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Abstract

Motivated by recent theoretical work on spin pumping in two-sublatice magnets we in-
vestigate the effect of cross-sublattice spin pumping on the total dc spin pumping current
pumped from an antiferromagnet and whether it can be detected experimentally. We use
an antiferromagnetic/normal metal bilayer model with three different antiferromagnetic
systems, driven into harmonic oscillations by a time-varying applied field, to numeri-
cally calculate the dc spin current pumped from the magnetic systems. Two systems in
a collinear ground state and one system in a non-collinear ground state are considered. To
calculate the spin current the solution to the Landau-Lifshitz-Gilbert-equations of motion
is calculated for the three systems, and an analytic expression for the dc spin current for
the two types of ground states.

The solution to the LLG-equations for the easy axis antiferromagnet (AFM) in a
collinear ground state presented in this thesis, is in excellent agreement with the litera-
ture. Due to the breaking of rotational symmetry, by applying a magnetic field along the
easy axis, two distinct rotational modes (plus and minus modes) emerge for the antiferro-
magnetic magnetizations. This results in only one peak for the spin current at resonance of
the excited mode. The spin current expression displays polarization in only the z-direction,
making it impossible to isolate the cross-sublattice contributions experimentally. The ef-
fect of cross-sublattice spin pumping is found to decrease the total spin current pumped
from the magnet.

For the biaxial antferromagnet in a collinear ground state, the solution to the LLG-
equations are found to be reasonable, since the easy axis solution is obtained for Kx = 0.
Adding a hard axis coupled the plus and minus modes, such that two peaks are observed
for the spin pumping current for plus and minus polarized ac-field. Similar to the easy axis
case, the spin current is reduced by the cross-sublattice contributions.

The solution to the LLG-equation presented for the easy-axis antiferromagnet, in the
spin flop state (non-collinear ground state), is found to be reasonable. Due to the non-
collinearity of the sublattice magnetization vectors, the only the plus mode of the antifer-
romagnet can be excited, consistent with the literature. The spin current therefore only
displays one peak. The analytic expression for the spin current shows polarization com-
ponents in the x-,y- and z-directions, however the numerical calculations shows only a
non-zero spin current polarized in the z-direction for the parameters employed. Thus, the
cross-sublattice contributions cannot be isolated expreimentally. The same effect of the
cross-sublattice contributions as in the collinear cases is observed.
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Sammendrag

Motivert av nylig teoretisk arbeid med spin pumping i to-subgitter magneter vil vi un-
dersøke effekten av kryss-subgitter spin pumping på den totale dc spin pumpestrømmen
pumpet fra en antiferromagnet, og om dette kan bli målt eksperimentelt. Vi benytter en
antiferromagnet/normal metal-dobbeltlag modell med tre forskjellige antiferromagnetiske
systemer, drevet inn i harmonisk oscillasjon av et tidsvarierende magnetisk felt, for a nu-
merisk beregne spin pumpestrømmen fra det magnetiske systemet. To antiferromagnetiske
systemer i kolineær grunntilstand og et i ikke-kolineær grunnstilstand vil bli brukt. For
å beregne spinstrømmen vil løsningen på Landau-Lifshitz-Gilbert-bevegelsesligningene
(LLG-ligningene) bli beregnet for de tre systemene, samt et analytisk utrykk for dc spin
pumpestrømmen for de to typene grunntilstander som er undersøkt.

Løsningen på LLG-ligningene for ”easy-axis” antiferromagneten, i kolineær grun-
ntilstand, viser seg å samtemme utmærket godt med litteraturen. Å påføre magneten
et magnetisk felt i samme retning som den ”myke”-aksen, blir rotasjonssymmetrien til
magneten brutt, som fører til to distinkte rotasjonsmoder (plus og minus modene) for
sub-gittermagnetiseringsvektorene. Dette resulterer i kun én topp for spinstrømmen for
resonansfrekvensen til de to rotasjonsmodene. Spinstrømuttrykket viser kun en spintrøm
polarisert i z-retning, slik at kryss-subgitter bidragene til spinstrømmen ikke kan isoleres
eksperimentelt. Bidraget fra kryss-subgitter spin pumping reduserte den totale dc spin-
strømmen fra magneten.

Løsningen på LLG-ligningene for biaxial antiferromagneten ble funnet å være for-
nuftig, ettersom løsningen for reduseres til løsningen for antiferromagneten i grensen
Kx = 0. Å legge til en hard akse fører til en kobling av plus og minus modene, slik
to topper ble observert for spin pumpestrømmen for både påført plus og minus polaris-
ert ac-felt. Samme effekt av kryss-subgitter spin pumping som for easy-axis magneten er
observert.

Løsningen på LLG-ligningene for easy-axis antiferromagneten i ikke-kolinær grunnstil-
stand (spin flop tilstand), viser seg å være fornuftig. Den ikke-kolineære konfigurasjonen
av magnetiseringsvektorene fører til kun én rotasjonsmode, konsistent med litteraturen.
Det analytiske utrykket for spin pumpestrømmen viser at spinstrømmen er polarisert i x-
, y- og z-retning. De numeriske beregningene viser at kun z-komponenten ikke er null
for de brukte prameterene, slik at kryss-subgitter bidragene til spin pumpe strømmen ikke
kan isoleres og måles eksperimentelt. Igjen ble den totale dc spin strømmen redusert av
kryss-subgitter bidragene.
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Chapter 1
Introduction

1.1 Motivation

Today’s conventional electronic and data storing devices mainly utilize charge currents as
information carrier. The constant demand for larger storage capabilities and higher pro-
cessing power has pushed the boundaries of semiconductor electronics technology, result-
ing in miniaturization of the electric components. However, as the electronic components
become smaller and smaller, the quantum effects of single electrons come more and more
into play, resulting in excessive heat that is difficult to get rid of (Tveten, 2016), and the
rapid technological development is seemingly headed for an inevitable halt. A new con-
cept is therefore needed to continue the rapid technological advancement.

An alternative is to employ the spin-degree of freedom of the electron as information
carrier in conjunction with, or instead of, the electron charge (Shen, 2008). This is the main
objective in the field of spintronics, which seeks to exploit and manipulate the electron
spin in electrical circuits. Using spin instead of electric charge, i.e using a spin polarized
current instead of a charge current, more energy-effective electronic technology can be
made (Joshi, 2016) as spin currents offer lower power dissipation (Mosendz et al., 2010).
This has made spintronics an exciting field in considerable expansion. The discovery of the
giant magnetoresistance (GMR) effect in multilayer ferromagnetic thin films, by A. Fert
(Baibich et al., 1988) and P. Grünberg (Binasch et al., 1989) in 1988, marks the birth of the
field of spintronics. Later, this discovery generated widespread industrial importance as
a fundamental part of hard drive read-head sensors and magnetic random access memory
(MRAM) cells (Dieny et al., 2016).

Currently, most spin based devices use ferromagnets, in which the constituent spins

1



Chapter 1. Introduction

tend to align parallel resulting in a spontaneous net magnetic moment, as the active com-
ponent. The spontaneous net magnetic moment makes ferromagnets easy to manipulate
magnetically, however it also creates fundamental limiting factors related to robustness
against spurious magnetic fields and power-efficiency. Since the magnetic moment is so
easy to manipulated, it is also sensitive to magnetic reading and field perturbations from
other components. In addition these devices require high current densities to store informa-
tion. To overcome some of the drawbacks of ferromagnets, researchers have turned their
interest towards antiferromagnets (AFMs) as a potential candidate to replace ferromagnets
as the active component in spin-based devices. Antiferromagnets are more common in na-
ture than their ferromagnetic counter part and they operate at a much higher frequency in
the terahertz (THz) ranges (Kimel et al., 2005; Satoh et al., 2010; Wienholdt et al., 2012),
which makes it possible to perform ultrafast information processing and communication.
As they do not create any stray fields, they are more robust against magnetic perturbations,
which allows for a denser storage of components without undesired cross-talk between the
active elements. In addition they have the possibility of generating large magnetotransport
effects (Cheng et al., 2014). Already, theoretical and experimental work on antiferromag-
ntic spintronics have provided promising results for antiferromanget-driven spin based
devices. However, more information on spin transport for antiferromagnets is required
before ferromagnet-free devices can be realized.

Recently, the theoretical work in antiferromagnetic spintronics has revolved around
phenomena such as anisotropic magnetoresistance (AMR) (Martı́ et al., 2012; Wang et al.,
2012) and spin transfer torques (STT) in AFMs (Haney and MacDonald, 2008; Xu et al.,
2008; Swaving and Duine, 2011). The reciprocal effect to STT, called spin pumping, on
the other hand has received far less attention (Cheng et al., 2014; Johansen and Brataas,
2017; Gulbrandsen and Brataas, 2017), possibly due to the naive conception that the van-
ishing magnetization of antiferromagnets spoils any spin pumping. Spin pumping (Brataas
et al., 2002) is a mechanism where a pure spin current is injected into a normal metal by
the magnetization of a magnet (at resonance) in contact with the metal (see Sec. 2.4).

Up until recent years, the contribution from cross-sublattice terms to the spin current
pumped from a two-sublattice magnet has been disregarded. However, recent studies on
such magnetic metals (Kamra and Belzig, 2017; Liu et al., 2017) suggest an important
role for these terms. Since a spin current can be indirectly measured/detected through
a voltage (Costache et al., 2006) induced by the inverse spin Hall effect (ISHE) (Saitoh
and Miyajima, 2006), one obtains a way of investigating the effect of these cross-terms
experimentally (see Sec. 2.4). Fig. 1.1 illustrates how such a voltage can be detected.
This is the motivation behind this thesis, where the effect of cross-sublattice terms on the

2



1.2 Outline

Figure 1.1: A schematic depiction of the detection of the induced inverse spin Hall effect voltage
in a ferromagnetic/normal metal bilayer. Attaching probes to the edges of the normal metal (NM),
one can measure both the ac and dc voltages induced by the ac- and dc-component of the spin cur-
rent. The green, blue and grey arrows are the magnetization vector, the externally applied magnetic
field and the spin pumping current, respectively. The spin current is polarized (black arrow) almost
entirely in the yz-plane, with a small dc polarization component in the x-direction (yellow arrow).
This figure is taken from (Wei et al., 2014).

spin pumping current from an antiferromagnet will be studied. The key goal is to identify,
and make predictions for, experimentally available systems in which the effect of cross-
sublattice terms can be unequivocally isolated from the intra-sublattice contributions.

1.2 Outline

In order for us to investigate spin transport by spin pumping, an understanding of the
magnetostatics and magnetization dynamics of the system, and the basic mechanism of
the spin pumping phenomenon is required. The thesis therefore has the following outline.

In chapter 2 a theoretical foundation of magnetization and spin dynamics is built. First
(Sec. 2.1), magnetizatostatics is considered, providing a conceptual understanding of the
mechanisms that contributes to the free energy of the system, which affects the magne-
tization dynamics. This is followed by a brief consideration of the configuration of the
antiferromagnetic ground state for different applied fields. Then, the magnetization dy-
namics (Sec. 2.3 using the LLG-equation is discussed. Finally (Sec. 2.4), the mechanisms
of spin pumping and ISHE are elucidated.

Chapter 3 is devoted to present and discuss the analytic and numerical results of the
magnetization dynamics and spin pumping of the antiferromagnetic systems considered.
The chapter is divided into three sections, one for each of the antiferromagnetic systems,

3



Chapter 1. Introduction

where results of the system are presented and discussed.
Finally a conclusion based on the findings in Sec. 3 and a very brief outlook are given

in Sec. 4.

4



Chapter 2
Theoretical background

This chapter provides a theoretical background describing the concepts of magnetization
dynamics and spin pumping, important for understanding the results and discussion that
follow in chapter 3. Section 2.1 is devoted to give a conceptual understanding of magnetic
ordering in metals and the mechanisms that contribute to the free energy describing the
antiferromagnetic systems considered in this thesis. The continuum approach is used to
describe the magnetic properties of magnets and the effect of a static externally applied
field. Then, a brief consideration of the antiferromagnetic ground state for different applied
fields is considered in Sec. 2.2. In section 2.3, the dynamics of antiferromagnets are
considered. A derivation of the Landau-Lifshitz-Gilbert (LLG) equation of motion for the
magnetization, using a semi-classical approach, is given. We will see that the motion of the
magnetization is determined by the various contributions to the free energy of the system.
Spin waves are also considered briefly. The last section (2.4) explains the spin pumping
mechanism in an antiferromagnetic/normal metal-bilayer. By employing an oscillating
magnetic field a spin current can be injected into the normal metal by the magnet. This
current can be be detected by an electrical signal induced by the Inverse Spin Hall effect.

2.1 Magnetostatics

All materials can be classified into one of the following subgroups (Coey, 2009) - param-
agnets, diamagnets, ferromagnets, antiferromagnets and ferrimagnets. Paramagnetic and
diamagnetic materials are considered non-magnetic, as they do not contain magnetic or-
dering in the absence of an externally applied magnetic field. When such a field is applied,
the constituent elementary magnetic moments can be oriented along the same (paramag-

5



Chapter 2. Theoretical background

Figure 2.1: Schematic depiction of the magnetic structure at microscopic level, and the net moment
for ferro-, ferri- and antiferromagnets. The illustration is adapted from (Kamra, 2015).

netism) or opposite (diamagnetism) direction of the applied field, and the material exhibits
an induced net magnetic moment in this direction. Most materials fall under one of these
two categories. The latter three subgroups however, do possess some sort of magnetic
ordering. Ferromagnets can in the simplest case be considered to be composed of tiny
magnetic moments on a lattice all pointing in the same direction, resulting in a large net
magnetic moment in this direction (see Fig. 2.1). In antiferromagnets on the other hand,
the magnetic moments can be seen to form two equivalent but oppositely oriented ferro-
magnetic sublattices. The magnetic moments will in this case cancel, thus leading to no
net magnetic moment in spite of the ordered configuration at the microscopic level. Like
antiferromagnets, ferrimagnets also consist of two interpenetrating ferromagnetic lattices
oriented in the opposite direction. However, in this case the sublattices are inequivalent,
giving rise to a net magnetic moment. In this thesis only antiferromagnts will be consid-
ered, but the ferromagnet is used to explain some of the phenomena. The spontaneous
magnetization due to alignment of the atomic magnetic moments depends on temperature
and falls precipitously to zero at the the critical Curie temperature, TC , for ferromagnets
and the Néel temperature, TN , for ferri- and antiferromagnets (Coey, 2009). At this critical
temperature thermal agitation, inducing fluctuations of the moments, completely destroys
the magnetic ordering and the material becomes paramagnetic.

The first modern theory explaining the spontaneous magnetic ordering of spins in fer-
romagnets was proposed by Pierre Weiss, in 1907 (Weiss, 1907). He supposed that a high
internal molecular field, proportional to the magnetization of the ferromagnet, acts on the
magnetic moments, but he could not explain the origin of this field. A few decades later the
nature of magnetic ordering was explained by Heisenberg (Heisenberg, 1926) and Dirac
(Dirac and Howard, 1926), in 1926. They attributed the ordering of spins to a quantum
mechanical mechanism called the exchange interaction.
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2.1 Magnetostatics

2.1.1 The exchange interaction

Quantum mechanical formulation

The exchange interaction, responsible for the ordering of the spin magnetic moments, is
a consequence of the antisymmetry requirements on the fermionic many-particle wave
function Ψ(r1, r2, ..., rN , s1, s2, ..., sN ) of the electrons (at position ri with spin si). To
elucidate how such a symmetry requirement can be responsible for the magnetic ordering,
let’s consider a system consisting of only two electrons in the presence of two interacting
atom cores, as in the hydrogen molecule, H2.

Neglecting interaction between the electrons, the system can be modeled by the fol-
lowing Hamiltonian:

Ĥ = Ĥ1 + Ĥ2 + ĤC , (2.1)

where the two first terms are the single particle Hamiltonians of the electrons and the last
term is the Coulomb potential from the ion cores. If electron 1 and 2 are located at the
positions r1 and r2 respectively, the total spatial wave function of the system can be either
symmetric, φs, or antisymmetric, φa, with respect to interchange of the electron positions
(r1 ↔ r2). These are the two possible electron orbitals. The symmetric orbital has
electrons piled up between the ion cores, while the antisymmetric orbital has the electrons
piled up at the ion cores. Neglecting the effect of the Coulomb interaction term on the
individual spatial wave functions ψ1 and ψ2, the orbitals can be defined as (Blundel, 2001):

φs =
1√
2

[ψ1(r1)ψ2(r2) + ψ1(r2)ψ2(r1)] (2.2a)

φa =
1√
2

[ψ1(r1)ψ2(r2)− ψ1(r2)ψ2(r1)]. (2.2b)

Correspondingly, the spin states can be either symmetric or antisymmetric:

χa =
1√
2

[χ↑↓ − χ↓↑] , χs =


χ↑↑
1√
2
[χ↑↓ + χ↓↑] ,

χ↓↓

(2.3)

Here, χ↑↓ denotes the total spin state with electron 1 having up spin (↑) and electron 2
having down spin (↓), etc. The antisymmetric and symmetric states are called the singlet
and triplet state, having total spin number s = s1 + s2 = 0 and s = 1, respectively. An-
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tiparallel alignment of spins (antiferromagnetism) is therefore associated with the singlet
state and parallel alignment (ferromagnetism) with the triplet state.

According to the Pauli exclusion principle, no two fermions can be in the same quan-
tum state. Thus, the total wave function Ψ = φ(r1, r2)χ has to be antisymmetric with
respect to the permutation of two electrons (Bruus and Flensberg, 2002). This leaves only
two possible combinations of the spatial wave function and the spin state, ΨT = φaχs

with energy εT and ΨS = φsχa with energy εS (the subscripts T and S denote the triplet
and singlet state respectively). If the spin states are properly normalized, the energy can
be evaluated using Eq. (2.1):

εT,S =

∫
φ∗a,s(r1, r2)Ĥ(r1, r2)φ∗a,s(r1, r2), (2.4)

with an energy difference (Blundel, 2001)

εT − εS = 2

∫
ψ∗1(r1)ψ∗2(r2)Ĥψ2(r1)ψ1(r2). (2.5)

The total spin of the two-electron system can be represented by the operator Ŝ =

Ŝ1 + Ŝ2, such that Ŝ
2

= Ŝ
2

1 + Ŝ
2

2 + 2Ŝ1 · Ŝ2 (Hemmer, 2005). Acting with this operator
on the two possible states gives:

Ŝ
2
ΨS = 0 (2.6)

Ŝ
2
ΨT = 2~2s(s+ 1)ΨT = 2~2ΨT . (2.7)

Using this, the Hamiltonian in Eq. (2.1) can be re-written as:

Ĥ = εT +
εT − εS

2~2
Ŝ

2
(2.8)

= εT +
εT − εS

2~2
(Ŝ

2

1 + Ŝ
2

2 + 2Ŝ1 · Ŝ2)

=
1

4
(εS + 3εT ) +

(εT − εS)

~2
Ŝ1 · Ŝ2, (2.9)

where s1 = s2 = 1/2 for electrons has been used. From Eq. (2.9) we see, apart from a
constant energy term, that the physics of the direct exchange interaction originates from
spin-spin interaction. The Hamiltonian, called the exchange Hamiltonian, is usually writ-
ten as:
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2.1 Magnetostatics

Figure 2.2: Schematic depiction of a 1D lattice of spins exhibiting ferromagnetic (top) and antifer-
romagnetic (bottom) ordering of spins. The spin at lattice site i interacts with the spin at lattice site
j.

Ĥ = −2JŜ1 · Ŝ2, (2.10)

where J = (εS−εT )/~2 is the exchange integral. If εT > εS , J is negative, and the singlet
state is favored resulting in antiferromagnetic ordering of spins. If εT < εS , J is positive,
and the triplet state is favored giving ferromagnetic ordering. Generalizing this to a many-
body system is highly non-trivial and beyond the scope of this thesis. Nevertheless, a good
insight into the effect of the exchange interaction in a bulk material can be captured by the
the following Hamiltonian:

Ĥ = −
∑
i,j

JijŜi · Ŝj (2.11)

and was first introduced by Heisenberg in 1926. Here, Jij is the exchange integral between
the ith and jth lattice site (see Fig. 2.2), and the summation is taken doubly over all possible
electron pairs. From Eq. (2.5) we can see that the exchange integral J is dependent on the
overlap of the electron wave functions. The exchange interaction is therefore short ranged.
Thus, in many cases it is sufficient to execute the summation over nearest neighbour spins.
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Chapter 2. Theoretical background

Continuum formulation

In the Landau-Lifshitz phenomenology, the dynamics of the magnet are described by us-
ing a continuum model. We then leave the microscopic picture of the elementary mag-
netic moments, µ, and enter the macroscopic picture, described by the magnetization
M =

∑
∆V µ/∆V (

∑
∆V µ is the magnetic moment of a small but macroscopic vol-

ume). Assuming constant exchange integral, the contribution from the exchange interac-
tion to the free energy of the magnet, in the macroscopic limit, can be expressed as:

Eex = −JM i ·M j , (2.12)

where i and j now denote the sublattice magnetizations. The continuum approach allows
for the use of classical theory, hence the magnetization is considered a classical vector. For
a ferromagnet there is only one sublattice and the exchange energy is then proportional to
M2.

2.1.2 Anisotropy

So far we have seen that the exchange interaction leads to ferromagnetic or antiferromag-
netic alignment of spins. However, it does not explain why the spins tend to align in
fixed directions in a magnetic sample in the absence of externally applied fields. This
phenomenon is called magnetic anisotropy and is largely due to sample shape, crystal
structure and atomic or micro-scale textures (Coey, 2009). We will only consider one
type of anisotropy related to the crystal structure of the magnet, called magnetocrystalline
anisotropy.

Magnetocrystalline anisotropy is an intrinsic property of a magnetic crystal, render-
ing the magnetic properties of the solid dependent on the direction of the magnetization
relative to one or more of the crystallographic axes. This form of anisotropy originates
from crystal-field interaction and spin-orbit interaction (single-ion anisotropy), or else the
dipole-dipole interaction between atoms on the crystal lattice (two-ion anisotropy). In the
case of single-ion anisotropy, the electrostatic interaction with the ions tend to stabilize a
particular orbital of the electrons. The ordering of the orbital, and therefore also the angu-
lar magnetic moment of the ion, becomes dependent on the ordering of the crystal lattice.
Since spin and orbital magnetic moment interact with each other (spin-orbit coupling), the
net moment is aligned in a particular crystallographic direction. The energy of the net
moment of the ion then depends on its orientation with respect to the major axes of the
crystal. This orientation-dependent contribution to the total free energy of the system is
called the magneto-crystalline anisotropy energy. If the energy is only dependent on the
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ê2

ê3

ê1

ê2
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δ
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α1 = cos β
α2 = cos γ
α3 = cos δ

α1 = sin θ cosφ
α2 = sin θ sinφ
α3 = cos θ

Figure 2.3: Definitions of the directional cosines.

orientation relative to one axis, the crystal has uniaxial anisotropy. This axis can either
correspond to a maximum (hard axis) or minimum in energy (easy axis).

Assuming that the crystal has a symmetry in energy along an easy axis, the energy
density of the magnetocrystalline anisotropy for a ferromagnet can be expressed as an
even power series in sin θ (Stancil and Prabhakar, 2009):

Eua = Ku1 sin2 θ +Ku2 sin4 θ + · · · , (2.13)

where θ is the angle between the magnetization and the easy axis, and Ku1 > 0 is a
constant. From Eq. (2.13) it is easy to see that the energy is minimized for θ = 0. Thus,
for uniaxial anisotropy it is energetically favorable for the magnetization to align along the
direction of the easy axis. For convenience this can be expressed in terms of directional
cosines αi = Mi/M0, where Mi is the component of the magnetization along the ith axis
and M0 is the saturation magnetization. Let the e3-axis be the axis of symmetry (see Fig.
2.3). To lowest order, the energy density can be written as:

Eua = Ku1

(
1− M2

3

M2
0

)
. (2.14)

¨

Since an antiferromagnet can be considered as two interpenetrating ferromagnetic lat-
tices, the magnetocrystalline energy density of a uniaxial antiferromagnet can be written
as:
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Eua = KA

(
1−

M2
A3

M2
A0

)
+KB

(
1−

M2
B3

M2
B0

)
, (2.15)

where the subscripts A and B denote the two sublattices.

2.1.3 Zeeman energy

As mentioned earlier, applying a magnetic field can change the direction of the magnetic
moments of a material from their original orientations. Let’s first consider the magnetiza-
tion of a ferromagnet in the continuum limit,M , in the presence of a static magnetic field,
H , applied in some arbitrary direction (see Fig. 2.4). Let’s also neglect any magnetic
anisotropies for simplicity, which ultimately play an important role in the orientation of
the magnetization. The magnetization experiences a torque, τ , from the field,

τ = M × µ0H, (2.16)

rotating the magnetization in the direction of the applied field. The torque does work

θ

τ =M × µ0H

H

M

Figure 2.4: Schematic depiction of the torque, τ , acting on the magnetization,M , of a ferromagnet
by a magnetic field, H , applied with an angle θ with respect to the magnetization direction. The
torque bends the magnetization in the direction of the applied field.

on the magnetization which we know from classical mechanics can be calculated as the
integral of Eq. (2.16). Choosing θ = 0 as the reference state, where θ is the angle between
M andH , the potential energy of the magnetization is:
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2.2 Antiferromagnetic ground state

Em =

∫ θ

0

M × µ0Hdθ
′

(2.17)

= −µ0M ·H,

where a constant term has been neglected. This is called the Zeeman energy of the ferro-
magnet. Here we have assumed that the torque has no other effect on the magnetization
other than rotating it and that the sources of H are unchanged. From Eq. (2.17) it is easy
to see that it is energetically favorable for the magnetization to align in the direction of the
applied field.

Applying a magnetic field to an antiferromagnet at temperatures below the Néel point,
is far more complicated than for a ferromagnet, at temperatures below the Curie point,
because the direction in which the field is applied is crucial. For the two-sublattice anti-
ferromagnet, the torque acts on both sublattice magnetizations. The Zeeman energy is in
this case:

Em = −H · (MA +MB). (2.18)

For applied fields along the easy axis there is no energetically favorable configuration.
Since the sublattice magnetizations point in the opposite direction, the decrease in the po-
tential energy of one sublattice is canceled by the increase in energy of the other. Hence,
there is no energetic advantage to align with the applied field. The torque on the mag-
netization vectors is in this case zero, such that the sublattice magnetizations keep their
antiparallel alignment. However, if the field is applied with some angle to the antifer-
romagnetic configuration, the magnetization can reduce its energy by tilting towards the
applied field such that it subtends an angle from its original position (see Fig. 2.5e). In
this thesis, the magnetic field is applied in the direction of the easy axis for all systems
considered. For sufficiently low fields the antiparallel alignment remains unchanged.

2.2 Antiferromagnetic ground state

Before introducing magnetization dynamics, we consider briefly the configuration of the
sublattice magnetizations of the antiferromagnet in the ground state. Their orientation is
determined by the subtle interplay of the different energy contributions to the free energy.
In addition to the mechanisms cover in the previous section, the possible contributions
to the free energy (Chikazumi, 1997) are from magnetostatic energy and magneto-elastic
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coupling energy. However, in this thesis we will only consider contributions from the
Zeeman, exchange and anisotopy energies.

In the absence of externally applied fields, the orientation of spins, below the critical
Néel temperature, is determined by an exchange dominated energy minima, giving an-
tiparallel alignment of spins. The direction of orientation relative to the crystal axis is
governed by a minima in the anisotropy energy, as we have seen in the previous section.
The ground state of the antiferromagnet, corresponding to a minimum in the total free
energy of the system, is then described by antiparallel alignment of the sublattice magne-
tizations, MA = −MB with magnitude M0 (saturation magnetization), along the easy
axis.

Applying a magnetic field changes the energy of the system such that a new ground
state configuration is obtained. The configuration of the sublattice magnetizations for low
fields is cover in the discussion of the Zeeman energy above. If the applied field is suffi-
ciently large however, it will eventually dominate any internal fields forcing all the mag-
netic moments to align parallel with the applied field. The transition to this state, called
the spin flip state, as the magnetic field is increased, is strongly dependent on the direction
of the field relative to the initial directions of the sublattice magnetizations. Consider an
antiferromagnet at T = 0, such that thermal fluctuations can be ignored. If we apply a
field perpendicular to the easy axis, the magnetic moments will only bend more and more
in the direction of the magnetic field as the field is increased (see Fig. 2.5e), until it reaches
the spin flip state at a critical field value,H⊥. If the field is applied parallel to the the easy
axis instead, interesting things happen. At low fields, the direction of the moments are
unchanged. However, when the field reaches a critical value, it will overtake the exchange
interaction and the system snaps into a different configuration (see Fig. 2.5b). This is
called the spin flop transition. Increasing the field further decreases the angle between the
sublattice magnetizations and the magnetic field direction. For ferromagnets there is no
spin flop state, since all spins are aligned in the same direction.

The equilibrium configuration (ground state) of the antiferromagnetic system, in the
spin flip and spin flop states, can readily be calculated by minimizing the free energy with
respect to the angle subtended by the sublattice magnetizations. This amounts to solving
the equations:

∂F

∂θ
= 0 (2.19)

∂F

∂φ
= 0, (2.20)
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2.2 Antiferromagnetic ground state

where F is the free energy, and θ and φ are the angles subtended by MA and MB ,
respectively. The critical field, at which spin flop occurs, can be found by taking the
derivative of Eqs. (2.19) and (2.20) and solve for the applied field, since the transition
occurs when the total energy reaches an unstable equilibrium (Chikazumi, 1997).

ŷ

ẑ

x̂

H0
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MB

(a)

ŷ

ẑ
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MAMB θφ

(b)

ŷ
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Figure 2.5: Schematic depiction of the ground state configurations of an antiferromagnet with easy
axis anisotropy in a static applied field. (a) For a sufficiently low magnetic field applied along the
easy axis, the collinear ground state remains unchanged. (b) With growing field, the transition to
the spin flop state occurs. (c) Increasing the field further decreases the angle between magnetization
vectors, and at a critical field, H0 = H‖, the spin flip transition occurs. (d) Applying a magnetic
field along a hard axis (perpendicular to the easy axis) decreases the angle between MA and MB

for increasing field,H0. (e) At a critical value,H0 =H⊥, the spin flip transition occurs.
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2.3 Magnetization dynamics

The magnetic moment of the electron is a purely quantum mechanical property. Thus, the
dynamical motion of the magnetic moments can only rigorously be described by quantum
mechanics. However, for the relevant dynamic processes in many spin dynamic phenom-
ena, the continuum approach can be used. At the macroscopic level, ferro-, ferri- and
antiferromagnets are well described by the Landau-Lifshitz equation of motion for the
magnetization (Gurevich and Melkov, 1996). In the Landau-Lifshitz phenomenology, the
free energy of the system is expressed in terms of the magnetization guided by the micro-
scopic origin of the energy contributions and the general symmetry requirements. Thus,
the magnetization dynamics of the system may be fully described in terms of the free
energy of the magnet.

We first derive the LLG-equation for a ferromagnet in 2.3.1 and extend the formalism
to antiferromagnets in 2.3.2.

2.3.1 The Landau-Lifshitz equation of motion

Consider first an electron with magnetic moment µ in an external magnetic field Hext.
From classical mechanics, it is known that the torque experienced by the magnetic mo-
ment:

τ = µ× µ0Hext, (2.21)

where µ0 is the magnetic permeability, is equal to the rate of change of its angular mo-
mentum:

dJ

dt
= µ× µ0Hext. (2.22)

Employing the relation between the magnetic moment and the magnetization, J = −γµ,
well known from quantum mechanics (Coey, 2009), we obtain the Landau-Lifshitz equa-
tion of motion for the macroscopic magnetization:

dM

dt
= −γM × µ0Hext. (2.23)

Here, γ is a constant known as the gyromagnetic ratio given by γ = gµB/~, where g
is the electron g-factor, µB is the Bohr magneton and ~ is Plank’s constant. Multiplying
this equation by Hext and M on both sides respectively, we find ∂t(M · Hext) = 0

and ∂t(M2) = 0, implying that the magnetization precess around the vector field Hext

with constant cone angle and that the length of M is conserved. Other sources of angular
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Hext

M

Ṁ

M × Ṁ

Figure 2.6: Schematic depiction of the precession of the magnetization M (blue vector) due to an
externally applied field Hext (black vector). The Gilbert damping term causes the magnetization
vector to spiral down to the equilibrium magnetization direction, indicated by the dashed blue line.

momentum to the system, from i.e. spin transfer, may be included in the equation by
adding the experienced torque by the magnetization on the right hand side of Eq. (2.23).

Damped motion

Constant cone angle means that the equation conserves energy, but this is not consistent
with experience, since after sufficient time the magnetization will return to its equilibrium
position (parallel toHext) (see Fig. 2.6). The interaction of the system with its ’surround-
ings’ and the subsequent energy loss can be described by including a phenomenological
damping term parameterized by the Gilbert damping constant α. This yields the Landau-
Lifshitz-Gilbert (LLG) equation of motion,

dM

dt
= −γM × µ0Hext +

α

M0

(
M × dM

dt

)
. (2.24)

On the right hand side of Eq. (2.24), the first term describes the precession of the magneti-
zation, while the second term describes the relaxation of this motion. The Gilbert damping
term can be interpreted as a torque reducing the angular momentum and energy of the sys-
tem. As time passes, the magnetization will therefore spiral down until it aligns with the
applied field. From energy and angular momentum conservation, the energy and angular
momentum difference must be transferred to some other reservoir, which ultimately will
be the lattice in the absence of any other dissipation channels. This is called spin-lattice
relaxiation (Manenkov and Orbach, 1966). The magnetization dynamics can therefore be
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understood as energy and angular momentum flow between the various sub-systems, with
a dissipation channel leaking energy and angular momentum to the ’surroundings’.

The Lagrangian formalism: Free energy

If the magnetization in a relatively large system is spatially varying, angular momentum
can flow between different parts of the same magnetic sub-system that are separated in
space. The most convenient way of deriving the equation of motion is then by using
the Lagrangian formalism for classical fields (Gilbert, 2004; Yan et al., 2013), since the
magnetization now is dependent on its position in the spin system. Solving the Euler-
Lagrange’s equations:

d

dt

∂L[M ,Ṁ ]

∂Ṁ
− ∂L[M ,Ṁ ]

∂M
= 0 (2.25)

for the Lagrangian:

L = T (M ,Ṁ)− F (M ,Ṁ), (2.26)

where T and F are the kinetic and free energies of the magnetization respectively, one
obtains:

Ṁ = −γM × µ0Heff , (2.27)

for the magnetizationM = M(r). The effective field,Heff , is related to the free energy
by the functional derivative:

µ0Heff = − δF

δM
= −

∑
n=x,y,z

δF

δMn
. (2.28)

A derivation of the LLG-equation from the Lagrangian formalism is given in A. 4.2. Since
Eq. (2.31) is a continuous system analogue to Eq. (2.23), it can be interpreted in a similar
fashion, where the magnetization experience a torque, M × δF/δM , exerted by all the
contributors to the free energy.

Damping can be introduced trough the Raleigh dissipation functional:

R =
α

2γM0

∫
V

dM

dt
· dM
dt

d3r. (2.29)

Adjusting the Euler-Lagrange’s equations for the functional:
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d

dt

δL[M ,Ṁ ]

δ(dM/dt)
− δL[M ,Ṁ ]

δM
+
δR[M ,Ṁ ]

δ(dM/dt)
= 0, (2.30)

one obtains the Landau-Lifshitz-Gilbert equation:

Ṁ = −γM × µ0Heff +
α

MS

(
M × Ṁ

)
, (2.31)

Similarly, the damping term can be interpreted as a torque draining angular momentum
from the spin system.

2.3.2 Spin wave theory for antiferromagnets

The Landau-Lifshitz-Gilbert equations of motion for antiferromagnets

Let’s now turn to antiferromagnetic systems described by some free energy F . Since an
antiferromagnet can be considered as two interpenetrating ferromagnetic sublattices, with
sublattice magnetizationMA andMB , the LL-equations for antiferromagnets read:

ṀA = −γAMA ×BA (2.32)

ṀB = −γBMB ×BB , (2.33)

whereBA = −δF/δMA and γA, andBB = −δF/δMB and γB are the effective fields
and gyromagnetic ratios of sublattice A and B. Up until recently, it has been the consensus
that the damping of the motion of the sublattice magnetizations only has contributions
from intra-sublattice terms:

αA
MA0

(
MA × ṀA

)
and

αB
MB0

(
MB × ṀB

)
, (2.34)

where MA0 and MB0 are the saturation magnetizations. However, recent theoretical re-
sults on spin pumping in two-sublattice magnets (Kamra and Belzig, 2017) and damp-
ing in AFMs (Liu et al., 2017) suggest an important role for the previously disregarded
cross-sublattice terms in Gilbert damping. Including cross-sublattice damping, the LLG-
equations for an antiferrromagnet become (Kamra et al., 2018):
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ṀA = −γAMA ×BA +
αAA
MA0

(
MA × ṀA

)
+
αAB
MA0

(
MA × ṀB

)
(2.35)

ṀB = −γBMB ×BB +
αBB
MB0

(
MB × ṀB

)
+
αBA
MB0

(
MB × ṀA

)
, (2.36)

where αij are the Gilbert damping parameters. In accordance with the interpretation in
the ferromagnetic case, the new damping terms can be considered as torques exerted by
the sublattice magnetizations on each other. Eqs. (2.35) and (2.36) can be conveniently
expressed in unit vector form, noting that MA,B = MA0,B0m̂A,B = M0m̂A,B and
γA = γB = γ for symmetric antiferromagnets:

˙̂mA = −γm̂A × µ0BA + αAA

(
m̂A × ˙̂mA

)
+ αAB

(
m̂A × ˙̂mB

)
(2.37a)

˙̂mB = −γm̂B × µ0BB + αBB

(
m̂B × ˙̂mB

)
+ αBA

(
m̂B × ˙̂mA

)
. (2.37b)

Spin wave excitation

For a static applied field, the magnetization will start to precess and spiral down to the
equilibrium configuration after some time by transfer of angular momentum. Some of
the angular momentum will be transferred between neighboring spins creating short lived
spin waves in the magnet. Since the spin waves are short lived, static fields alone are
of little interest in spin dynamics. If we instead apply an oscillating magnetic field, spin
waves propagating through the entire bulk material can be excited (Coey, 2009). These
spin waves can be though of as periodic oscillations in the relative orientation of the lattice
spins (see Fig. 2.7). Recall that the magnetization is the net magnetic moment per volume.
The motion of the spin waves is therefore described by the LLG-equations for sufficiently
small oscillations of the applied field in the continuum limit. The spin wave depicted in
the figure has a nonzero wave vector, k. We will only consider uniform modes with k = 0,
where there is no phase difference between the rotation of the magnetic moments.

Figure 2.7: Illustration of a spin wave. The relative motion of the electron magnetic moments (black
arrows) creates a wave (a magnon) illustrated by the red curve.

Consider an antiferromagnet exposed to an oscillating magnetic field. Assuming small
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time-variations, the fields can be considered as a sum of a static part and a small perturba-
tion, which can be expressed as:

H = H0 + h(t), H0 >> |h(t)|. (2.38)

MA,B = M0 +mA,B(t), M0 >> |mA,B(t)|. (2.39)

The modulus of the magnetization vector is then approximately constant to first order in
the small perturbation and the LLG-equations can be employed. Given the free energy
of the system, Eqs. (2.37a) and (2.37b) can be solved for the time-varying magnetization
components. Assuming harmonic oscillations of the fields, i.e. h = heiωt and mA,B =

mA,Be
iωt where h and mA,B are complex amplitudes, Eqs. (2.37a) and (2.37b) become:

iω ˙̂mA = −γm̂A ×BA + iωαAA

(
m̂A × ˙̂mA

)
+ iωαAB

(
m̂A × ˙̂mB

)
(2.40a)

iω ˙̂mB = −γm̂B ×BB + iωαBB

(
m̂B × ˙̂mB

)
+ iωαBA

(
m̂B × ˙̂mA

)
. (2.40b)

Without assuming the form of the free energy, solving the system of coupled equations
gives a general solution on the form:

[
m̂A

m̂B

]
= χ̂(ω)

[
h

h

]
, (2.41)

where mB , mA and h are column vectors of the components of the time-varying fields. In
the general solution, χ̂(ω), is a 4x4 tensor called the dynamical susceptibility tensor and
contains the information of the dynamics of the magnetization and thereby the spin waves.
The tensor consists of both real and imaginary components. The imaginary part is of
particular interest in damping experiments (Mizukami and Miyazaki, 2001; Gilbert, 2004;
Oogane et al., 2006), as information about the damping behaviour of the magnetization is
contained in this component (Vacus and Vukadinovic, 2005). For the simplest systems it
is possible to obtain decoupled equations by expressing the magnetization components in
a particular basis. The solution can then be written as two matrix equations, one for each
component in the chosen basis {i, j}:

[
mAi,j

mBi,j

]
= χ̂i,j(ω)

[
hi,j

hi,j

]
. (2.42)
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The susceptibility tensor χ̂i,j(ω) is then 2x2 matrices.

If the antiferromagnet is in contact with another metal, the spins at the interface can
interact with the electrons in the normal metal. This will be the focus of the next section.

2.4 Spin dynamics in antiferromagnet/normal metal bi-
layers

When a dynamic antiferromagnet (a magnet with oscillating magnetization) is put in con-
tact with a normal metal (paramagnetic material), angular momentum can be transferred
between the two materials creating a spin current in the adjacent metal. A rigorous theory
of this interfacial effect for ferromagnet/normal metal layers, called spin pumping, was
developed by Tserkovnyak et. al (Tserkovnyak et al., 2002a; Tserkovnyak and Halperin,
2005), enabling a new method to develop energy efficient technology. Later, an equiva-
lent theory for antiferromagnet/normal metal layers was proposed by Cheng et. al (Cheng
et al., 2014). The injected spin current induces an electrical current, due to the Inverse
Spin Hall effect, which can be measured experimentally. This provides a way of reading
quantum information stored in a magnet, rendering spin pumping a possible tool to be
employed in quantum computing.

To elucidate the mechanisms of the two mentioned phenomena, a bilayer consisting
of an antiferromagnetic insulator in contact with a normal metal is considered (see Fig.
2.8). When the two layers are connected, the electrons at the normal metal-interface are
exchange coupled to the itinerant electron spins in the antiferromagnet. The interface
electrons will then adiabatically adapt to the instantaneous configuration of the aniferro-
magnetic magnetic moments (Cheng et al., 2014). The normal to the interface is in the
x-direction, while the z-direction is parallel to the interface, as shown in the figure. The
length, L, of the metal is assumed much larger than the thickness, tN , where the thickness
is measured in the x-direction and the length in the y-direction. The antiferromagnetic
layer is assumed to be a compensated magnet, meaning that it consists of two interpen-
etrating ferromagnetic sublattices described by the macroscopic magnetizations MA and
MB , where |MA| = |MB |. The free energy is considered arbitrary, except for that the
easy axis of the magnet is assumed to be in the z-direction.

Now, consider applying an oscillating external magnetic field with a large static part
(dc-part) directed along the easy axis of the AFM, and a small ac-part exhibiting harmonic
oscillations in the xy-plane. The sublattice magnetization will then start to precess, pro-
ducing uniform spin waves in the magnet. These spin waves pumps a spin current into the
nonmagnetic material.
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Figure 2.8: Schematic depiction of spin pumping in a antiferromagnet/normal metal bilayer
(AFM/NM-layer) from one of the sublattice magnetizations driven into uniform oscillations by an
applied ac-field. Note that both sublattice magnetizations contributes to the injected current. The
oscillating sublattice magnetization, MA, pumps a spin current into the normal metal, creating a
spin accumulation density, µN at the interface. The spin density diffuses into the metal, driving the
spin pumping current jpump

s , and back into the magnet, causing spin back-flow, jbacks . The polar-
ization, ŝ, of the spin current is illustrated by the yellow arrows. The field, H0, is the static part of
the applied field.

2.4.1 Spin pumping

The fundamental mechanism of spin pumping can be explained by a dynamic magnetiza-
tion that transfers angular momentum to the electrons in the normal metal by exerting a
torque on the spins. This changes the spin polarization of the electrons, which originally
was arbitrary, to point in the same direction. Conservation of angular momentum ensures
that the spins are polarized perpendicular to the magnetization, m, and its rate of change,
ṁ. Previously, it was naively thought that the spin pumped from an antiferromagnet
vanishes due to cancellation of the contributions from the antiparallel sublattice magne-
tizations. However, as described by Cheng et al. (Cheng et al., 2014) using a scattering
matrix approach, the contributions to the spin current from the sublattices add construc-
tively. They find, in accordance with (Jia et al., 2011), that the spin transfer in AFM|N is
as efficient as in FM|NM.

The spin pumping current can be expressed as:

j0
s ŝ =

~
4π
Re(g↑↓)

(
m̂A × ˙̂mA + m̂B × ˙̂mB

)
, (2.43)
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where m̂A,B are the unit vector magnetizations, ŝ is the unit vector of the spin current
polarization and Re(g↑↓) is the real part of the spin-mixing conductance. The mixing
conductance is a material parameter that describes the spin transport in the nonmagnet.
The full expression also contains the imaginary part of the spin-mixing conductance, how-
ever the real part typically dominates the imaginary part and it can therefore be neglected
(Cheng et al., 2014). Note that the vectors (m̂A,B × ˙̂mA,B) are time-dependent due to
the precessing nature of the magnetization, indicating time-dependent spin polarization.
However, the z-component of the vector product, which is in the direction of the equilib-
rium magnetization, is time-independent. Thus, the spin pumping current has both a static
dc-component and a time-dependent ac component. The ac-component vanishes due to
dephasing of spins in a very short distance from the interface, while the dc-component
propagates a longer distance (spin diffusion length). Only the dc-component will be con-
sidered in this thesis, which can be found by taking the time average of Eq. (2.43) over
one period of oscillation:

j0,dc
s 〈ŝ〉 =

~
4π
Re(g↑↓)

(
〈m̂A × ˙̂mA + m̂B × ˙̂mB〉

)
, (2.44)

where 〈ŝ〉 points in the z-direction.

Recent theoretical work on spin pumping in a ferrimagnet/normal metal-bilayer by
Kamra and Belzig (Kamra and Belzig, 2017) suggests that the Eq. (2.44) is not the full ex-
pression for the spin pumping current injected into the NM-layer. In (Cheng et al., 2014),
they assumed the sublattice magnetizations to be two independent variables. However,
m̂A and m̂B are coupled by the exchange interaction and therefore cannot be treated as
independent when considering the magnetization dynamics. Using a quantum mechanical
approach, they find that the z-component of the spin current is on the form:

j0
s 〈ŝ〉 =

~
4π

(
〈gAAm̂A × ˙̂mA + gBBm̂B × ˙̂mB + gABm̂A × ˙̂mB + gBAm̂B × ˙̂mA〉

)
,

(2.45)

where gij are the spin mixing conductances. All the conductances are real and the ↑↓
notation has been omitted. A key finding in this paper is the significant contribution from
cross-sublattice terms (gABm̂A × ˙̂mB + gBAm̂B × ˙̂mA), which previously has been
assumed to be negligible. In the case of a compensated antiferromagnet they find that
gAA = gBB and gAB = gBA. Extending Eq. (2.45) to the full expression one obtains:
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Figure 2.9: Schematic depiction of a pure charge current (a), with no net spin current, a spin polar-
ized charge current (b), where electrons with opposite spins move in the same direction, and a pure
spin current (c), where electrons with opposite spins propagate in the opposite direction, creating a
net spin current and no charge current. The figure is adapted from (Muller, 2017)

j0
s ŝ =

~
4π

(
gAAm̂A × ˙̂mA + gBBm̂B × ˙̂mB + gABm̂A × ˙̂mB + gBAm̂B × ˙̂mA

)
,

(2.46)

The spin current propagates into the normal metal perpendicular to the interface due to
spin diffusion, creating a pure spin current. A pure spin current can be explained by con-
sidering two channels of electrons traveling in the opposite direction. If the polarization
of the electrons in the two channels are opposite, then there will we no net charge current,
only a net current of spins (see Fig. 2.9).

2.4.2 Spin accumulation induced by spin pumping current

The spin current at the interface relax due to interaction with the nearby electrons. When
the relaxation time of the spins in the normal metal is longer than the spin injection rate,
a spin density, µN , is accumulated in at the interface (Tserkovnyak et al., 2002a). The
produced accumulation has to diffuse. Some of the spin density diffuses back into the
magnet, called spin back-flow (Costache et al., 2008), reducing the total spin current. In
Eq. (2.43), this can be taken into account by changing g↑↓ to g↑↓eff (Tserkovnyak et al.,
2002b). In addition, the angular momentum of the magnetization is reduced by the spins
exerting a spin-transfer-torque (STT) (Sankey et al., 2008) on the magnetization, which is
the reciprocal effect of spin pumping. This is the mechanism behind the enhanced Gilbert
damping observed in FM/NM-multilayer experiments (Tserkovnyak et al., 2002a; Urban
et al., 2001). The other possible direction of diffusion is into the normal metal, driving the
spin current in the NM-layer. In this direction, the spin diffusion is limited by momentum
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scattering (leading to electrical resistance) and spin-flip scattering, by spin-orbit coupling
or magnetic impurities, (leading to loss of spin angular momentum) causing the spin den-
sity to decay as it moves away from the interface. This creates a spin accumulation profile
in the NM-layer.

An expression for the spin accumulation can be obtained by solving the spin diffusion
equation describing its dissipative propagation in the NM-layer (Mosendz et al., 2010):

dµN

dt
= D

∂2µN

∂x2
− 1

τsf
µN , (2.47)

where τsf is the spin-flip time, x is the coordinate normal to the interface, and D =
v2F τel

3 is the electron diffusion constant, with vel as the electron momentum relaxation time
Tserkovnyak et al. (2002b). The relaxation time can be understood as the time between
successive interactions with electrons or impurities in the material. Assuming µN ∝
emx+iωt, where ω is the angular frequency, Eq. (2.47) becomes:

iωµN = D
∂2µN

∂x2
− 1

τsf
µN . (2.48)

For the bilayer structure, the boundary conditions are provided by the injected spin pump-
ing current from the magnet. Assuming that the thickness of the nonmagnetic material is
larger than the spin diffusion length, there is no spin current at the end of the metal and the
spin current at the interface is the spin pumping current, j0

s , introduced above. Thus, the
boundary conditions read (Mosendz et al., 2010):

j0
s ŝ(x = 0) = −D∂µN

∂x

∣∣∣∣∣
x=0

(2.49)

0 =
∂µN
∂x

∣∣∣∣∣
x=tN

, (2.50)

where tN is the thickness of the NM layer. Solving the equation provides the following
expression:

µN (x) = j0
s ŝ
λsd
D

cosh ([x− tN ]/λsd)

sinh tN/λsd
x̂, (2.51)
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2.4 Spin dynamics in antiferromagnet/normal metal bilayers

where λsd ≈
√
Dτsf (since ω � 1/τsf as noted in the beginning of this subsection) is the

spin-diffusion length. Eq. (2.51) displays the spin density profile as a function of distance,
x, from the magnet/normal metal interface. It is easy to see that the equation describes a
decay of spin density for increasing x.

The spin current density resulting from the spin diffusion can be expressed using Eq.
(2.51). Analogous to an electrical current, the spin current is proportional to the rate of
change of the spin accumulation density with respect to the distance from the interface:

js(x) = D
∂µN

∂x

= j0
s ŝ

sinh ([x− tN ]/λsd)

sinh (tN/λsd)
x̂. (2.52)

Since the spin pumping current is proportional to the spin pumping current, it contains
both an ac- and a dc-component. The relevant component to the spin current for this thesis
is the time-averaged spin current density 〈js〉, polarized in the direction of the saturation
magnetization:

jdcs (x) = 〈j0,dc
s ŝ〉 sinh ([x− tN ]/λsd)

sinh (tN/λsd)
x̂. (2.53)

As the spin density decays, naturally the spin pumping current decays as well. The scatter-
ing processes responsible for the decay also generates a measurable charge current. This
is called the Inverse Spin Hall Effect (ISHE) (Saitoh and Miyajima, 2006), and gives the
means to measure the spin current.

2.4.3 Electrical detection of spin currents: The Inverse Spin Hall ef-
fect

Analogous to the Hall effect from electrodynamics, the Inverse Spin Hall effect generates
a charge current transverse to the direction of propagation of the electrons. Instead of an
externally applied magnetic field acting with a force on the electrons forcing them to the
boundaries of the metal, the scattering of the spin current electrons induces the electrical
current. Due to spin-orbit coupling, electrons with equal spin polarization are scattered in
the same direction. Since spins with opposite polarization travels in the opposite direction
in a pure spin current, all the electrons will be scattered towards the same edge of the
paramagnetic material, inducing a transverse electrical current (see Fig. 2.10). Electrical
charge will then build up at the edge, creating an electrical field. By attaching electrodes
to the edges, the voltage produced by the electrical field can be measured (Mosendz et al.,
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Figure 2.10: Schematic depiction of the Inverse Spin Hall effect. The pure spin current, Js, with
polarization, σ, pumped into the normal metal is scattered by electrons and impurities in the metal.
Due to antisymmetric scattering of electrons with opposite spin polarization, the spin current elec-
trons are bent towards one edge of the sample, inducing an electrical field EISHE . The electric
potential due to the accumulation of charges is shown by the + and - signs at the edges. The figure
is adapted from (Ando et al., 2011) and is slightly altered.

2010; Saitoh and Miyajima, 2006).

The reciprocal effect is called Spin Hall effect (SHE), where an electrical current is
converted into a transverse spin current by the same scattering processes responsible for
ISHE. Thus, harnessing both ISHE and SHE enables the conversion between spin currents
and charge currents, which is paramount to combine spintronics with conventional elec-
tronics. Experiments on ISHE in a Pt-metal layer preformed by Saitoh et al. (Saitoh and
Miyajima, 2006) demonstrated that a measurable charge current is induced at room tem-
perature. Thus, SHE and ISHE are immediately adaptable to the metal-based spintronics
used today.

The relation between the electrical current density, jISHEc , the spin current density, js
and the spin polarization, ŝ, is given by:

jISHEc =
γH2e

~
js × ŝ, (2.54)

where γH is the Hall-angle (Dyakonov and Khaetskii, 2008) quantifying the efficiency of
the spin-charge conversion. Since the spin polarization of the time-dependent and static
component of the spin pumping current are different, an ac and dc charge current is in-
duced. Thus, it is possible to measure the two spin currents by placing the electrodes
between different edges of the nonmagnet. We will only consider the dc-component:
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2.4 Spin dynamics in antiferromagnet/normal metal bilayers

jISHEc,dc =
γH2e

~
jdcs × 〈ŝ〉 , (2.55)

where 〈ŝ〉 points in the equilibrium magnetization direction.
Due to the electric field, some electrons will be attracted to the opposite edge, con-

tributing to the charge current. Using ohms law, j = σE, the total charge current can be
expressed as:

jc,dc = jISHEc,dc (x) + σE, (2.56)

where σ is the electrical conductivity. The NM-layer constitutes an open circuit. From
elementary electrostatics, no dc-current can flow in an open circuit. This condition can be
described as:

∫ tN

−tM
jc,dcdx = 0, (2.57)

where tM is the thickness of the magnetic layer. Since there is no charge current in
the magnetic material, the electrical field can be readily calculated by substitution of Eq.
(2.56) in Eq. (2.57):

E =
γH(2e/~) 〈j0

s 〉λsd
σN tN + σM tM

tanh
tN

2λsd
[x̂× 〈ŝ〉]. (2.58)

Here σN and σM constitutes the charge conductivities in the normal metal and magnet,
respectively. If the length of the metal is much greater than the thickness, the electrical field
is constant. From elementary electrostatics, we then have V = LE, and the expressions
for the measurable voltages become:

Vx,y,z =
γH(2e/~) 〈j0

s 〉λsdL
σN tN + σM tM

tanh
tN

2λsd
[x̂× 〈ŝ〉]x,y,z, (2.59)

where the subscripts x, y, z denote the direction in which the voltages are measured. The
voltage is only generated in the distance of the spin diffusion length since the spin current
is completely relaxed beyond this distance. The proportionality of the with the length, L,
makes it possible to obtain measurable voltage values even for low spin-charge conversion
efficiency, γH , by increasing the sample length.
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Chapter 3
Results and discussion

In the previous chapter we have seen how a dynamic magnet, excited by an oscillating
applied field, pumps an experimentally detectable spin current into an adjacent metal. To
investigate the effect of the cross-sublattice terms on the total dc spin pumping current
and if it can be measured as a voltage signal, we consider an the antiferromagnetic/normal
metal bilayer introduced in Sec. 2.4, for three different antiferromagnetic systems. Two
systems in a collinear ground state and one in a non-collinear ground state are treated.
Each of the three bilayers are considered separately in their own section and are presented
in increasing order of complexity. The sections are divided as follows. First, the solution
to the LLG-equations of motion for the system is presented and discussed, followed by
a general analytic expression for the dc spin pumping current and ISHE-voltage for the
corresponding ground state of the antiferromagnet. The solution to the equations of motion
is then used to calculate the spin current numerically as a function of the frequency of
oscillations of the applied. To gain insight into both the magnetization and spin dynamics,
the spin current is calculated for different values of the static part of the oscillating field
and the cross-sublattice spin-mixing conductance.

For two of these systems, the solution to the LLG-equations require the inverse of
a 4x4 susceptibility tensor. Due to the complexity of the tensors, the analytic solution
is unattainable. We must therefore resort to numerical calculations. For this thesis, the
MatLab language was used to write programs calculating and plotting the dc spin pumping
current as a function of the frequency, ω, of the applied field. The numerics behind the
results are elucidated in the appendix.
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3.1 Easy axis antiferromagnet in collinear ground state

3.1.1 Magnetization dynamics

Starting with the simplest possible antiferromagnetic system. Consider an antiferromagnet
with easy axis magnetocrystalline anisotropy along the z-direction parametrized by the
parameters KA = KB = Kz > 0. The free energy of the system is then exchange
dominated and the magnet is in a collinear ground state with antiparallel alignment of the
sublattice magnetizations along the z-axis. Assume that the antiferromagnet is symmetric,
such that we have uniform magnetization MA = −MB and γA = γB = γ. We allow
for antisymmetry in the Gilbert damping however, since the symmetry may be broken at
the interface, by for example spin mixing conductances (Kamra et al., 2018), leading to
αAA 6= αBB .

Consider influencing the magnet by applying an oscillating, external magnetic field
along the easy axis. We assume that the time-variation of the field is small, such that the
applied field and the magnetization can be considered as a sum of steady and alternating
parts, as in Eqs. (2.38) and (2.39). For such small deviations from equilibrium, the ẑ-
component of the magnetization is unchanged to first-order in small quantities so that
|MA| = |MB | ≈ M0. Further assume that the field strength is below the spin flop
field. The ground state configuration then remains unchanged and the oscillations of the
magnetization is in the xy-plane. Adding the energy contributions, the free energy of the
system is expressed as:

F [MA,MB ] =

∫
dV

d3r

(
−µ0H(MA+MB)−KzM

2
Az−KzM

2
Bz +JMA ·MB

)
,

(3.1)
where H = H0ẑ + hxx̂ + hyŷ, MA = M0ẑ + mAx

x̂ + mAy
ŷ and MB = −M0ẑ +

mBx
x̂+mBy

ŷ, with |hx,y| << H0 and |mAx,y,Bx,y
| << M0. Note, that J > 0 since the

negative sign of the exchange intergal is already incorporated through the positive sign for
the exchange energy in Eq. (3.1). By the relation Eq. (2.28), we find the effective fields
exerting a torque on the sublattice magnetizations to be:

BA = µ0H + 2KzM0ẑ − JMB (3.2)

BB = µ0H − 2KzM0ẑ − JMA. (3.3)

Since the vector length of the magnetization is approximatly constant, the LLG-equations
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can be employed to calculate the dynamic motion of the antiferromagnetic magnetizations.
The spin pumping current expression is written in terms of the unit vector magnetizations.
We therefore use the LLG-equations in unit vector form:

˙̂mA = −γm̂A ×BA + αAA

(
m̂A × ˙̂mA

)
+ αAB

(
m̂A × ˙̂mB

)
˙̂mB = −γm̂B ×BB + αBB

(
m̂B × ˙̂mB

)
+ αBA

(
m̂B × ˙̂mA

)
,

where m̂A,B = (mAx,Bx/M0)x̂ + (mAy,By/M0)ŷ ± ẑ. Due to the exchange coupling
and cross-sublattice damping, the motion of the sublattice magnetizations are dependent
on each other. The equations are therefore coupled in the sublattice magnetizations.

Consider harmonic time dependence of the applied field. As the LLG-equations are
linear, it is reasonable to assume harmonic behaviour of the magnetization components as
well. Employing the method of complex amplitudes, we introduce m̂A,B = m̂A,Be

iωt

and h = heiωt. The complex variables m̂A,B and h are the complex amplitudes of the
real time-varying fields. Projecting the amplitudes onto a Cartesian coordinate system,
substituting the Eqs. (3.2) and (3.3) in the equations of motion, and switching to a circular
basis via m̂A±,B± = m̂Ax,Bx

± im̂Ay,By
etc., the equations above become:

±ωm̂A± = −γµ0h± + (ΩA + iαAAω)m̂A± + (γJM0 + iαABω)m̂B± (3.4)

∓ωm̂B± = −γµ0h± + (ΩB + iαBBω)m̂B± + (γJM0 + iαBAω)m̂A± , (3.5)

where we have defined m̂Ax
= mAx

/M0 etc. as the unit vector components of the mag-
netization. To get to Eqs. (3.4) and (3.5), the equations have been linearized in the small
field values m̂A,B and h. This is valid when H0 >> |h| and M0 >> |mA,B |. The
first term in the equations originates from the torque on the sublattice magnetizations from
the time-varying components of the applied field. The second term corresponds to the
torque from the intra-sublattice damping and the static components inBA,B . The remain-
ing term is the torque from the time-varying components of the magnetization from the
opposite sublattice.

Rearranging terms, the equations can be written in matrix form as follows:

[
γµ0h±

γµ0h±

]
=

[
−(±ω − ΩA − iαAAω) γJM0 + iαABω

γJM0 + iαBAω ±ω + ΩB + iαBBω

][
m̂A±

m̂B±

]
, (3.6)
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where ΩA = γ(µ0H0 +2KzM0 +JM0) and ΩB = γ(2KzM0 +JM0−µ0H0). This ma-
trix must be inverted to obtain an expression for the magnetization amplitudes. Inverting
gives:

[
m̂A±

m̂B±

]
=

1

D

[
±ω + ΩB + iαBBω −(γJM0 + iαABω)

−(γJM0 + iαABω) −(±ω − ΩA − iαAAω)

][
γµ0h±

γµ0h±

]
, (3.7)

with

D = −(±ω − ΩA − iαAAω)(±ω + ΩB + iαBBω)− (γJM0 + iαABω)2, (3.8)

which is the determinant of Eq. (3.6) and we have used that αAB = αBA for all anti-
ferromagnets (Kamra et al., 2018). Thus, we have obtained a solution written in terms
of two decoupled rotational modes, the + and − polarized modes of the magnetization.
Employing a plus (minus) polarized external field, excites the plus (minus) mode of the
magnetization. Comparing Eq. (3.7) with Eq. (2.42), the 2x2 matrix times the prefactor
1/D is the dynamic susceptibility tensor of the magnet.

By considering the motion at resonance, we obtain valuable information about the
behaviour of the magnetization for the two modes. At resonance, the time-dependent
magnetization components have a peak in amplitude and will therefore create a stronger
spin current than for other frequencies. Solving the equation D = 0 for ω for both signs
gives ω± = ωr± + iωi± , where ωr± are the resonance frequencies and ωi± are called the
decay rates. The resonance frequencies and decay rates are calculated to:

ω± ≈
±(ΩA − ΩB) +

√
(ΩA + ΩB)2 − 4(γJM0)2

2
(3.9)

= ±γµ0H0 + 2γM0

√
(J +Kz)Kz (3.10)

and

ωi±
ωr±

=
±ωr±(αAA − αBB) + αAAΩB + αBBΩA − 2J |γB |MA0αAB

ωr+ + ωr−
, (3.11)

to zeroth and first order in the Gilbert damping parameters, respectively, when the damping
is small. Thus, the two modes have different resonance frequencies. Here, the positive
solutions have been chosen for the equations of the resonance frequencies. The positive
and negative solutions are equal in magnitude and represent the same modes physically.
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Figure 3.1: Schematic depiction of the two eigenmodes of the antiferromagnetic magnetizations.
The chiralities and cone angle ratios are opposite for the two modes. The plus mode constitutes
counter clockwise rotation, while the minus mode demonstrates clock wise rotation. The angles of
the two sublattice magnetizations have been exaggerated for clarity.

Substituting ω = ω+ = ωr+ + iωi+ in D for the lower sign, we obtain D 6= 0. The
system therefore only has the trivial solution mA− = mB− = 0, which means mAx

=

imAy
and mBx

= imBy
. This corresponds to circular precession of the magnetization

with right hand rotation (right hand polarized mode). Similarly, we have mA+
= mB+

=

0 for ω = ωr−+iωi− . In this case we havemAx
= −imAy

andmBx
= −imBy

, resulting
in circular precession with left hand rotation (left hand polarized mode). A depiction of the
two modes is given in Fig. 3.1. Note, that in addition to the opposite chiralities of the two
modes, the ratio of the cone angles θA and θB are opposite as well. Comparing ΩA and
ΩB , one can see that the breaking of the degeneracy of the modes is due to the magnetic
field applied along the easy axis (consistent with the findings in (Kamra et al., 2017)) and
the difference in intra-sublattice damping. When applying the external field, the Zeeman
energy for the magnetization is increased (decreased) in the direction antiparallel (parallel)
to the field. Thus, the total energy of the system is different when looking in the direction
parallel and antiparallel to the easy axis, breaking the rotational symmetry. This results in a
gapped excitation spectrum and a lifting of the degeneracy of the modes. A discrepancy in
the intra-sublattice damping leads to energy and angular momentum differences between
the two sublattice magnetizations, increasing the disparity in the subtended cone angle.

An intuitive picture explaining the of the behaviour of the two modes is as follows: In
the plus mode, m̂A is ”driving” the motion, while m̂B follows the exchange field (molec-
ular field) of m̂A. Increasing H0, raises the effective field BA, resulting in a higher reso-
nance frequency of m̂A and therefore the entire system. For the minus mode, the reverse is
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true. The precession direction of both magnetisations is clockwise, with a phase difference
π due to the exchange interaction forcing the magnetization vectors to be antiparallel.

These results are in excellent agreement with the results found by Kittel (Keffer and
Kittel, 1952) and Gurevich (Gurevich and Melkov, 1996) on antiferromagnetic resonance
for αAA = αBB = α and αAB = 0. Furthermore, comparing Eqs. (3.7), (3.10) and
(3.11) to the results obtained in (Kamra et al., 2018) for general two-sublattice magnets,
their expressions concur with what is presented in this thesis for γA = γB = γ, KA =

KB = Kz and MA0 = MB0 = M0.

3.1.2 Dc spin pumping current density and ISHE-voltage

Analytic results

Now that the dynamic motion has been established, dc spin pumping current density pro-
duced by the magnet and the induced measurable voltage can be calculated. Note that
the analytic spin current expressions calculated, does not assume any free energy of the
magnet, and is thus general for this type of configuration. As discussed in Sec. 2.4, the dc
spin current is found by taking the time-average over period of oscillation of Eq. (2.46):

j0
s 〈ŝ〉 =

~
4π

(
〈gAAm̂A × ˙̂mA + gBBm̂B × ˙̂mB + gABm̂A × ˙̂mB + gBAm̂B × ˙̂mA〉

)
.

(3.12)

The total expression is linear, so we can take the time-average of each term independently.

Let’s start by considering the intra-sublattice contributions to the spin current. Both
magnetizations have a static component in the ẑ-direction. The x- and y-components of
the cross-product m̂A,B × ˙̂mA,B are thus to first order in the time-varying magnetiza-
tion components and vanish upon time averaging. The contributions to the spin current
therefore only have a component in the z-direction given by:

j0,dc
s,intra =

~
4π
〈ŝ〉 =

(
gAA 〈m̂Ax

˙̂mAy
− m̂Ay

˙̂mAx
〉+ gBB 〈m̂Bx

˙̂mBy
− m̂By

˙̂mBx
〉
)
ẑ.

(3.13)
This is consistent with the results in (Cheng et al., 2014; Johansen and Brataas, 2017) for
gAA = gBB . The solution to the LLG-equations is complex. It is therefore convenient to
express the spin current in the complex amplitudes of the magnetization components. The
real components can be written in terms of their complex amplitudes as follows:
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3.1 Easy axis antiferromagnet in collinear ground state

m̂Ax,Bx
=

1

2

(
m̂Ax,Bx

eiωt + m̂∗Ax,Bx
e−iωt

)
m̂Ax,Bx =

1

2

(
m̂Ay,Bye

iωt + m̂∗Ay,By
e−iωt

)
where ∗ denotes the complex conjugate. In order for the results in Eq. (3.7) to be used, we
must switch to the circular basis employed earlier. Substituting the complex representation
in Eq. (3.13), taking the time-average and transforming to circular variables, we obtain:

j0,dc
s,intra 〈ŝ〉 =

~ω
16π

[
gAA(|m̂A+

|2 − |m̂A− |2) + gBB(|m̂B+
|2 − |m̂B− |2)

]
ẑ, (3.14)

where the relations A∗B − AB∗ = 2iIm(A∗B) and A∗B + AB∗ = 2Re(A∗B) have
been applied, and |m̂±|2 = m̂±m̂

∗
±. Although the spin current is expressed in the complex

amplitudes of the magnetization vectors, the absolute square of the amplitudes make the
expression real, which is required for a physically measurable quantity. From Eq. (3.14)
it is easy to see that the plus and minus polarized modes give oppositely polarized spin
currents. Thus, we can choose which way the charge current flows in the normal metal by
influencing the magnet with a plus or minus polarized applied field.

Similarly to the intra-sublattice terms, the cross-products in the cross-sublattice terms
only have a nonzero component in the ẑ-direction upon time averaging. Using that gAB =

gBA for antiferromagnets, we have:

j0,dc
s,cross 〈ŝ〉 =

~gAB
4π

(
〈m̂Ax

˙̂mBy − m̂Ay
˙̂mBx〉+ 〈m̂Bx

˙̂mAy − m̂By
˙̂mAx〉

)
ẑ. (3.15)

Following the same procedure as for the intra-sublattice terms and adding the obtained
expression to Eq. (3.14), the total dc spin pumping current reads:

j0,dc
s 〈ŝ〉 =

~ω
16π

(
gAA(|m̂A+

|2 − |m̂A− |2) + gBB(|m̂B+
|2 − |m̂B− |2)+ (3.16)

2gABRe(m̂
∗
A+

m̂B+
− m̂∗A−m̂B−)

)
ẑ.

It it clear that the cross-sublattice contributions are real and non-zero, consistent with
(Kamra and Belzig, 2017). Thus, they will ultimately have an effect on the produced signal
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from the dynamic magnet. However, since the spin current only has a component polarized
in a single direction, the cross-terms cannot be isolated experimentally. It is therefore not
possible to measure the effect of these terms on the spin current for an antiferromagnet in
a collinear ground state. Furthermore, we observe that the two modes are still uncoupled
in the full expression, so the spin current for the two modes is polarized in the positive
and negative ẑ-direction, respectively. By exciting only the plus (minus) mode, the spin
current will thus have a positive (negative) peak at the resonance frequency of the mode.
Substituting Eq. (3.16) in the voltage expression Eq. (2.59), we have:

Vy = − γHeλsdLω

8π(σN tN + σF tF )
tanh

tN
2λsd

[
gAA(|m̂A+

|2 − |m̂A− |2) + gBB(|m̂B+
|2 − |m̂B− |2)

(3.17)

2gABRe(m̂
∗
A+

m̂B+
− m̂∗A−m̂B−)

]
.

Due to the polarization parallel (antiparallel) to the z-direction, the electrical signal is only
produced across the edges in the y-direction in the normal metal.

Numerical results

In order to gain insight into the magnetization dynamics and the effect of the cross-
sublattice spin current, the dc spin pumping current has been plotted for different values of
the applied field and the spin mixing conductances. To simulate a real AF|N-layer system
reasonable parameter values must be chosen. Remember from 2.4.1 that spin transfer in
AF|NM is as efficient as in FM|NM. Thus, the spin mixing conductances are of the same
order of magnitude in both types of layers. The intra-sublattice spin mixing conductances
are chosen to be gAA = gBB = 2 · 1019 m−2, close to the spin mixing conductance
in Pt (Mosendz et al., 2010). The other parameter values are: γ = 1011, J = 10−4,
Kz = Kx = 10−7, M0 = 105 and αAA = αBB = 0.01 in SI units, and have been chosen
to represent the typical order of magnitude without pertaining to a specific material. For
the values of the ac-field amplitudes, h± = 0.005/µ0 are employed. These values are used
for all systems considered.

In Fig. 3.2, the dc spin current is plotted as a function of the frequency ω, of the ac-
field, for different values of H0, for the plus mode of the magnetization. For simplicity,
the cross-sublattice spin mixing conductance and damping parameters are chosen to be
zero. Observing the curves, the spin current displays a positive peak for one frequency
value corresponding to the resonance frequency of the plus mode of the magnetization.
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3.1 Easy axis antiferromagnet in collinear ground state

Figure 3.2: The dc spin pumping current, for the plus polarized mode of the easy axis antiferromag-
net in collinear ground state, as a function of frequency, ω, of the ac-field. The current is plotted for
four different values of the magnitude of the steady part of the applied field.

This is expected considering Eq. (3.16) and the analysis of the magnetization dynamics
above. Comparing this behaviour to the results in (Cheng et al., 2014) and (Johansen
et al., 2018) (since the voltage is proportional to j0,dc

s ) for the right circular polarized
mode, one finds that they are in excellent agreement. From Eq. (3.10), we see that the
frequency increases for increasing H0 for the plus mode. This explains why the peak
moves to the right for larger field strength. Two peculiar features of the results are the
decrease in amplitude and the slight broadening of the peaks for stronger applied field.
This can be attributed to the increase in the decay rate of the mode for increasing resonance
frequency, since ωi± ∝ ωr± (see Eqs. (3.10) and (3.11)). The larger the decay rate, the
more damped the motion of the magnetizations become, leading to smaller amplitude of
the magnetization components and thus a smaller spin current. Increasing decay rate also
leads to a broadening of the peak.

In Fig. 3.3 the minus mode of the magnetization is excited. We immediately observe
that the spin current is negative and that the peaks occur for different frequencies, consis-
tent with the previous discussions above and the results in (Cheng et al., 2014). However,
there is a discrepancy in the frequency value of the peak in their paper and this thesis. They
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Figure 3.3: The dc spin pumping current, for the minus polarized mode of the easy axis antiferro-
magnet in collinear ground state, as a function of frequency, ω, of the applied field. The current is
plotted for four different values of the magnitude of the steady part of the applied field.

plotted the spin current forH0 = 0 and the peak occurs at the frequency ω− = −ω+, while
the peak in Fig. 3.3 occurs at ω− = ω+ for the same field strength. In contrast to the re-
sults above, the amplitude increases, while width of the peak decreases for increasing H0.
This can be explained in a similar fashion as before by considering Eqs. (3.10) and (3.11)
for the minus sign. Larger fields give smaller resonance frequencies of the mode, and
therefore larger spin currents. Thus, to produce the largest spin current, we should ex-
cite the minus mode of the antiferromagnet with a large, oscillating field with left circular
polarization. A distinct feature compared to the oppositely polarized current, is the large
increase in amplitude from H0 = 0.3/µ0 and H0 = 0.45/µ0. This can again be attributed
to the decrease in decay rate.

The dc spin current is plotted for linearly polarized applied applied field, i.e equal
amounts of right, h+, and left, h− circular polarized field, in Fig. 3.4. This excites both
the plus and minus mode of the magnetization at the same time, resulting in linearly po-
larized oscillation for ω far from ω±. For ω close to ω+ (ω−), the plus (minus) mode
dominates and the magnetization exhibits right (left) circular rotation. The spin current
exhibits two peaks at two distinct frequencies, which is expected considering the modes
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3.1 Easy axis antiferromagnet in collinear ground state

Figure 3.4: The dc spin pumping current, for the easy axis AFM excited by a linear polarized
applied field, as a function of frequency, ω. The current is plotted for four different values of the
magnitude of the steady part of the applied field.

being uncoupled in Eq. (3.16). Comparing the peaks, it is evident that the positive and neg-
ative peaks exhibit the same behaviour as discussed for the two modes excited separately.
This is reasonable since the resonance frequencies of the modes are far enough apart, such
that one dominates the other at ω±. However, for H0 = 0, the resonance frequencies of
the modes are equal, resulting in no spin current since the contribution from the two modes
cancels. The more H0 increases, the greater the difference in resonance frequency of the
modes, giving larger gaps between the peaks.

As shown by Kamra and Belzig (Kamra and Belzig, 2017), the spin mixing conduc-
tances are directly related to the damping parameters, thus αAB cannot be zero when
investigating the effect of cross-sublattice spin pumping. We therefore arbitrarily set
αAB = αBA = 0.001. Keeping the field strength constant at H0 = 0.3/µ0 and plot-
ting the spin current for linear polarized applied field, we obtain the following results in
Fig. 3.5. Note, that all other parameters are as before. The figure displays the spin current
as a function of ω for four different values of gAB . It is clear that the cross-sublattice
spin current contributions have a significant effect on the total spin pumping current. As
seen from the figure, the spin current is reduced by increasing the cross-sublattice spin
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Figure 3.5: The dc spin pumping current, for the easy axis AFM excited by a linear polarized
applied field, as a function of frequency, ω. The current is plotted for four different values of the
cross-sublattice spin mixing conductance.

mixing conductance. This is because the sublattice magnetizations curtail the spin current
pumped by the other. The effect can only be explained quantum mechanically and is there-
fore beyond the scope of this thesis, however the reader is refereed to the the following
papers: (Kamra and Belzig, 2017) on spin pumping and spin shot noise in ferrimagnets,
and (Liu et al., 2017) on mode-dependent damping in metallic antiferromagnets due to
inter-sublattice spin pumping.

3.2 Biaxial antiferromagnet in collinear ground state

3.2.1 Magnetization dynamics

Now, consider the antiferromaget to have a hard axis along the x-direction in addition to
the easy axis. The free energy then increases due to the spin-orbit coupling. Thus, it is
energetically unfavorable for the magnetization to have a component in this direction. This
energy term does not affect the collinear ground state configuration of the AFM, since the
x-component of the magnetization is zero in equilibrium. Applying the same oscillating
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3.2 Biaxial antiferromagnet in collinear ground state

field as before, the free energy of the system reads:

F [MA,MB ] =

∫
dV

d3r

(
− µ0H(MA +MB)−KzM

2
Az −KzM

2
Bz + JMA ·MB

(3.18)

+KxM
2
Ax +KxM

2
Bx

)
,

where the hard axis anisotropy is parametrized by Kx > 0. The new effective fields acting
with a torque on the sublattice magnetizations are:

BA = µ0H + 2KzM0ẑ − JMB + 2KxmAx x̂ (3.19)

BB = µ0H − 2KzM0ẑ − JMA + 2KxmBx
x̂. (3.20)

Similarly to the easy axis anisotropy parameter, the hard axis anisotropy parameter is
equal for both sublattices due to the assumed symmetry of the antiferromagnet. The only
difference from the previous case is the addition of a new effective field experienced by
the magnetization. We therefore preform the same steps as in the previous case, yielding
the following form of the unit vector LLG-equations:

±ωm̂A± = −γµ0h± + (ΩA + iαAAω)m̂A± + (γJM0 + iαABω)m̂B±+ (3.21)

γKxM0(m̂A+ + m̂A−)

∓ωm̂B± = −γµ0h± + (ΩB + iαBBω)m̂B± + (γJM0 + iαBAω)m̂A±+ (3.22)

γKxM0(m̂B+
+ m̂B−).

Solving for the magnetization amplitudes, the solution to the equations can be written on
the form:

m̃ = (P0 + PH +R)−1h̃, (3.23)

with
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m̃ =


mA+

mB+

mA−

mB−

 , h̃ =


γµ0h+

γµ0h+

γµ0h−

γµ0h−



P0 =


−(ω − ΩA) γJM0 0 0

γJM0 (ω + ΩB) 0 0

0 0 −(−ω − ΩA) γJM0

0 0 γJM0 (−ω + ΩB)

 ,

PH =


γKxM0 0 γKxM0 0

0 γKxM0 0 γKxM0

γKxM0 0 γKxM0 0

0 γKxM0 0 γKxM0

 ,

R =


iαAAω iαABω 0 0

iαBAω iαBBω 0 0

0 0 iαAAω iαABω

0 0 iαBAω iαBBω

 .

PH is the contribution from the hard axis to the magnetization components, while R is the
contribution from damping. The sum P0 + R is the uncoupled matrix in Eq. (3.7). In the
limit of Kx = 0, we should have the easy axis antiferromagnet with circular precession
of the modes. Substituting this in PH , Eq. (3.7) is retrieved, indicating that the matrix
equation is on reasonable form.

In contrast to the easy axis AFM, the plus and minus modes are coupled for the biaxial
AFM. Observing the matrix PH , it is clear that the coupling stems from the hard axis
contributions to the system. By applying a plus circularly polarized field excites both
modes simultaneously, however close to and at the resonance frequency the plus polarized
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mode dominates (Gurevich and Melkov, 1996), since this mode is closer to the motion of
the right circular polarized applied field. The reverse is true for minus polarized applied
field. The mixing of the two orthogonal modes is associated with breaking of rotational
symmetry of the energy of the system, and contributes to the lifting of degeneracy of
the modes (Liensberger et al., 2019). Analogous to the effect of demagnetization fields
(Gurevich and Melkov, 1996), the hard axis restricts the motion of the magnetization in
one direction, in this case the x-direction, since it is energetically unfavorable for the
magnetization to have a component in this direction. This results in an elliptical precession
of the sublattice magnetizations. The precession is in the xy-plane because the static part
of the applied field is in the z-direction. Similarly to the easy axis case, the plus and minus
modes have distinct resonance frequencies due to the symmetry breaking, consistent with
(Johansen and Brataas, 2017).

3.2.2 Dc spin pumping current density and ISHE-voltage

Analytic results

The ground state of the biaxial AFM is the same as for the easy axis AFM, thus we can use
the same expressions for the dc spin current (Eq. (3.16)) and the induced ISHE-voltage Eq.
(3.17). However, due to the coupling of the two modes, the spin currents are dramatically
different in the two cases. Since both modes are excited simultaneously, the spin current
will have two peaks regardless of the polarization of the applied field. This reduces the spin
current pumped from the AFM, as the two modes give oppositely polarized spin currents.

Numerical results

Due to the complex nature of the inverse susceptibility tensor, P0 + PH + R, we must
resort to numerical calculations to obtain the solution to the LLG-equations. As it is the
spin current that is of particular interest in this thesis, only the results for the spin current
are presented.

Fig. 3.6 shows a plotted of the dc spin current as a function of frequency ω for four
different values of H0, for the biaxial AFM in collinear ground state. Here the applied
field is right circularly polarized. As discussed above, the spin current displays two peaks,
one positive and one negative, due to the coupling of the modes. However, the positive
(negative) peak increases (decreases) as the field strength is raised, and the negative peak
has nearly vanished for H0 = 0.45/µ0. In addition the distance between the peaks is
enlarged. This indicates that the coupling between the two modes decreases and is nearly
lifted for the large field value. We also see that the peak of the spin current is smaller than
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Figure 3.6: The dc spin pumping current, for the biaxial AFM, as a function of frequency, ω, for
four different values of H0. A right circularly polarized magnetic field has been applied.

for the H0 = 0.3/µ0. This is similar to the easy axis AFM/normal metal-bilayer, where
the peak decreases as a function of H0. An interesting case is H0 = 0. Observing the blue
curve, the spin current has three peaks, which is not consistent with the analysis above.
This is attributed to a phenomenon called hybridization, which occurs when the two cou-
pled modes are close in energy (Kim et al., 2018). When two modes are hybridized, both
modes are equally excited resulting in linear polarization of the magnetization precession
(Liensberger et al., 2019) (see Fig. 3.7).

Fig. 3.8 displays the spin current as a function of ω for the biaxial AFM, influenced by
a left circularly polarized applied field, for different values of H0. In this case the minus
mode dominates over the plus mode, explaining the observed larger negative peaks com-
pared to the positive peaks, which is expected from the magnetization dynamics. Similar
to the analysis in the previous paragraph, the two modes are coupled and the coupling is
weakened for increasing field strength. In addition, the hybridized mode of the magneti-
zations is apparent for H0 = 0, although inverted. This suggest that the polarization of the
spin current is opposite for these two cases. Another distinction is that the positive peaks
in Fig. 3.8 are larger than the negative peaks in Fig. 3.6. This is due to the fact that the
magnetization vectors have a different response to the plus and minus polarized ac-field,
since the static applied field is in the z-direction.

Exciting the magnet using a linearly polarized field, we obtain the results in Fig. 3.9.
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Hybridized mode

m̂A

m̂B

Figure 3.7: Schematic depiction of the hybridized mode of the biaxial antiferromagnet in collinear
ground state. The mode is linearly polarized with equal angles between the sublattice magnetiza-
tions.

Figure 3.8: The dc spin pumping current, for the biaxial AFM, as a function of frequency, ω for
four different values of H0. A left circularly polarized magnetic field has been applied.
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Figure 3.9: The dc spin pumping current, for the biaxial AFM, as a function of frequency, ω, for
four different values of H0. A linearly polarized field is applied.

The positive peaks are larger than in Fig. 3.8, but smaller than in Fig. 3.6 for the same
values of H0 (except for H0 = 0). This is peculiar, as one might expect the peaks to
add constructively when both a linearly polarized field is applied. The peak values also
increase as a function of H0, which is consistent with the behaviour in Fig. 3.6 for all
but the purple curve. For the negative peaks on the other hand, the peak amplitudes have
increased (except for the purple curve) compared to the two other cases. For H0 = 0, the
spin current from the two modes cancels. This is reasonable considering that both modes
are excited simultaneously and the polarization of the spin pumping current is opposite for
the two modes (see. Eq. (3.16)). Considering the above results, it is clear that the coupling
of the modes has an important effect on the dc spin current injected into the normal metal.
Exciting the biaxial AFM with a left circularly polarized field, at ω−, produces the largest
dc spin current.

In Fig. 3.10, the spin current is plotted for different values of the cross-sublattice
spin mixing conductance for linearly polarized applied field. The same parameters have
been employed as in the easy axis case. We observe the same effect as before when the
mixing conductance is increased. There is no effect on the behaviour of the curve from the
cross-sublattice spin pumping terms.
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Figure 3.10: The dc spin pumping current, for the biaxial AFM, as a function of frequency, ω, for
four different values of gAB . A linearly polarized field is applied.

3.3 Easy axis antiferromagnet in spin flop state, static ap-
plied field

3.3.1 Magnetization dynamics

We now remove the hard axis, such that we have the symmetric easy axis antiferromagnet
again. Consider applying a magnetic field along the easy axis withH0 above the spin flop
field. The antiferromagnet is then in the spin flop state and the ground state of the system is
non-collinear. Before considering oscillations, we first find the ground state configuration
of the sublattice magnetizations. The free energy of the system reads:

F [MA,MB ] =

∫
dV

d3r

(
− µ0H0(MA +MB)−KzM

2
Az −KzM

2
Bz + JMA ·MB

)
(3.24)

=

∫
dV

d3r

(
− µ0H0(M0 cos θ −M0 cosφ)−KzM

2
0 cos2 θ−

KzM
2
0 cos2 φ+ JM2

0 cos (θ + φ)

)
,
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where θ and φ are the angles subtended by MA and MB , respectively (see Fig. 3.11).
Using Eqs. (2.19) and (2.20), and noting that φ = θ due to the assumed symmetry of the
antiferromagnet, we obtain the ground state configuration of the system described by:

θ = arccos
µ0H0

(2J −Kz)M0
. (3.25)

ŷ

ẑ

MAMB

θφ

Figure 3.11: Schematic depiction of the ground state configuration of the antiferromagnet for static
external applied field along the easy (z-) axis

This is only valid for fields between the spin flop and spin flip fields. Taking the
derivative of the free energy twice with respect to the angle, substituting the expression for
the angle and solving for H0, we obtain:

µ0HC1 =
√
KzM0(KzM0 + 2JM0), (3.26)

where the subscript denotes the first critical field. The spin flip state corresponds to θ = 0,
thus the spin flip field is µ0HC2 = (2J −Kz)M0, where C2 denotes the second critical
field. The condition then translates to:

0 < θ ≤ arccos
µ0HC1

(2J −Kz)M0
. (3.27)

With the ground state configuration established, let’s consider the dynamics. The ap-
plied field is now oscillating with small time-variations, as in Sec. 3.1.1. The free energy
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is then:

F [MA,MB ] =

∫
dV

d3r

(
−µ0H(MA+MB)−KzM

2
Az−KzM

2
Bz +JMA ·MB

)
,

(3.28)
giving the effective fields:

BA = µ0H + 2KzMAz
ẑ − JMB (3.29)

BB = µ0H + 2KzMBz
ẑ − JMA. (3.30)

Since the sublattice magnetization vectors are non-collinear with the applied field, it is
convenient to work in different coordinates systems when investigating the dynamics.
Defining two new coordinate systems, as shown in Fig. 3.12, the sublattice magnetiza-
tion vectors can be represented as:

MA = mAx x̂+mA
y
′ ŷ
′
+MA

z
′ ẑ
′

(3.31)

MB = mBx
x̂+mB

y
′′ ŷ
′′

+MB
z
′′ ẑ
′′
, (3.32)

where |mAx
|, |mA

y
′ | << M0 and |mBx

|, |mB
y
′′ | << M0. Note, that the choice of

the double primed coordinate system is made to be consistent with the calculations in the
collinear case. The x-axis coincides for all three coordinate systems. The effective fields
to be employed in the LLG-equations now need to be expressed in these new coordinates.
Utilizing the coordinate transformations in Sec. 4.3 we have:

µ0H = µ0[hxx̂+ (hy cos θ −H0 sin θ)ŷ
′
+ (hy sin θ +H0 cos θ)ẑ

′
]

2KzMAz
ẑ = 2KA(M0 cos θ −mA

y
′ sin θ)(ẑ

′
cos θ − ŷ

′
sin θ)

= Kz[(2mAy′ sin2 θ −M0 sin 2θ)ŷ
′
+

(2M0 cos2 θ −mA
y
′ sin 2θ)ẑ

′
]

−JMB = −J(mBx
x̂+mB

y
′′ ŷ
′′

+MB
z
′′ ẑ
′′
)

= −J(mBx
x̂− (mB

y
′′ cos 2θ +M0 sin 2θ)ŷ

′
+

(M0 cos 2θ −mB
y
′′ sin 2θ)ẑ

′
,
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ŷ

ẑ

ẑ
′

ŷ
′

ẑ
′′

ŷ
′′

θθ

Figure 3.12: Schematic depiction of the three coordinate systems employed in describing the dy-
namics of the system. In the ground state ~MA =MA0ẑ

′
and ~MB = −MB0ẑ

′′
. The x-coordinate

for the three coordinate systems coincide

for the terms in BA. Doing the same for BB , we obtain the effective fields in the desired
representation:

BA = (−JmBx
+ µ0hx)x̂+ [µ0hy cos θ + 2KzmA

y
′ sin2 θ −KzM0 sin 2θ− (3.33)

µ0H0 sin θ + JM0 sin 2θ + JmB
y
′′ cos θ]ŷ

′
+ [µ0hy sin θ + µ0H0 cos θ+

2KzM0 cos2 θ −KzmB
y
′′ sin 2θ − JM0 cos 2θ]ẑ

′
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3.3 Easy axis antiferromagnet in spin flop state, static applied field

and

BB = (−JmAx
+ µ0hx)x̂+ [−µ0hy cos θ + 2KzmBy′′ sin2 θ −KzM0 sin 2θ−

(3.34)

µ0H0 sin θ + JM0 sin 2θ + JmA
y
′ cos 2θ]ŷ

′′
+ [µ0hy sin θ − µ0H0 cos θ−

2KzM0 cos2 θ +KzmB
y
′′ sin 2θ − JmA

y
′ sin 2θ + JM0 cos 2θ]ẑ

′′

In contrast to the collinear cases, all components of the effective fields contain time-
dependent terms due to the non-collinearity of the sublattice magnetizations. Again, as-
suming harmonic oscillation of the fields, employing the expressions for the above effec-
tive fields in the LLG-equations, and follow a similar procedure as a before, the equations
can be written:

±ωm̂A± = (C + iαAAω)m̂A± +
γJM0 + iαABω

2

[
m̂B+

(1∓ cos θ) + m̂B−(1± cos θ)

]
(3.35)

− w

2
sin2 θ(m̂A+

+ m̂A−)− γµ0

2

[
h+(1± cos θ) + h−(1∓ cos θ)

]

∓ωm̂B± = (D + iαBBω)m̂B± +
γJM0 + iαBAω

2

[
m̂A+

(1∓ cos θ) + m̂A−(1± cos θ)

]
(3.36)

− w

2
sin2 θ(m̂B+ + m̂B−)− γµ0

2

[
h+(1∓ cos θ) + h−(1± cos θ)

]
,

where we have used m̂A,B = m̂eiωt, m̂A±,B± = m̂Ax,Bx
± im̂A

y
′ ,B

y
′′ etc., w = 2KzM0

and C = D = γ(µ0H0 cos θ + 2KzM0 cos 2θ − JM0 cos 2θ). For an asymmetric anti-
ferromagent, C and D would not be equal since γA = γB = γ and MA0 = MB0 = M0

do not hold. Note that the definitions m̂Ax,Bx
= mAx,Bx

/M0 etc. have been employed.
We see from the two equations that the torques acting on the sublattice magnetizations
are dependent on the angle θ (except for the intra-sublattice damping terms). Noting that
1 + cos 2θ = 2 cos2 θ and 1 − cos 2θ = 2 sin2 θ, these equations can be represented in
matrix form as:
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m̃ = (P0 + PE +R)−1h̃, (3.37)

where in this case we have:

m̃ =


m̂A+

m̂B+

m̂A−

m̂B−

 , h̃ =


1 + cos θ 1− cos θ

1− cos θ 1 + cos θ

1− cos θ 1 + cos θ

1 + cos θ 1− cos θ


[
γµ0h+/2

γµ0h−/2

]

P0 =


−(ω − C) (γJM0 sin2 θ)/2 0 (γJM0 cos2 θ)/2

(γJM0 sin2 θ)/2 (ω + D) γJM0 cos2 θ 0

0 (γJM0 cos2 θ)/2 −(−ω − C) (γJM0 sin2 θ)/2

(γJM0 cos2 θ)/2 0 (γJM0 sin2 θ)/2 (−ω + D)

 ,

PE = −1

2


w sin2 θ 0 w sin2 θ 0

0 w sin2 θ 0 w sin2 θ

w sin2 θ 0 w sin2 θ 0

0 w sin2 θ 0 w sin2 θ

 ,

R =


iαAAω (iαABω sin2 θ)/2 0 (iαABω cos2 θ)/2

iαBAω sin2 θ/2 iαBBω (iαBAω cos2 θ)/2 0

0 (iαABω cos2 θ)/2 iαAAω (iαABω sin2 θ)/2

(iαBAω cos2 θ)/2 0 (iαBAω sin2 θ)/2 iαBBω

 .

Here, PE is the contribution from the easy axis anisotropy andR the Gilbert damping con-
tributions. Similar to the biaxial case the two modes are coupled, however the coupling is
stronger in this case due to the effect of the non-collinearity on the exchange coupling be-
tween the sublattice magnetizations, the cross-sublattice damping and easy axis anisotropy
energy. As a consequence, P0 is no longer an uncoupled matrix, in contrast to the collinear
case. By substituting θ = π/2 in Eq. (3.37), we can check if the obtained matrix equation
is on reasonable form. This corresponds to a collinear orientation of the sublattice mag-
netizations (in the y-direction). The y-direction then correponds to the easy axis and the
z-axis to one of the hard axes. Since the anisotropy term in the free energy is in the z-
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3.3 Easy axis antiferromagnet in spin flop state, static applied field

direction, the matrix equation should be similar to the one for the biaxial antiferromagnet
above. Making the substitution decouples the matrix P0. PE and PH differ by a minus
sign, and R takes the same form as in the baxial case. This indicates that the equation Eq.
(3.37) is correct.

When calculating the resonance frequencies of eigenoscillations, i.e un-damped mo-
tion (R=0), one finds that there is only one non-zero frequency corresponding to the plus
mode (Gurevich and Melkov, 1996). Taking the determinant, D, of P0 + PE and solving
the equation D = 0 for ω, one can obtain the following resonance frequencies:

ω+ = γ

√
2J(2J +Kz)

(2J −Kz)2
(µ0H0)2 − 2JKzM2

0 (3.38)

ω− = 0. (3.39)

Thus, the A and B sublattice magnetizations only have right circular precession about
the ẑ

′
- and ẑ

′′
-axis, respectively. The zero-frequency corresponds to an infinitely slow

precession. The minus mode is therefore called a soft mode. The appearance of such a
mode is due to the breaking of cylindrical symmetry in the energy by the ground state.
Observing the expression for h̃ it is clear that the plus mode can be excited by both a left
and right circularly polarized oscillation of the applied field. The precession amplitude
will be different however since the torque on the magnetizations is different, as seen from
Eqs. (3.35) and (3.36) (remember that the LLG-equation is a torque equation).

3.3.2 Dc spin pumping current and ISHE-voltage

Analytic results

Note that the analytic spin current expressions calculated, does not assume any free energy
of the magnet, and is thus general for this type of configuration. The non-collinearity of
the magentizations introduces complexity to the cross-sublattice spin pumping terms in
Eq. (3.12). The intra-sublattice terms however, can be evaluated in the same manner
as in the collinear case since both magnetizations have a static component in the ẑ

′
- (A

sublattice) and ẑ
′′

- direction (B sublattice). We therefore have

j0,dc
s,intra 〈ŝ〉 =

~ω
16π

[
gAA(|m̂A+

|2 − |m̂A− |2)ẑ
′
+ gBB(|m̂A+

|2 − |m̂A− |2)ẑ
′′
]
. (3.40)
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In the bilayer model considered in Sec. 2.4, the interface is parallel to the z-direction.
Thus, the magnetization components must be transformed from the primed and double
primed coordinates to yz-coordinates. Using the transformation rules Eqs. (4.18) and
(4.22), the intra-sublattice spin current is written:

j0,dc
s,intra 〈ŝ〉 =

~ω
16π

[
sin θ

(
gAA(|m̂A+ |2 − |m̂A− |2) + gBB(|m̂A+ |2 − |m̂A− |2)

)
ŷ

(3.41)

+ cos θ

(
gAA(|m̂A+

|2 − |m̂A− |2)− gBB(|m̂A+
|2 − |m̂A− |2)

)
ẑ

]
Due to the non-collinearity, the spin current now has a polarization component in the y-
direction in addition to the z-direction.

A bit more care is needed for the cross-sublattice contributions. Due to the non-
collinearity, it is simplest to do the transformations to yz-coordinates first and then calcu-
late the cross-products. Applying Eqs. (4.18) and (4.22) on the unit vector magnetizations:

m̂A = m̂Ax
x̂+ m̂A

y
′ ŷ
′
+ ẑ

′
(3.42)

m̂B = m̂Bx x̂+ m̂B
y
′′ ŷ
′′
− ẑ

′′
, (3.43)

we have:

m̂A = m̂Ax
x̂+ (m̂A

y
′ cos θ + sin θ)ŷ + (cos θ − m̂A

y
′ sin θ)ẑ (3.44)

m̂B = m̂Bx x̂− (m̂B
y
′′ cos θ + sin θ)ŷ + (cos θ − m̂B

y
′′ sin θ)ẑ. (3.45)

Before preceding, the calculations can be simplified by noting that all terms to first order in
the magnetization components vanish upon time averaging. Thus, the terms to zeroth order
in the magnetization components in Eqs. (3.44) and (3.45) can be disregarded. Taking the
cross-products, we obtain:
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3.3 Easy axis antiferromagnet in spin flop state, static applied field

m̂A × ˙̂mB = (−mA
y
′ ṁB

y
′′ sin 2θ, (m̂Ax

˙̂mB
y
′′ − m̂A

y
′

˙̂mBx
) sin θ, (3.46)

− (m̂Ax
˙̂mB

y
′′ + m̂A

y
′

˙̂mBx) cos θ)

m̂B × ˙̂mA = (mA
y
′ ṁB

y
′′ sin 2θ, (m̂Bx

˙̂mA
y
′ − m̂B

y
′′

˙̂mAx
) sin θ, (3.47)

(m̂Bx
˙̂mA

y
′ + m̂B

y
′′

˙̂mAx) cos θ).

All components contain terms to second order in the magnetization components which is
non-zero upon time averaging. The spin current therefore has a component polarized in all
three directions. Compared to the intra-sublattice contributions, we see that the existence
of a polarization in the x-direction is purely due to cross-sublattice spin pumping. How-
ever, since the spin current travels in the x-direction in the normal metal, this component
cannot be measured experimentally as x̂× 〈ŝ〉x = 0 in Eq. (2.59), in the chosen set up.

Evaluating the x-component first, using that gAB = gBA we have:

j0,dc
s,cross 〈ŝ〉x =

~gAB sin 2θ

4π

[
〈 ˙̂mA

y
′ m̂B

y
′′ − m̂A

y
′

˙̂mB
y
′′ 〉
]
x̂. (3.48)

This needs to be expressed in complex variables in order for the results for the mag-
netization dynamics to be employed. The magnetization components can be expressed in
their complex amplitudes as follows:

m̂Ax,Bx
=

1

2
(m̂Ax,Bx

eiωt + m̂∗Ax,Bx
e−iωt) (3.49)

m̂A
y
′ ,B

y
′′ =

1

2
(m̂A

y
′ ,B

y
′′ e

iωt + m̂∗A
y
′ ,B

y
′′ e
−iωt), (3.50)

Substituting this is the expression above and taking the time average, the x-component
becomes:

j0,dc
s,cross 〈ŝ〉x = −~gABω sin 2θ

4π
Im(m̂∗B

y
′′ m̂Ay

′ )x̂ (3.51)

Lastly, we must switch to a circular basis. Utilizing the same basis as for the magnetization
dynamics, the contribution from the cross-sublattice terms polarized in the x-direction
reads:
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j0,dc
s,cross 〈ŝ〉x =

~gABω sin 2θ

16π
Im

[
m̂∗B−m̂A+

+ m̂A−m̂
∗
B+
− m̂∗B−m̂A− − m̂∗B+

m̂A+

]
x̂.

(3.52)
The analytic expression is seemingly non-zero, however its value is determined by the
magnetization amplitudes. Nevertheless, this contribution cannot be detected experimen-
tally for the bilayer model used in this thesis, as already discussed.

Continuing with the y- and z-components:

j0,dc
s,cross 〈ŝ〉y =

~gAB sin θ

4π

[
〈m̂Ax

˙̂mB
y
′′ − m̂A

y
′

˙̂mBx + m̂Bx
˙̂mA

y
′ − m̂B

y
′′

˙̂mAx〉
]
ŷ.

(3.53)
and

j0,dc
s,cross 〈ŝ〉z =

~gAB cos θ

4π

[
〈m̂Bx

˙̂mA
y
′ + m̂B

y
′′

˙̂mAx
− (m̂Ax

˙̂mB
y
′′ + m̂A

y
′

˙̂mBx
)〉
]
ẑ.

(3.54)
Following the same procedure as before, we obtain:

j0,dc
s,cross 〈ŝ〉y =

~gABω sin θ

8π
Re(m̂∗A+

m̂B+
− m̂∗A−m̂B−)ŷ. (3.55)

and
j0,dc
s,cross 〈ŝ〉z =

~gABω cos θ

8π
Re(m̂∗A−m̂B+

− m̂∗A+
m̂B−)ẑ. (3.56)

Similar to the collinear case, the cross-sublattice spin pumping contributions are non-zero.
We also see that the angular dependence of the y- and z-polarized contributions is the
same as for the intra-sublattice contributions. In addition to the angular dependence, the
two expressions differ in the coupling of the modes. In Eq. (3.55), the two modes are
decoupled, as in the collinear case, while in Eq. (3.56) the modes are coupled. Adding the
intra- and cross-sublattice terms, the total dc spin pumping current reads:

j0,dc
s 〈ŝ〉 = j0,dc

sx 〈ŝ〉x + j0,dc
sy 〈ŝ〉y + j0,dc

sz 〈ŝ〉z , (3.57)

with

j0,dc
s 〈ŝ〉x =

~gABω sin 2θ

16π

[
m̂∗B−m̂A+

+ m̂A−m̂
∗
B+
− m̂∗B−m̂A− − m̂∗B+

m̂A+

]
x̂ (3.58)
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j0,dc
s 〈ŝ〉y =

~ω sin θ

16π

[
gAA(|m̂A+

|2 − |m̂A− |2) + gBB(|m̂A+
|2 − |m̂A− |2)+ (3.59)

2Re(m̂∗A+
m̂B+ − m̂∗A−m̂B−)

]
ŷ

j0,dc
s 〈ŝ〉z =

~ω cos θ

16π

[
gAA(|m̂A+

|2 − |m̂A− |2)− gBB(|m̂A+
|2 − |m̂A− |2)+ (3.60)

2Re(m̂∗A−m̂B+ − m̂∗A+
m̂B−)

]
ẑ.

In this case, the voltage can be measured across two of the edges in the normal metal. This
provides a possibility to isolate the cross-sublattice terms by combining the spin current
polarized in the y- and z-direction. By setting θ = π/2, the spin current expression should
be equal to that in the collinear case, however the polarization should be in the y-direction
as this corresponds to a collinear orientation of the sublattice magnetizations. Doing this,
only y-polarized current is non-zero. Disregarding the polarization direction, the expres-
sions Eq. (3.55) and Eq. (3.16) concur as expected. Substituting the current expression in
Eq. (2.59), yields the measurable voltages:

Vy = − γHeλsdLω cos θ

8π(σN tN + σF tF )
tanh

tN
2λsd

[
gAA(|m̂A+

|2 − |m̂A− |2)− gBB(|m̂A+
|2 − |m̂A− |2)

(3.61)

+ 2gABRe(m̂
∗
A−m̂B+ − m̂∗A+

m̂B−)

]
,

and

Vz =
γHeλsdLω sin θ

8π(σN tN + σM tF )
tanh

tN
2λsd

[
gAA(|m̂A+ |2 − |m̂A− |2) + gBB(|m̂A+ |2 − |m̂A− |2)

(3.62)

+ 2gABRe(m̂
∗
A+

m̂B+
− m̂∗A−m̂B−)

]
.

Numerical results

The inverse susceptibility, P0 +PE+R, is even more complicated than in the biaxial case.
Numerical calculations is therefore needed to obtain the expression for the magnetization
components. Again, we skip presenting the numerical results for the magnetization com-
ponents, since the spin current is of interest in this thesis. Considering the non-collinear
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Figure 3.13: The dc spin pumping current polarized in the x-direction, as a function of frequency,
ω, for four different values of H0. A linearly polarized field is applied.

ground state, the magnitude of the static applied field has to be above the spin flop field.
Thus, the values for H0 employed must be different for the collinear and non-collinear
systems. For the parameters employed in this thesis the HC1 ≈ 0.64/µ0. The other
parameters are the same as in the two previous cases.

The x-component is solely due to cross-sublattice contributions. Thus, it does not make
sense to plot this component for gAB = 0. The cross-sublattice spin mixing conductance,
gAB = 2 · 1018, and damping parameter, αAB = αBA = 0.001, are therefore included in
the calculations. Fig. 3.13 shows the spin current polarized in the x-direction as a function
of frequency, for different values of H0. The figure displays noise due to the numerical
calculations and is therefore zero. This suggests a canceling of the contribution from the
two sublattices in the x-direction. Thus, this component cannot be used to measure the
effect of the cross-sublattice terms. The same results are obtained for all polarizations of
the applied field.

The spin current polarized in the y-direction is plotted in Fig. 3.14 for for different
values of H0 and polarization of the oscillating field. We observe noise due to numerical
errors in all cases. The spin current is therefore zero. The physical origin of the results has
not been found in this work, although one possibility might be that the y-polarized spin
current from the sublattice magnetizations cancels, since the sublattice magnetizaions are
π out of phase in the precessional motion. The plus mode for the B sublattice magnetiza-
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tion is right circular precession about the ẑ
′′

-axis, however this corresponds to left circular
polarization about the −ẑ

′′
-axis, which is the axis parallel to m̂B . Thus, the two sublat-

tice magnetizations rotate in the opposite direction such that spin current polarized in the
x- and y-directions cancel, while adding contructively in the z-direction. Nevertheless, a
zero spin current polarized in the y-direction means that the cross-sublattice terms cannot
be isolated and therefore not detected experimentally for this system.

In Fig. 3.15 the component of the spin current polarized in the z-direction is shown
for right circularly polarized applied field. We immediately observe that there is only one
positive peak for each value of H0. This corresponds to the excited plus mode of the mag-
netizations, consistent with the analysis of the magnetization dynamics. The contributions
from the two sublattices thus add constructively as in the collinear case, supporting the
discussion above for the y-polarized component. Furthermore, the amplitude of the peak
grows as a function of the field strength. From Eq. (3.27) we see that the the angle de-
creases for larger H0, thus the sublattice magnetizations become more and more collinear,
increasing the spin current pumped from each sublattice magnetization.

Fig. 3.16 displays the spin current polarized in the z-direction for left circularly po-
larized applied field. We see only positive peaks occurring at the same frequency values
as in Fig. 3.15, consistent with the analysis of the magnetization dynamics. However,
the amplitude of the peaks are 102 and 103 orders of magnitude lower than in Fig. 3.15.
The spin current amplitude also decreases for increasing H0. This suggests that the more
collinear the sublattice magnetizations become, the less motion is excited by the applied
field.

The spin current polarized in the z-direction for linearly polarized applied field is plot-
ted in Fig. 3.17. From the figure it is clear that only the plus mode is excited, however
the amplitude of the peaks have been lower. Comparing with the equivalent peaks in Fig.
3.15 we see that the amplitude is smaller for each H0 and that the amount the amplitude
has decreased is directly related to the equivalent peaks in Fig. 3.16 (this is best observed
for H0 = 0.7/µ0). A similar effect was observed for the minus mode in the bixial case.
In light of this, an explanation might be that the precession of the magnetization is not
circular, but rather elliptical. A more detailed analysis of the precessional mode of the
magnetizations is required to explain the origin of this effect.

Fig. 3.18 shows the spin current polarized in the y-direction for different values of
the cross-sublattice spin mixing conductance. H0 = 1/µ0 has been employed and the
polarization of the oscillating field is linear. Adding the cross-sublattice contributions
has no effect on the dc spin current with this polarization, demonstrating that the this
component is truly zero.
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Similar to the collinear cases the spin current is reduced by the cross-sublattice spin
pumping contributions, as seen in Fig. 3.19. Here the spin current with polarization in the
z-direction is plotted for different gAB for linearly polarized applied field. The parameters
are the same as for the y-polarized spin current.
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(a)

(b)

(c)

Figure 3.14: The dc spin current polarized in the y-direction, for the non-collinear AFM system, for
different values of the static applied field, H0 and different modes of the ac-field. In a) (plus mode)
and b) (minus mode) only one mode is used. In c) a linearly polarized field is employed.
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Figure 3.15: The dc spin current polarized in the z-direction, for the non-collinear AFM system,
for different values of the static applied field, H0. A right circularly polarized applied field has been
employed.

Figure 3.16: The dc spin current polarized in the z-direction, for the non-collinear AFM system,
for different values of the static applied field, H0. A left circularly polarized applied field has been
employed
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Figure 3.17: The dc spin current polarized in the z-direction, for the non-collinear AFM system, for
different values of the static applied field, H0. A linearly polarized applied field has been employed

Figure 3.18: The dc spin current polarized in the y-direction, for the non-collinear AFM system, for
different values of the cross-sublattice spin mixing conductance, gAB . A linearly polarized applied
field has been employed
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Figure 3.19: The dc spin current polarized in the z-direction, for the non-collinear AFM system, for
different values of the cross-sublattice spin mixing conductance, gAB . A linearly polarized applied
field has been employed
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Chapter 4
Conclusion

4.1 Summery and concluding remarks

In this thesis the effect of cross-sublattice spin pumping on the dc spin pumping current,
and whether it can be detected experimentally, for an antiferromagntic/normal metal bi-
layer has been investigated an discussed. A total of three different AFM-systems were
used for the antiferromagnetic layer, where two where in a collinar ground state and one
was is a non-collinear ground state. The solution to the Landau-Lifthitz-Gilbert-equations
of motion for the three systems, in addition to an analytic expression for the dc spin pump-
ing current and induced ISHE-voltage for the two types of ground states, were presented.
The solution to the equations of motion, together with the analytic expression for the dc
spin current, was used to calculate dc spin current numerically for different values of the
applied field strength and the cross-sublattice spin mixing conductance.

The solution the LLG-equations presented for the easy axis antiferromagnet in collinear
ground state is in excellent agreement with the literature. A splitting of the plus and minus
modes was found, where the two modes corresponds to right and left circular precession
of the sublattice magnetizations, respectively. The analytic expression for the dc spin cur-
rent displayed a polarization only in the z-direction, conistent with previous work on AFM
spin pumping. We observed a that the two modes were decoupled in the expression for
both the intra-sublattice and cross-sublattice terms, and that the two modes give oppo-
sitely polarized spin currents. The voltage can thus only be measured along the edges in
the y-direction of the normal metal. The results from the numerical calculations showed
positive and negative peaks for right circularly polarized and left circularly polarized os-
cillations of the applied field, consistent with the analysis of the magnetization dynamics.

67



Chapter 4. Conclusion

Increasing the field strength decreases the spin current pumped from the magnet in the
plus mode, while it increases for the minus mode. The cross-sublattice contributions to
the spin pumping current was found to decrease the injected current from the magnet.

The solution to the LLG-equatino for the biaxial AFM displayed a coupling of the
two modes, giving elliptical precession of the magntizations. By comparison to the results
from the easy axis AFM we can conclude that it is on reasonable form. The plots for the
dc spin current displays two peaks, one negative and one positive, for both polarizations
of the applied field, consistent with the results of the magnetization dynamics. We also
observed a hybridized mode of the sublattice magnetizations for H0 = 0. The effect of
adding the cross-sublattice terms were found to be the same as in the easy axis case.

For the easy axis AFM in a non-collinear ground state, only the plus mode was excited
by both a right and left circularly polarized applied field, consistent with the literature. The
analytic expression for the dc spin pumping current displayed a component polarized in
the x-, y- and z-direction, where the x-component originated from the cross-sublattice con-
tributions only. From the numerical calculations we found that the spin current polarized
in the x- and y-direction are zero for this configuration. The cross-sublattice contributions
to the dc spin current can therefore not be isolated and measure experimentally. For the
spin current polarized in the z-direction, the plots displayed only positive peaks, consis-
tent with the magnetization dynamics. The effect of adding the cross-sublattice terms were
observed to be the same as for the collinear systems.

4.1.1 Outlook

Due to time-pressure, there was no time to investigate the systems for different parameter-
values or applied fields subtending non-zero angles with the easy axis. Thus, this should
be on the agenda for future work on cross-sublattice spin pumping from non-collinear
magnets. There is also reasons to believe that using a ferrimagnet in a non-collinear
ground state can provide more promising results than presented in this thesis, as the sub-
lattice magnetizations have different gyromagnetic ratios and saturation magnetizations.
Although, the spin current expression, for a magnet in a non-collinear ground state, ob-
tained in this thesis is not applicable for non-colinear ferrimagnets, the same method can
be used to obtain an equivalent expression for these types of magnets.
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Appendix

4.2 Equation of motion of the magnetization from La-
grangian formalism

Considering the rotating magnetization as a symmetric spinning top with principle moment
of inertia I1 = I2 = 0 and I3 > 0, the Lagrangian density of the magnetization can be
written (Brown, 1960):

L =
M0

γ
φ̇ cos θ − w, φ̇ =

dφ

dt
(4.1)

in spherical coordinates, where w is the free energy density functional of the magnetiza-
tion, θ, θ̇, φ, φ̇ the system generalized coordinates and velocities, M0 is the saturation
magnetization and γ is the gyromagnetic ratio. The first term is the kinetic energy of the
system. This form is known as the spin Berry phase in quantum mechanics (Berry, 1984),
which is also important in classical mechanics since it leads to the equation of motion
characteristic to the angular momentum. The free energy density functional constitutes the
potential energy of the system. The motion of the magnetization obeys the Euler-Lagrange
equations:

d

dt

∂L

∂θ̇
− ∂L

∂θ
= 0 (4.2a)

d

dt

∂L

∂φ̇
− ∂L

∂φ
= 0. (4.2b)

Substituting (4.1) in these equations yields:

−M0

γ
θ̇ sin θ = −∂w

∂φ
(4.3a)

M0

γ
φ̇ sin θ = −∂w

∂θ
, (4.3b)
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which are equivalent to the vector equation (2.23). The vector equation for the magne-
tization can be derived from (4.3a) and (4.3b) by using that the magnetization vector in
spherical coordinates is written M = MS(sin θ cosφ, sin θ sinφ, cos θ) and that for any
vector of constant modulus (constant length) carried with the rotating body:

dM

dt
= Ω×M , (4.4)

where Ω is the angular velocity of the spinning top in the fixed body frame (Wegrow and
Cironei, 2012). Inserting (4.4) in the equations above leads to:

Ṁ = −γM × µ0Heff , (4.5)

for the magnetizationM = M(r). The effective fieldHeff , is related to the free energy
density by the functional derivative:

µ0Heff = − δw

δM
. (4.6)

Damping can be introduced trough the Raleigh dissipation functional:

R =
α

2γM0

∫
V

dM

dt
· dM
dt

d3r (4.7)

=
αM0

2γ

(
θ̇2 + φ̇2 sin2 θ

)
, (4.8)

Adjusting the Euler-Lagrange’s equations for the functional we have:

d

dt

∂L

∂θ̇
− ∂L

∂θ
+
∂R

∂θ
= 0 (4.9a)

d

dt

∂L

∂φ̇
− ∂L

∂φ
+
∂R

∂φ
= 0. (4.9b)

By using (4.4) in the above equations and (4.7), we obtain the damping expression intro-
duced by Gilbert. The equations of motion including damping is then written:

Ṁ = −γM × µ0Heff +
α

M0
M × Ṁ . (4.10)
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θ

P

x̂

x̂
′

ŷ

ŷ
′

Figure 4.1: An xy-Cartesian coordinate system rotated through an angle θ to an x′y′-Cartesian
coordinate system

4.3 Coordinate transformations

The coordinate transformations between different coordinates is done by mapping from
one coordinate system to another. Consider two coordinate systems xy and x

′
y
′

as shown
in Fig. 4.1. With the origin kept fixed, the mapping from xy to x

′
y
′

is done by rotation of
the axes through the angle θ. Consider a point P given by (x, y) in the xy-coordinates and
(x
′
, y
′
) in the x

′
y
′
-coordinates. In polar coordinates, the coordinates of P in the xy-frame

is:

x = r cosα (4.11)

y = r sinα. (4.12)

Since the x
′
y
′

coordinate system is rotated counterclockwise by the angle θ with respect
to the other, the coordinates in this frame are:

x
′

= r cosα− θ = r cosα cos θ + r sinα sin θ (4.13)

y
′

= r sinα− θ = r sinα cos θ − r cosα sin θ. (4.14)

Substituting Eqs. (4.11) and (4.12) into these equations we obtain:
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x
′

= r cos (α− θ) = x cos θ + y sin θ (4.15)

y
′

= r sin (α− θ) = y cos θ − x sin θ. (4.16)

Employing this to the coordinate systems in Fig. 3.12 yields:

(ŷ, ẑ)→ (ŷ
′
, ẑ
′
) : ẑ = ẑ

′
cos θ − ŷ

′
sin θ , ŷ = ŷ

′
cos θ + ẑ

′
sin θ, (4.17)

(ŷ
′
, ẑ
′
)→ (ŷ, ẑ) : ẑ

′
= ẑ cos θ + ŷ sin θ , ŷ

′
= ŷ cos θ − ẑ sin θ, (4.18)

(ŷ
′′
, ẑ
′′
)→ (ŷ

′
, ẑ
′
) : ẑ

′′
= −ẑ

′
cos 2θ + ŷ

′
sin 2θ , ŷ

′′
= −ŷ

′
cos 2θ − ẑ

′
sin 2θ,

(4.19)

(ŷ
′
, ẑ
′
)→ (ŷ

′′
, ẑ
′′
) : ẑ

′
= −ẑ

′′
cos 2θ − ŷ

′′
sin 2θ , ŷ

′
= −ŷ

′′
cos 2θ + ẑ

′′
sin 2θ,

(4.20)

(ŷ, ẑ)→ (ŷ
′′
, ẑ
′′
) : ẑ = −ẑ

′′
cos θ − ŷ

′′
sin θ , ŷ = −ŷ

′′
cos θ + ẑ

′′
sin θ (4.21)

(ŷ
′′
, ẑ
′′
)→ (ŷ, ẑ) : ẑ

′′
= −ẑ cos θ + ŷ sin θ , ŷ

′′
= −ŷ cos θ − ẑ sin θ. (4.22)

4.4 Numerics

Here, the numerics behind the results are elucidated. The actual codes are also presented
below.

The codes work as follows:

1. First, the value of the coefficients describing the system are defined:

• Saturation magnetization M0

• Gilbert damping parameters αij

• Anisotropy parameters Kx,Kz

• Exchange integral J

• Spin mixing conductances gij

• Values of the applied field components H0, h±

• Gyromagnetic ratio γ

2. Then, a set of vectors are defined:
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• A row vector, named omega, with frequency values from 0 to a maximum fre-
quency is created. This vector contains the frequency values, ω, of the applied
field.The maximum frequency is chosen such that the resonance frequency of
the magnet is included in the range, preferably in the middle of the set of fre-
quency values.

• A set of row vector of the same length as omega, representing the magnetiza-
tion amplitudes m̂A± and m̂B± are defined.

• A row vector of the same length as omega, representing the spin current, j0,dc
si ,

is defined. Here, the subscript i denotes the polarization component of the spin
current that is to be calculated.

3. To calculate the magnetization amplitudes and the spin current, a for-loop with iter-
ator, m, running from 1 to l (where l is the length of the frequency vector) is made.
Inside the for-loop we have:

• The inverse susceptibility tensor, χ̂−1(ω), is defined, where the value of ω is
omega(m) for each iteration.

• The susceptibility, χ̂(ω), is calculated by taking the inverse of χ̂−1(ω) using
the built in function inv().

• The mth element of the magnetization components are calculated, using Eq.
(3.37)/(3.23), and stored in the vectors.

• These values are then used to calculate the mth element of the spin current
vector, using Eq. (3.16)/(3.58)/(3.60)/(3.61), which is then stored in the vector.

4. The spin pumping current is then plot against the frequency values using the built in
function plot().

4.4.1 Codes

The codes used to numerically calculate and plot dc spin pumping current are shown below.
Note, that the code for the easy axis AFM in the collinear ground state is different from
that described above. This is because the analytic solution to the LLG-equations are easily
obtainable, and could therefore be implemented directly into the code to calculate the
desired spin current.

Easy axis AFM in collinear GS

%Constants
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alphaAA=0.010; %Intra-sublattice damping parameter on...

sublattice A

alphaBB=0.010; %Intra-sublattice damping parameter on...

sublattice B

alphaAB=0.001; %Cross-sublattice damping parameter on...

sublattice A

alphaBA=alphaAB; %Cross-sublattice damping parameter on...

sublattice B

mu0=12.57*10ˆ(-7); %Magnetic permeability

H0=0.3/mu0; %Field strength of the static part of the applied

magnetic field

h_plus=0.005/mu0; %Field strength of the oscillating part of

the applied field (right hand circularly polarized rotation)

h_minus=0.005/mu0; %Field strength of the oscillating part of

the applied field (left hand circularly polarized rotation

gamma=10ˆ11; %gyraomagnetic ratio

gAA=2*10ˆ(19);%Intra-sublattice spin mixing conductance...

(sublattice A)

gBB=2*10ˆ(19);%Intra-sublattice spin mixing conductance...

(sublattice B)

gAB=6*10ˆ(18);%Cross-sublattice spin mixing conductance...

(sublattice A

and sublattice B)

M0=10ˆ5; %Saturation magnetization

J=10ˆ-4; %Exchange integral

Kz=10ˆ(-7); %Easy axis anisotropy constant

omegaA=gamma*(mu0*H0+2*Kz*M0+J*M0);

omegaB=gamma*(2*Kz*M0+J*M0-mu0*H0);

%Vectors

omega=linspace(1e9,3e11,3001); %Frequency-values of the...

oscillating field
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I=zeros(1,3001); %dc spin pumping current

D_plus=zeros(1,3001); %Determinant of the inverse...

susceptibility for upper sign

D_minus=zeros(1,3001); %Determinant of the inverse...

susceptibility for lower sign

mA_plus=zeros(1,3001); %Unit vector magnetzation on...

sublattice A

(plus mode)

mB_plus=zeros(1,3001); %Unit vector magnetzation on...

sublattice B

(plus mode)

mA_minus=zeros(1,3001); %Unit vector magnetzation on...

sublattice A

(minus mode)

mB_minus=zeros(1,3001); %Unit vector magnetzation on...

sublattice B

(minus mode)

%Calculating the magnetization amplitudes and the

dc spin current

for m=1:3001

D_plus(m)=-(omega(m)-omegaA-1j*alphaAA*omega(m))*...

(omega(m)+omegaB+1j*alphaBB*omega(m))-(gamma*J*M0+...

1j*alphaAB*omega(m))*(gamma*J*M0+1j*alphaBA*omega(m));

D_minus(m)=-(-omega(m)-omegaA-1j*alphaAA*omega(m))*...

(-omega(m)+omegaB+1j*alphaBB*omega(m))-(gamma*J*M0+...

1j*alphaAB*omega(m))*(gamma*J*M0+1j*alphaBA*omega(m));

mA_plus(m)=(gamma*mu0*h_plus)*(omega(m)+omegaB+...

1j*alphaBB*omega(m)-(gamma*J*M0+1j*alphaAB*omega(m)))...

/D_plus(m);

mB_plus(m)=(gamma*mu0*h_plus)*(-(omega(m)-omegaA-...

1j*alphaAA*omega(m))-(gamma*J*M0+1j*alphaBA*omega(m)))...

/D_plus(m);

mA_minus(m)=(gamma*mu0*h_minus)*(-omega(m)+omegaB+...

1j*alphaBB*omega(m)-(gamma*J*M0+1j*alphaAB*omega(m)))...
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/D_minus(m);

mB_minus(m)=(gamma*mu0*h_minus)*(-(-omega(m)-omegaA-...

1j*alphaAA*omega(m))-(gamma*J*M0+1j*alphaBA*omega(m)))...

/D_minus(m);

I(m)=(omega(m)/(16*pi))*(gAA*((abs(mA_plus(m)))ˆ2-...

(abs(mA_minus(m)))ˆ2)+gBB*((abs(mB_plus(m)))ˆ2-...

(abs(mB_minus(m)))ˆ2)+2*gAB*real(conj(mA_plus(m))*...

mB_plus(m)-conj(mA_minus(m))*mB_minus(m)));

end

%Plotting the dc spin current against the frequency

plot(omega,I,’LineWidth’,1);

xlabel(’\omega [Hz]’);

ylabel(’$jˆ{0,dc}_{s}/\hbar \:\:[mˆ{-2}]$’,’interpreter’,...

’latex’);

set(findall(gcf,’-property’,’FontSize’),’FontSize’,25)

set(gcf,’color’,’w’);

set(gca,’FontSize’,18);

hold on;

Biaxial AFM in collinear GS

%Constants

alphaAA=0.010; %Intra-sublattice damping parameter on

sublattice A

alphaBB=0.010; %Intra-sublattice damping parameter on

sublattice B

alphaAB=0.001; %Cross-sublattice damping parameter on

sublattice A

alphaBA=alphaAB; %Cross-sublattice damping parameter on

sublattice B

mu0=12.57*10ˆ(-7); %Magnetic permeability

H0=0.3/mu0; %Field strength of the static part of...

the applied magnetic field

h_plus=0.005/mu0; %Field strength of the oscillating part...

of the applied field(right hand circularly polarized rotation)
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h_minus=0.005/mu0; %Field strength of the oscillating part...

of the applied field(left hand circularly polarized rotation)

gamma=10ˆ11; %gyraomagnetic ratio

gAA=2*10ˆ(19);%Intra-sublattice spin mixing conductance

(sublattice A)

gBB=2*10ˆ(19);%Intra-sublattice spin mixing conductance

(sublattice B)

gAB=6*10ˆ(18);%Cross-sublattice spin mixing conductance...

(sublattice A and sublattice B)

M0=10ˆ5; %Saturation magnetization

J=10ˆ-4; %Exchange integral

Kz=10ˆ(-7); %Easy axis anisotropy constant

Kx=10ˆ(-7); %Hard axis aniotropy constant

omegaA=gamma*(mu0*H0+2*Kj*M0+J*M0);

omegaB=gamma*(2*Kj*M0+J*M0-mu0*H0);

%Defining vectors

omega=linspace(1e9,4e11,2001); % Frequency of the applied...

field

I=zeros(1,2001); %dc spin pumping current

mA_plus=zeros(1,2001); %Unit vector magnetzation on...

sublattice A (plus mode)

mB_plus=zeros(1,2001); %Unit vector magnetzation on...

sublattice B (plus mode)

mA_minus=zeros(1,2001); %Unit vector magnetzation on...

sublattice A (minus mode)

mB_minus=zeros(1,2001); %Unit vector magnetzation on...

sublattice B (minus mode)

%Calculating the magnetization amplitudes and the...
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dc spin current

for m=1:2001

H=[-(omega(m)-omegaA-1j*alphaAA*omega(m)-2*gamma*Kx*M0)...

gamma*J*M0+1j*alphaAB*omega(m) 2*gamma*Kx*M0 0;...

gamma*J*M0+1j*alphaBA*omega(m) (omega(m)+omegaB+...

1j*alphaBB*omega(m)+2*gamma*Kx*M0) 0 2*gamma*Kx*M0;...

2*gamma*Kx*M0 0 -(-omega(m)-omegaA-1j*alphaAA*omega(m)-...

2*gamma*Kx*M0) gamma*J*M0+1j*alphaAB*omega(m);...

0 2*gamma*Kx*M0 gamma*J*M0+1j*alphaBA*omega(m) -omega(m)...

+omegaB+1j*alphaBB*omega(m)+2*gamma*Kx*M0];

M=inv(H);

mA_plus(m)=gamma*mu0*(h_plus*M(1,1)+h_plus*M(1,2)+...

h_minus*M(1,3)+h_minus*M(1,4));

mB_plus(m)=gamma*mu0*(h_plus*M(2,1)+h_plus*M(2,2)+...

h_minus*M(2,3)+h_minus*M(2,4));

mA_minus(m)=gamma*mu0*(h_plus*M(3,1)+h_plus*M(3,2)+...

h_minus*M(3,3)+h_minus*M(3,4));

mB_minus(m)=gamma*mu0*(h_plus*M(4,1)+h_plus*M(4,2)+...

h_minus*M(4,3)+h_minus*M(4,4));

I(m)=(omega(m)/(16*pi))*(gAA*((abs(mA_plus(m)))ˆ2-...

(abs(mA_minus(m)))ˆ2)+gBB*((abs(mB_plus(m)))ˆ2-...

(abs(mB_minus(m)))ˆ2)+2*gAB*(real(conj(mA_plus(m))*...

mB_plus(m))-real(conj(mA_minus(m))*mB_minus(m))));

end

%Plotting the dc spin current against the frequency

plot(omega,I);

xlabel(’\omega [Hz]’);

ylabel(’$jˆ{0,dc}_{s}/\hbar \:\:[mˆ{-2}]$’,’interpreter’,...

’latex’);

set(findall(gcf,’-property’,’FontSize’),’FontSize’,25)

set(gcf,’color’,’w’);

set(gca,’FontSize’,18);

hold on;
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Easy axis AFM in non-collinear GS

x-component

%Defining constants

alphaAA=0.01;%Intra-sublattice damping parameter on...

sublattice A

alphaBB=0.01;%Intra-sublattice damping parameter on...

sublattice B

alphaAB=0.001;%Cross-sublattice damping parameter on...

sublattice A

alphaBA=alphaAB;%Cross-sublattice damping parameter on...

sublattice B

gAA=2*10ˆ(19);%Intra-sublattice spin mixing conductance...

(sublattice A)

gBB=2*10ˆ(19);%Intra-sublattice spin mixing conductance...

(sublattice B)

gAB=2*10ˆ(18);%Cross-sublattice spin mixing conductance...

(sublattice A and sublattice B)

mu0=12.57*10ˆ(-7);%Magnetic permeability

H0=0.7/mu0;%Field strength of the static part...

of the applied magnetic field

h_plus=0.005/mu0;%Field strength of the oscillating part...

of the applied field (right hand circularly polarized rotation)

h_minus=0.005/mu0;%Field strength of the oscillating part...

of the applied field (left hand circularly polarized rotation)

Kz=10ˆ(-7);%Easy axis anisotropy constant

M0=10ˆ5; %Saturation magnetization

gamma=10ˆ11; %gyraomagnetic ratio

wh=2*gamma*Kz*M0;

J=10ˆ-4;%Exchange integral

theta=acos(mu0*H0/(2*J*M0)); %Angle subtended by the...
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sublattice magnetization with respect to the easy axis

Theta=[1+cos(theta) 1-cos(theta);1-cos(theta)...

1+cos(theta); 1-cos(theta) 1+cos(theta);1+cos(theta) 1-cos(theta)];

h_circ=[gamma*mu0*h_plus/2; gamma*mu0*h_minus/2];

C=gamma*(2*Kz*M0*cos(2*theta)+mu0*H0*cos(theta)-...

J*M0*cos(2*theta));

D=gamma*(2*Kz*M0*cos(2*theta)-J*M0*cos(2*theta)+...

mu0*H0*cos(theta));

%Defining matrices and vectors

omega=linspace(1e9,6e11,2001); %Frequency of the...

oscillating applied field

mA_plus=zeros(1,2001);%Unit vector magnetzation on...

sublattice A (plus mode)

mB_plus=zeros(1,2001);%Unit vector magnetzation on...

sublattice B (plus mode)

mA_minus=zeros(1,2001);%Unit vector magnetzation on...

sublattice A (minus mode)

mB_minus=zeros(1,2001);%Unit vector magnetzation on...

sublattice B (minus mode)

Ix=zeros(1,2001);%dc spin pumping current...

polarized in the x-direction

prod=Theta*h_circ;

%Calculating the magnetization amplitudes and the...

dc spin current

for m=1:2001

H=[-omega(m)+C+1j*alphaAA*omega(m)-(1/2)*wh*...

(sin(theta))ˆ2 (gamma*J*M0/2+1j*alphaAB*omega(m)/2)*...

(1-cos(2*theta)) -(1/2)*wh*(sin(theta))ˆ2 (gamma*J*M0/2+...

1j*alphaAB*omega(m)/2)*(1+cos(2*theta));(gamma*J*M0/2+...

1j*alphaBA*omega(m)/2)*(1-cos(2*theta)) omega(m)+D+...

1j*alphaBB*omega(m)-(1/2)*wh*(sin(theta))ˆ2 ...

88



(gamma*J*M0/2+1j*alphaBA*omega(m)/2)*(1+cos(2*theta))...

-(1/2)*wh*(sin(theta))ˆ2;-(1/2)*wh*(sin(theta))ˆ2 ...

(gamma*J*M0/2+1j*alphaAB*omega(m)/2)*...

(1+cos(2*theta)) omega(m)+C+1j*alphaAA*omega(m)-...

(1/2)*wh*(sin(theta))ˆ2 (gamma*J*M0/2+1j*alphaAB*omega(m)/2)*...

(1-cos(2*theta));(gamma*J*M0/2+1j*alphaAB*...

omega(m)/2)*(1+cos(2*theta)) -(1/2)*wh*(sin(theta))ˆ2 ...

(gamma*J*M0/2+1j*alphaAB*omega(m)/2)*(1-cos(2*theta)) ...

-omega(m)+D+1j*alphaBB*omega(m)-(1/2)*wh*(sin(theta))ˆ2];

M=inv(H);

mA_plus(m)=prod(1)*M(1,1)+prod(2)*M(1,2)+prod(3)*M(1,3)+...

prod(4)*M(1,4);

mB_plus(m)=prod(1)*M(2,1)+prod(2)*M(2,2)+prod(3)*M(2,3)+...

prod(4)*M(2,4);

mA_minus(m)=prod(1)*M(3,1)+prod(2)*M(3,2)+prod(3)*M(3,3)+...

prod(4)*M(3,4);

mB_minus(m)=prod(1)*M(4,1)+prod(2)*M(4,2)+prod(3)*M(4,3)+..

prod(4)*M(4,4);

Ix(m)=(omega(m)*gAB*sin(2*theta)/(8*pi))*...

imag(conj(mB_plus(m))*mA_plus(m)+conj(mB_minus(m))*...

mA_minus(m)-conj(mB_minus(m))*mA_plus(m)-conj(mB_plus(m))*mA_minus(m));

end

%Plotting the dc spin current againt the frequency

plot(omega,Ix);

xlabel(’\omega [Hz]’);

ylabel(’$jˆ{0,dc}_{s_{x}}/\hbar \:\:[mˆ{-2}]$’,’interpreter’,...

’latex’);

set(findall(gcf,’-property’,’FontSize’),’FontSize’,25)

set(gcf,’color’,’w’);

set(gca,’FontSize’,18);

hold on;

y-component

%Defining constants
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alphaAA=0.01;%Intra-sublattice damping parameter on...

sublattice A

alphaBB=0.01;%Intra-sublattice damping parameter on...

sublattice B

alphaAB=0.001;%Cross-sublattice damping parameter on...

sublattice A

alphaBA=alphaAB;%Cross-sublattice damping parameter on...

sublattice B

gAA=2*10ˆ(19);%Intra-sublattice spin mixing conductance...

(sublattice A)

gBB=2*10ˆ(19);%Intra-sublattice spin mixing conductance...

(sublattice B)

gAB=2*10ˆ(18);%Cross-sublattice spin mixing conductance...

(sublattice A and sublattice B)

mu0=12.57*10ˆ(-7);%Magnetic permeability

H0=0.7/mu0;%Field strength of the static part of...

the applied magnetic field

h_plus=0.005/mu0;%Field strength of the oscillating part of...

the applied field (right hand circularly polarized rotation)

h_minus=0.005/mu0;%Field strength of the oscillating part of...

the applied field (left hand circularly polarized rotation)

Kz=10ˆ(-7);%Easy axis anisotropy constant

M0=10ˆ5; %Saturation magnetization

gamma=10ˆ11; %gyraomagnetic ratio

wh=2*gamma*Kz*M0;

J=10ˆ-4;%Exchange integral

theta=acos(mu0*H0/(2*J*M0)); %Angle subtended by the...

sublattice magnetization with respect to the easy axis

Theta=[1+cos(theta) 1-cos(theta);1-cos(theta) 1+cos(theta);...

1-cos(theta) 1+cos(theta);1+cos(theta) 1-cos(theta)];
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h_circ=[gamma*mu0*h_plus/2; gamma*mu0*h_minus/2];

C=gamma*(2*Kz*M0*cos(2*theta)+mu0*H0*cos(theta)-J*M0*...

cos(2*theta));

D=gamma*(2*Kz*M0*cos(2*theta)-J*M0*cos(2*theta)+...

mu0*H0*cos(theta));

%Defining matrices and vectors

omega=linspace(1e9,6e11,2001); %Frequency of the...

oscillating applied field

mA_plus=zeros(1,2001);%Unit vector magnetzation on...

sublattice A (plus mode)

mB_plus=zeros(1,2001);%Unit vector magnetzation on...

sublattice B (plus mode)

mA_minus=zeros(1,2001);%Unit vector magnetzation on...

sublattice A (minus mode)

mB_minus=zeros(1,2001);%Unit vector magnetzation on...

sublattice B (minus mode)

Iy=zeros(1,2001);%dc spin pumping current...

polarized in the y-direction

prod=Theta*h_circ;

%Calculating the magnetization amplitudes and the ...

dc spin current

for m=1:2001

H=[-omega(m)+C+1j*alphaAA*omega(m)-(1/2)*wh*...

(sin(theta))ˆ2 (gamma*J*M0/2+1j*alphaAB*omega(m)/2)*...

(1-cos(2*theta)) -(1/2)*wh*(sin(theta))ˆ2 (gamma*J*M0/2+...

1j*alphaAB*omega(m)/2)*(1+cos(2*theta));(gamma*J*M0/2+...

1j*alphaBA*omega(m)/2)*(1-cos(2*theta)) omega(m)+D+...

1j*alphaBB*omega(m)-(1/2)*wh*(sin(theta))ˆ2 ...

(gamma*J*M0/2+1j*alphaBA*omega(m)/2)*(1+cos(2*theta))...

-(1/2)*wh*(sin(theta))ˆ2;-(1/2)*wh*(sin(theta))ˆ2 ...

(gamma*J*M0/2+1j*alphaAB*omega(m)/2)*...
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(1+cos(2*theta)) omega(m)+C+1j*alphaAA*omega(m)-...

(1/2)*wh*(sin(theta))ˆ2 (gamma*J*M0/2+1j*alphaAB*omega(m)/2)*...

(1-cos(2*theta));(gamma*J*M0/2+1j*alphaAB*...

omega(m)/2)*(1+cos(2*theta)) -(1/2)*wh*(sin(theta))ˆ2 ...

(gamma*J*M0/2+1j*alphaAB*omega(m)/2)*(1-cos(2*theta)) ...

-omega(m)+D+1j*alphaBB*omega(m)-(1/2)*wh*(sin(theta))ˆ2];

M=inv(H);

mA_plus(m)=prod(1)*M(1,1)+prod(2)*M(1,2)+prod(3)*M(1,3)+...

prod(4)*M(1,4);

mB_plus(m)=prod(1)*M(2,1)+prod(2)*M(2,2)+prod(3)*M(2,3)+...

prod(4)*M(2,4);

mA_minus(m)=prod(1)*M(3,1)+prod(2)*M(3,2)+prod(3)*M(3,3)+...

prod(4)*M(3,4);

mB_minus(m)=prod(1)*M(4,1)+prod(2)*M(4,2)+prod(3)*M(4,3)+..

prod(4)*M(4,4);

Iy(m)=(omega(m)*sin(theta)/(16*pi))*(gAA*((abs(mA_plus(m)))ˆ2...

-(abs(mA_minus(m)))ˆ2)+gBB*((abs(mB_plus(m)))ˆ2...

-(abs(mB_minus(m)))ˆ2)+2*gAB*real(conj(mA_plus(m))*...

mB_plus(m)-conj(mA_minus(m))*mB_minus(m)));

end

%Plotting the dc spin current against the frequency

plot(omega,Iy);

xlabel(’\omega [Hz]’);

ylabel(’$jˆ{0,dc}_{s_{y}}/\hbar \:\:[mˆ{-2}]$’,’interpreter’,...

’latex’);

set(findall(gcf,’-property’,’FontSize’),’FontSize’,25)

set(gcf,’color’,’w’);

set(gca,’FontSize’,18);

hold on;

z-component

%Defining constants

alphaAA=0.01;%Intra-sublattice damping parameter on...

sublattice A
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alphaBB=0.01;%Intra-sublattice damping parameter on...

sublattice B

alphaAB=0.001;%Cross-sublattice damping parameter on...

sublattice A

alphaBA=alphaAB;%Cross-sublattice damping parameter on...

sublattice B

gAA=2*10ˆ(19);%Intra-sublattice spin mixing conductance...

(sublattice A)

gBB=2*10ˆ(19);%Intra-sublattice spin mixing conductance...

(sublattice B)

gAB=2*10ˆ(18);%Cross-sublattice spin mixing conductance...

(sublattice A and sublattice B)

mu0=12.57*10ˆ(-7);%Magnetic permeability

H0=0.7/mu0;%Field strength of the static part of...

the applied magnetic field

h_plus=0.005/mu0;%Field strength of the oscillating part of...

the applied field (right hand circularly polarized rotation)

h_minus=0.005/mu0;%Field strength of the oscillating part of...

the applied field (left hand circularly polarized rotation)

Kz=10ˆ(-7);%Easy axis anisotropy constant

M0=10ˆ5; %Saturation magnetization

gamma=10ˆ11; %gyraomagnetic ratio

wh=2*gamma*Kz*M0;

J=10ˆ-4;%Exchange integral

theta=acos(mu0*H0/(2*J*M0)); %Angle subtended by the...

sublattice magnetization with respect to the easy axis

Theta=[1+cos(theta) 1-cos(theta);1-cos(theta) 1+cos(theta);...

1-cos(theta) 1+cos(theta);1+cos(theta) 1-cos(theta)];

h_circ=[gamma*mu0*h_plus/2; gamma*mu0*h_minus/2];
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C=gamma*(2*Kz*M0*cos(2*theta)+mu0*H0*cos(theta)-J*M0*...

cos(2*theta));

D=gamma*(2*Kz*M0*cos(2*theta)-J*M0*cos(2*theta)+...

mu0*H0*cos(theta));

%Defining matrices and vectors

omega=linspace(1e9,6e11,2001); %Frequency of the...

oscillating applied field

mA_plus=zeros(1,2001);%Unit vector magnetzation on...

sublattice A (plus mode)

mB_plus=zeros(1,2001);%Unit vector magnetzation on...

sublattice B (plus mode)

mA_minus=zeros(1,2001);%Unit vector magnetzation on...

sublattice A (minus mode)

mB_minus=zeros(1,2001);%Unit vector magnetzation on...

sublattice B (minus mode)

Iy=zeros(1,2001);%dc spin pumping current...

polarized in the y-direction

prod=Theta*h_circ;

%Calculating the magnetization amplitudes and the ...

dc spin current

for m=1:2001

H=[-omega(m)+C+1j*alphaAA*omega(m)-(1/2)*wh*...

(sin(theta))ˆ2 (gamma*J*M0/2+1j*alphaAB*omega(m)/2)*...

(1-cos(2*theta)) -(1/2)*wh*(sin(theta))ˆ2 (gamma*J*M0/2+...

1j*alphaAB*omega(m)/2)*(1+cos(2*theta));(gamma*J*M0/2+...

1j*alphaBA*omega(m)/2)*(1-cos(2*theta)) omega(m)+D+...

1j*alphaBB*omega(m)-(1/2)*wh*(sin(theta))ˆ2 ...

(gamma*J*M0/2+1j*alphaBA*omega(m)/2)*(1+cos(2*theta))...

-(1/2)*wh*(sin(theta))ˆ2;-(1/2)*wh*(sin(theta))ˆ2 ...

(gamma*J*M0/2+1j*alphaAB*omega(m)/2)*...

(1+cos(2*theta)) omega(m)+C+1j*alphaAA*omega(m)-...

(1/2)*wh*(sin(theta))ˆ2 (gamma*J*M0/2+1j*alphaAB*omega(m)/2)*...

94



(1-cos(2*theta));(gamma*J*M0/2+1j*alphaAB*...

omega(m)/2)*(1+cos(2*theta)) -(1/2)*wh*(sin(theta))ˆ2 ...

(gamma*J*M0/2+1j*alphaAB*omega(m)/2)*(1-cos(2*theta)) ...

-omega(m)+D+1j*alphaBB*omega(m)-(1/2)*wh*(sin(theta))ˆ2];

M=inv(H);

mA_plus(m)=prod(1)*M(1,1)+prod(2)*M(1,2)+prod(3)*M(1,3)+...

prod(4)*M(1,4);

mB_plus(m)=prod(1)*M(2,1)+prod(2)*M(2,2)+prod(3)*M(2,3)+...

prod(4)*M(2,4);

mA_minus(m)=prod(1)*M(3,1)+prod(2)*M(3,2)+prod(3)*M(3,3)+...

prod(4)*M(3,4);

mB_minus(m)=prod(1)*M(4,1)+prod(2)*M(4,2)+prod(3)*M(4,3)+..

prod(4)*M(4,4);

Iz(m)=(omega(m)*cos(theta)/(16*pi))*...

(gAA*((abs(mA_plus(m)))ˆ2-(abs(mA_minus(m)))ˆ2)-gBB*...

((abs(mB_plus(m)))ˆ2-(abs(mB_minus(m)))ˆ2)+2*gAB*...

real(conj(mA_minus(m))*mB_plus(m)...

-conj(mA_plus(m))*mB_minus(m)));

end

%Plotting the dc spin current against the frequency

plot(omega,Iz);

xlabel(’\omega [Hz]’);

ylabel(’$jˆ{0,dc}_{s_{z}}/\hbar \:\:[mˆ{-2}]$’,’interpreter’,...

’latex’);

set(findall(gcf,’-property’,’FontSize’),’FontSize’,25)

set(gcf,’color’,’w’);

set(gca,’FontSize’,18);

hold on;
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