For the photon detector, this jitter is caused
by variations in the time it takes to convert the photon detection event into an electronic
signal. For the time tagging module, it is similarly caused by variations in the time it takes
the electronic pulse from the detector to be converted into digital timestamps. For the use
of coincidence detection events in remote clock synchronization, this clearly affects our
accuracy in quantifying the temporal drift between the clocks. Fortunately, the variation
in these effects follow an approximately Gaussian distribution profile, which means that
we can use the statistics of large samples of photon detection events to determine the
timing offset with small uncertainty. More precisely, assuming a Gaussian distribution
with standard deviation σ and a sample size of N , the standard error in our estimate of the
mean value is given by

σmean =
σ√
N

. (4.5)



As modern SPDC sources have been shown to produce coincidence counts in the order of
10Mcps [38], this error can be made almost arbitrarily small.

4.3.3 Identifying the Timing Offset

Once the measurement is running, the two detectors each produce a series of detection
events which we can label by their assigned detection times {tAi } and {tBj }. Formally, we
can represent the two time series as functions a(t) and b(t), where

a(t) =
�

i

δ(t− tAi ) b(t) =
�

j

δ(t− tBj ). (4.6)

It is not straightforward to compare the two time series however, as there generally will
be a fixed offset ΔT between coincidence events. This offset arise from the different path
lengths travelled by the two photons, as well as different start-up times of the time tagging
modules. An additional complication is added when the two detection events are recorded
with separate clocks, as this introduces a time varying term Δu caused by the relative
frequency instabilities in the two clocks. To find the offset between the two time-series,
we calculate the cross-correlation function (also called delay histogram)

c(τ) =
�

t

a(t)b(t+ τ), τ = ±{0, δτ, 2δτ, ...}, (4.7)

where the discrete time steps, δτ , is defined by the time resolution of the data acquisition
system. Assuming that the clock drift stays relatively small over the sampling period,
we can expect the cross-correlation function to follow a Gaussian distribution due to the
timing uncertainty from the electronic jitter. The timing offset is then extracted from the
mean of the distribution

ΔT +Δu =

�
τ c(τ)δτ�
τ c(τ)

. (4.8)

Assuming then that ΔT remains constant, we can assess the clock drift Δu of remote
clocks from the timing offset of the coincidence events over consecutive sampling inter-
vals. The precision in which we can do so primarily depends on the rate of coincidences,
the timing resolution δτ and the jitter of the data acquisition system. The coincidence rate
and the jitter determines how large the sampling intervals must be to minimize the error
in the estimation of the mean. This sampling interval should ideally be small, so that the
clock drift over the interval does not impose a significant error in the estimation. Naturally,
the timing resolution δτ impose a lower bound on the precision we can obtain.



4.4 Setup and Components

A Type-0 Sagnac Source The entangled photon source we use is a Sagnac source based
on a type-0 SPDC process, and is illustrated in Fig. 4.3. It was developed by S. Neumann,
U. Galander and D. Ribezzo for a separate project, and conveniently lended to us for
this test. The source itself consist of a ppLN crystal (Λ = 19.36 µm) which produces
wavelength degenerate signal and idler photons with a center wavelength of 1550 nm at
an operating temperature of ∼ 48 ◦C. The crystal is pumped by a cw-laser diode at λp =
775 nm, which is focused onto the optimal spot in the crystal by a lens. Inside the Sagnac
loop, incident |Vp� states are converted into |VsVi� in a type-0 down-conversion process.
The overlap of the two pump-directions, where a HWP transforms between |H� and |V �
states, result in the maximally entangled Bell state

|Φ+� = 1√
2
(|HiHs�+ eiφ |ViVs�), (4.9)

where the phase term φ can be set accordingly with the HWP in the path of the pump
beam. As the pump field and the down-converted modes exit the loop in the same spatial
mode, a dichroic mirror is used to reflect the signal and idler modes into a different arm.
A filter removes any stray reflections from the pump laser and a second lens collimate the
modes before they are coupled into a single-mode (SM) fiber. Here, a dense-wavelength-
dual-multiplexer (DWDP) separate states of λi = 1545.32 nm and λs = 1554.92 nm into
separate SM fibers. Alignment of the source is performed by maximizing the reflected
power of a PBS located in front of a Faraday rotator early in the path of the pump laser.
This output port of the PBS will correspond to the back-reflection of the pump laser from
the Sagnac loop, and will be maximal when the two directions of the loop overlap perfectly.

Figure 4.3: Schematic of the type-0 Sagnac source. The setup is further explained in the text.

Polarization Analyzing Modules The two SM fibers leading out of the source can
either be coupled straight to the single-photon detectors, or into separate polarization ana-



lyzing modules to verify polarization entanglement. The setup of these modules is depicted
in Fig. 4.4, and is practically identical to the setup that was discussed in Section 3.3. The
only difference is the addition of a phase-plate in one of the modules, from now on called
Alice, which is added as a way to align the polarization bases of the two modules. This
is necessary, as stress-induced birefringence in the SM fibers cause unwanted transforma-
tions in the polarization of the Bell state. To align the polarization bases, the visibility is
first maximized in the H/V basis by a set of polarization controllers mounted on the fibers.
These work by twisting the fiber such that the stress-induced birefringence is altered. The
phase-plate is itself only a birefringent media with fast axis set to be parallel to the hori-
zontal component of polarization. By tilting the phase plate, keeping the fast axis fixed,
the phase between the horizontal and vertical component of the polarization is changed,
thus allowing us to maximize the visibility in the D/A basis. Additionally, a motorized
HWP was added to the Alice-module for the tests in Section 4.5.2.

Figure 4.4: Setup for the Alice-module. The Bob-module is identical except for the motorized HWP
and the phase-plate. 1 SM collimator, 2 phase-plate, 3 motorized HWP, 4 BS, 5 PBS,

6 HWP, 7 Tip-tilt mirrors for SM fiber coupling, 8 SM fiber couplers. Each single-mode fiber
coupler leads to a port on the SNSPD.

Silicon Nanowire Single Photon Detectors Photon detection was performed with two
state-of-the-art silicon nanowire single-photon detectors (SNSPDs, Single Quantum Eos).
Roughly speaking, the detectors work by operating a thin lattice of superconducting nanowires
with a bias voltage just below the critical value for the superconducting phase transition.
An incident photon is detected as it is absorbed by the nanowires, locally breaking the su-
perconducting phase causing a quick drop in the voltage. Each SNSPD can be connected



to four separate SM fibers, and are reported with a timing jitter of σdet. ≈ 22 ps.

Time Tagger Modules The analog photon detection signals from each respective SNSPD
are converted to digital timestamps by two time tagger units (Swabian Instruments ultra 8
series). The internal oscillator of each time tagger unit can be phase locked to the more
accurate 10MHz pulse from the FS740 time standard. The timestamps assigned by each
unit therefore represent the time measured by its local atomic clock. Each time tagger has
8 input ports, and can log 65Mevents/s during measurement, which are transferred to a
local hard drive via a Gbit-Ethernet connection. The time tagger units are reported with a
measured jitter of σt.t. ≈ 11 ps, and a counting resolution of 1 ps.

4.5 Performance Test of the Source and Data Acquisition
System

4.5.1 Measuring the Timing Jitter

We first measured the total timing jitter of the setup by locking both time taggers on one
atomic clock, thus removing the effect of the relative clock drift. We omitted the polariza-
tion analyzing modules and coupled the SM fibers directly into the ports of the SNSPDs
to maximize the coincidence counts. The corresponding cross-correlation histogram inte-
grated over a measurement time of 30 s is presented in Fig. 4.5. The standard deviation
of the Gaussian fit implies a combined jitter of the two photon detectors and the two time
tagger modules of σ = (37.1± 0.1) ps. As the total jitter is essentially the convolution of
the Gaussian distribution from each individual component, we may give an estimate for
the jitter of the individual components from

σ =
�

2σ2
t.t. + 2σ2

det.. (4.10)

If we assume σdet. = 2σt.t, which is reasonable from the claimed jitter of the components,
we get

σt.t =
σdet.

2
=

σ√
6
= 15 ps. (4.11)

This is in reasonable agreement with the values listed in Section 4.4.
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Figure 4.5: Histogram over the time offset of photon detection events, recorded with time taggers
conditioned on the same atomic clock. The plot shows photon counts integrated over 30 s. A Gaus-
sian fit suggests a total jitter of (37.1± 0.1) ps.

4.5.2 Test of Polarization Entanglement

To verify the polarization entanglement produced by the source, we performed a test of the
visibilities in each basis of the detector module. This was done by inserting a motorized
HWP in front of the Alice-module (see Fig. 4.4), which can be rotated in order to show the
dependency of the visibilities on the detector bases. Given that we successfully mapped the
Bell state from the source to the detection modules, the effect of the HWP transformation
on the probability of a coincidence count between each detector in the H/V basis is

PΦ+(HAHB) = | �Φ+|HWP (Θ)A |HAHB� |2 = cos2 2Θ

PΦ+(VAHB) = | �Φ+|HWP (Θ)A |VAHB� |2 = sin2 2Θ

PΦ+(HAVB) = | �Φ+|HWP (Θ)A |HAVB� |2 = sin2 2Θ

PΦ+(VAVB) = | �Φ+|HWP (Θ)A |VAVB� |2 = cos2 2Θ

(4.12)

As the |Φ+� state remains perfectly correlated in the D/A basis, i.e.

HWP (22.5◦)AHWP (22.5◦)B |Φ+� = 1√
2
(|DADB�+ |AAAB�), (4.13)

where the HWP transformations here should be identified with the passive HWPs in the
D/A arm of the Alice- and Bob-modules, a calculation of the coincidence probabilities
returns the same expressions as for the H/V basis. This is verified in Fig. 4.6, showing the
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Figure 4.6: Coincidence rates between detectors in the H/V and D/A basis. Each data point corre-
spond to a 3◦ increment in the rotation of a HWP, and was averaged over a 10 s integration time.
The interpolation lines follow from a least squares fit.

angular dependence of the coincidence rates as the HWP is rotated in increments of 3◦,
where each data point correspond to the average coincidence rate over a 10 s integration
time. The offset of the cos2 and sin2 fits simply indicate that the initial position of the
HWP was not aligned with the horizontal axis. We can pinpoint the offset somewhere
close to Θ0 ≈ 15◦. The different amplitudes of the coincidence rates is likely caused
by different coupling efficiencies into the SM fibers, and is not of particular importance.
The visibility of the H/V and D/A basis follow straight from using Eq. 2.24, yielding a
maximal visibility of VH/V = 98% and VD/A = 99%, which is more than enough to
demonstrate entanglement.

During the same measurement we can investigate the explicit dependency of different basis
choices on the violation of Bell’s inequality. Let Cij denote the coincidence rate between
detectors i, j as the HWP is rotated by an angle Θ, where i ∈ {H,V,D,A} denotes the de-
tector arms in the Alice-module and identically for j the detector arms in the Bob-module.
The polarization angles in the Bob-module are fixed at 0◦, 90◦, 45◦ and −45◦ correspond-
ing to the H,V,D and A detector arms respectively, while the measurement in the H,V,D
and A arm of the Alice-module corresponds to polarization angles 2Θ, 90◦+2Θ, 45◦+2Θ
and −45◦ + 2Θ as the HWP is rotated. The four basis measurements necessary for the
CHSH inequality (Eq. 2.22) can therefore be realized through the combinations



E(2Θ, 0◦) = (CHH + CV V − CHV − CV H)/N(2Θ, 0◦)

E(2Θ, 45◦) = (CHD + CV A − CV D − CHA)/N(2Θ, 45◦)

E(45◦ + 2Θ, 0◦) = (CDH + CAV − CDV − CAH)/N(45◦ + 2Θ, 0◦)

E(45◦ + 2Θ, 45◦) = (CDD + CAA − CDA − CAD)/N(45◦ + 2Θ, 45◦)

where N(α,β) is simply the sum of the corresponding coincidence rates.
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Figure 4.7: Rotating the HWP shows the explicit dependency of the measurement bases on the
violation of Bell’s inequality. Each data point correspond to a 3◦ increment in the rotation of a
HWP, and was averaged over a 10 s integration time.

The maximal violation should then be obtained for Θ = 11.25◦ + Θ0 ≈ 25.25◦, corre-
sponding to the linear polarization angles α = 0◦,β = 22.5◦,α� = 45◦ and β� = 67.5◦.
This is confirmed in Fig. 4.7, where the S-value in Eq. 2.22 is plotted using the same
measurement data as in Fig. 4.6. The periodicity of the S-value follow naturally from
the symmetry of |E(α,β)| = |E(α + π/2,β)|. The maximal violation is found to be
S = 2.81± 0.01, where the error bars correspond to a 1σ uncertainty. This is calcu-
lated from the Gaussian error propagation of the coincidence rates, assuming a Poissonian
distribution so that ΔCij =

�
Cij . The complete expression is then given by [64]

ΔS =
�
ΔE2(α,β) +ΔE2(α�,β) +ΔE2(α,β�) +ΔE2(α�,β�), (4.14)

where

ΔE(α,β) =

�
1

N(α,β)
(1 + E(α,β)2). (4.15)



4.6 Test of Clock Synchronization with SPDC

Having verified the performance of the individual parts of the experimental setup, we set
out to test the clock synchronization scheme. An overview of the setup we use is illustrated
in Fig. 4.8. For these tests, we again coupled the SPDC modes from our entangled photon
source directly to the SNSPDs. The respective time tagger units were now phase locked
on separate atomic clocks, so that the time offset of the coincidence peak drifted with the
frequency shift of the two clocks. Additionally, a 1Hz signal from a function generator
was split up to each time tagger. This serves as a second estimation of the clock drift,
which we can use for comparison with the coincidence peak.

Figure 4.8: Schematic of the setup for the clock synchronization test. See the text for further
explanation.

By using 37.1 ps as the standard deviation of the timing accuracy of each coincidence
event, a theoretical synchronization precision greater than 1 ps demands (from Eq. 4.5)

N ≥ (37.1 ps)2

(1 ps)2
= 1376.4.

A conservative estimate of the average coincidence counts produced by our setup is ∼
100 000 cps (see e.g. Fig. 4.5), thus demonstrating that this bound is easily reached.

We measured the relative clock drift of two freely drifting atomic clocks over three con-



secutive intervals. During the first and third measurement we stationed both clocks at the
same elevation, while for the second measurement one clock was lifted to an elevation of
4m. We call this clock B, and denote the fractional frequency shift between the two clocks
as δf/fA = (fB−fA)/fA. We expect a fractional frequency shift caused by gravitational
time dilation over this height difference of δf/fA = 4.4× 10−16. The relative clock drift
over the measurement intervals was estimated by integrating coincidence counts over 1 s.
For each sample, this gives a value for the timing offset ΔTi+Δui. By subtracting consec-
utive offsets we then get an estimate of the relative clock drift over each sampling period,
assuming that ΔTi remains constant. Dividing this temporal drift by the 1 s sampling time
gives the fractional frequency deviation of the two clocks.

With this sampling time, the fundamental time resolution of the synchronization scheme
is given by the 1 ps counting resolution of the time taggers. To detect a shift in the clock
drift caused by gravity, we must therefore measure for a minimum of 1 ps/4.4× 10−16 =
2273 s. The fractional frequency deviations over 10 000 s intervals are shown for the three
measurements in Fig. 4.9. Here, the statistical uncertainties from the standard deviation of
the mean are too small to be visible in the plot. The average fractional frequency deviation
over the entirety of the three individual measurements, corresponding to the dashed lines in
Fig. 4.9, are listed in Table 4.1. The observed frequency shifts between each measurement
is in the order of 10−12, which is clearly not the precision we need to measure time dilation.
Rather, this value corresponds well to the rms frequency instabilities of the clocks, as
predicted by the Allan deviation (see Fig. 4.2).
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Figure 4.9: Measured frequency shifts with the coincidence detection of entangled photons of the
two atomic clocks at different heights. Each point corresponds to 10 000 s of measurement data.
The statistical uncertainties are in the order of 1× 10−15 and therefore too small to be visible on the
plot.



Table 4.1: Average fractional frequency shifts over the three consecutive measurements, with statis-
tical uncertainties.

Meas. # Total sampling time Δh δf/fA
1 60 000 s 0m (13.127 61± 0.000 51)× 10−12

2 110 000 s 4m (15.321 79± 0.000 46)× 10−12

3 50 000 s 0m (15.063 41± 0.000 19)× 10−12

In Fig. 4.10, the clock drift obtained by each 1 s sampling time during measurement 1
was used to calculate a corresponding Allan deviation of the two clocks. This is compared
with the clock drift measured by a 1Hz signal from the function generator. The latter was
obtained by using the coincidence events as an initial synchronization reference, and then
simply comparing the time offset of subsequent pulses recorded by each time tagger. Over
averaging times slightly larger than 10 s, these independent measurement tools show good
correspondence, supporting the validity of using SPDC for clock synchronization.
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Figure 4.10: Comparison of the Allan deviation obtained by using the two-photon coincidence peak
and the 1Hz signal from a function generator as estimates for the frequency instability of the two
clocks.

It was discovered in the aftermath of these measurements that the temperature control in
the room contributes to a significant change in the optical path lengths of the SM fibers.
This can be seen in Fig. 4.11, where the coincidence peak was measured with the two
time taggers locked to the same timing standard. At this point no clock drift is present,
and the drift of the coincidence peak must therefore be attributed to ΔTi, caused by varia-
tions in the optical path length. The periodic trend that is observable in the slow negative
drift and the subsequent sharp rise, correlate well with the duty cycle of the temperature



controller in the room, which was measured to ∼ 50min = 3000 s in [43]. This likely
explains the initial offset in the Allan deviation of the two methods, as the coaxial cables
from the function generator are much better isolated than the SM fibers, and therefore not
as sensitive to temperature fluctuations. Whether or not this had a significant effect on
the former measurements is hard to say, but likely these fluctuations average out for the
10 000 s samples, which the Allan deviation also indicates. Although we were aware of
this potential issue in the beginning of the experiment, the size of the effect was surprising.
Certainly, it serves as a reminder to the small orders of magnitude we are operating at.

Figure 4.11: Phase locking both time taggers to the same atomic clock shows the drift in the coin-
cidence peak due to variations in the optical path length, likely due to the temperature controller in
the laboratory.

Finally, it is natural to compare the Allan deviation we measure with the listed Allan de-
viation of the atomic clocks, which was shown in Fig. 4.2. For the sampling periods
ranging from 1 s to 10 000 s, the rms frequency instability is roughly one order of magni-
tude larger for our measurements. This is not necessarily a symptom of the measurement
tool however, as the Allan deviation will depend largely on the timing standard that is
used as reference. We don’t have this information for the given graphs, but in general it is
recommended to use a reference standard for these measurements an order of magnitude
more accurate than the device that is being tested [62]. It is thus not implausible that this
explains the slightly worse Allan deviation we obtain by using the same timing standard
as both reference and sample.



4.7 Discussion

It is clear from the results of the former section that the initial prospect of verifying time
dilation over the small height differences available in the lab was quite misguided. For
more experienced researchers within time and frequency metrology, this would also likely
be obvious from the outset, as the Allan deviation of the two clocks predict rms frequency
instabilities of the order of 10−12 over τ = 10 000 s, orders of magnitude greater than
the frequency shift caused by gravity. Our hope was that these instabilities followed some
Gaussian distribution and therefore could be averaged out over longer measurements, but
the noise profile of atomic clocks is clearly more complex than we were aware of. In
the end, the synchronization scheme can at best only reproduce the actual drift of the two
clocks, and does not offer anything in terms of a better frequency stability. Nevertheless,
the Allan deviation we obtain with the synchronization scheme is a good indicator that
we accurately can measure the real drift of the two clocks. To measure time dilation
effects, this leaves us with the option to either use better timing standards or move the
experiment to larger potential differences in the gravitational field. The latter may be
accessible in the not so distant future, as numerous groups have been working towards
launching small scale QKD satellites for low earth orbits (LEO). At these scales, time
dilation effects are perhaps significant enough to be measured with this synchronization
scheme. A straight forward calculation of the expected frequency shift is out of scope for
this thesis however, as the expressions quickly get more complicated outside of the weak-
field approximation. Additionally, for a LEO satellite the time dilation effects of special
relativity must be included, which for some cases dominates gravitational effects. These
calculations are discussed in greater detail in [65], but I could not find any direct estimates
for LEO satellites.

We can make some rough qualitative considerations on the obtainable synchronization
precision over a ground-to-satellite link however, notwithstanding the additional technical
difficulties such a setup would entail. Several feasibility studies have been published on
the topic of satellite QKD missions [e.g. 56–58]. Basing here the argument on parameters
listed in [57], it is reasonable to assume a total timing jitter of the detector and time tag-
ger system of 40 ps, similar to the setup demonstrated in this chapter. Count rates from
entangled photon sources are readily realized in the order of 10Mcps, and with a total
link attenuation of 60 dB for a LEO satellite, this corresponds to a coincidence rate of
∼ 10 cps. Over 1 s sampling times, this gives a theoretical synchronization precision of
12.6 ps. In a historical perspective however, the trend is a yearly doubling of the source
pair rate [38], so this factor may be improved drastically in the years to come. In this
scenario, an additional difficulty arise from the path length variations due to atmospheric
turbulence and the orbit of the satellite. Atmospheric turbulence alone is expected to add
a jitter in the order of ∼ 10 ps, while it is not straightforward to predict how well the path
length variations of the orbit can be compensated for. Furthermore, a typical link connec-
tion time of ∼ 220 s per orbit places some limiting restrictions on the amount of statistics
that can be collected.

Finally, it is reasonable to ask if this scheme actually offer something new in terms of time



and frequency metrology. To discuss this, I do not possess enough insight into the field
of metrology, but some thoughts from the point of view of quantum entanglement experi-
ments and QKD are in order. First of all, the predictions of quantum mechanics in different
gravitational potentials is one of the areas of fundamental physics that remain largely un-
explored, yet are within our technological capabilities. A natural benefit of testing time
dilation with such synchronization schemes is that it can be used to test the interplay of en-
tanglement and gravity. As some theories predicts gravitational decoherence in entangled
photon pairs measurable over these scales [66], the topic is certainly worth investigating.
Furthermore, in terms of QKD, this synchronization protocol has already proved useful to
obtain greater synchronization accuracies than with time taggers disciplined on pulse-per-
second GPS signals. For QKD schemes based on time-bins, this synchronization precision
is critical, and the scheme will therefore likely be used for the free-space link I describe in
Chapter 5. For the remainder of this thesis however, I will not be addressing it any further.



Chapter 5
Establishing a High-Dimensional
Free-Space QKD Link

The free-space implementation of QKD links is absolutely necessary for the technology
to reach a state where users can communicate securely over a global scale. A central
limitation to the implementation of polarization based QKD over free-space links is the
low signal-to-noise ratio introduced by the bright background under daylight conditions.
Previous demonstrations of daylight QKD has overcome this barrier by various combina-
tions of temporal, spatial and spectral filtering techniques, for example by using narrow
bandpass filters, small field of view and pulsed detection windows [67–69]. Still, secure
key rates remain orders of magnitudes lower than under optimal conditions at night. An
alternate technique was introduced by our research group at IQOQI [70], where it was
demonstrated that going to a higher-dimensional entangled state space can be exploited
to increase the signal-to-noise ratio under noisy background conditions. This experiment
can be considered as the natural continuation, where we test the feasibility of using the
post-selection free Franson interferometer for a daylight QKD protocol over 10.2 km in
free-space across the skyline of Vienna. In this chapter, I present considerations and de-
sign choices for the free-space implementation of this setup, along with some preliminary
measurements demonstrating Franson interference in the lab and testing the transmission
stability of our tracking scheme.
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5.1 Improved Noise Resilience from a Higher-Dimensional
State Space

Before I discuss our experimental setup, I briefly explain the findings of [70], which pro-
vides the fundamental motivation for this experiment. First of all, limiting noise is a key
factor in robust protocols for distributing entanglement. Verifying the distribution of a
polarization entangled state requires for instance an average visibility higher than 50% in
two bases. Noise in the form of dark counts and background photons cause accidental
coincidences between all detectors and therefore lower the visibility of the state, possibly
destroying entanglement in the sense that it is impossible to verify its existence. As noise
is a very real complication present in the transition from ideal laboratory conditions to the
real world, developing noise robust protocols is desirable for reaching the full potential of
QKD.

To verify the existence of entanglement in higher-dimensional systems, it is convenient
to reconstruct the density matrix of the system from the experimental data. These matrix
elements can be reconstructed from the normalized coincidence rate ρij = CCij/CCtot.
For a maximally entangled polarization state |Φ+�, a measurement would ideally return
only non-zero diagonal elements, corresponding CCHH and CCV V coincidences. How-
ever, accidental coincidences will inevitably occur due to noise, contributing to non-zero
off-diagonal elements and lowering the overall visibility of the state. This is typically
modeled through the white-noise model,

ρ̂ = p |ψ� �ψ|+ 1− p

d2
1d2 , (5.1)

where p classifies the amount of noise (zero for p = 1) and d is the dimensionality of the
state. The key insight is now that accidental coincidences spread evenly over all d2 ele-
ments of the density matrix, while true coincidences corresponding to entangled photons
will divide only across the d diagonal elements. As the amount of accidental coincidences
in principle is independent of the dimensionality of the state, going to higher-dimensional
entangled states can therefore help to reveal entanglement in noisy scenarios. In [70], this
principle was experimentally verified in the laboratory frame, using the post-selection free
Franson interferometer to project energy-time entanglement onto maximally correlated
time-bin states. The higher-dimensional characteristics of this system is realized by fine-
graining the time-bin states, which essentially boils down to discretizing a time-frame into
d time-bins. Varying d then corresponds to adjusting the dimensionality of the state. By
simulating noisy background conditions with adjustable LEDs, it was shown that increas-
ing the fine-graining of the time-bin states reveal entanglement where coarser time-bins
could not. However, as this only allows the detection of one pair of photons per time-
frame, it introduces a trade-off in terms of the optimal dimension and time-frame for the
secure key rate. Smaller time-frames allow higher coincidence rates but also fewer dimen-
sions. This is a relationship that in turn need to optimized for the given noise conditions,



and will for example be different for operation during night and day.

5.2 Proof-of-Principle: Franson Interference in the Lab

As the free-space implementation of the receiving interferometer at the time of writing
this thesis is not fully ready, I here show a proof-of-principle measurement of Franson
interference with both interferometers located in the lab. The principles described in this
section are directly transferable to the free-space scenario, only adding the extra difficulty
in dealing with the effects of the turbulent atmosphere on the beam.

5.2.1 A Type-2 Sagnac Source

The source designed for this experiment is illustrated in Fig. 5.1, and was developed by
L. Bulla and O. Kohout for this experiment. It is a Sagnac source consisting of a 2 cm
long ppKTP crystal, which produces non-degenerate signal and idler photons at a center
wavelength of 810 nm. A thermo-electric heater (TEH) keeps the crystal at the necessary
operating temperature of ∼ 32◦C. The crystal is pumped by a continuous wave laser diode
at λp = 404.5 nm, which is focused by a lens onto the optimal spot in the crystal. Inside
the Sagnac loop, incident |Hp� states are converted into |VsHi� in a type-2 SPDC process.
The overlap of the two pump-directions, where a HWP transforms between |H� and |V �
states, result in the maximally entangled Bell state

|Ψ+� = 1√
2
(|HiVs�+ eiφ |ViHs�), (5.2)

where the phase φ can be set by rotating a combination of HWPs and QWPs placed in the
path of the pump laser. Alignment of the source is done by looking at the spatial overlap of
the incident pump laser with the back-reflected mode (see Fig. 5.1). This step is explained
more detailed in [43].

The signal and idler modes exit in separate ports of the PBS, and a dichroic mirror is
used to separate the idler from the pump beam. Two lenses are placed in the path of the
signal and idler modes for collimation, as well as additional filters to remove any unwanted
residual reflections from the pump. These are then coupled into SM fibers, transmitting
the modes to the two interferometers. Each SM fiber is mounted with a set of polarization
controllers, which are used to manipulate the stress-induced birefringence in the fiber. We
use this as a polarization transformation to obtain the necessary |Φ±� state for the post-
selection free Franson interferometer.



Figure 5.1: Schematics of the type-2 Sagnac source. The setup is explained further in the text.

5.2.2 Implementation of a Post-Selection Free Franson Interferome-
ter

Our entanglement analyzing modules consist of two post-selection free Franson interfer-
ometers. In the following, I will refer to the two interferometer modules as Alice and Bob,
where Bob is the interferometer that will be used for the receiver station in the free-space
experiment. In the lab experiment, these modules are fairly similar, while the Bob interfer-
ometer will need further modifications for the free-space setup. Additionally, I will refer
to the signal and idler modes as the quantum signal.

A schematic of the Bob-interferometer is illustrated in Fig. 5.2. It is in principle identical
to the post-selection free Franson interferometer discussed in Section 3.4.1, with certain
additional features. Mainly, this is the addition of a 775 nm stabilization laser (Toptica
DLC DL pro), the placement of two 4f lens systems in the long arm of the interferometer
and the alignment stage, which is only used to prepare for measurements. The 4f systems
is added as a step to improve the angle of arrival stability of the interferometer, which will
be a central issue in the free-space implementation (see e.g. [71]). By placing the PBSs
and mirrors in the focus of the two 4f systems, the 4f system ensures that the short and
long beam paths overlap even if the beam arrives at an angle. This calculation is shown in
Appendix A.

5.2.3 Stabilizing the Interferometer Path Length

To consistently obtain Franson interference, the phase shift obtained from the longer path
must be kept stable. However, even minor changes in the temperature gradients within
the laboratory cause thermal expansion in the optical components enough to significantly
decrease the interference visibility, thus demonstrating the need for active path length



Figure 5.2: Schematic of our implementation of the post-selection free Franson interferometer. The
additional features of a stabilization laser and two 4f systems is explained in the text.

stabilization.

The stabilization scheme we employ consist of a feed-back loop between the interference
signal of a secondary laser traversing the interferometer, and a piezo mirror which by
applying different voltages continuously adjust the optical path length. For the Bob inter-
ferometer, we use a 775 nm laser diode, while for the Alice interferometer, the pump laser
itself is used. The stabilization laser is prepared in a |D� state by a sequence of a PBS and
a HWP, such that it splits evenly between the two interferometer arms. As this laser enters
the interferometer from a different port on the first PBS than the quantum signal (see Fig
5.2), the vertical polarization traverses the short path and the horizontal polarization the
long path. Consequently, it also recombines at a different output than the quantum signal.
However, as there is always a slight inefficiency in the reflection arm of a PBS, narrow
bandpass filters are added to the single-photon detectors, ensuring that any 775 nm signal
from the stabilization laser is removed.

Using the same principle as with the quantum signal, we obtain interference by measuring
the output state of the stabilization laser in the D/A basis, employing the usual combination
of a HWP rotated by 22.5◦ and a PBS. A photo diode (PD) is placed in each arm of the
final PBS, converting the interference signal to a current. This current is in turn fed into
a PID-controller, feeding its response through a set of high-voltage amplifiers and into the
piezo mirror, completing the feed-back loop. The parameters of the PID-controller are
then adjusted to keep the interference signal stable, and thus also the optical path length.
As we use a shorter wavelength for the stabilization laser, we ensure that the phase is stable
also for the quantum signal.

A key requirement for the scheme to work as intended is that the wavelength of the sta-



bilization laser itself is kept stable. Similar to the principal concepts of atomic clocks,
we use hyperfine transition lines as frequency standards for our stabilization lasers. A
more detailed description of this setup is however beyond the scope of this thesis. For the
775 nm, we use a compact saturation spectroscopy module with a Rb frequency reference
(CoSy, TEM Messtechnik). For the Alice interferometer, we use the pump laser itself as
stabilization laser by splitting it up with a 50-50 beam splitter. The wavelength stabiliza-
tion for this is ensured by a potassium based absorption cell built by O. Kohout. For both
implementations, a PID-controller adjusting the input current to the lasers ensures that the
wavelength stays on the hyperfine transition.

5.2.4 Data Acquisition

Two single-photon counting modules (SPCM-800-11, Excelitas Technology) are used for
the detection module in each interferometer. These have a sensitive area of 180 µm2 and
timing jitter in the order of ∼ 350 ps. A local time tagger module at each interferometer
(TTM8000, Austrian Institute of Technology) assign a timetag to the rising edge of the
electronic SPCM signal. These can each support up to eight external inputs with a timing
resolution of 82.3 ps, which defines the smallest time-bin we can use for fine-graining.
The time taggers are able to process 25Mevents/s, which are transferred to hard-drives
via a Gbit-ethernet connection. For the laboratory measurement, the time taggers could be
disciplined to each other, removing the need for any clock synchronization protocol.

5.2.5 Experimental Routines

First Steps: Aligning the Interferometer Aligning an interferometer from scratch re-
quire a certain methodology, and above all patience. The first coarse alignment is done by
shining a strong coherent laser through the interferometer. We place all optical elements,
with the exception of the two 4f systems, so that the beam is coarsely led through the de-
sired path. All elements are placed on similar pedestals, such that the center height is 7 cm
throughout the interferometer. The mirrors and beam splitters can additionally be tip-tilted
through two axes to adjust the vertical and horizontal angle of reflection. Then, by using
two irises as crosshairs, we adjust the tilt of all elements such that the height of the laser
stays centered throughout the setup. The long path of the unbalanced Mach-Zehnder inter-
ferometer must now be adjusted so that the two paths completely overlap when rejoined.
This is done by observing the beam profile with a CCD camera (SP620U Spiricon, Ophir
Optics), placed at the end of the alignment stage (see Fig.5.2), which is entered by the
deflection of a flip mirror. Here, as in the detectors arms for the quantum signal, a HWP
oriented at 22.5◦ and a PBS projects the polarizations onto the D/A basis. When the inter-
ferometer is misaligned, the different angles of the two beams cause spatial interference
fringes on the camera (see Fig. 5.3). The mirrors in the long arm are therefore tilted until
the interference fringes disappear. The quality of the alignment can now be quantified by
applying a sinusoidal voltage to the piezo mirror, leading to periodically constructive and



destructive interference patterns at the camera. Measuring the contrast between the max-
imum and minimum beam power at the position of the camera, we can assert a visibility
to the overlap, which preferably should be above 90%. When this is obtained, we insert
the first 4f system and adjust the position and tilt of the two lenses until the interference
visibility is back, before we repeat the procedure with the second 4f system. After this
procedure, the interferometer stays roughly aligned over time, and it is enough to adjust
the tip-tilt mirrors of the long path only slightly to reobtain the alignment.

Figure 5.3: The overlap of the long and the short interferometer arms is observed with a Spiricon
CCD camera. A screenshot of the supporting BeamGage-software shows spatial interference fringes
in the beam power, characteristic of two misaligned beams.

When the interferometer is aligned, it remains to align the coupling onto the single-photon
detectors. First, we attenuate the laser with multiple absorptive filters, so that we don’t
saturate the SPCMs. The beam then needs to be focused onto the sensitive area of the
detector surfaces. This is largely an iterative procedure, where we observe the detector
signal while adjusting the tip-tilt mirror in front of the module and translate the lenses
until the focus is optimized.

Establishing Common Polarization Bases The last preparatory step is to ensure that
the |Ψ−� state is mapped correctly to a |Φ−� state after the SM fibers. This step is nicely
visualized and described in [43], and we use here essentially the same method. The trick
we use relies on the fact that the two modes share a common phase which can be tuned
by the pump phase. If we insert two polarizers oriented at 45◦ after the SM fibers, the
coincidence counts of the |Φ−� state should be at a minimum, i.e.

PΦ−(DD) = | �DiDs|Φ−� |2 = 0. (5.3)

Tuning the pump phase correspondingly, we obtain the desired mapping.
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Figure 5.4: Visibilites in the H/V and D/A basis over two consecutive 3min intervals. Each point
corresponds to the visibility averaged over 1 s.

5.2.6 Demonstration of Franson Interference

Fig. 5.4 shows the result from two consecutive 3min measurements of the visibility in the
H/V and D/A basis. The H/V visibility is obtained by rotating the HWPs in front of the
two detector modules into the 0◦ position. At this position, the polarization can be used to
label the path taken through the interferometer, and the measured coincidences therefore
simply corresponds to a normal polarization visibility. The D/A visibility corresponds
to the Franson interference we obtain by setting the HWPs to the 22.5◦ position. The
two visibilities are respectively averaged to VH/V = 99.8% and VDA = 92.0%. The
larger oscillations in the D/A basis is likely due to minor phase shifts caused by thermal
fluctuations and the following corrections by the piezo mirror. This does not affect the
H/V visibility, which is not dependent on the phase shift obtained over the two arms.

5.3 Free-Space Considerations

Having showed that our setup works in the lab, the next step is to implement the setup for
use in a free-space link. In the following sections I discuss some of the challenges this
entails, and the following design choices we’ve made.



5.3.1 Transmission of Light in Atmospheric Conditions

One prominent challenge optical free-space links face is the effect of the atmosphere on the
beam. Whereas absorption and scattering generally are unavoidable effects contributing
to the overall attenuation of the beam intensity, fluctuations in the refractive index of the
atmosphere cause beam wander and wavefront distortion that to some extent can — and
need to — be compensated. Turbulent air is typically modeled through the statistical
Kolmogorov model [72], where the turbulence is described phenomenologically by large
eddie vortices at some outer scale L0, disintegrating into smaller eddies until the kinetic
energy is dissipated due to viscosity at some inner scale l0. The refractive index of the
atmosphere is directly related to its density, which in turn fluctuates with the temperature
and pressure changes due to the moving air. Eddie currents on the order of the free-space
beam diameter consequently cause wavefront distortions on the millisecond scale, in turn
causing angle of arrival (AoA) fluctuations in the beam. This can be observed as a jitter-
motion of the beam spot at the receiving module, or as beam spread over longer exposure
times. Larger eddies on the other hand cause beam wander over longer timescales. These
angle of arrival fluctuations are essential to account for, as they limit the ability of the
receiving telescope to image the beam onto the detector surface.

Figure 5.5: Illustration: Turbulent air cause wavefront distortions that is observed as beam spread
in an imaging apparatus. The amount of turbulence can be quantified by the FWHM of the imaged
beam spot.

A fundamental parameter for free-space links is the atmospheric seeing, �0. This can rudi-
mentary be defined as the full-width half-maximum (FWHM) of a long-exposure image
of a distant point-source. As the image of a distant point-source through the atmosphere
is smeared out by the wavefront distortion (see Fig. 5.5), this is a measure of the AoA
fluctuations caused by turbulence. A related quantity is the Fried parameter r0 which can
be considered as a characteristic size of turbulent cells in the atmosphere [73]. The two
quantities are related to each other through

�0 = 0.98
λ

r0
, (5.4)

where λ is the wavelength of the beam. For the design of the receiver telescope, it is
important to keep in mind that this quantity competes with the diffraction limit of the



telescope aperture, as quantified by the Airy disk

FWHMAiry = 1.028
λ

D
. (5.5)

In the absence of any adaptive optics system compensating for the short-term wavefront
distortions, the atmospheric turbulence will be the limiting factor of the imaging resolution
as long as r0 < D.

5.3.2 Differential Image Motion Monitoring (DIMM)

A widely used and convenient measurement setup for quantifying the Fried parameter is
the Differential Image Motion Monitor (DIMM). A DIMM setup relates the Fried param-
eter to the variance of the relative beam spot motion of a point-source imaged over two
apertures. This can be implemented with a single telescope system by placing a mask with
two smaller apertures over the full aperture. A wedge prism in one of the apertures then
deflects the corresponding wavefront to a different spot on the camera. Subsequent images
of a point-source such as a star — or in our case a laser — over short exposure times then
yield samples over how the distortion of the wavefront at the position of the two apertures
changes relative to each other. After a series of short exposure images, the variance (σ2

d)l,t
in the longitudinal and transversal distance between the two beam spots can be related to
the Fried parameter as [74]

(σ2
d)l,t = Kl,tλ

2r
−5/3
0 D−1/3, (5.6)

where D is the diameter of the subapertures, λ the wavelength of the point source and Kl,t

two constants dependent on the ratio of the diameter of the two apertures to the distance
B between them. The longitudinal direction is here given as the direction parallel to the
separation of the two apertures. From [74], these constants are given as

Kl = 0.340(1− 0.570b−1/3 − 0.040b−7/3)

Kt = 0.340(1− 0.855b−1/3 − 0.030b−7/3),
(5.7)

where b = B/D. The distance between the two spots is calculated from the position of
the centroid (center-of-intensity) of each beam spot. These coordinates are given by the
weighted mean over the pixel-intensities in the image

(xc, yc) =

�
ij pijIij�
ij Iij

, (5.8)



where pij are pixel coordinates and Iij the corresponding intensity. I refer to [74] for a
more detailed discussion on the DIMM method, as well as the relevant sources of error
and potential pitfalls.

5.4 Setup and Design Choices

5.4.1 The Free-Space Link

Figure 5.6: Satellite image over Donau showing the free-space link with the source and transmitter
at the institute (IQOQI) and the receiving module at Bisamberg, 10.2 km away.

Fig. 5.6 shows the geographical location of our transmitter and receiver stations. The
source and the Alice interferometer are placed in 4th floor laboratory at IQOQI Vienna,
where the source can be coupled to a SM fiber going up to the transmitting optics at the
rooftop cupola of the Hedy Lamarr telescope. The receiving station is installed in a room at
the old Sendeanlage Bisamberg, belonging to the Austrian Broadcast Corporation (ORF).
The physical link distance measures to ∼ 10.2 km.

5.4.2 Transmitter Optics

For the transmitter optics, a SM fiber connected to the downstairs laboratory is mounted
on a translation stage in front of an achromatic lens (f = 274.5mm, D = 70mm, LEnS-
Optics). The lens is custom-made for a theoretical spot size with a Gaussian beam of
∼ 40 cm at 8 km. The setup is mounted on the Hedy Lamarr telescope at the rooftop of
IQOQI, depicted in Fig. 5.7, which can be rotated in order to aim at the receiver station.



Figure 5.7: Image of the transmitting lens mounted on the Hedy Lamarr telescope, from inside and
outside of the cupola. The green reflection on the cupola is from the nearby beacon LEDs used for
the tracking setup.

5.4.3 Receiver Optics

The receiving optics are responsible for imaging the quantum signal transmitted through
the atmosphere onto the detectors sensitive surface. In order to do so optimally, there are
a series of consideration that need to taken. First of all, due to Gaussian beam divergence,
the free-space signal must be collimated to a smaller size. The beam waist need to be
smaller than 2.54 cm, which is the diameter of all optics used inside the interferometer.
This is done with a two lens collimation stage, which introduces a magnification M that
shrinks the beam size and magnifies the AoA. As we will not use any real-time adaptive
optics system to correct for the short-term AoA fluctuations caused by the atmosphere,
the magnification should be small enough to still map these fluctuations onto the sensitive
area of the detector. The angles that are successfully mapped to the detector surface are
quantified by the field of view (FoV) of the detectors. However, this parameter also works
as a spatial filter against noise and increasing it is therefore a trade-off in terms of noise
robustness in QKD. Another issue is beam clipping, which occur when part of the beam
path through the interferometer is obstructed. To minimize this effect, a small beam size
is desirable. This in turn depends on the magnification, and is therefore another trade-off
between the FoV. In terms of beam size, a final consideration that should be made is the
Rayleigh length of the collimated beam, which is defined as the length over which the
beam waist increases by a factor

√
2 due to Gaussian beam divergence. The Rayleigh

length scales quadratically with the diameter of the collimated beam. As the total beam
path from the telescope to the detector is quite long, this can be an issue if the beam size
is too small.



Figure 5.8: Image and schematic of the receiver optics. 1 Cassegrain telescope, 2 collimation

lens, 3 dichroic mirror, 4 green filter, 5 focusing lens, 6 CMOS camera for tracking, 7
periscope leading into the interferometer.

The setup for our receiving optics is shown in Fig. 5.8. The main parts of which is the
Cassegrain telescope (Meade LX600, f = 2.032m, D = 254mm) and the collimation
lens (Thorlabs, Best Form lens, f = 75mm, D = 2.54 cm). A dichroic mirror separates
the quantum signal from the green beacon LEDs used for our tracking scheme. This is
explained in more detail in Section 5.4.4. The effects of our design choices are calculated
by using the standard theory of ray tracing matrices, valid for the paraxial region (see
e.g. [22]). A table of the relevant parameters are listed in Table 5.1. For the clipping
limit, I assume here a 3m propagation distance, which gives some safety margin. These
calculations are elaborated in more detail in Appendix A.

Table 5.1: Characteristic parameters of the receiver optics design.

Collimation stage
Angular magnification ×27.1
Beam magnification ×0.037
Beam diameter after collimation 9.4mm
Rayleigh range (@810 nm) 342.6m
Clipping limit 2.67mrad

Single-photon detector
Focusing Lens 50mm
Detector size 180 µm
Detecor FoV 133 µrad

Tracking camera
Focusing Lens 40mm
Pixel size 5.5 µm
Pixel FoV 5.1 µrad



5.4.4 Bidirectional Tracking

While the short-term AoA fluctuations caused by the atmosphere are compensated by the
4f system of the interferometer and the FoV of the detectors, active beam wander com-
pensation is still essential for the long-term transmission stability of the link. We intend
to compensate for this with a bidirectional tracking scheme, where green beacon LEDs
positioned at the transmitter and receiver ends are used as references for the beam wan-
der of the quantum signal1. The beacon LEDs are imaged by CMOS cameras (Baumer
VLG–22M) at each side. At the transmitter station, we use the Hedy Lamarr telescope
(f = 1.140m, Astro Systeme Austria (ASA)) to focus on the beacon, while on the re-
ceiver side we use the same receiver optics as for the quantum signal, with a focusing lens
(f = 40mm, Thorlabs Best Form lens) placed after the transmitted arm of the dichroic
mirror. The beam wander manifests itself as a moving beam spot on the image of the
beacon LEDs. By calculating the averaged centroid position over a suitable time-frame,
using Eq. 5.8, the motion of the centroid from one frame to the other can be compensated
by adjusting the angles of the transmitter and receiver modules. For the transmitter, this
is simply done by using the integrated motor of the telescope mount. For the receiver,
we implement this by placing the entire optical setup on a 6-axis hexapod (PI Systems,
H-850.H2), which is depicted in Fig. 5.9. The hexapod is able to carry up to 250 kg, and
can translate and rotate along all three cartesian axes. For the tracking, we use rotations in
the horizontal and vertical directions (in relation to the incident beam), which can move in
minimum increments of 5 µrad and 3 µrad respectively [75].

Tracking Algorithm The tracking algorithm is a simple feed-back loop, that tilts the
setup in order to keep the centroid at a set reference position, which is determined at the
start of the measurement when the interferometers are aligned. The CMOS camera has a
wide dynamic range of exposure times, ranging from 15 µs to 1 s, which can be used to
find the suitable spot brightness. The centroid position is then measured in 1 s intervals
(this is tunable in the software) as the average over a series of short exposure images. The
corresponding pixel deviation from the reference position is then converted to a change in
the AoA, which is compensated for by tilting the hexapod and the transmitter telescope
correspondingly. This conversion factor is simply equal to the FoV of each camera pixel
at the respective stations. For the receiver end, this value is 5.1µrad/pixel, while for the
transmitter telescope the corresponding value is 4.82µrad/pixel.

Tracking Software The tracking is fully automated through software developed per-
sonally through this thesis work. It is implemented in the QT framework, and entails all
the necessary functionalities for dealing with the CMOS camera, interfacing with the hexa-
pod and the transmitter telescope and for setting up and performing DIMM measurements.
This is described in more detail in Appendix B.

1The choice of using beacon LEDs instead of more powerful beacon lasers stem from a safety concern in
regards to the nearby flight paths of ambulance helicopters.



Figure 5.9: Picture of the complete receiver module, locked on the surface of a rotatable hexapod.
The close-up image of the hexapod is taken from [75].

5.4.5 The DIMM Setup

Our receiver module can quickly turn into a DIMM device by placing the mask shown
in Fig. 5.10 onto the telescope. The two apertures are 2.6 cm in diameter and separated
by 16 cm. Within one of these apertures, two 0.5◦ wedge prisms are fixed in rotatable
mounts. This makes up a beam steering device which we use to displace the two beam
spots. For the imaging, we use the same camera as for the tracking scheme. To perform a
measurement, we shine a green laser from the transmitter optics, which is imaged in bursts
over short exposure times. The exposure time and number of images per sample can be set
in the software, which calculates and plots the seeing "real-time" (see Appendix B).

Figure 5.10: By placing a mask onto the receiver telescope, the setup is transformed into a DIMM
setup. 1 Wedge prisms used for beam steering.



5.4.6 Test of the Tracking and DIMM Setup

The tracking and DIMM setup was tested during two brief runs on the night of 10.09.19.
For the DIMM test, we used a green laser (λ = 532 nm) imaged in burst of 1000 im-
ages with an exposure time of 5ms. The measured Fried parameter and the corresponding
atmospheric seeing is plotted over a ∼ 15min measurement in Fig. 5.11. The relative
statistical error in each estimation of the Fried parameter is equal to 3

5

�
2/N [76], cor-

responding to 2.7% for N = 1000. At this point, biases due to CCD read-out noise,
photon noise and exposure time averaging are likely more influential [74]. The average
seeing over this short measurement was 43.55 µrad. As the Fried parameter scales with the
wavelength as r0 ∝ λ6/5, the atmospheric seeing of the 810 nm quantum signal should be
better by a factor �0(810 nm) = 0.6�0(532 nm). This magnitude of the AoA fluctuations
are well handled by the receiver optics. Generally, this value will vary from day to day
however, so it is not possible to assess a general range of the expected fluctuations from
this short measurement.
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Figure 5.11: DIMM measurement over ∼ 15min the night of 10.09.19. Each point corresponds to
1000 images with 5ms exposure time.

The transmission stability of the link was subsequently tested by shining a 775 nm laser
from the transmitting optics, while the tracking system focused on the green beacon LEDs.
However, due to continued software issues with the transmitter telescope, active tracking
could only be tested with the hexapod at the time of these measurements. For this test, the
centroid spot of the beacon LED was averaged over 1 s intervals before prompting a move
by the hexapod. The deviation of these centroids in pixels from the initial position at the
start of the measurement is plotted in Fig.5.12, along with the measured attenuation of the
beam. The attenuation is calculated as



Attenuation [dB] = 10 log10
Input power

Output power
, (5.9)

where the output power was measured at the end of the periscope of the receiver optics
(see Fig. 5.8). The input power was measured at the start of the measurement to 16mW,
and assumed constant throughout.
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Figure 5.12: The transmission stability of the one-way tracking scheme was tested. At the top, the
horizontal and vertical motion of the centroid of the beacon LED is plotted. At the bottom, the link
attenuation during the same time.

It is difficult to give a well reasoned assessment of the tracking setup from this short
measurement — especially with only one active side — but in the least it shows that the
feed-back loop is stable, keeping the beam spot and the transmission power oscillating
around a mean value. However, as the sensor area of the power meter is much larger than
the single-photon detectors, it is probable that the attenuation will have larger fluctuations
when we do the same test with the quantum signal. This is likely also the reason why
the central peak of the vertical pixel deviation did not substantially affect the attenuation,
which for the record was caused by walking across the room of the receiver module, as
there the floor is quite unsteady. Nevertheless, these results give reason to believe that any
additional issues in the transition to the quantum signal can be overcome by small tweaks
to the tracking parameters.





Chapter 6
Summary and Outlook

Quantum entanglement will be a central resource in the next generation of quantum tech-
nologies. Motivated by this, I used this thesis to explore theoretical concepts and experi-
mental techniques for producing, manipulating and verifying entanglement in two-photon
systems. Utilizing these fundamental tools, I describe two experiments I’ve contributed to
at the Institute for Quantum Optics and Quantum Information in Vienna.

The first experiment is described in Chapter 4, and is related to the use of entangled pho-
tons for remote clock synchronization. The concept can be broken into two key ideas:
First of all, photon pairs produced through SPDC are temporally correlated within less
than 1 ps. Secondly, the error in timing resolution due to electronic jitter can be made
arbitrarily small with the statistics provided by bright SPDC sources. Consequently, the
relative clock drift between two remote clocks can be asserted over relatively small sam-
pling times by the drift of the time offset of the two-photon coincidence peak. In terms of
QKD protocols, this is already an established technique to improve the clock synchroniza-
tion between the sender and receiver beyond the possible precision obtained by pulse-per-
second GPS signals. I here rather investigate this scheme as a tool for time and frequency
metrology, in this instance specifically oriented towards measuring gravitational time di-
lation. This is first of all an interesting angle as a series of QKD satellites likely will be
launched in the upcoming years, in which the time dilation effects approach the order of
magnitude accessible by this synchronization scheme. Furthermore, few extra modifica-
tions would in principle be needed for these setups, as this tool is intrinsically available
in any entanglement-based QKD setup. To test this principle, we measured the fractional
frequency drift of two freely running rubidium standard atomic clocks over three consecu-
tive long-term intervals (> 13 h). During the second measurement, one of the clocks were
lifted to a height of 4m, to see if time dilation effects could become visible. With coin-
cidence rates in the order of 100 kcps, the fractional frequency deviation was measured to
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a theoretical precision of 1 ps over sampling times of 1 s, where the 1 ps counting resolu-
tion of the time tagger units set the fundamental limit of the obtainable precision. Over
averaging times from 1 s to 10 000 s, the Allan deviation of the two clocks was measured
to ∼ 10−11, which is in reasonable agreement with the claimed stability of the clocks.
However, as this is far above the frequency shift predicted by gravity, we could not certify
time dilation from the 4m height difference with this setup. Nevertheless, this is mainly
an issue with the stability of the clocks, and we demonstrate that the fundamental principle
of the clock synchronization scheme is sound. Whether it is possible to use this for metrol-
ogy in future LEO QKD satellites would be premature to conclude, as the effects of lower
coincidence counts and increased path length variations likely worsen the synchronization
precision by some order of magnitude.

The design choices and preparatory measurements for a free-space QKD setup was investi-
gated in Chapter 5. This experiment is the next step in a series of projects [70, 77] intended
to demonstrate the feasibility of higher-dimensional entanglement for a noise robust QKD
protocol. This protocol relies on two post-selection free Franson interferometers to ana-
lyze the higher-dimensional state-space offered by photons entangled in polarization and
energy-time. At the current time, the entangled photon source and the two interferometer
modules have been tested locally in the lab, demonstrating a Franson interference of 92%,
and the setup is in the process of being prepared for free-space tests. In terms of this, ensur-
ing the transmission stability of the link despite the effects of atmospheric turbulence is a
prominent engineering challenge. The limitations of turbulence across our link is assessed
with a differential image motion monitor (DIMM) integrated in the receiver module. In a
test of this setup, the atmospheric seeing was measured with a green laser to an average of
43.55 µrad over ∼ 15min. These short-term fluctuations are accounted for in the design
of the receiver optics, primarily by the addition of two 4f lens systems in the long arms of
the interferometer, and by selecting a larger field of view than the expected angle of arrival
fluctuations for the single-photon detectors. For the long-term stability of the link, I pre-
sented a setup for a bidirectional tracking scheme, correcting the angle of our transmitter
module and receiver module in a closed feed-back loop to ensure optimal transmission
stability. However, due to software issues with the transmitter telescope, only the track-
ing setup for the receiver end was possible to test during this thesis work. At the current
time, this experiment is at the exciting stage where we start observing interference with
an alignment laser across the free-space link, and therefore expect to demonstrate Franson
interference in the not-so-distant future. Succeeding in demonstrating a noise robust QKD
protocol over a 10.2 km long free-space link will likely be a significant contribution to the
development of QKD for global networks.
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Appendix A
Some Classical Optics

The receiver optics was designed using the classical theory of ray transfer matrices, which
typically is valid in the paraxial approximation, i.e. where the incoming light is nearly
parallel with the optical axis of the system. In this formalism, the height and angle of a

light ray is described by a vector r =

�
r
θ

�
, and transfer matrices traces the ray through the

system. Free space propagation and thin lenses is described by matrices T(d) and L(f)
respectively, where

T(d) =

�
1 d
0 1

�
, L(f) =

�
1 0
−1
f 1

�
. (A.1)

A frequently encountered setup is the two-lens system with respective focal lenghts f1, f2,
where the second lens is placed in a distance f1+f2 from the first one. This is for example
used for the collimation stage of the receiver optics. The angular magnification, M , of this
setup is given by

M =
f1
f2

. (A.2)

The beam size magnification is correspondingly given by the inverse of M . An important
parameter in our receiver optics design is the Field of View (FoV) of the tracking camera
and the single photon detectors. For a detector with diameter ddet placed in the image
plane of lens with focal length f3 after a two-lens system, the FoV is given by
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FoV =
ddet
Mf3

. (A.3)

Using the ray tracing matrices, it is straightforward to derive the features of the 4f system
used for the receiver interferometer. The transformation of the first 4f system is

S4f = T(f2)L(f2)T(f1 + f2)L(f1)T(f1) =

�
−M 0
0 − 1

M

�
, (A.4)

where M is the magnification caused by the two lenses. Placing a second 4f system with
the order of the lenses reversed, we then obtain the identity mapping

S4fS
−1
4f =

�
−M 0
0 − 1

M

��
− 1

M 0
0 −M

�
= 1. (A.5)

Thus, the two 4f systems is equivalent to a one-to-one mapping of the incident angle and
height of the beam to the focal plane of the last lens.

Beam clipping occurs when part of the beam is obstructed. If we assume the aperture di-
ameter, a, stays constant throughout the receiver optics and interferometer, beam clipping
occurs at some critical angle θc corresponding to

L sin θc +
d

2
=

a

2
, (A.6)

where L is the maximal propagation length and d is the beam diameter. Of course, if there
are various apertures sizes throughout the setup, the critical angle will depend on where
along the beam path these are positioned.

Gaussian Beams The beam waist, w, of a Gaussian beam diverges according to

w(z) = w0

�
1 +

z2

z2R
, (A.7)

where w0 is the beam waist at its narrowest point, z is the propagation distance and zR
is the Rayleigh range. The Rayleigh range is defined as the length over which the beam
radius increases by a factor

√
2. This length is given by

zR =
πw2

0

λ
, (A.8)

where λ is the wavelength.



Appendix B
Tracking Software

In order to handle the bidirectional tracking for the free-space link, it was necessary to
develop a software application, interfacing between the CMOS camera and the hexapod
and transmitter telescope. Additionally, an application for the DIMM measurement was
integrated into the software. I here provide some brief documentation.

Dependencies In addition to standard QT and C++ libraries, the application utilizes
product specific software libraries to interface with the Baumer CMOS camera and the PI
Hexapod. Images from the CMOS camera are handled with the opencv library.

Setup specific parameters Parameters specific to the setup and the components are writ-
ten into the header file datacontainers.h. Here, containers handling the thread-safe sharing
of data between the applications are stored. Perhaps more importantly for eventual second
hand users, this file contains structs defining parameters specific to the setup, such as the
receiver optics, hexapod, transmitter telescope and camera.

GUI Hierarchy

The main GUI thread, TrackingGui, handles the interplay between the four main func-
tionalities. Within this application window (see Fig. B.1), connections to the camera, the
hexapod and the transmitter telescope is established, as well as thread-safe sharing of data
between the applications. Following is a description of the four main applications, and
their functionalities within the software.

CameraGui Handles the interface with the Baumer GAPI SDK. All processes run by the
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Figure B.1: Screenshot of the TrackingGui.

CameraGui is controlled through the main TrackingGui. This includes establishing a con-
nection to the camera, initalizing a data stream, live display of the images, termination of
the data stream and termination of the camera connection. Changes in the camera param-
eters are set in the TrackingGui, and subsequently handled by the CameraGui. Adjustable
camera parameters include the exposure time, the gain and the sensitive detector area,
which is set with the width, height and x and y offset commands. Additionally, the Camer-
aGui handles the live calculation of image centroids, which are shared with HexapodGui
(or HedyLamarrGui) during tracking. In the case of a seeing measurement, the images
themselves are shared with the SeeingGui.

HexapodGui Handles the interface with the PI API. Within the TrackingGui, the con-
nection to the hexapod can be established, which subsequently will perform a reference
move to determine its absolute position. Successful connection to the hexapod opens up
the HexapodGui window, where the position of the hexapod is shown in the tool and work
system coordinates (see the Hexapod user manual for further explanation). Within the
Gui, one can operate with two different coordinate systems. The standard ZERO system
defines absolute positions relative to the standard coordinate system of the hexapod. Ad-
ditionally, one can choose to set the active coordinate system to USERDEFINED, which
uses the current position as origo. Manual movement of the hexapod can either be com-
manded through the move to position button, which moves to the coordinates typed into
the corresponding text windows, or by using the keyboard to move in increments. The
latter mode must be set via the TrackingGui. Lastly, the stabilization mode used during
the bidirectional tracking can be activated in the TrackingGui. This disables all manual
motion commands. During this mode, a graph window shows the motion of the hexapod
and the centroid deviations (see Fig. B.2). This data is automatically stored.

Important note: before using the hexapod for tracking, set the active coordinate system



to USERDEFINED at the current position when the free-space link is aligned. Tilts are
then defined relative to this coordinate system.

Figure B.2: Screenshot of the HexapodGui.

SeeingGui The SeeingGui handles the settings and calculations for a DIMM measure-
ment. This window is opened via the TrackingGui, which also handles the start and ter-
mination of the measurement. Within the SeeingGui, the sample number and the window
radius used in the centroid algorithm can be set. Also, the path to a suitable storage folder
for images and calculations can be defined. Before starting a measurement, suitable cam-
era parameters must be set with the TrackingGui, the aperture mask must be placed on the
setup and the two beam steering prisms must be rotated into a position where both spots
are visible on the camera. The atmospheric seeing and the Fried parameter is calculated
"real-time" and displayed on the corresponding graphs in the GUI window (see Fig. B.3).

Figure B.3: Screenshot of the SeeingGui.

HedyLamarrGui The HedyLamarrGui is mostly duplicated code from the HexapodGui.
The main difference is the interface to the telescope itself, which is implemented through a
QSocket connection. The interface with the telescope has had quite a few issues however,
as the offset commands are prone to adjustments from the ASA team.
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