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Abstract

Inversion of scattering data is a comprehensive problem in X-ray physics and generally
amounts to the phase problem. In scattering experiments only the intensity is measured,
whereas the phase information is lost. A direct inversion of the scattering data to re-
construct the scattering object is not possible without the phase information. In many
applications, such as in grazing incidence small-angle X-ray scattering and X-ray reflec-
tivity, a model is fitted with experimental parameters and used to provide information of
the scattered object. The models are often built on an assumption of an incoming plane
wave, after which a correction to account for the beam divergence must be applied. By
substituting the plane wave with a more realistic model for the experimental beam, such as
the Gaussian beam, the modelling techniques may be improved. Correcting for the beam
divergence will no longer be necessary as the beam divergence is an inherent parameter of
the Gaussian beam.

The first part of this thesis investigates the propagation and reflection of the Gaus-
sian beam using the angular decomposition method. Mathematically the Gaussian beam
can be derived from the Helmholtz equation and is found to be in good agreement with
the Gaussian beam from the angular decomposition method. Reflecting surfaces such as
multilayered structures and scattering from nanostructures in grazing incidence have been
investigated with the Gaussian beam. In both cases the reflectivity of the Gaussian beam
in the limit of a huge beam waist was found to be in good agreement with the reflec-
tivity of a plane wave. It was also found that with decreasing beam waist the Gaussian
beam lack important features in the reflectivity, and is therefore not suitable in reflectivity
experiments.

The second half of the project was dedicated to coherent X-ray imaging. Given over-
sampling in Fourier space, iterative algorithms can retrieve the lost phase information.
The study was limited to coherent X-ray diffraction on rough surfaces in grazing inci-
dence. In addition, the surface was considered to be one-dimensional as the footprint in
grazing incidence is very elongated and the illuminating beam very narrow. The goal was
to reconstruct the phase information, and in doing so reconstruct the surface morphology.
Three iterative numerical algorithms have been compared; the Gerchberg-Saxton algo-
rithm, the Hybrid input-output algorithm and a combination of these two. The two former
are shown to stagnate resulting in an unsatisfactory solution. However, the combination
of the two produces small reconstruction errors. The reconstructed surface morphology
improves rapidly using the Hybrid input-output algorithm while the error decreases only
slightly. Applying a few iterations of the Gerchberg-Saxton algorithm following a number
of iterations with Hybrid input-output algorithm is shown to rapidly decrease the error and
converge towards a satisfactory solution. An attempt was made to reconstruct the surface
morphology of a hemispherical island on a surface using the combination algorithm. The
qualitative shape of the reconstructions was found to be in good agreement with the shape
of the island. However, the width and height of the island was reconstructed unsuccess-
fully.
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Sammendrag

Inversjon av spredningsdata er et omfattende problem i røntgenfysikk og gir opphav til
faseproblemet. I spredningseksperimenter blir bare intensiteten målt, mens faseinfor-
masjonen er tapt. Rekonstruering av spredningsobjektet ved direkte invertering av spred-
ningsdata er ikke mulig uten faseinformasjonen. I bruksområder som småvinkel-spredning
(GISAXS) og spekulær refleksjon (XRR) blir modeller brukt for å få informasjon om
spredningsobjektet. Modellene bygger på en antakelse om innkommende planbølger, og
korrigering av bølgens spredning er derfor nødvendig. Erstattes planbølgen med en mer
realistisk modell, som den Gaussiske bølgen, kan modelleringsteknikkene forbedres. Di-
vergensen er en iboende egenskap ved den Gaussiske bølgen, og korrigering er derfor ikke
nødvendig.

Denne masteroppgaven begynner med å undersøke propagasjon og refleksjon av Gaus-
siske bølger ved å dekomponere bølgen i planbølgekomponenter. Den Gaussiske bølgen
kan matematisk utledes fra Helmholtz’ likning, og den matematiske modellen stemmer
godt overens med den Gaussiske bølgen dekomponert fra planbølgekomponentene. Opp-
gaven er avgrenset til å studere refleksjon av Gaussiske bølger på lagvise strukturer og
Gaussiske bølger med liten innfallsvinkel på overflater med små partikler. Det ble i begge
tilfeller vist at den reflekterte intensiteten til Gaussiske bølger med stor bredde samsvarer
med den reflekterte intensiteten til planbølger. Den reflekterte intensiteten til Gaussiske
bølger med mindre bredde manglet noen av de karakteristiske trekkene for reflektert in-
tensitet, og er derfor ikke passende for slike eksperimenter.

Den andre delen av masteroppgaven undersøkte koherent røntgenavbildning (CXDI)
begrenset til ujevne overflater og innkommende bølger med små innkommende vinkler.
Fotavtrykket til bølgen blir avlangt når innkommende vinkel er liten, så overflaten kan
derfor antas å være endimensjonal. Gitt at diffraksjonsmønsteret er samplet med sam-
plingsrate lik halvparten av Nyquistfrekvensen, kan iterative algoritmer rekonstruere fa-
seinformasjonen som også gir informajson om overflaten. Tre iterative algoritmer ble
sammenlignet; Gerchberg-Saxton, Hybrid input-output og en kombinasjon av disse to.
De to førstnevnte stagnerte før en tilfredsstillende løsning ble nådd. Formen til den rekon-
struerte overflaten ble betydelig forbedret ved bruk av Hybrid input-output algoritmen selv
om feilen bare avtok noe. Dersom noen få iterasjoner med Gerchberg-Saxton algoritmen
etterfulgte et større antall iterasjoner med Hybrid input-output algoritmen, ble rekonstruk-
sjonsfeilen betydelig mindre. Overflaten til en partikkel på et substrat ble forsøkt rekon-
struert med kombinasjonsalgoritmen. Den kvalitative formen var i god overenstemmelse
med formen til partikkelen, i motsetning til høyden og størrelsen til partikkelen.
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Preface

This master thesis is succeeding my project thesis work from last fall. The project was
limited to the study of fully coherent incoming Gaussian beam on a flat, non-absorbing
material. The Gaussian beam was studied using the angular decomposition method. Some
of the theory sections are partly based on the theory section from the project work. These
sections include the section on electromagnetic waves (2.1), the Fresnel equations (2.2),
GISAXS (2.5), coherence (2.6) and the mathematical description of the Gaussian beam
(3.1). The project will be referred to as previous project work and cited as [1].
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Chapter 1
Introduction

Wilhelm Conrad Rontgen discovered X-rays in 1895. Since then, X-rays have become an
established and invaluable probe when studying the structure of matter. X-ray imaging
utilizes the interaction of X-rays with matter through absorption and scattering. X-ray
absorption is a useful tool for characterizing materials as the absorption process depends
on the atomic number. The X-ray scattering process is widely used for studying atomic
and molecular structures. In the 1970s synchrotron radiation was discovered as a more
intense source for X-rays, which greatly increased the rate of innovation in X-ray science
[2].

In scattering experiments the general problem is to construct an image of the scat-
tered object from the scattering data. This is known as an inversion problem. From the
diffraction pattern only the intensity can be measured whereas the phase information is
lost. Without the phase information, a direct reconstruction of the scattered object is im-
possible. Fitting a model with experimental parameters can be used to indirectly provide
information on the scattered object. This is for example done in grazing incidence small-
angle X-ray scattering (GISAXS) and X-ray reflectivity (XRR) [3; 4].

GISAXS is a scattering technique used for probing nanoscale density inhomogeneities.
The development of GISAXS is closely related to studying thin-film growth. The clusters,
or islands, that formed on the thin-film surface were reduced to immeasurable quantities
when using the predecessor of GISAXS, the small-angle X-ray scattering (SAXS) [5; 6].
SAXS is a technique for studying structures of colloidal size and can be used for character-
ization of polymers, metals, alloys, glasses and colloidal powders [7]. When using SAXS
to study islands on surfaces, it is primarily done in transmission mode where the X-ray
beam is directly pointed at the sample. Because of the small number of scattering objects
in the beam path, the resulting signal-to-noise ratio is low [5]. By aligning the sample
in a grazing incidence geometry the refracted evanescent wave will be confined to the top
layer and increase the signal-to-noise ratio [5]. Ref. [6] later showed that GISAXS showed
more potential using a synchrotron source in addition to a 2D detector. Compared to other
techniques GISAXS is a non-invasive technique, can be used in situ and provides good
sampling statistics [8]. GISAXS is therefore used in a range of research systems, amongst
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them are islands on surfaces, discontinuous semiconductor superlattices and several soft
condensed matter topics [8]. When studying islands on a surface it is possible to reveal
size, shape and inner crystalline structure [9]. During these experiments the resulting
diffraction pattern is only a measure of the beam intensity, whereas the phase information
is lost. Several software packages exist making it possible to analyse the diffraction data
and reconstruct the structure by modelling and fitting [3][4].

XRR is a technique for studying surfaces and multilayers. Ref. [10] was one of the
first to investigate the reflected intensity as a function of incident angle. It was shown that
formulas from the Fresnel formalism of reflection and refraction of multilayered structures
can be used to analyse experimental reflectivity curves [11]. XRR has become a powerful
method for studying the structure and organization of materials grown as thin films [12]. It
is also useful to analyze roughness at multilayered interfaces [13] and liquid surfaces [14].
Since only the intensity is measured, it is necessary to compare the measured reflectivity
to a reflectivity calculated from a model. Necessary factors to take into account when
creating the model are geometrical and resolution-function factors [14]. These factors are
especially important when considering small incident angles.

When fitting models to experimental data the incoming beam is assumed to be a plane
wave. This enforces a correction to account for the divergence of the beam [14]. The
correction is usually done by convoluting the calculated intensity for the ideal case with
a Gaussian function. By substituting the plane wave assumption in favour of a more ex-
perimentally realistic beam, the Gaussian beam, the data models may be improved. This
thesis will study the Gaussian beam using the angular decomposition method [15; 16].
Previous project work has investigated the amplitude of the reflected Gaussian beam [1].
In this thesis the propagation of the Gaussian beam will be investigated as well as how the
wavefronts behave. Reflection of Gaussian beams at complex surfaces such as multilay-
ered structures and islands on surfaces in the GISAXS geometry will also be considered.
In addition, coherent imaging will be studied, which enables the phase to be reconstructed
using numerical algorithms.

In coherent X-ray diffraction imaging (CXDI) the diffraction pattern is measured and
then directly inverted to acquire a high-resolution image [17; 18]. Since the first exper-
imental demonstration in 1999, coherent diffraction imaging has been applied to a wide
range of scientific fields. Coherent diffraction can be classified into four categories [17].
The first is called plane-wave CDI where a plane wave is illuminating a finite object and a
measurement of the far-field diffraction pattern is done. It can be implemented with high
brilliance X-ray sources and has resulted in high spatial resolution [19]. The requirement
of isolated objects is the main drawback. The second method is called scanning or ptycho-
graphic CDI. A circular aperture is used to define the illumination probe which is utilized
to scan the sample, making a sequence of partially overlapping diffraction patterns. Com-
pared to plane-wave CDI it can be applied to extended objects, however, for 3D images
each projection requires a 2D scan that can cause the sample to vibrate and degrade the
resolution. The third method is called Bragg CDI. It is mainly used for studying structures
of nanocrystals as the intensity distribution at the Bragg reflections are related to the strain
in the nanocrystal. The main advantages over the previous methods are that it yields in-
formation regarding ion displacements and the strain tensor inside the nanocrystal. Lastly,
the fourth method is called Fresnel CDI where focusing optics is used to create a curved
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wavefront which is used to illuminate the sample. Due to the curvature of the incident
wave, the numerical image reconstruction is rapidly converging. On the other hand, it
requires a very stable surface [17].

Given that the diffraction pattern from a CXDI experiment can be oversampled, it is
possible to retrieve the phase information using iterative algorithms. Iterative algorithms
using the Fourier modulus were developed in 1978 [20] and developed further through
the 1980s and 1990s [21; 22]. One of the earlier algorithms was created by Gerchberg
and Saxton [23] and was one of the first efficient solutions to the phase problem [24].
In this thesis the Gerchberg-Saxton algorithm will be studied and compared with other
algorithms such as the Hybrid input-output algorithm [21] as tools for reconstructing a
surface morphology.

This thesis begins by presenting an introduction to electromagnetic theory and optics
in chapter two. In the third chapter the Gaussian beam is derived and a derivation for
an analytical expression of the optical field near a reflective surface is provided. Chapter
four investigates how CXDI can reconstruct the lost phase information from a diffraction
pattern using numerical algorithms. Next, the fifth chapter presents and discusses the
findings of this thesis. Chapter five begins by exploring the propagation of the Gaussian
beam. Subsequently, the reflection of a beam on multilayered structures and reflection in
the GISAXS geometry will be considered. Lastly, reconstruction of the phase information
will be discussed using the methods and algorithms presented in chapter four. The last and
sixth chapter will present the conclusions from this thesis.
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Chapter 2
Theory of electromagnetism and
optics

2.1 Electromagnetic waves
Electromagnetic waves propagate according to Maxwell’s equations [25],

∇ ·D = ρf , (2.1)

∇×E = −∂B
∂t

, (2.2)

∇ ·B = 0, (2.3)

∇×H = jf +
∂D

∂t
, (2.4)

with the constitutive relations D = ε0εrE and B = µH . D is the electric displacement,
εr is the dielectric constant, ε0 is the permittivity of vacuum and µ is the permeability of
the material. Maxwell’s equations make up a set of coupled, first-order partial differential
equations. With no current or charge present, these equations can be decoupled by taking
the cross product of equations 2.2 and 2.4 and using the vector identity ∇× (∇× V ) =
∇(∇ · V )−∇2V . The result is two second-order differential equations,

∇2E =
1

v2

∂2E

∂2t
, ∇2B =

1

v2

∂2B

∂2t
, (2.5)

where v = (ε0εrµ0µr)
−1/2

= cn is the speed of the electromagnetic wave, c = (ε0µ0)
−1/2

is the speed in vacuum and n = (εrµr)
−1/2 is the refractive index. An optical wave is

mathematically described by a scalar function u(r, t) known as a wave function. It must
satisfy the wave equation [26],
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∇2u =
1

c2
∂2u

∂2t
. (2.6)

For convenience the wave function can be represented by a complex wave function U(r, t)
defined by

u(r, t) = Re[U(r, t)], U(r, t) = U(r) exp(iwt). (2.7)

U(r, t) must also satisfy the wave equation. Inserting U(r, t) into the wave equation
results in a differential equation for the complex amplitude U(r) known as the Helmholtz
equation [27],

∇2U(r) + k2U(r) = 0, (2.8)

where k = w/v.
The simplest solution to the wave equation, equation 2.6, is the plane wave generally

written as

U(r, t) = U(r) exp(iwt) = A0 exp(i(wt− k · r)), (2.9)

where A0 is a time- and spatial independent complex amplitude.

2.2 Fresnel equations
In addition to describing how electromagnetic waves propagate in a medium, Maxwell’s
equations also describe how waves are transmitted through or reflected at an interface be-
tween two media. An electromagnetic wave consists of an electric and a magnetic field
propagating with the same frequency and being mutually perpendicular [28]. From equa-
tion 2.5 the plane wave solutions are

E(z, t) = E0 exp(i(wt− k · r)), B(z, t) = B0 exp(i(wt− k · r)). (2.10)

These are monochromatic plane waves of frequency ω. The boundary equations further
limit and relate E and B on both sides of an interface between two materials [25],

ε1E
⊥
1 − ε2E⊥2 = 0, E

‖
1 −E

‖
2 = 0.

B⊥1 −B⊥2 = 0,
1

µ1
B
‖
1 −

1

µ2
B
‖
2 = 0.

(2.11)

The subscript 1 and 2 stands for waves in medium 1 and 2. The boundary equations show
that the tangential part of E and the perpendicular part of B are continuous along the
surface.

Consider a monochromatic plane wave impinging on an interface between two media.
Let Ei be the electric field propagating in medium 1 and being incident on medium 2.
Then Er and Et denote the reflected and transmitted electric field. The tangential part of
the electric fields are then continuous along the surface,
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un ×Ei + un ×Er = un ×Et, (2.12)

where un is a unit vector normal to the surface. Using Maxwell’s equations, equations
2.1-2.4, the boundary equations, equation 2.11, and the fact that the phases of the three
waves must be equal, Snell’s law can be derived [29],

n1 sin θi = n2 sin θt. (2.13)

The refractive index is denoted n1 and n2 for medium 1 and 2 respectively, and θ is the
angle between the direction of the wave vector k and the surface normal. Alternatively,
Snell’s law can be rewritten in terms of the angle α between the wave vector and the
surface, see Figure 2.1. Then Snell’s law becomes

n1 cosαi = n2 cosαt. (2.14)

Furthermore, the law of reflection states that θi = θr, or αi = αr. In X-ray physics, α
is more conveniently used as the incident angle. This is because the index of refraction n
is close to one resulting in small critical angles. α will therefore be used as the incident
angle in this thesis unless specified otherwise. The critical angle of which the plane wave
is being totally reflected is defined as the incident angle where θt = 0 [29],

θc = arcsin
n2

n1
, αc = arccos

n2

n1
, (2.15)

for waves going to an optically lighter medium. For all incident angles α below the critical
angle αc the plane wave is totally reflected.

Consider a plane wave incident on a non-magnetic dielectric surface such that µr =
µi = µt = µ0, where µ0 is the permeability of free space, and E being perpendicular to
the plane of incidence (s-polarised), as shown in Figure 2.1.

Figure 2.1: The Fresnel geometry of a s-polarised plane wave.
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The Fresnel Equations can then be derived from the boundary conditions, equations 2.11,
and Maxwell’s equations, equations 2.1-2.4 [25; 29] ,

r⊥ =
E0r

E0i
=
ni cos θi − nt cos θt
ni cos θi + nt cos θt

(2.16)

and

t⊥ =
E0t

E0i
=

2ni cos θi
ni cos θi + nt cos θt

. (2.17)

In the above equations r⊥ and t⊥ denote the amplitude reflection and transmission coef-
ficients for s-polarized light. For p-polarized light the Fresnel equations for the parallel
components of the amplitude reflection and transmission coefficients r‖ and t‖ become

r‖ =
nt cos θi − ni cos θt
nt cos θi + ni cos θt

, (2.18)

and

t⊥ =
2ni cos θi

nt cos θi + ni cos θt
. (2.19)

2.2.1 X-ray regime
The index of refraction in the X-ray regime is conveniently expressed as

n = 1− δ − iβ, (2.20)

where δ is related to the scattering properties of the medium and is usually in the order of
10−5. β is proportional to the absorption cross section and is usually much smaller than δ
[2].

Consider an X-ray beam incident on a medium of refractive index n2 from vacuum
where n1 = 1. The critical angle is small as the deviation of n2 from unity is small. When
the incident angle is close to the critical angle, Snell’s law can be expanded giving

α2
i = α2

t + 2δ − 2iβ, αc =
√

2δ. (2.21)

Similarly, the Fresnel equation of the amplitude reflection coefficient for s-polarized light
can be expanded giving

r =
αi − αt
αi + αt

. (2.22)

2.3 Reflection from a film on a surface
While the Fresnel equations derived in the previous section are of great importance, the
case of a single surface is for many practical purposes not sufficient. In many cases layered
systems are present and scattering from all layer interfaces must be accounted for [30]. In
this section, reflection from a film with thickness ∆ on a surface will be considered, see
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1

+ + + ...

Figure 2.2: Schematic of possible reflections of a slab of finite thickness. The regions 0, 1 and 2
has index of refraction n0 = 1.0, n1 and n2 respectively. Layer 1 has thickness ∆ while layer 2 has
infinite thickness.

Figure 2.2. Medium 0 is considered to be vacuum with n0 = 1.0, while media 1 and
2 are homogeneous with indexes of refraction n1 and n2. An X-ray beam incident on
a film on a substrate has in principle an infinite series of possible reflections. Three of
these reflections are visualized in Figure 2.2. The first reflection possibility visualized in
Figure 2.2 is that the beam is entirely reflected at the interface between material 0 and
1 with reflection amplitude r01. Secondly, the beam can be transmitted at the interface
0 to 1 (t01), reflected at interface 1 to 2 (r12) and then transmitted again at interface 1
to 0 (t10). A phase factor of p2 = exp(iQ1∆) is needed when adding this reflection
possibility. The wave vector transfer Q1 is defined as Q1 = 2k sinα1 ≈ 2kα1, where
α1 = αt. Thirdly, the beam can be transmitted at interface 0 to 1 (t01), reflected at
interface 1 to 2 (r12), reflected at interface 1 to 0 (r10), reflected at interface 1 to 2 (r12)
and lastly a transmission at interface 1 to 0 (t10). The corresponding phase factor is p4.
Additionally, infinitely many possibilities may be described by combinations of the two
reflection amplitudes, r01 and r12, and the two transmission amplitudes, t01 and t10. The
total reflection amplitude coefficient is then

r = r01 + t01r12t10p
2 + t01r12r10r12t10p

4 + ... . (2.23)

Evaluating the geometric series and using r01 = −r10, the expression for r becomes [2]

r =
r01 + r12p

2

1 + r01r12p2
. (2.24)

2.4 Coordinate system

Before moving on to studying GISAXS and later the derivation of the Gaussian beam, the
coordinate system used during this thesis must be defined. Figure 2.3 defines the (x, y, z)
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coordinate system and the (qx, qy , qz) coordinate system relative to the sample in real and
reciprocal space. The z and qz axes are defined to be parallel to the surface normal.

A beam incident on the sample has for simplicity been chosen to lie in the (x, z)-plane.
In the case of specular reflectivity, the scattered beam will also lie in this plane as shown
schematically in Figure 2.4. Two additional coordinate systems can be defined, along the
direction of the incident and the scattered wave. These are denoted (xi, zi) and (xsc, zsc).
αi, αsc is the angle the beam and the xi, xsc axis makes with respect to the x axis. In this
thesis these three coordinate systems will exclusively be used.

Real space Reciprocal space
Figure 2.3: A schematic of the coordinate system defining the real space coordinates (x, y, z) and
the reciprocal space coordinates (qx, qy , qz) with respect to the sample. The z and qz axes are
parallel to the surface normal.

Sample
Figure 2.4: A schematic of the coordinate system in specular reflectivity. The incident beam prop-
agates along the xi axis at an angle αi with respect to the x axis. Similarily, the scattered beam
propagates along the xsc axis at an angle αsc with respect to the x axis.

2.5 GISAXS
In grazing incidence the beam is incident with a small incident angle αi, generally close
to the critical angle. In grazing incidence small-angle X-ray scattering (GISAXS) the
in-plane scattering angle 2Ψ with respect to the sample surface is additionally small.
GISAXS is used for studying nanoscale structures and the small scattering angle results in
large periodic structures being probed in real space [13; 31; 32]. A sketch of the GISAXS
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geometry is shown in Figure 2.5. A beam with wave vector ki is incident with an angle
αi on a material with nanoscale particles on top. As an example, these islands are taken to
be spherical. The detector detects the resulting diffraction pattern from the scattered beam
of wave vector kf at an angle αsc. The wave vector transferq is given by the difference
between scattered and incident wave vector, q = kf − ki, where |q| = 4π/λ sin θ with
2θ being the scattering angle. Figure 2.5A shows the GISAXS setup in the (x, z) plane
illustrating where the scattering angle 2θ is defined while Figure 2.5B shows the (x, y)
plane defining the in-plane scattering angle 2Ψ.

Detector

A

B

Figure 2.5: A sketch of the GISAXS setup in the A) (x, z) plane and B) (x, y) plane. A wave
vector ki is incident with an angle αi on spherical islands on a substrate. The detector detects the
resulting diffraction pattern from the scattered beam of wave vector kf and angle αsc. 2Ψ denotes
the in-plane scattering angle with respect to the sample surface and 2θ is the scattering angle.

For incident angles below the critical angle, there will be no transmitted wave. This
phenomenon is called total external reflection. However, the fields in the medium are
nonzero and a so-called evanescent wave travelling parallel to the surface will rapidly be
attenuated in z [25]. The evanescent wave will be confined to the top layer and thus en-
hance the signal-to-noise ratio from the surface. GISAXS is therefore a good technique to
investigate morphological properties of nanostructures on surfaces, with sizes from about
1 nm to 1 mm [8; 13].

Having defined the GISAXS geometry and its usage, the focus will now turn to a the-
oretical treatment of GISAXS. Here, we shall consider one island of a specified shape, for
example a sphere or a cylinder, placed on an infinite smooth substrate [8]. The calcula-
tion of the scattering cross section in the GISAXS geometry requires the distorted wave
Born approximation (DWBA) with multiple scattering events [9] as shown schematically
in Figure 2.6.
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A B C D

Figure 2.6: Schematic of the four DWBA scattering events on an island [8]. Each event has a
corresponding vertical effective wave vector qeffz .

Figure 2.6 shows four different scattering events all interfering on the island coherently.
The first event, Figure 2.6A, is a direct scattering by the island and is equivalent to the first
Born approximation. In the second and third event, Figure 2.6B and Figure 2.6C, the
incident or scattered beam is reflected off the substrate. In the fourth event, visualized in
Figure 2.6D, both the incident and scattered beam are reflected. All four events have a
corresponding island form factor F (q‖) calculated with a vertical effective wave vector
transfer qeffz . The form factor is defined as the Fourier transform of the particle shape

F (q) =

∫
S(r)

exp(iq · r)dr. (2.25)

Ref. [8] lists several form factor expressions of different geometrical shapes. In this thesis
the hemi-spheroid will be studied. Its form factor is given by

Fhsphe(q, R,W,H) = 2π

∫ H

0

RzWz
J1(γ)

γ
exp(iqzz)dz (2.26)

with

Rz = R

√
1−

( z
H

)2

, Wz = R

√
1−

( z
H

)2

, γ = R
√

(qxRz)2 + (qyHz)2.

(2.27)

Figure 2.7: Schematic of the hemi-spheroid.

The hemi-spheroid is shown schematically in Figure 2.7. H is the height of the island
in the z direction, and 2W and 2R are the diameters in x and y direction. J1 is the
Bessel function of first order [26]. The volume of the hemi-spheroid is given by Vhsphe =
2
3πRWH .
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The four scattering events are weighted by the Fresnel reflection coefficients of the cor-
responding reflections. The DWBA island form factor, or total form factor, F (q‖, kin z,0, ksc z,0),
is defined mathematically as

F (q‖, kin z,0, ksc z,0) = F (q‖, ksc z,0 − kin z,0) + rin0,1F (q‖, ksc z,0 + kin z,0)

+rsc0,1F (q‖,−ksc z,0 − kin z,0) + rin0,1r
sc
0,1F (q‖,−ksc z,0 + kin z,0).

(2.28)

The wave vector transfer is q = ksc − kin and the Fresnel coefficients in incidence and
after scattering on the island are rin0,1 and rsc0,1. The differential scattering cross section can
then be derived to be [8](

dσ

dΩ

)
=

k4
0

16π2

∣∣n2
i − 1

∣∣2∣∣F (q‖, kin z,0, ksc z,0)
∣∣2, (2.29)

where ni is the refractive index of the island. In the specular limit with q‖ = 0, ksc z,0 =
−kin z,0 and rin0,1 = rsc0,1 = r0,1 the DWBA island form factor reduces to

F (q‖, kin z,0, ksc z,0) = F (0, 2k−in z,0) + 2r0,1F (0, 0) + r2
0,1F (0, 2kin z,0), (2.30)

where F (0, 0) following equation 2.25 gives the volume of the particle. In the limit of
small kin z,0 for the hemi-spheroid, F (0, 0± 2kin z,0) becomes

F (0, 0± 2kin z,0) = Vhsphe(1±
3

4
iHkin z,0 −

2

5
H2k2

in z,0). (2.31)

The differential cross section in the specular limit with additional small kin z,0 is then

(
dσ

dΩ

)
=
k4

0V
2
hsphe

16π2

∣∣n2
i − 1

∣∣2
·
∣∣∣∣2r0,1 + (1 + r2

0,1)

(
1− 2

5
H2k2

in z,0

)
+

3

4
iHkin z,0(r2

0,1 − 1)

∣∣∣∣2
(2.32)

As the differential cross section is proportional to the intensity provided the geometry
of the instruments are unchanged [2; 8], we take for the general case

r ∝ k2
0

4π

(
n2
i − 1

)
F (q‖, kin z,0, ksc z,0). (2.33)

In the limit of wide incident and scattered angles, θin, θsc > θc, the Fresnel reflectivi-
ties become small. The three latter terms in the DWBA form factor that are multiplied with
reflectivity coefficients, see equation 2.28, are negligible. The first term is then dominant
resulting in the first Born approximation (BA) being valid [9].

13



2.6 Coherence
The superposition of waves with different frequencies and points of origin deviates from a
plane wave in two ways. Firstly, the beam will not be perfectly monochromatic. Secondly,
the beam will not propagate in a well-defined direction. These deviations can be described
mathematically through the terms longitudinal and transverse coherence lengths [2]. The
longitudinal coherence length, LL, is defined as the length after which two plane waves
of slightly different wavelengths initially in-phase are completely out of phase. When two
plane waves have the same wavelength but slightly different propagation directions, then
the distance after which they are completely out of phase is called the transverse coherence
length LT .

A coherence volume can be defined as a volume in which the plane waves are approx-
imately in phase and can be given by LLL2

T . If the coherence volume of a beam is larger
than the scattering object, the scattered object will experience an incident beam that is
fully coherent. Then the total intensity will be the squared absolute value of the sum of the
amplitudes. If the coherence volume is smaller than the scattering object, then different
parts of the object will scatter out of phase with each other. The total intensity will then be
the incoherent sum of the scattered intensities.

Coherent X-rays have coherent lengths of the order of a few µm. Coherent X-ray
beams from synchrotron sources are increasingly utilized in spectroscopy and imaging.
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Chapter 3
The Gaussian beam

3.1 Mathematical description of the Gaussian beam
An approximate solution of the wave equation, equation 2.6, is the paraxial wave function.
Paraxial waves have wavefront normals that are paraxial rays [27], i.e. rays that make a
small angle with the optical axis. Mathematically, this is a wave traveling along the optical
axis, say the x̂ direction, with a complex, slowly varying envelope A(r),

U(r) = A(r)eikx. (3.1)

The envelope A(r) is slowly varying in x if the change in A(r) within a small distance
∆x ∼ λ is much smaller than A itself. This must also hold for the derivative of A,

∂A

∂x
� kA,

∂2A

∂2x
� k2 ∂A

∂x
. (3.2)

This leads to a partial differential equation for the envelope A(r) called the Paraxial
Helmholtz equation,

∇2
TA+ 2ik

∂A

∂x
= 0. (3.3)

with ∇2
T = ∂2

∂2
y

+ ∂2

∂2
z

being the transverse Laplacian operator. The most important and
realistic solution to the Paraxial Helmholtz equation is the Gaussian beam. The Gaussian
beam is of great importance since many types of lasers are Gaussian beams under ideal
conditions [27]. The transverse profile of both the field and intensity distribution of a
Gaussian beam is that of a Gaussian function centered at the beam axis. The beam is
shaped as visualized in Figure 3.1.

The Gaussian beam is characterized by its beam waistw0 or the beam divergence angle
2θG, which are related through

2θG =
4λ

πw0
. (3.4)
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G

Figure 3.1: A schematic of the Gaussian beam. The beam is propagating in the x̂ direction with
wave fronts marked by dotted lines. The beam waist w0 is the half distance at the centre where the
beam is the narrowest. The width at any position x is W (x) and the Rayleigh range xR is defined
as the distance at which the width is

√
2 of the beam waist w0. The beam divergence angle is 2θG.

The inverse proportionality between the beam waist w0 and the beam divergence angle
2θG means that squeezing the beam waist results in increased beam divergence. Further-
more, the width W (x) at any point x depends on w0 and the distance x from the center
from which w0 is defined,

W (x) = w0

√
1 +

(
x

xR

)2

, (3.5)

where xR is the Rayleigh range, xR ≡ w2
0π/λ. Moreover, the wavefronts are nearly planar

in the vicinity of the beam waist w0. As visualized by the dotted lines in Figure 3.1 the
wavefronts gradually curve further away from the beam waist. The radius of curvature of
the wavefronts is given by

R(x) = x

(
1 +

(
x

xR

)2
)
. (3.6)

The complex field amplitude of the Gaussian beam satisfying equation 3.1 and 3.3 is given
by [27]

U(r) = A0
w0

W (x)
exp

(
− ρ2

W (x)2

)
exp

(
−ikx− ik ρ2

2R(x)
+ iξ(x)

)
, (3.7)

where ρ =
√
y2 + z2 and ξ = arctan(x/xR). The corresponding intensity I(ρ) ∝

|U(r)|2is at any point x a Gaussian function of the radial distance ρ, as illustrated in Figure
3.2. Figure 3.2A shows the intensity distribution in a plane of constant x, with x̂ directed
out of the paper. Figure 3.2B shows the intensity distribution of Figure 3.2A as a function
of the distance ρ to its centre, a Gaussian function. The beam waist w0 is recognized as
the lateral position at which the intensity and amplitude drop to e−2 and e−1, respectively,
of their on-axis values.

The Gaussian beam can be described as a superposition of plane waves by a method
called the angular decomposition method. How much each plane wave contributes to the
total Gaussian beam is described by its angular spectrum, which is given by a Gaussian
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function. The relationship between a spatial Gaussian function and its corresponding an-
gular spectrum is

f(ρ) = exp

(
− ρ

2

w2
0

)
, f̂(k) = w0

√
π exp

(
−k

2w2
0

4

)
(3.8)

where f̂(kx, ky) is the angular spectrum of f(ρ) = f(x, y) and w0 is the waist of the
Gaussian function related to the divergence of the Gaussian beam by equation 3.4.

A B

Figure 3.2: A) A Gaussian beam as seen perpendicular to the optical axis (x̂ directed out of the
paper). B) Intensity distribution of a Gaussian beam.

3.2 Analytical model for reflection of a gaussian beam
In this section a 2D analytical model will be derived for the reflection of a one-dimensional
Gaussian beam. Previous research has extensively used the angular decomposition method
for studying e.g. the reflection from a dielectric slab [33; 34] and the Goos-Hänchen shift
[15]. However, Ref. [16] argues that in the interference region for grazing incidence the
reflected and incident field will interfere. The total field close to the reflecting surface will
then be a superposition of the two fields. Nevertheless, as we are only interested in the
reflected field far away from the reflecting surface, the attention further on will be on the
reflected beam. The beam will be assumed to be one-dimensional as well as s-polarized.
However, p-polarization can be discussed similarly [16].

Consider a Gaussian beam incident on a surface with incident angle α0 as illustrated
by the red drawing in Figure 3.3. The reflecting surface is along the x-axis and the incident
beam can be described in the (xi, zi) coordinate system as mentioned in section 2.4. The
beam waist, as defined by equation 3.4, is a distance h along the xi-axis and is considered
to be where the beam is launched from. The scattered beam is described in the (xsc, zsc)
coordinate system and is drawn in blue in Figure 3.3. The scattered beam is also drawn
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Figure 3.3: An incoming Gaussian beam with incident angle α0 is described in the coordinate
system (xi, zi) and is plotted in red. Similarly, the reflected beam is described in the coordinate
system (xsc, zsc) and is plotted in blue. The beam waist is at a distance h along the xi-axis. Inside
the reflecting material the reflected beam can be seen as a mirror-image to the incident beam and is
marked in weaker lines to show where h is relative to xsc. The wavefronts are visualized.

inside the reflecting material to illustrate where the beam waist is relative to the xsc axis
and can be seen as a mirror-image to the incident beam [16].

Along the launching plane the electrical field of the Gaussian beam is described by the
distribution exp

(
−z2/w2

0

)
. Its corresponding angular spectrum f(kz) at the plane xi = 0

is then

f(kz) =
√
πw exp

(
−w2

0k
2
z/4
)
, (3.9)

where kz is the transverse wave vector of the plane-wave component. A critical wave
vector kz0 is defined as parallel to the reflecting surface, kz0 = k0n1 sinα0. Here k0 is
the wave vector in vacuum and α0 is the incident angle of the Gaussian beam defined by
its optical axis as seen in Figure 3.3.

The incoming optical field is given by

Ei(x, z) =
1

2π

∫ ∞
−∞

f(kz) exp

(
−ikzz − i

√
k2

0n
2
1 − k2

x(x− h)

)
dkz, (3.10)

while the reflected optical field is given by

Er(x, z) =
1

2π

∫ ∞
−∞

f(kz)r(kz) exp

(
−ikzz − i

√
k2

0n
2
1 − k2

z(x− h)

)
dkz. (3.11)

r(kz) is an amplitude reflection coefficient for a plane wave with a transverse wave vector
kz , to be discussed below.
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Calculating the field distribution from the integral in equation 3.11 is numerically
costly, so we will deduce the angular spectrum of the optical field. The connection be-
tween the optical field and its angular spectrum is given by a Fourier transform,

E(x, z) =

∫ ∞
−∞

g(kz, x) exp(−ikzz)dkz, (3.12)

which in turn determines the angular spectrum to be

g(kz, x) = f(kz)r(kz) exp

(
−i
√
k2

0n
2
1 − k2

z(x− h)

)
. (3.13)

The resulting optical field can then be found by taking the Fourier transform of equation
3.13.

When the reflecting surface is an interface between two linear and semi-infinite me-
dia, r(kx) becomes the Fresnel amplitude reflection coefficient, equation 2.16. Each plane
wave component will then be reflected according to the Fresnel amplitude reflection co-
efficient, as visualized in Figure 3.4A for three selected plane wave components. Each
plane wave will have an inherent incident angle αi(kz) which relates to the plane wave
component kz as follows

αi(kz) = π/2 + arccos

(
kz
k0n1

)
+ α0. (3.14)

Equation 3.14 can be derived from Figure 3.3 [35]. The total reflected Gaussian beam will
then be a sum over the reflected plane wave components, as given by equation 3.11.

To extend our study from a linear reflecting surface to a multilayered structure, we
propose that each plane wave component will be reflected according to the reflection am-
plitude of a multilayered structure derived in section 2.3, equation 2.24. This is visualized
in Figure 3.4B for two selected plane wave components. Compared to Figure 2.2 only two
possible reflections for each plane wave component are shown. Similar to the case of one
interface above, the total reflected beam will be a sum over the reflected plane wave com-
ponents. This can be generalized to the GISAXS geometry and other reflecting surfaces,
and will be discussed later in this thesis.
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Figure 3.4: An incoming Gaussian beam on a reflecting surface. The reflection of a number of
plane wave components is shown to visualize how the reflected Gaussian beam is a sum over the
reflected plane wave components. A) The reflecting surface is an interface between two media. B)
The reflecting surface consists of a thin film with thickness ∆ on a substrate surrounded by vacuum.
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Chapter 4
Phase reconstruction

In scientific fields such as optics, X-ray crystallography, X-ray diffraction and electron
diffraction only the intensity of a scattered beam can directly be measured, resulting in loss
of essential information regarding the phase [22]. This is known as the phase problem.

4.1 Coherent X-ray diffraction
An inverse Fourier transform of a diffraction pattern will not produce an image of the
electron density because of the phase problem. However, if the imaged object is small
and is fully illuminated with coherent radiation, the phase can be found numerically from
the diffraction pattern [2]. This imaging technique is known as coherent X-ray diffraction
imaging (CXDI) and has been shown to work on both non-crystalline and crystalline ma-
terials [2]. Coherence is required in both the longitudinal and transverse directions, see
section 2.6. The required coherence lengths limit the maximum flux accessible in a CXDI
experiment to a value proportional to the brilliance of the source [36]. When the beam
is sufficiently coherent, the diffraction pattern will show a graininess known as a speckle
pattern [37].

Generally, diffraction experiments detect the interference of scattered waves. In in-
coherent systems, statistically meaningful information is found by taking the ensemble
average over numerous local configurations [36]. In other words, the measured intensity
is found by summing the intensity contributions from all coherent sub-volumes. However,
in a CXDI experiment the measured diffraction signal is simply the magnitude squared of
the scattering amplitude, obtained by summing the amplitude contributions from the en-
tire sample. This is the essential point of CXDI. The direct summation over all scattering
atoms is given by

Asc(q) ∝
∑
j

fj exp(iq · rj) (4.1)

where fj is the form factor of atom j. The positions of the atoms are denoted by rj and
the summation is over all atoms within the illuminated volume. The intensity given by
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I(q) = |Asc(q)|2, (4.2)

is then observable.
A CXDI experiment relies on oversampling to be able to retrieve the phase informa-

tion. It can be shown that if the diffraction pattern can be sampled at half the Nyquist
frequency, i.e. oversampled, then it is possible to recover information on both |A(q)| and
its phase [2]. When imaging isolated objects, an interpretation of the oversampling is that
it corresponds to surrounding the sample with a region of zero density. When this region is
larger than the region of non-zero density, the phase information can be retrieved [38]. An
oversampling ratio σ can be defined as the total area divided by the area of the non-zero
density. When σ > 2 the problem is in principle solvable [17].

CXDI with oversampling can be proven to have a unique solution in 2D and 3D, but
in 1D the problem is more diffcult [2; 39]. There exists several numerical algorithms that
incorporate oversampling as real-space constraints and applies them in different ways. The
Gerchberg-Saxton algorithm, also known as the error-reduction algorithm, is an example
of a converging algorithm [21]. Gerchberg and Saxton wrote their algorithm in the 1980s,
the first efficient solution to the phase problem [24]. The algorithm will be explained in
detail below.

4.2 Coherent X-ray diffraction on a rough surface
For simplicity, we consider only one kind of atom with form factor f . The height of the
surface can be defined as a height function, z = h(x, y), where z is perpendicular to the
surface as illustrated in Figure 4.1. The scattering amplitude can then be written as [36]

Asc(q) ∝ FCTR(qz)
∑
j

exp (iqxxj + iqyyj + iqzh(xj , yj)) . (4.3)
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Figure 4.1: An example of a height function, z = h(x, y), with z parallel to the surface normal.

where the summation is now over columns of equally spaced atoms. The summation in the
z direction is the same for all columns and is reduced to FCTR(qz). FCTR(qz) is known
from the analysis of crystal-truncation rods (CTR),
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FCTR(qz) = f (1− exp(−iqza3))
−1
, (4.4)

with a3 being the vertical lattice spacing. Its amplitude is large close to Bragg peaks in qz
and gets considerably smaller further away [36]. FCTR(qz) will not be discussed further
since it in reflectivity falls off as q−2

z close to the origin of reciprocal space. The second
factor in equation 4.3 is known as the speckle amplitude and can be rewritten as

A(q) =

∫ ∫
Ω

ρ(x, y) exp(iqxx+ iqyy)dxdy, (4.5)

with

ρ(x, y) = exp(iφ(x, y)), φ(x, y) = qzh(x, y). (4.6)

The illuminated region, denoted Ω, is finite and depends on the beam width, or the aper-
ture, and the incident angle. In the case of surface CXDI the phase φ(x, y) can be inter-
preted as the amount the incident beam at position (x, y) is phase shifted and will depend
on the height function h(x, y).

4.3 Reconstruction of surface morphology from 1D speckle
pattern

In CXDI reflectivity experiments the sample is measured at grazing incidence. The foot-
print of the beam on the sample surface will as a result be highly elongated, as visualized
in Figure 4.2. The incoming beam is a square beam with dimensions d · d and is for sim-
plicity assumed to be parallel. In Figure 4.2 the probed region is marked darker than the
rest of the sample and has length L in the x-direction and d in the y-direction. In grazing
incidence L >> d and the problem can then be considered one-dimensional, motivated by
Refs. [36] and [40]. The results may be generalized to the 2D case [36].

For an one-dimensional sample the speckle amplitude is defined from equation 4.5 as

A1D(qx)|qz =
∣∣A1D(qx)

∣∣ exp(iα(qx)) =

∫ L/2

−L/2
ρ0(x) exp(−iqxx)dx, (4.7)

with density ρ0(x) and its phase φ(x) defined as [36]

ρ0(x) = exp(iφ(x)), φ(x) = qzh(x). (4.8)

The height function, or the surface morphology, is given by h(x). Figure 4.3 shows a
schematic of the 1D sample. The illuminated area, or the footprint L, relates to the width
of the beam d and the incident angle αi as L = d/ sin(αi).

When applying iterative algorithms, constraints are needed for convergence. In the
present case, an intensity of zero outside of the footprint is enforced as a real-space con-
straint. We therefore define an illumination filter function [36], B(x), which can conve-
niently be defined as a product of two Fermi functions,

B(x) = f(x− L/2)f(−x− L/2), (4.9)

23



Figure 4.2: An incident square beam with dimensions d · d. For simplicity a parallel beam is
assumed. The probed sample region is marked as a dark region with length L in the x direction and
d in the y direction. The incident beam is arranged at grazing incidence resulting in L >> d.

Figure 4.3: Schematic of the 1D sample. The footprint of the beam is denoted L and is given by the
incident angle α and the width of the beam d.

where the Fermi function is f(x) = 1/[1 + exp(x/w)]. w determines the sharpness of the
edge. Having defined B(x) we can extend the integral in equation 4.7 to infinity,

A1D(qx) =

∫ ∞
−∞

ρ(x) exp(−iqxx)dx, (4.10)

with the modified phase function

ρ(x) = ρ0(x)B(x) = B(x) exp(iφ(x)). (4.11)

The intensity is invariant given a constant offset in the phase φδ = φ + δφ. The new
speckle amplitude will then be

Aδ(qx) = exp(iδφ)A(qx), (4.12)

which clearly gives an unchanged intensity, Iδ(qx) = I(qx).
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4.4 Gerchberg-Saxton algorithm
The Gerchberg-Saxton algorithm was originally developed for reconstructing the phase
from two intensity measurements [23; 41]. Having two intensity measurements means that
measured data or information is known a priori in both the object and Fourier domain,
|f(r)| and I(q) respectively [21]. In the case of reconstructing surface morphology, as
described in the sections above, both I(qx) and |ρ(x)| = B(x) are known.

The Gerchberg-Saxton algorithm makes use of the fast Fourier transform (FFT) to it-
erate between real and reciprocal space. Before entering the iterative loop, the phases φ(r)
are randomly generated between −π and π. Subsequently, an initial estimate of the den-
sity ρ(r) is made. The first step of the loop is to take a FT of ρ(r) giving A′(q). Secondly,
the constraint in reciprocal space is applied; the speckle amplitude should be equal to the
square root of the observed intensity, |A(q)| =

√
I(q). Getting a new estimate of the

density ρ′(r) from the IFT of A(q) is the third step of the iterative algorithm. Fourthly,
the real space constraint is applied, |ρ(r)| = |f(r)|. The loop is shown schematically in
Figure 4.4.

Constraints:
Real space

Constraints:
Q space

Figure 4.4: A schematic of the Gerchberg-Saxton algorithm. The algorithm iterates between real
and Fourier space while applying constraints in both spaces.

The loop visualized in Figure 4.4 continues until it has reached a maximum number of
iterations or the algorithm is successful. The algorithm is successful if the error converges
to a value close to zero. The error can be calculated using the difference between the
absolute value of the estimate and the corresponding constraint in both real and Fourier
space,

Ek =

∑(√
Iexp − |A(q)|

)2∑
Iexp

, ek =

∑
(|B(r)| − |ρ(r)|)2∑

|B(r)|2
(4.13)
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The error of each estimate k can be shown to be equal to or less than the previous estimate
[21; 24]. The Gerchberg-Saxton algorithm is therefore also known as the error-reduction
algorithm. In Ref. [24] Matlab code is provided for the Gerchberg-Saxton algorithm.

The real space constraint |f(r)| can be a positivity constraint or a size constraint [21].
When applying the Gerchberg-Saxton algorithm to reconstruct the 1D surface morphol-
ogy from the previous section, the real space constraint is given by the illumination filter
function B(x). The illumination function ensures that the density amplitude always is one
inside the illuminated area.

The question of uniqueness is important when dealing with inverse problems. Ref. [23]
recognize two ambiguities, a constant offset in the phase and the ambiguity connected to
the complex conjugate. As discussed in the previous section, the intensity I(q) will stay
unchanged given a constant offset in the phase. Since this also holds for |ρ(r)| only relative
phases are meaningful. Moreover, by the properties of the Fourier transform the correct
solution ρ(r) = |ρ(r)| exp(iφ(r)) has a dual solution given by [36]

ρ̃(r) = ρ∗(−r) = |ρ(−r)| exp(−iφ(−r)). (4.14)

When studying a rough surface, sections 4.2 and 4.3, the dual solution of the density will
then be ρ̃(r) = exp(−iqzh(−x,−y)). In the case of an one-dimensional height profile,
section 4.3, the dual height solution will then be reduced to h̃(x) = −h(−x).

Without prior knowledge it is impossible to choose between the two solutions. How-
ever, in some situations, the problem can be avoided. If the data is measured in the form
of a time series or with different incident angles, it is possible under some circumstances
to constrain the system to a unique solution [36].

4.5 Other algorithms for the two intensity measurement
problem

The speed of convergence of the Gerchberg-Saxton algorithm depends on the type of con-
straints, but is generally decreasing rapidly in the beginning before stagnating [21]. Stag-
nation means that the output image changes negligibly after several iterations while not
having reached the solution [42]. If the algorithm is initiated with random phases, there
is an equal probability that it will reach the correct solution or its dual. When features of
both objects are equally present, then the algorithm may stagnate. The algorithm tries to
reconstruct both solutions and ends up somewhere in between.

A method that has been proved to converge faster for the two intensity measurement
problem is the Hybrid input-output algorithm (HIO) [43]. The algorithm differs only from
the Gerchberg-Saxton in the object domain, the left-hand side of Figure 4.4. The system
can then be thought of as having an input ρ(r) and an output ρ′(r). Compared to the
Gerchberg-Saxton algorithm the input is no longer the current best estimate, it is consid-
ered to be a driving function for the next output. The Fourier transform of the output will
always satisfy the Fourier-domain constraints. If the output satisfies the object-domain
constraints as well, then it is a solution to the problem [21]. The input does not necessarily
satisfy the object-domain constraint |f(r)|. For the case of two intensity measurements
the input is given by [44]

26



ρk+1(r) =

{
|f(r)| exp(iθ′k(r)) otherwise
ρk(r)− βρ′k(r) if r ∈ γ.

(4.15)

where β is a constant. |f(r)| is the known absolute value in the object domain and γ
includes all points where |f(r)| = 0.

Nevertheless, Ref. [44] argues that even the HIO algorithm generally does not con-
verge to a global minimum. They propose an algorithm that combines the Gerchberg-
Saxton algorithm and the HIO algorithm to improve the convergence. The new algorithm,
which they call the GS/HIO algorithm, begins with nGS iterations of the Gerchberg-
Saxton algorithm followed by nHIO iterations of the HIO algorithm. In total there are
N = nGS + nHIO iterations. This cycle of Gerchberg-Saxton and HIO iterations, de-
noted (nGS , nHIO), is then repeated as necessary.
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Chapter 5
Results

This chapter will present and discuss the main results of this thesis. First, the propaga-
tion of the Gaussian beam will be discussed, including both the intensity and the phase.
Second, a Gaussian beam reflecting on a thin film placed on a flat surface will be consid-
ered. Third, an island on a substrate in the GISAXS geometry derived in section 2.5 will
be explored. Fourth, the Gerchberg-Saxton algorithm will be used in the reconstruction
of a one-dimensional surface morphology. Next, the Hybrid input-output algorithm and
the combination of the Gerchberg-Saxton and the Hybrid input-output algorithms will be
explored and compared with the Gerchberg-Saxton algorithm. Lastly, an attempt will be
made at reconstructing an island on a substrate in the GISAXS geometry.

5.1 The Gaussian beam
A Gaussian beam propagating without a reflecting surface will at all times have a trans-
verse intensity distribution of a Gaussian function. However, the shape of the Gaussian
function will differ as expected from equation 3.7 in section 3.1. In addition, the curvature
of the phase fronts of the Gaussian beam will change as well. Using the equation for an in-
coming Gaussian beam from section 3.2, equation 3.10, the intensities and wavefronts can
be studied at different x planes. As explained in section 3.2, solving the integral is numer-
ically costly, so the angular spectrum gi(kz, x) is deduced before solving for the optical
field numerically using the FFT. Figure 5.1 shows the intensity and phase of a Gaussian
beam at different x planes evaluated numerically from equation 3.10. Figures 5.1A and
5.1B present the relative intensity of the Gaussian beam at x = 0 and x = 0.5 m, while
Figures 5.1C and 5.1D present the phase. The Gaussian beams have beam waist of w0 = 3
µm. Note that in areas where the intensities are zero, the phases are not meaningful.

From the definition of the Gaussian beam in section 3.1, x = 0 is where the Gaussian
beam is the narrowest. The beam waist can be recognized as the half width of the Gaussian
beam when the intensity I(z)/I0 drops to exp(−2). In Figure 5.1A, the half width is found
to be 3.0 µm, consistent with the beam waist w0 of the Gaussian beam. The half width of
the beam at x = 0.5 m, Figure 5.1B, is found to be 8.47 µm, in good agreement with the
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Figure 5.1: Figures A and C show the intensity and phase of a Gaussian beam at the beam waist,
x = 0. Similarly, Figures B and C show the intensity and phase at x = 0.5 m. Note that in the areas
where the intensity I ≈ 0 the phase is not meaningful. The wavelength is λ = 1.5 Å and the beam
waist is w0 = 3 µm.

calculated value W (x) = 8.5 µm taken directly from equation 3.5.
The phase in Figure 5.1C is planar, in agreement withR(x) having an infinite radius of

curvature from equation 3.6. In Figure 5.1D the blue line presents the phase of a Gaussian
beam at x = 0.5 m. The red dotted line is the phase plotted in a continuous and smooth
curve ignoring the jumps of 2π, the so-called unwrapped phase. The radius of curvature is
positive in agreement with R(x), of equation 3.6.

The wavefronts of the Gaussian beam will change with x according to R(x). Figure
5.2 presents the wavefronts of Gaussian beams at selected x planes. The dotted lines have
negative x-values and have negative curvature. Similarly, the full lines are calculated from
positive x-values and are shown to have positive curvature. The phases are plotted in
a region where the corresponding intensity I/I0 > 10−10, indicating the region where
the phases are meaningful. For bigger |x| the region in which the phases are meaningful
increases indicating that the beam waist W (x) correctly is increasing. From Figure 5.2 it
can be seen that the red lines from |x| = xR have the largest absolute curvature, which is
also in agreement with R(x) from equation 3.6.

5.2 Reflection of a Gaussian beam by a thin film
In many practical applications the case of stratified media is present and scattering from
all interfaces must be considered [30]. The reflection amplitude for a single thin film of
thickness ∆ on a substrate was derived in section 2.3, equation 2.24. The multilayered
structure is visualized in Figure 2.2. As argued in section 3.1 the reflection amplitude may
be inserted directly into the equation for the optical field of a Gaussian beam, equations
3.11 and 3.13.

Figures 5.3A and 5.3B show the reflectivity of a plane wave and of three Gaussian
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Figure 5.2: Wavefronts of a Gaussian beam at selected x planes. The dotted and full lines corre-
spond to negative and positive x, respectively. Wavefronts with the same colour represent a Gaussian
beam at the same |x| and will have equal curvature with opposite sign. The phases are drawn in a
region where the corresponding intensity is I/I0 < 10−10 and are therefore terminated at different
z. x = 0 in black, x = ±0.05 m in green, x = ±xR ≈ ±0.19 m and x = ±0.5 m in blue.

beams when being reflected by a thin film of thickness ∆ = 60 nm on a substrate. The
plane wave is plotted in blue and the three Gaussian beams of waist 3 µm, 0.3 µm and 0.1
µm are plotted in orange, green and red, respectively. Figure 5.3A is zoomed in on smaller
incident angles α while Figure 5.3B shows a bigger range of incident angles in addition to
being logarithmically scaled. Both figures show oscillations corresponding to interference
from the two interfaces [2].

The dips at 0.160◦ and 0.240◦ in Figure 5.3A correspond to the critical angles of
the thin film and the substrate, marked with black and red dotted lines respectively. The
Gaussian with beam waist 3 µm is perfectly following the shape of the reflectivity of the
plane wave, including the behaviour around these dips. However, the Gaussian beams with
beam waist 0.3 µm and 0.1 µm are smoothing out the sharp dips.

In Figure 5.3B the oscillations caused by film thickness are clearly visible. They are
known as Kiessig fringes [2]. Similarly to Figure 5.3A, the Gaussian beams are smoothing
out the oscillations causing the oscillations to be barely visible for the Gaussian beam with
beam waist 0.1 µm. Its reflectance is more similar to that of a plane wave being reflected
on a single, flat surface. A plane wave being reflected on the interface 0 to 2, vacuum to
substrate, is shown as black dotted lines in Figure 5.3B as a comparison. Since the Gaus-
sian beam with beam waist 0.1 µm have lost most of the multilayer reflectivity features
and show more similarities with a plane wave reflecting on a single interface, it indicates
that the Gaussian beam with waist 0.1 µm is not suitable for reflectance measurements of
multilayered structures with ∆ of the same magnitude.

A Gaussian beam will in the limit of a large beam waist have a narrow angular spectrum
where only a few plane wave components have a non-negligible contribution. In this limit,
the behaviour of a Gaussian beam should be close to that of a plane wave. The reflectivity
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Figure 5.3: Reflectivity of an organic thin film on a glass (SiO2) substrate as a function of incident
angle αi. A plane wave is plotted in blue and compared with Gaussian beams with beam waist 3
µm, 0.3 µm and 0.1 µm plotted in orange, green and red, respectively. A) The critical angles of the
film and substrate marked as black and red dotted lines. B) The reflectivity of a plane wave from
vacuum (0) to the substrate (2) is marked as a black dotted line. The vertical axis is logarithmically
scaled and is shown for a bigger interval of incident angles in A. The values used in these plots were:
δFilm = 3.9 · 10−6, βFilm = 2.5 · 10−8, δSubstrate = 8.8 · 10−6, βSubstrate = 11.9 · 10−8, film
thickness ∆ = 60 nm and wavelength λ = 1.5 Å.

of the Gaussian beam with waist w0 = 3 µm corresponds well with the reflectivity of the
plane wave, see Figures 5.3A and 5.3B. This similarity indicates that in the boundary of a
big beam waist our proposed method of using the plane wave reflection amplitude directly
in the equation for the Gaussian beam is valid.

For practical purposes the reflectivity will not reach one at grazing angles. The experi-
mental sample size is usually of the order 1 cm. In addition, beams at laboratories outside
of synchrotrons have normally beam waists of magnitude 100 µm resulting in footprints
of the order cm. For a beam with beam waist 100 µm incident at αi = 0.1◦ the footprint
is 5.7 cm, which is of the same order as the sample size. When the footprint is bigger
than the sample size, parts of the beam will not hit the sample and will therefore not be
reflected. As a consequence the relative intensity I/I0 will not reach one.

5.3 Scattering of a Gaussian beam on nanoscale islands
in the GISAXS geometry

Let us now consider an island of hemi-spherical shape on a substrate in the GISAXS
geometry. Section 2.5 outlines the derivation of the DWBA island form factor and the
resulting differential cross section. A schematic of the hemi-spheroid is shown in Figure
2.7. The absolute square of the DWBA form factor, |F |2, is presented in Figure 5.4A
and 5.4B. Figure 5.4A ranges over qz and qx while in Figure 5.4B qx is kept constant.
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Figure 5.4: The form factor |F |2 of a island of hemispherical shape. A) The form factor |F |2
varying with qz and qx. B) The form factor |F |2 as a function of qz while qx = 0 is kept constant.
The following numerical values were used: the height and radius of the hemi-spheroid R = H =
W = 50 Å, αin = αc, λ = 1.5 Å and values for the index of refraction of the substrate δS =
5 · 10−5 and βS = 2 · 10−8.

The symmetry of the hemi-spheroid in the x direction can be found as symmetry in the qx
direction in Figure 5.4A. In the z direction the hemi-sphere is cut off making interference
patterns in the form factor that destroys the spherical symmetry. These can, as an example,
be observed as dips around (qz = 0.15 Å, qx = ±0.7 Å).

Figures 5.4A and 5.4B have a distinct peak at the qz corresponding to the critical angle
of the substrate αsc = αc = 0.18◦. According to Ref. [8] this peak is a result of sharp
variations between the incident and scattered reflection coefficients, rin0,1 and rsc0,1, close to
the critical angle. Known as the Yoneda peak, its shape is dependent on the incident angle
αin and the refractive index of the substrate ns.

As mentioned in section 2.5 the reflection amplitude is proportional to the square root
of the differential cross section given unchanged geometries in the experiment. To com-
pare the scattering of a plane wave with Gaussian beams, the plane wave reflection ampli-
tude is inserted directly into the equations for the Gaussian beam, equations 3.11 and 3.13,
as argued in section 3.2. Figure 5.5 compares the intensity of a plane wave with Gaussian
beams with beam waist w0 = 3 µm , w0 = 0.3 µm and w0 = 0.1 µm. The Gaussian beam
with beam waist 3 µm is plotted with red dots in Figure 5.5 and can be seen to follow
the plane wave very well. It therefore suggests that our proposed method for finding the
reflection amplitude for the Gaussian beam in the limit of a big beam waist is reasonable.

From the reflectivity of the plane wave and Gaussian beam with beam waist 3 µm in
Figure 5.5 the position of the Yoneda peak can be determined. As a result, the critical
angle of the substrate can be found. The position of the peak is more difficult to determine
for the Gaussian beams of beam waist 0.3 µm and 0.1 µm since the peak is less sharp.
Additionally, the oscillations are damped, similarly to the multilayered case.
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Figure 5.5: Relative intensity of three Gaussian beams and a plane wave. The Gaussian beams are
plotted in red, blue and purple having beam waists of w0 = 3 µm , w0 = 0.3 µm and w0 = 0.1
µm respectively. The plane wave is plotted in black. Values used in producing the figure: δIsland =
3.9 · 10−6, βIsland = 2.5 · 10−8, δSubstrate = 5 · 10−6, βSubstrate = 2 · 10−8, and wavelength
λ = 1.5 Å.

5.4 Reconstruction of 1D surface morphology by coher-
ent GISAXS

This section will investigate the Gerchberg-Saxton algorithm for reconstruction of surface
morphology in one dimension, as described in sections 4.3 and 4.4. A known surface mor-
phology will generate the speckle intensity I(qx, qz) needed for the algorithm. Initiating
the algorithm is done with random phases generated from a uniform distribution. The
height profile reconstructions from the Gerchberg-Saxton algorithm are calculated with a
code based on a script in Ref. [24].

First, the illumination function B(x) defined in section 4.3 is illustrated. Figure 5.6A
shows an example of a height profile h(x) of a 1D surface morphology. Figure 5.6B illus-
trates the illumination function B(x) as defined in equation 4.9 in section 4.3. Combining
Figures 5.6A and 5.6B results in Figure 5.6C, the product B(x)h(x).

Second, the relationship between the height function h(x) and the speckle intensity
will be studied. The relationship is described by equations 4.2, 4.7 and 4.8 from sections
4.1 and 4.3. Figure 5.7A shows a simulated height profile consisting of a parabolic dip
with added noise and the corresponding speckle intensity is shown in Figure 5.7B. The il-
lumination function B(x) was the same as illustrated in Figure 5.6. Note that the footprint
L was considered to be constant, i.e. not dependent on qz . As mentioned in section 4.1,
the oversampling ratio must be σ > 2 to ensure that the speckle pattern is oversampled.
We have used σ = 4 in making Figure 5.7. The difference in the scale of qz and qx comes
from the grazing incidence making the footprint very elongated compared to the beam
waist, as mentioned in section 4.3.

Each I(qx)|qz corresponds to a scan over the height profile at a constant angle of
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Figure 5.7: A) An example of a height function of parabolic shape added noise. The parameters
used in the illumination function B(x) was w = 6 µm and L = 500 µm. B) The intensity I(qx, qz)
corresponding to the height profile in A, logarithmically scaled. Note that we have considered the
footprint L to be constant.

incidence αi given by qz = 4π
λ sin(αi). Since I(qx)|qz is the input to the Gerchberg-

Saxton algorithm, the reconstructions should converge toward the same height profiles.
Figure 5.8 compares intensities at different qz and their reconstructions. Figures 5.8A and
5.8C give the intensities I(qx)|qz at qz = 0.05 Å

−1
and qz = 0.10 Å

−1
, respectively.

Figures 5.8B and 5.8D both show four reconstructions of the height profile. Since the
footprint L is dependent on qz the length of the height profile will vary accordingly. Note
that some of the reconstructions are almost identical. Figures 5.8B and 5.8D indeed shows
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Figure 5.8: A) and D) Intensity I(qx) at qz = 0.05 Å
−1

and qz = 0.10 Å
−1

. B) and D) Height
profile reconstructions gained from the intensity measurement in A and C, respectively. Note that
the footprint L is dependent on qz . In addition, some of the reconstructions are almost identical. The
parameters used in the illumination function B(x) was w = 1 µm.

that by using different I(qx)|qz the reconstructions will converge toward the same height
profiles.

During the reconstruction process the error was kept track of. The error was calculated
using Ek from equation 4.13. In the reconstruction process we sat an error tolerance to
be 10−10. However, the calculations were stopped if they reached a maximum number of
iterations set to 104. The error of each height profile reconstruction in Figure 5.8 is written
in the title of each figure. After 104 iterations the reconstruction estimates in Figures 5.8B
and 5.8D have errors in the order of 10−5 − 10−4.

As mentioned in section 4.4 an ambiguity when doing phase reconstruction is the ap-
pearance of a constant offset in the phase. Since the intensity is invariant of this constant
offset, we choose to define φ(0) = 0. Another ambiguity mentioned in section 4.4 con-
cerns the dual solution. A symmetrical, one-dimensional height profile will according to
equation 4.14 have a dual solution that is the reflection of the correct solution upon the
x axis, h̃(x) = −h(x). Reconstructions 1 and 4 in Figure 5.8B are clearly converging
towards the dual solution. Similarly, reconstruction number 1 in Figure 5.8D converges
towards the dual solution.

Figure 5.9 presents two different height profiles with four reconstructions each. In Fig-
ure 5.9A the height profile is a Gaussian function while in Figure 5.9B the height profile
is a sinusoidal function. Both height profiles have been added noise from a normal distri-
bution. Note that some of the reconstructions are almost identical. The reconstructions in
Figures 5.9A and 5.9B have errors in the order 10−3 and 10−7, not reaching the previously
set error tolerance within the set maximum number of iterations. The convergence will be
discussed more later in this section.

The ambiguity regarding the dual solution is a problem for the height profiles in Fig-
ure 5.9 as well. Comparing with the known height profile it can be concluded that re-
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Figure 5.9: Reconstructions from known height profiles. The known height profiles are a A) Gaus-
sian function and a B) sinusoidal function added noise from a normal distribution. Note that some
the reconstructions are barely visible behind other reconstructions. qz = 0.05 Å

−1
and d = 1 µm

was used for the reconstructions.

construction number 1, 2, 3 and 4 in Figure 5.9A and number 1 and 2 in Figure 5.9B are
reconstructions of the dual solution given by equation 4.14.

The error of the reconstructions in Figures 5.8 and 5.9 are varying between 10−3 and
10−7. Even lower reconstruction errors might have been reached for a higher number of
iterations. A computer with Intel Core i5 CPU with 1.5GHz used approximately 5 seconds
to do 104 iterations with GS, so the number of iterations can easily be increased. How-
ever, the error was seen to stagnate well before 104 iterations, so it is therefore believed
that the solutions converged towards a local minima. Figure 5.10A shows four height re-
constructions for a given parabolic height profile and Figure 5.10B presents their errors.
The error of the reconstructions stagnated around 10−4. Note that the difference in the
convergence behaviour depends on the initialized phase. The error decreases quickly in
the beginning, but stagnate on a nonzero value. This is according to Ref. [24] a weak-
ness in the Gerchberg-Saxton algorithm. Other reconstruction algorithms converge faster
[21; 44], which will be investigated in the next section.

In Figures 5.8B, 5.8D, 5.9B and 5.10A the reconstructions have errors between 10−4

and 10−7. However, the reconstructions all have the same shape qualitatively, both com-
pared to each other and to the known height solution. Some reconstructions are dual
solutions, but as discussed previously in this section and in section 4.4, these are simply
the correct height function reflected upon the x axis. A qualitative convergence threshold
can therefore be defined to indicate whether a reconstruction has converged to a shape
similar to the known height profile or to other reconstructions. Note that similarities to
other reconstructions are of great importance as we in most cases do not know the height
profile. To determine the qualitative convergence threshold, we study Figure 5.9A as well.
Reconstructions 2, 3 and 4 have errors in the order 10−3 and are seen to oscillate, being
qualitative widely different from the known Gaussian height profile. However, reconstruc-
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Figure 5.10: A) Presents four reconstructions from a parabolic height profile added Gaussian noise.
B) The error of the corresponding reconstructions from Figure A. Note that both axes are loga-
rithmically scaled. The reconstruction cycles were stopped when reaching a maximum number of
iterations.

tion number 1 have an error in the order 10−5 and is seen to be qualitative similar to the
dual solution, obtained from equation 4.14. This indicates that we can define a conver-
gence threshold of 10−4. Reconstructions with error equal to or below the threshold can
qualitatively determine the shape of the height profile.

5.5 Comparison with other reconstruction algorithms

Section 5.4 showed that the Gerchberg-Saxton (GS) algorithm often stagnates for a long
time before reaching convergence, if convergence is reached at all. Next, we will study the
two algorithms introduced in section 4.5 for speeding up the convergence, the Hybrid
input-output (HIO) algorithm and the combination algorithm GS/HIO. The algorithms
were compared using the error Ek given by equation 4.13. According to Ref. [39] a
less loose support, defined by the parameter w in B(x), will improve the reconstruction
ability of the iterative algorithms. A stronger support will therefore be used further on.

In the beginning of the previous section, a height function consisting of a parabolic dip
with added noise was discussed using the GS algorithm. The same height function was
studied when obtaining the reconstruction errors presented in Figure 5.11. Both the GS
and HIO algorithms have stagnated with errors around 10−2. HIO is slightly better than
GS, however, it still does not generally converge to a global minimum [44]. One cycle
of the GS/HIO algorithm consists of 1 iteration of GS followed by 99 with HIO, denoted
(1,99). The error from the GS/HIO algorithm is produced by doing a number of cycles.
The error from the GS/HIO algorithm decreases rapidly. After 700 iterations the error is
oscillating around 10−29, where it can be concluded that the reconstruction algorithm has
reached convergence.
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Figure 5.11: Error from reconstruction of a parabolic height function added Gaussian noise. The
parameters used in B(x) was w = 0.01 µm and L = 500 µm. The GS algorithm is plotted in blue,
HIO in red and the combination GS/HIO in green. In HIO and GS/HIO the parameter β = 0.5 was
used. One cycle in GS/HIO consisted of one iteration of GS and 99 of HIO, denoted (1,99).

Despite GS and HIO on their own stagnating early, Figure 5.11 shows that a combi-
nation of the two produce successful reconstructions. According to Ref. [21] it has been
observed that the HIO improves the reconstructed surface morphology rapidly even though
the error decreases only slightly. A few iterations of GS following HIO has been found to
decrease the error quickly until it becomes more consistent with the quality of the recon-
structed surface morphology. Even though Ref. [21] only considers reconstruction from a
single intensity measurement, we can clearly see from Figure 5.11 that a few iterations of
GS is a key step in decreasing the reconstruction error in the two-intensity measurement
problem as well. Each drop in the reconstruction error corresponds to an iteration of the
GS algorithm. After 101 iterations the error has dropped to 10−6. Then it slowly decreases
for a few iterations until it drops sharply again at the 201st iteration. Since the cycle of
iterations consists of 1 iteration of GS and 99 of HIO, the sharp drops indicate when a GS
iteration has been completed.

Two questions that arises from Figure 5.11 are i) how changes to the parameter β
will affect the convergence and ii) how the behaviour of the error convergence would
change if the cycle of iterations of GS and HIO was changed. Figure 5.12 presents the
mean and standard deviation of different values of β. The values are calculated from 100
reconstructions initiated with different phases. Figure 5.12 show that both the standard
deviation and the mean changes greatly when varying the parameter β. Refs. [21] and
[42] conclude that a value of β between 0.5 and 1 produces good results for the problem
of one intensity measurement. Ref. [44] assumes that the interval is sufficiently good for
the case of two intensity measurements as well. Figure 5.12 indicates that this is partially
correct. The error of β < 1.75 is oscillating rapidly, both with respect to the mean and
standard deviation. However, outside of the proposed interval of (0.5, 1) by [42; 21] the
error shows a small tendency to increase, especially for β > 1.5. Using β ≈ 2 even
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Figure 5.12: The log10 of the error after 1000 iterations of the GS/HIO algorithm with different β.
Errorbars in blue show the standard deviation and the red dots present the mean value. The values
were calculated from 100 reconstructions with different initial phases. The cycle of iterations in the
GS/HIO algorithm was (1,99).

the GS/HIO algorithm will stagnate. Keep in mind that these measurements were done
using the GS/HIO cycle (1,99), and that these errors may be specific to this combination.
Nevertheless, β = 0.4 will be used in further calculation since both the mean and standard
deviation are very small.

Furthermore, changing the length and composition of the GS/HIO cycle will affect the
convergence behaviour. Figures 5.13A and 5.13B presents how the error changes when
changing the number of iterations of HIO and GS respectively. Both Refs. [42] and [44]
use a number of iterations of HIO between 20 and 100 to solve the one and two intensity
problems. This interval is therefore studied in particular, as seen in Figure 5.13A. The
changes in both mean and standard deviation are big relative to the changes in Figure
5.12. For example, the mean value for nHIO = 49 is approximately 10−16 while the
standard deviation is 10±12. Below the mentioned interval the mean and standard deviation
increases. Figure 5.13A shows that the best interval for studying the parabolic surface
morphology is nHIO ∈ (79, 199).

Similarly, Ref. [42] suggests an interval of 5 to 10 iterations of GS, nGS , while Ref.
[44] concludes that for their case no significant improvement is seen by changing the
number of GS iterations while keeping the total number of iterations in the cycle constant.
Figure 5.13B studies how the error changes when changing nGS while keeping the cycle
length nHIO+nGS = 100 constant. The error variation in the mean and standard deviation
are huge, varying rapidly from one value of nGS to the next. However, inside the interval
nGS ∈ (8, 13) both the mean and standard deviation are rather small.

In Figures 5.12, 5.13A and 5.13B only one of the parameters β, nHIO and nGS have
been changed at a time. Figure 5.12 would look different for a different cycle in the
GS/HIO algorithm than (1,99) and similarly for Figures 5.13A and 5.13B. The optimal
combination for a parabolic dip using the mentioned parameters in the illumination func-

40



0 50 100 150 200 250
nHIO

35

30

25

20

15

10

5

0

Er
ro

r, 
lo

g1
0

A

2 4 6 8 10 12 14
ngs

30

25

20

15

10

5

0

Er
ro

r, 
lo

g1
0

B

Figure 5.13: The log10 error after 1000 iterations of the GS/HIO algorithm. The value β = 0.4
was used. A) The number of HIO iterations, nHIO , are changed while the number of GS iterations,
nGS = 1, is kept constant. B) nGS is changed while the cycle length nHIO + nGS = 100 is kept
constant.

tion can be found by changing all three parameters simultaneously. The best combination
of β, nHIO and nGS is then found by studying the minimum of sum of the mean and
standard deviation from 100 reconstructions, each with 1000 iterations. The combination
that yields the smallest mean and standard deviation will then give the most optimal com-
bination. For a parabolic dip with w = 0.01 µm and L = 500 µm the best combination
was found to be β = 0.3, nHIO = 170 and nGS = 20. The optimal combination for a
sinusoidal curve and a Gaussian function could be found in a similar way. However, as the
calculations were rather costly numerically, this was not prioritized within this thesis.

In the previous section we noticed that a reconstruction with error of the order 10−4

was qualitatively similar to the known height profile and the other reconstructions. It was
therefore considered to have reached qualitative convergence. Due to the sheer number
of reconstructions studied in Figures 5.12 and 5.13 we have not been able to study their
qualitative behaviour directly. However, it is reasonable to believe that most of the recon-
structions reached qualitative convergence as most of the sum of the mean and standard
deviations were below the threshold value of 10−4.

5.6 Reconstructing the surface morphology in GISAXS
geometry

In the previous two sections reconstruction algorithms were explored using simulated
height profiles. Lastly in this thesis, the reconstruction algorithms will be applied to the
form factor of an island in the GISAXS geometry as derived in section 2.5. The differ-
ential cross section in the GISAXS geometry was in section 5.3 explored using an island
of hemi-spherical shape. As argued in section 2.5 the intensity is proportional to the dif-
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Figure 5.14: The form factor |F |2 of an island of hemi-spherical shape withR = W = H = 50 Å.
A) Born approximation (BA). B) Distorted wave Born approximation (DWBA) with Yoneda peak at
qz corresponding to critical angle.

ferential cross section, which is itself proportional to the absolute square of the total form
factor. The form factor can therefore be used as an input for the reconstruction algorithms.

First, the form factor of a hemi-sphere in the GISAXS geometry and the intensity of
a parabolic height profile are compared. Figure 5.14A and 5.14B show the form factor of
the hemi-sphere in the GISAXS geometry using the BA and the DWBA. The Yoneda peak
is visible only in Figure 5.14B as it is a result of differences in the reflection amplitudes,
as mentioned in section 5.3. Figure 5.15B shows the intensity of the parabolic height
profile in Figure 5.15A. Note that the colorbar values are slightly different to Figures
5.14A and 5.14B to increase the visibility. At small values of qz , the intensity from the
BA is somewhat similar to the intensity of the parabolic height profile. Otherwise, the
intensities are quite different.

Since the intensities are quite different, we expect the reconstructions to go badly. In
hope for best result the form factor from the BA is used for reconstruction as it is the most
similar to the intensity for a parabolic shape. Figure 5.16 show reconstructions for different
L and qz . In addition, different reconstruction algorithms with different parameters has
been used. In all reconstructions the maximum number of iterations were set to 104. The
reconstruction error for all reconstructions in Figure 5.16 were oscillating badly around 1.
Surprisingly, reconstructions 2 and 4 in Figures 5.16A-C and reconstruction 4 in Figure
5.16D have shapes similar to a parabolic dip. However, the heights and widths are not as
expected.

The phase reconstruction method and the DWBA and the BA are models describing a
rather complex problem. The former assumes a homogeneous surface morphology with
index of refraction nS as illustrated in Figure 5.17B. In the derivation of the DWBA and
BA form factor, outlined in section 2.5, an island is placed on a substrate with correspond-
ing indexes of refraction nI and nS . This is visualized in Figure 5.17A. Additionally, the
form factor, equation 2.29, only takes into account nI and its deviation from the index of
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Figure 5.16: Reconstructions from the form factor of a hemi-spherical island ofR = W = H = 50

Å using only the Born approximation. A) L = 150 Å, qz = 0.03 Å
−1

. B) L = 100 Å, qz = 0.03

Å
−1

. C) L = 150 Å, qz = 0.12 Å
−1

. D) L = 100 Å, qz = 0.12 Å
−1

. All reconstructions are done
with 104 iterations using the following algorithms: 1) HIO (β = 0.5), 2) GS, 3) GS/HIO (β = 0.3,
nGS = 20, nHIO = 170), 4) GS/HIO (β = 0.5, nGS = 5, nHIO = 95) followed by 200 iterations
with GS.
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BA

Figure 5.17: A) Homogeneous substrate with a parabolic peak having index of refraction nS . B)
Hemi-spherical island on substrate with indexes of refraction nI and nS , respectively.

refraction of vacuum, unity. nS is embedded into the reflection amplitudes rin0,1 and rsc0,1.
However, the contrast between nS and nI is also believed to be an important term in the
form factor.
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Chapter 6
Conclusion and outlooks

In X-ray imaging inversion of the scattering data is a comprehensive problem and amounts
to the problem of phase determination. Without the phase information a direct inversion
of the scattering data to reconstruct the scattering object is impossible. Possible phase
reconstruction techniques involve fitting experimental parameters to a model and the use of
iterative algorithms in coherent X-ray imaging. The former is built on the assumption that
the incoming beam is a plane wave and is in need of a correction of the beam divergence.
The latter utilizes oversampling in Fourier space to reconstruct the lost phase information.
A possible improvement to the data models is to discard the plane wave assumption in
favour of an experimentally more realistic beam, the Gaussian beam. The Gaussian beam
is described by its beam waist and corresponding divergence angle, needing no correction
for the beam divergence.

This thesis has investigated the reflection of the Gaussian beam using the angular de-
composition method. The intensity and phase of a propagating Gaussian beam was found
to be in good agreement with the mathematical expression derived from the Helmholtz
equation. When studying the reflection on a flat surface the angular decomposition method
enables us to study the reflection of each plane wave component using the Fresnel reflec-
tion amplitudes. The resulting reflected Gaussian beam is then a sum over the reflected
plane wave components. Extending to the study of reflecting surfaces of higher complexity
it was proposed that the reflection amplitudes could similarly be used when investigating
the reflected Gaussian beam. This thesis was limited to multilayered surfaces and islands
on substrates in the grazing incidence small-angle geometry. We have shown that in the
limit of huge beam waists the reflectivity in both cases are very similar to that of a plane
wave. Further work should investigate how to determine if this method works for a Gaus-
sian beam with an arbitrary beam waist. Gaussian beams with narrow beam waist were
found to lack important reflectivity details, suggesting that these Gaussian beams are not
suitable in reflectivity experiments.

Coherent X-ray imaging enables the phase information to be found given that the
diffraction pattern is oversampled. This thesis was limited to the study of surface mor-
phology of a rough surface in grazing incidence. In grazing incidence the footprint is
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elongated and will be approximately one dimensional. Applying an iterative algorithm to
the oversampled diffraction pattern will reconstruct the phase information and the surface
morphology can be found. The Gerchberg-Saxton algorithm was studied and used to re-
construct different surface morphologies, but was found to stagnate quickly. The Hybrid
input-output algorithm was found to perform slightly better than the Gerchberg-Saxton
algorithm. However, as with the Gerchberg-Saxton, the algorithm stagnated early. Ref.
[21] has observed that the reconstruction morphology improves rapidly using the Hybrid
input-output algorithm even though the error decreases little. By subsequently applying a
few iterations of the Gerchberg-Saxton algorithm, we have shown that the error decreases
rapidly. The combination algorithm was applied to a surface morphology of an island on
a substrate. Some of the reconstructions successfully retrieved the qualitative shape of the
hemisphere. However, the height and width of the hemispherical shape did not correspond
well with the size of the island.

Each reconstruction was initialized with random phases resulting in different solutions
with different reconstruction errors. Ref. [24] argued that constant initial phases gave
better result for the Gerchberg-Saxton algorithm in the case of centrosymmetric intensity
and density. Different initialization of the phases was not investigated during this thesis,
but could be a possible continuation of this work.

An ambiguity that appears when doing reconstructions are the presence of a dual solu-
tion. Contrary to the discussion in Ref. [36], we were not able to verify the proper solution
using intensity measurements at different incident angles. Additionally, according to Ref.
[17] it is enough to oversample the diffraction pattern in two and three dimensions in order
to obtain a unique solution. Future work should therefore expand our study to investigate
two-dimensional surface morphology.
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