
Dynamic setup of IPsec VPNs in Service Function Chaining

[1]H̊akon Gunleifsena,∗, Thomas Kemmerich1,a, Vasileios Gkioulos1,a

aDepartment of Information Security and Communication Technology, Norwegian University of Science
and Technology (NTNU), Postbox 191, 2802 Gjøvik, Norway

Abstract

This article describes a novel mechanism for the automated establishment of dynamic Virtual
Private Networks (VPN) in the application domain of Network Function Virtualization
(NFV). Each hop in an NFV Service Function Chain (SFC) lacks the capability of per-
flow encryption, that makes the traffic flow in federated NFV environments vulnerable for
eavesdropping. Due to the possible lack of bidirectional data plane communication channels
between VNFs in an SFC, the Internet Security Key Exchange protocol (IPsec-IKE) is not
applicable inside a VNF. Hence, this article introduces an alternative to IPsec-IKE that is
specifically designed for NFV environments. This component is named Software Defined
Security Associations (SD-SA), which is shown through a proof of concept evaluation to
perform better than IPsec-IKE with respect to bandwidth and resource consumption.

Keywords: NFV; SFC; NSH; IPsec; IKE; SD-IKE; RESTconf

1. Introduction

The security mechanisms in Software Defined Networks (SDN) and NFV lack the capa-
bility to encrypt and isolate the end-user traffic between VNFs. Figure 1 exemplifies the
problem by describing a typical VNF Service Function Chain (SFC), where the network traf-
fic traverses multiple VNFs located at multiple service providers, while earlier work [1, 2, 3]
shows that the current NFV standardization attempts from ETSI [4] and IETF [5] do not
take VNF isolation into account in the SFC design.

Accordingly, an end-user who subscribes to VNF services from multiple services providers:
• Cannot end-to-end encrypt traffic, since the VNFs require to have access in order to

manipulate this traffic.
• Is not aware and in control of which service providers having access to the data traffic,

can potentially eavesdrop traffic and manipulate the route tables.
• Does not know if the VNFs are shared network services with other users, who can as

such access private data.

∗I am the corresponding author
Email addresses: hakon.gunleifsen2@ntnu.no ([1]H̊akon Gunleifsen ), thomas.kemmerich@ntnu.no

(Thomas Kemmerich ), vasileios.gkioulos@ntnu.no (Vasileios Gkioulos )

Preprint submitted to Computer Networks December 18, 2019



Earlier work [2], [1], showed that these problems could be resolved by introducing hop-
by-hop encryption per IP flow or per group of IP flows. This is enabled by deploying an
encryption application in front of every VNF within an SFC (Figure: 1). We showed that
this encryption application is typically a Virtual Machine attached to the Virtual Link [6],
particularly assigned for this function. These underlying encryption functions [1] can also
be perceived as regular VNFs. Furthermore, earlier work also showed an additional problem
with such an architecture. A service chain, following the NSH and SFC specification [6],
can have a different service path than the reverse service path. Consequently, a pair of
encrypting and decrypting VNFs in a service chain, do not necessarily have a bidirectional
communication channel on the data plane, where they can exchange keys. Hence, there
is a need for a new key exchange mechanism that is not dependent on a point-to-point
bidirectional communication channel. This particular lack of a data plane communication
channel and the need for flow-based encryption is specific to the application domain of NFV.
In this article we continue this work, focusing on the authentication and key distribution,
seeking to automate the set up of secure channels between VNFs.

The investigated research problem is similar in nature to the auto-configuration of VPN
setups [7], while based on the reviews of RFC 7018 [7], the earlier lack of use cases for such
a protocol might be the reason for this not being resolved. Yet, the emergence of SDN
and NFV technologies, highlight security use cases that necessitate renewed effort towards
this direction. Accordingly, a similar problem was also stated in a recent Internet draft
regarding the VNF registration process over the Interface to Network Security Functions
(I2NSF) [8],[9]. The draft shows that automation of Network Security Functions such as
VPNs is challenging. This is due to the lack of a secure key distribution mechanism and
the lack of support for multi-vendor and multi-operator use cases (I2RS [10]). This problem
is resolved by the solution presented in this article, by having a separate SDN controller
handling all key distributions in a multi-operator SFC.

Figure 1: Use case and possible adversarial placement

Figure 2 shows how the network topology can be simplified for the use case described
in Figure: 1, where it is assumed that one orchestration plane is capable of orchestrating
the distribution of tunnel connection parameters and keys. The simplified figure shows how

2



an IP packet from the end-user is routed through a network, with Network Service Header
(NSH) [11] transport and encryption enabled per flow. Accordingly, an encrypted tunnel
per flow between every VNF can ensure that end-user traffic traversing an SFC can only be
accessed by the related VNFs, assuring that only these VNFs have the encryption keys to
access this component of the data-flow.

Figure 2: Network topology simplification

This paper introduces a mechanism for the isolation and encryption of data traffic be-
tween VNFs in a federated NFV environment. We introduce a method for mutual and
secure authentication of encryption functions in an SFC in order to establish a secure chan-
nel between them. An architecture of a site-to-site VPN setup with a new mechanism to
distribute both initial keys and cipher keys is presented, while in addition to the theoretical
aspect of the new protocol, the paper also presents the empirical results from experiments
on the implemented design.

The main contributions in this article are:
• A set of requirements for NFV services running isolated services.
• A new architecture of a key exchange mechanism in distributed NFV environments.
• A performance and security analysis of the security mechanism proposed.
The remainder of this article is structured as follows. The most related work concern-

ing VPN authentication follows this introduction. Section 2 defines the prerequisites, con-
straints, topology assumptions and requirements that are needed in order to apply the new
authentication mechanism. The section also correlates the requirements with existing alter-
natives. The architecture in Section 3 suggests a design for automating VPN configurations,
while Section 4 shows how this is implemented. Section 5 demonstrates a proof of con-
cept experiment with performance tests. An evaluation of the performance test results is
presented in Section 6, while Section 7 concludes this paper.

1.1. Related work

NFV allows Internet Service Providers to provide flexible network service deployments.
However, recent research [12] have shown that this new technology should be secured from

3



both the service provider and the end-user perspective. NVF surveys [13], [14], [15] have
pointed out multiple threats and vulnerabilities in NFV, where end-user privacy is an open
issue. Due to the fact that VNFs are acting as middleboxes and require access to the data-
content, makes end-to-end encryption difficult. Multi-Context TLS [16] was developed to
solve this issue. However, the protocol is insecure [17] and it provides neither flow-based
encryption nor SFC isolation. Hence, another approach to this problem is to enable the
NFV infrastructure to provide hop by hop encryption and automatically exchange keys and
set up secure channels between the VNFs. Our previous work [3] outlined the top-level
architecture of such an authentication and key distribution protocol, and was motivated
by the lack of security features in the architectural guidelines from ETSI standardizations,
IETF, and academic research [3], since no protocol was found supporting the (1) authenti-
cation of VNFs, (2) negotiation of keys and (3) dynamic setup of secure VPN connections
between VNFs. However, the principles of such requirements are similar to the Generic
Bootstrapping Architecture (from 3GPP) [18] and Kerberos [19]. The main difference to
this research problem is that it is the cryptoVNF and not the end-user that is involved in
the authentication process.

In networks controlled and provisioned by operators, it is common to use a management
plane or a control plane to provision the network topology. Therefore it is also possible to
run the authentication process in a separate control plane domain. This is similar to the
separation of the control and data plane in SDN where SD-IKE [20] is commonly utilised.
However, SD-IKE does not describe how to securely distribute the keys between the network
controller and the VNF, neither how the VNFs can preserve SFC packet headers during
encryption, nor how it performs compared to regular IPsec setups.

This lack of SFC header preservation is also reflected through our previous work [2],
showing that in contrast to the data, the SFC headers cannot be encrypted in order to
enable the routers to perform SFC routing of the encrypted data. Therefore, the SFC
header must be located between layer 2 and layer 3. Hence, encryption of layer 2.5 or layer
3 is needed in order to not interfere with the end-user data, where layer 3 encryption by
the use of IPsec [21] in transport mode is preferred. IKE [22] and IKEv2 [23] are the main
protocols used for key negotiations for IPsec, but currently, they require modifications in
order to support a dynamic NFV environment with IKE over NSH.

Due to the backbone network in the examined scenarios (Figure: 2), encryption should
ultimately be performed on the NSH layer. However, encryption on the NSH layer has cur-
rently no standard, except for securing the integrity of the NSH headers [24]. Furthermore,
encryption on the upper transport layer by the use of SSL/TLS such as OpenVPN [25] is
also possible. However, the end-to-end transport layer between VNFs is distinct from the
end-user transport layer, creating additional overhead and potential packet segmentation or
delay. Also, TLS based tunnelling is often based on endpoint attributes, such as an URL
identity, something that does not fit to a site-to-site VPN setup. Similarly, the Wireguard
[26] protocol that is an alternative to OpenVPN and IPsec, also simply encapsulates en-
crypted packets in a UDP header. Yet, Wireguard and OpenVPN have no good solution
for key distribution and key derivation, as one key pair is used in the long-term and for all
communication [27].

4



Furthermore, IETF proposed an Interface to Network Security Function (I2NSF) [28],
to enable the exchange of secured messages between the VNFs and a security controller.
This approach focuses on an out-of-band interface to operate the VNF, but this interface
lacks security functions for authenticating and validating the VNFs. Hence, another key
feature of our adversary model, is the characteristics of a separate control and management
plane in NFV. This article adopts elements from authentication and key distribution in
related autonomous control plane backbone networks [29], [30] to an NFV environment.
Also, principles from distributed authentication protocols in Machine-to-Machine networks
[31] and ad-hoc networks [32] [33] can be adapted to the NFV domain. Accordingly, the
requirements both for authentication and key negotiation are defined in Section 2, in order
to classify how the existing authentication protocols match the corresponding operational
requirements.

Other related studies can also be identified in the literature, including Dynamic VPN
architectures [34], Distributed VPN systems over peer-to-peer networks [35] [36] and security
protocols for distributed systems [37]. All these articles refer to similar problems, but within
distinct application domains, and although relevant, the proposed solutions are not directly
applicable to the specifics of federated NFV environments.

2. Extraction and Discussion of Requirements

The core requirement for the examined scenario is a centralised system that can dynam-
ically configure pairwise VPN channels between VNFs. IPsec is the most common approach
for supporting encryption, wherein other environments, the two parties have a preshared key
or a set of PKIs that is used to negotiate an encryption key by the use of the IKE protocol.
IPsec is also selected as the encryption protocol for NFV. Yet, a mechanism is required in
order to support the dynamic setup of IPsec channels, since the nature of VNFs in an NFV
environment differs from normal endpoints in an IPsec channel. These differences are based
on the following constraints of the NFV environment:

• It is the encrypting service function and not the end-user that act as VPN clients.
Hence, the VPN setup is perceived as a site-to-site VPN setup, where the sites (or
gateways in this case) are VNFs with encryption capabilities. From an end-user per-
spective, it should be of no concern how the dynamic VPN is provided, because neither
the end-user nor the end-user device are participating in the process.

• The VNFs dynamically change their connection topology according to the specified
SFC. At one point in time, VNF A is connected to VNF B, while at another point
in time VNF A is connected to VNF C (Figure: 3). Both a network failure or a
user-initiated request can trigger such a change in the service chain, at which time
a centralised service such as an Authentication Centre (AuC) must inform the VPN
gateways to reconfigure the VPN channels and derive new encryption keys.

5



Figure 3: The dynamic behaviour of VPN tunnels

• It is the orchestration system (OSS) that defines the service chain and therefore con-
trols the topology. Hence, the OSS must distribute VPN tunnel properties to the
VNFs (which are acting as VPN peers). Therefore, the setup of the VPN peers must
be initiated from a centralised unit such as an SDN controller or the OSS.

• In NFV environments, VNFs are enabled by containers or virtual machines, which
operationally have a slow startup (especially a virtual machine). Therefore, it is not
preferred to boot up VNFs on demand every time a service chain changes. Hence, the
encryption functions must be pre-initiated for every compute node that contributes
in an SFC. Also, the encrypting service function must have a secure channel to the
Authentication Centre (AuC).

• A VNF application running encryption does not have to consider routing. The un-
derlying NSH/MPLS layer is ensuring that the packet is routed correctly. Hence, the
VNF encryption application can route all traffic through the application.

These constraints and functional requirements result in a set of requirements specific to
the processes of authentication and key negotiation.

• A trusted third party: The involved parties must be authenticated (VNF-VNF and
VNF-AUC), preferably with the use of a dedicated authentication server.

• The authentication and connection properties are dependent on the SFC. Hence,
context-based authentication is required, in order to determine the physical lo-
cation and SFC belonging of the VNFs.

• The AuC must be able to authorise service requests after authentication. This implies
distinguishing and isolating service requests from different clients. For example,
if a session between the VNFs and the AuC ensures confidentiality for transporting
the service request, the AuC application also has to associate the incoming service
request with this session. This ensures that a VNF cannot inject service requests for
another VNF.

• Due to the SFC transport between VNFs, a dedicated control channel, typically pro-
vided by the backbone network, must be used for the authentication protocol. This
control channel is preferable since the setup of VPN tunnels and backup tunnels should

6



not be dependent on the NSH/MPLS tunnel, while this communication must be car-
ried by the IP.

• It is the VNF that has to initiate the authentication process since it must announce
its presence. However, it is the AuC that must initiate the setup of an IPsec channel
between two VNFs, since the AuC is the party that knows which VNFs that are
required by the SFC. For that reason, the authentication protocol needs to support
both server-side and client-side initiated authentication.

• Each VNF must be uniquely identified, with the identifier being pre-provisioned from
the orchestration system to both the AuC and the VNF. The VNF identifier and
the key are considered equivalent to a username and password pair.

• Due to the dynamic topology of the VPN channels, the corresponding keys cannot
be static. This implies that in addition to the pre-provisioned static keys, additional
keys for tunnel setup between the VNFs must be dynamically derived. After an initial
authentication between the VNF and the AuC, these derived keys must be transferred
securely to the VNFs. However, the initial keys used in the initial authentication must
also be protected from eavesdropping. Hence, tickets or random numbers are needed
in order to protect these credentials with the use of confidentiality mechanisms
during key derivation.

• When a VNF is authenticated by a third party, the protocol must supply the VNF
with a remote connection gateway for VPN setup.

Table 1 maps these requirements to the properties and supported functions of existing
authentication protocols.

Point to Point Protocols (PPP) such as PAP [38], CHAP [39] and MSCHAP [40] are
mainly designed for link layer authentication and do not focus on key distribution from
a third party. These methods are also often used in AAA protocols such as RADIUS[41]
and TACACS[42], reflecting point-to-point client-server authentication. Protocol overlay
frameworks, such as EAP[44], have been developed to use an underlying protocol to carry
the EAP messages. This is also typically designed to be used when IP is not available
and there is a need for carrying authentication messages over multiple link-layer hops. An
authentication method connected to layer 3 or layer 2.5 encryption is the main objective
of this article. IPsec authentication variants have different methods for authenticating two
peers, such as IKEv1 [22], IKEv2 [23] or KINK [56]. However, they all assume that the peers
know the address of a remote peer before the authentication method starts, accordingly
necessitating their extension in order to fully satisfy the aforementioned requirements.

Hop-by-hop tunnelling can also be achieved by enabling tunnelling on the transport or
the session layer (layer 4/5). However, these hop-by-hop tunnels must not be mixed layer
4-7 data from the end-user such as SSL/TLS [47] layers. This implies that such tunnels must
be implemented as underlying hierarchical tunnels where IP is transported over a layer 4-7
tunnel, which would require additional underlying hop-by-hop IP tunnels and an overly-
ing orchestrating application. This additional overhead makes such tunnels non-preferable.
Furthermore, application-based authentication relies on authentication messages that are
encapsulated by application plane markup languages such by XML or REST messages. Ex-
amples of such protocols are OpenID and SAML, while these messages often rely on an

7



T
h

ir
d

p
a
rt

y
a
u

th

C
o
n
te

x
t-

b
a
se

d
a
u

th
.

S
er

v
ic

e
re

q
u

es
t

is
o
l.

S
u

p
p

o
rt

s
IP

tr
a
n

sp
.

S
er

v
er

si
d

e
a
u

th

V
N

F
id

en
ti

fi
er

K
ey

d
er

iv
a
ti

o
n

co
n

f.

R
em

o
te

co
n

n
ec

ti
o
n

a
tt

r.

PPP protocols 7 7 7 3 7 3 7 7
PAP[38], CHAP[39],
MSCHAP[40]

AAA protocols 7 3 7 3 7 3 7 7
RADIUS[41], TACACS[42],
DIAMETER[43]

Protocol overlays 7 3 3 3 3 3 3 7
EAP[44], PEAP[45],
PANA[45], LEAP[37]

IP layer 7 7 3 3 3 7 7 7
IKE-P1[22],
IKEV2-AUTH[23]

Transport and ses-
sion layer

7 7 3 3 3 7 7 7 TLS[46][47], DTLS[48]

Security applica-
tions

3 7 3 3 7 3 7 7 SAML [49], OAuth [50]

Generic boot-
strapping

3 3 3 3 3 7 7 7 EAP-AKA[18]

Orchestration
appl.

3 3 3 3 3 3 7 7
DMVPN[51], EAP-KMS[52],
GSAKMP[53]

SW Security fram-
works

7 7 7 7 7 7 7 7 SASL [54], GSS-API [55]

Key Management
Systems

3 3 3 3 7 3 3 7 KERBEROS[19], KINK[56]

Table 1: Authentication protocol

end-to-end transport mechanism, such as TLS, in order to ensure the confidentiality and
integrity of the messages. This does not resolve the underlying identification and authen-
tication problem where the VNFs do not know the remote endpoint and a URL does not
exist.

Another approach for orchestrating authentication is to distribute network configuration
through a network orchestrator, which is a common approach for many network vendors.
Cisco uses for instance Group Encrypted Transport (GET) [57] to distribute VPN configu-
rations from a server down to the clients, with multiple similar protocols and standards been
suggested for the distribution of such configurations [58],[51], [59]. Yet, these solutions only
distribute the initial keys, without having the capability of changing the configuration of
the VPN topology rapidly and dynamically. Furthermore, other IPsec extensions distribute
keys more efficiently [53],[60], but they can neither distribute information about the end-
points that need to be connected, nor rely on a third party being responsible for endpoint
configuration.

The dynamic key distribution is one of the most critical features in designing automa-
tion of VPN setup for VNFs. A relevant approach is to use a dynamic key distribution
protocol such as Key Management Systems that includes two-sided authentication such as
Kerberos [19] or GPAKE [61]. However, Kerberos has security properties which impede the
orchestration in a multi-domain environment [62], especially in cases where the remote VPN

8



peer must be received dynamically. Also, GPAKE has similar restrictions and does not have
the capability of uniquely identifying a VNF identifier. On the other hand, Kerberos has
an IPsec authentication extension named KINK [56] that makes it suitable for combining
it with IPsec with service-side authentication. However, the protocol only supports IKEv1
and it has no distribution of remote endpoints. Accordingly, no existing protocol was found
to fully satisfy the aforementioned requirements. Yet it was identified that a suitable so-
lution would be a framework around IPsec, that also enables a fast, dynamic, and flexible
key distribution. Furthermore, from the perspective of an NFV operator, an orchestrated
solution fitting into the NFV framework is preferable, such as an API based architecture
with principles from RESTconf [63].

3. Architecture

Based on these results, an authentication protocol and a key distribution mechanism
are suggested. Figure 4 explains the top-level operation of the protocol derived from the
aforementioned constraints, within a simplified scenario with 2 VNFs and an Authentication
Centre (AuC). The simplified process consists of VNF instantiation, VNF authentication and
VNF Configuration.

Figure 4: Simplified operation

We have based the proposed architecture on the principles of IPsec and RESTconf, build-
ing the framework around RESTconf in order to enable it to configure IPsec running inside
VNFs in a dynamic manner. Our main contribution is therefore an architecture that auto-
mates the setup of IPsec over RESTconf where the IPsec services are running inside a VNF
in an NFV environment. The proposed framework consists of three main components: (1)
The VNF with encryption capabilities (VNF aka cryptoVNF), (2) an Authentication centre
(AuC) and (3) an SDN controller, while all the components communicate by web services
using the JSON format [63]. Figure 5 shows the bootstrap sequence and the communication
between the different components. The bootstrapped mechanism consists of five steps:

9



0 Creation of VNFs, pre-distribution of keys, and definition of an SFC.
1 Mutual Authentication between the VNFs and the AuC.
2 Setting up configuration channels (RESTconf) between the VNF and the AuC.
3 Distribution of VPN configuration to the VNFs
4 Tunnel setup Local application.

Figure 5: Detailed sequence diagram

0 Distribution of VNFs with encryption capabilities. We assume that an orches-
tration system is requested to set up a service chain and accordingly calculates the
number of VNFs and encrypted channels. The VNF manager could then instantiate
the VNFs, and pass them a globally unique VNF identifier and a preshared key. In a
VMware environment, these can be set as parameters in the VMX file, enabling the
guest OS to retrieve this information from the hypervisor during bootup. We skipped
this initial step from the implementation of the architecture (numbered as 0), since the
orchestration system functionality is not the focus of our contribution, while for proof
of concept purposes the identifier and key were manually encoded into the machine.id
parameter in the VMX file together with the hardcoded address of the AuC.

1 Authentication and registration of an encryption VNF service. After the
VNF Manager has booted the VNF services, a registration service is initiated for
the VNF, collecting the VNF identifier and the preshared key from the VMX file.
Accordingly, the same service authenticates itself towards an AuC web service, where
the authentication is ensured by SSL (HTTPS) with a certificate connected with the
domain name. After a successful registration, the AuC pushes the identifier and the
IP address of the VNF to a database of authenticated VNFs running on the SDN
controller, while for every DHCP change the VNF reauthenticates.

2 Setting up RESTconf The second phase in the initialisation process is to establish
a secure connection from the SDN controller to the VNF, in order to enable secure
RESTconf messages. Because of the process in step 1, the SDN controller now has the
IP address and the certificate to establish the TLS enabled RESTconf connection.

10



3 RESTconf configuration pushing. An SDN controller application is configured
to push VPN configuration down the VNFs when all VNFs have booted and regis-
tered. The southbound interface of the SDN controller uses RESTconf to send a set
of standardised configuration settings defined by NETconf YANG [64].

4 IPsec application setup The last step in the process is to configure the VPN ap-
plication, which parses the NETconf YANG configuration into the application specific
configuration settings.

This mechanism also allows the encryption application running inside the VNF to be
unaware of the remote VPN peer when it is instantiated. Furthermore, the proposed mech-
anism also enables the use of Software Defined IKE (SD-IKE), because the two peers in
the VPN are already authenticated towards an SDN controller, IPSec IKE becomes redun-
dant. Accordingly, it is possible for the SDN controller to distribute the keys instead of IKE
negotiations. Hence our second contribution in this paper is an architecture that enables
automation of the setup of SD-IKE. The current SD-IKE draft suggests to provision this
over I2NSF, which has limited features in a multivendor setup. Therefore, here we present
an architecture for automating the VNF setup by the use of RESTconf and standard VNFs.
We call the proposed approach Software Defined Security Associations (SD-SA), which is
based on provisioning standard IPsec without IKE but over RESTconf.

Figures 6 and 7 show the differences between running IPsec with (existing approach) and
without (suggested approach) the IKE protocol. The main objective of the IKE protocol is
to authenticate the peers in order to populate the Peer Authorization Database (PAD) and
distribute symmetric keys by populating the Security Policy Database (SPD) and Security
Association Database (SAD). Within the mechanism presented earlier (Figure 5), the peers
are already authenticated and the centralised controller is capable of replacing the IKE
protocol. Instead of requiring IKE to populate the kernel databases, the SDN controller is
populating directly the SAD and SPD databases, in order to reduce IKE resource consump-
tion on the peers. In normal IKE setups, a Security Association is established between the
peers, where the keys are transmitted. When not running IKE, the SA is not established be-
tween the peers, but the keys are distributed by the SDN controller. Since a secure channel
exists for VPNGW1-SDNContr and VPNGW2-SDNContr (Figure: 7), the sum of these two
channels is perceived as the aforementioned Software Defined Security Association (SD-SA).

11



Figure 6: Updating IPsec configuration by
RESTconf and making a Security Association (SA)
by using IKE

Figure 7: Distributing keys directly from controller
by RESTconf and making a Software Defined Security
Association (SD-SA)

In these two cases, the RESTconf API must support the distribution of 1 - RESTconf
based IKE configuration and 2 - distribution of PAD+SAD configurations of RESTconf (SD-
SA). In the first case, a REST message is sent with basic IKE preshared keys and connection
settings, while in the second case the REST messages contain the same symmetric integrity
key and encryption key.

4. Implementation

The main objectives of the implementation were to present an instance of the proposed
mechanisms, to perform a proof of concept test and a performance comparison between
IPsec/IKE and IPsec/SD-SA. Figure 8 shows the four main components in the software
design:

1. The registration service on the VPN peer
2. The SDN controller acting as a configuration client and AuC
3. The local configuration service on the VPN peer
4. The IPsec service

Furthermore, Figure 9 provides a simplified flowchart and pseudo-code based description of
the required processes.

0 The VNFManager is omitted for the implementation. That means that we manually
defined the VPN pairs in the AuC. We also created an ISO image template in VMware
and hardcoded the VNF-ID and the preshared key during the instantiating of the VNFs
(in this case virtual machines).

1 The registration client is running in the VPN peer (the VNF) ensuring that a secure
channel is set up between the controller and the VPN peer. On the VPN peer, the
guest operating system application package OpenVMtools provides an API to get the
VNF-ID and the PSK from the hypervisor. The application sends these credentials
as an HTTP request to the AuC. This was implemented as a Linux bash shell script
running wget commands. The service also updates the controller with the management
address of the VPN peer.

12



Figure 8: Components in the architecture

2 The Authentication centre is implemented as a web service running one authenti-
cation service. In the proof of concept experiment, the database is implemented as a
simple text file containing all registered VNFs, their IDs, their PSKs and their man-
agement IP addresses. The web service authenticates the registration client by its ID
and PSK, while the registration client authenticates the AuC by a certificate over a
standard HTTPS connection.

3 The Configuration client runs a script that reads two sets of text file databases. The
authenticated VPN peers and the set of defined VPN pairs. When a set of VPN peers is
defined and both peers are registered, it sends the corresponding VPN configurations
to the VPN peers. The configuration application reads the databases periodically
and updates the VPN peers (the VNFs) with their configuration by RESTconf. Two
versions of configuration options are enabled. The SD-IKE configuration configures
IKE (Figure: 10), while the SD-SA configuration sets up an SA without the use of IKE
(Figure: 11). The format of the configuration is based on the experimental updates of
the expired IETF IPsec YANG specification draft [64]. For experimental purposes, we
used a pseudo-JSON yang format that only contained a subset of the most important
configuration parameters. For SD-IKEc the remote gateway, the identifier, the key
lifetime and a preshared key were the most important parameters for making our proof
of concept. For the SD-SA we defined 4 basic SDP policies per connection containing

13



Figure 9: Flow chart and pseudo-code description of the processes

the connection id (ReqID) and the relevant IP address endpoints. Correspondingly,
the SD-SA SAD state configuration contained only the relevant IP addresses of the
endpoints, the IPsec header tags (SPI), the connection IDs (ReqID), the integrity keys
and the encryption keys.

4 The configuration service is the local configuration server that is running on each
VPN peer (VNF). The main objective for this service is to receive the VPN config-
uration from the centralised configuration server. This is implemented as an SDN
controller that stores the VNF specific configuration locally. The application is stor-
ing the incoming configuration in XML files based on pseudo-RESTconf/YANG. We
also simulated the notification service in NETconf by letting the service request trigger
on-demand configuration changes to increase the deployment speed of the configura-
tion. That was reflected by two different configuration web services that update the
configuration. One application (4.1) configures the IPsec application with IKE config-
uration (SD-IKE) and another application (4.2) updates the kernel directly with the
IPsec keys (SD-SA). Figure 13 and Figure 12 shows examples of the two southbound
scripts that are configuring IPsec.

14



Figure 10: RESTconf YANG JSON data IPsec configuration (Step 3 to 4)

Figure 11: RESTconf YANG JSON data SD-SA configuration (Step 3 to 4)

4.1-4.2 IPsec application - We used Strongswan as the IPsec IKE application. The advan-
tages with this application are that it supports both manual IKE configuration in text
files, and that it has an API for controlling the IPsec configuration on demand. The
Strongswan IPsec application has a dynamic library that enables such an interface.

15



However, we utilised the swanctl application overlay in order to enable Linux bash
scripting CLI commands for updating the IPsec configuration without restarting the
service. For the SD-SA application that manipulates the kernel IPsec configuration,
we utilised the IP XFRM framework (Figure 13).

Figure 12: Code example IKE configuration application (Step 4 to 4.1)

Figure 13: Code example IP XFRM config application (Step 4 to 4.2)

5. Verification by experiments

The implementation was tested in order to run a proof of concept for the authentica-
tion and IPsec deployment mechanism, and to make a comparison of performance between
IPsec/SD-IKE and IPsec/SD-SA. The performance test is primarily conducted in order to
measure how much time it takes to change the data plane keys and how much overhead
the key exchange protocol introduces with respect to resource consumption. Changing the
data plane keys introduces a packet loss during rekeying. In IKE version 2, the specification

16



states that a new child SA should be established before the existing child SA is deleted.
However, our measurements show that, even in this case, the Strongswan implementation
still loses packets during rekeying. By sending a fixed stream of UDP packets through the
VPN tunnel, the time-gap between rekeying the two peers is calculated (Formula: 1).

Time gap =
packets lost per key-change

packets sent per second
(1)

In IKEv2 rekeying contains two major components. These are 1- Rekeying and reau-
thentication of the IKE SA session (aka Phase1 in IKEv1) and 2- Rekeying of the child SA
(aka Phase2 in IKEv1) that contains the encryption and integrity key for the data plane.
Usually, IKE SA rekeying is initiated every 3 hours, while child SA once every hour. In
SD-SA, the IKE session is not established, while the rekeying is pushed by configuration
changes from the controller. Hence, both IKE SA and child SA rekeying is compared with
rekeying of SD-SA. Additionally, a key element in the SD-SA design is to compare the
reestablishment of IKE. The requirement of the dynamic behaviour of reconnecting IPsec
VNFs during a service chain modification (Figure: 3) is a feature that IKE is not designed
to handle. However, SD-SA does not handle such configuration differences differently than
normal rekeying. In our experiment, we have omitted routing table changes in such setups
and we have also assumed that routing and key distribution is performed in one operation.
Also, all IKE experiments are performed with the IKE version 2 since this version is known
to be faster than IKE version 1 [65].

The requirement section (Section: 2) stated that the encryption functions are considered
being pre-instanciated. In an NFV context, this implies the encrypting functions are avail-
able from a pool of specifically assigned and pre-instanciated VNFs outside of the regular
VNF application domain. The deployment time of using an encryption function is therefore
considered as the time it takes to establish a new VPN configuration, by sending a message
from the AuC to the CrytoVNF. Hence, we do not measure deployment time and failover
time, but we perceive the equivalent as IKE reconnection and SD-SA reconnection times.

Based on these IKE attributes we created five test scenarios in our experiment. Three
IKE scenarios and two SD-SA scenarios.

• A reference performance test for IKEv2 is defined when no key-change takes place.
This ensures that there is no packet loss without key-changes and defines the maximum
bandwidth throughput

• A reference performance test for SD-SA was also defined with no key-change. This
test case also verifies that there is no packet loss without key-changes.

• An SD-SA proof of concept implementation was tested to measure the resource con-
sumption, the delay and packet loss during key-changes, and a bandwidth test measure
the overall performance of the system.

• Running IKEv2 with child SA key-change is defined to measure and compare the
SD-SA with the regular IKE key-changes.

• Running IKEv2 with IKE SA key-changes is defined to measure and compare these
types of key-changes to SD-SA.

17



• The last test was IKE reconnections, to simulate VNF changes and compare it SD-SA
reconnections.

As mentioned earlier, IKE normally uses 3600 seconds as a default interval value for
rekeying. In order to calculate the time gap between the host during key-changes, we ran
the tests with high key-change rates. These tests are not relevant in normal IPsec setups, but
allow capturing the required measurements that ensure reliable results. We ran tests with
2- and 4-second rekeying interval for packet loss measuring, while for resource consumption
measurements we used 4 and 30 seconds rekeying interval.

The test was performed in a VMware lab environment provided by Eidsiva broadband in
Norway. 6 ESXi host based on HP Proliant DL360G9 with 24 CPUs x 2.6 GHz and 8 Gigabit
Ethernet ports. 6 virtual machines were created, one per ESXi host. Each virtual machine
was allocated 4 virtual CPUs and 8 GB of RAM. All hosts were installed with Ubuntu server
16.04 LTS and were running kernel 4.4.0-116 SMP. All servers were installed with standard
installation settings with no kernel modifications. In order to reduce the number of unknown
variables in the virtual machines, no additional services were installed. Additionally, the
resources were reserved to the virtual machines and no other virtual machines were running
on each ESXi host to ensure no resource sharing.

Figure 14 shows how two test agents were transmitting packets through a site-to-site
VPN topology. The router in the middle had no other purpose than ensuring that non-
encrypted traffic was able to pass the router. Each Virtual machine was interconnected with
dedicated network 1 Gbps Ethernet interfaces, while the connections to the SDN controller
were separated from the data plane interfaces.

Figure 14: Lab topology

The VPN gateways were running Strongswan 5.5.0 git commit 8eea280, while the test
agents where running iperf 5.0.2. The web services were simulated by the use of the socat
application. This application is similar to netcat and capable of creating TCP/IP sockets

18



with SSL support, and was used to send pseudo REST commands based on the Linux bash
scripting that was mentioned in the implementation section 4.

We used iperf as the testing tool for packet loss and bandwidth tests, performing band-
width tests with a window size of 416K in 20 seconds. For UDP packet loss tests we ran a
UDP stream of 100Mbit with packet size 578 bytes at 173100 pps. Additionally, a 50Mbit
test with packet size 578 at 85072 pps was performed. Each test was performed 10 times
where the result is an average this. For CPU resource consumption we took periodic mea-
surements of the CPU usage by the nmon tool, with a total of 60 samples in discrete time.
Finally, to measure the memory consumption we used the fstab tool to perform 60 discrete
time measurements of the memory consumption. The results of the measurements are shown
in Table: 2 and Table: 3.

Settings Bandwidth 100 Mbit UDP 50 Mbit UDP Timegap

K
e
y

c
h
a
n
g
e
ra

te

in
se

c
o
n
d
s

N
u
m
b
e
r
o
f

c
o
n
n
e
c
ti
o
n
s

T
C
P

b
a
n
d
w
id

th
M

b
p
s

W
in

d
o
w
si
z
e
4
1
6
K

A
v
e
ra

g
e
o
f
1
0

te
st
s

A
v
e
ra

g
e
p
a
c
k
e
ts

lo
st

o
f
1
7
3
1
0
0

p
p
s

1
0

te
st
s
x

2
0

se
c
o
n
d
s

A
v
e
ra

g
e
p
a
c
k
e
tl
o
ss

p
e
r
k
e
y
c
h
a
n
g
e

A
v
e
ra

g
e
ti
m
e
g
a
p

in

m
s
p
e
r
k
e
y
c
h
a
n
g
e

A
v
e
ra

g
e
p
a
c
k
e
ts

lo
st

o
f
8
5
0
7
2

p
p
s

1
0

te
st

x
2
0

se
c
o
n
d
s

A
v
e
ra

g
e
p
a
c
k
e
tl
o
ss

p
e
r
k
e
y
c
h
a
n
g
e

A
v
e
ra

g
e
ti
m
e
g
a
p

in

m
s
p
e
r
k
e
y
c
h
a
n
g
e

A
v
e
ra

g
e
ti
m
e
g
a
p

in

m
s
p
e
r
k
e
y
c
h
a
n
g
e

S
D
S
A Reference test no keych. 3600 1 717,4 0,0 0,0 0,0 0,0 0,0 0,0 0,0

SD-SA with keychange 2 1 660,0 828,0 82,8 3,9 176,1 17,6 4,1

4 1 702,0 348,8 34,9 4,1 162,1 32,4 3,8 4,0

IK
E
v
2

S
A
s

Reference test no keych. 3600 1 701,8 0,0 0,0 0,0 0,0 0,0 0,0 0,0

Child SA keychange 2 1 655,8 166,1 16,6 2,1 48,2 4,8 1,1

4 1 682,0 67,4 13,5 1,8 29,4 5,9 1,5 1,6

IKE SA keychange 2 1 NA NA NA NA NA NA NA

4 1 651,0 157,5 31,5 4,1 58,7 11,7 3,1 3,6

IKE reconnect 2 1 569,0 10878,0 1088,8 127,4 4633,0 463,3 108,8

4 1 609,0 4948,0 989,6 115,8 2388,0 477,6 112,2 116,5

Table 2: Measuring performance and packet loss per key-change

Settings Bandwidth CPU Kernel memory use User memory use

K
e
y
c
h
a
n
g
e
ra

te

in
se

c
o
n
d
s

N
u
m
b
e
r
o
f

c
o
n
n
e
c
ti
o
n
s

T
C
P

b
a
n
d
w
id

th
M

b
p
s

W
in

d
o
w
si
z
e
4
1
6
K

A
v
e
ra

g
e
o
f
1
0

te
st
s

A
v
e
ra

g
e
C
P
U

k
e
rn

e
l
u
se

,

4
o
f
4

C
P
U
s
in

2
0

d
is
c
re

te
ti
m
e
m
e
a
su

re
s

A
v
e
ra

g
e
C
P
U

u
se

rs
p
a
c
e

u
se

,
4

o
f
4

C
P
U
s
2
0

d
is
c
re

te
ti
m
e
m
e
a
su

re
s

A
v
e
ra

g
e
o
f
to

ta
l
k
e
rn

e
l

m
e
m
o
ry

u
se

in
b
y
te

s,
2
0

d
is
c
re

te
ti
m
e
m
e
a
su

re
s

K
e
rn

e
l
m
e
m
o
ry

u
se

p
e
r
c
o
n
n
e
c
ti
o
n

in
b
y
te

s

A
v
e
ra

g
e
o
f
to

ta
l
u
se

r

m
e
m
o
ry

u
se

in
k
b
y
te

s,
2
0

d
is
c
re

te
ti
m
e
m
e
a
su

re
s

U
se

r
m
e
m
o
ry

u
se

p
e
r
c
o
n
n
e
c
ti
o
n

in
k
b
y
te

s

SD SA 4 30 699 2,60% 1,00% 129k 4,3k 0 0

30 1000 648 5,80% 2,50% 4361k 4,4k 0 0

IKEv2 w/child SA keychange 4 30 668 1,60% 1,20% 125k 7,2k 13502k 453k

30 1000 610 4,30% 3,20% 7817k 7,8k 38284k 38k

IKEv2 w/IKE reconnect 4 30 613 1,10% 2,60% 144k 4,8k 4813k 160k

30 1000 603 22,50% 31,00% 7603k 7,6k 62705k 63k

Table 3: Measuring scalability and resource consumption

Most of the measurements presented in tables 2 and 3 are statistical averages, where
variables such as packet loss and CPU number of software interrupts can potentially affect

19



the outcome. Yet, the results were verified by completing the test two times with a resulting
variance of no more than 5%.

6. Discussion and Evaluation

The implementation and tests of SD-SA verify that it is possible to run IPsec without
IKE in software-defined environments such as NFV. Instead of exchanging keys directly
between two peers, a third party configuration server can distribute the keys directly to the
peers. This is archived through pairs of secure configuration channels that are established
between the VPN peers and a configuration server and replace the IKE channel. Our proof
of concept implementation has the RESTconf configuration interface both can set up IKE
configurations and SD-SA configurations. Accordingly, the proposed mechanism satisfies the
requirements for efficient and dynamic configuration of IPsec VPNs in NFV environments. In
this section, we discuss our performance results, analyse the security of our new mechanism
and evaluate interoperability concerns.

6.1. The performance results

Table 2 and 3 showed the result of our performance test. Here, we discuss these result
with respect to key-changes, throughput, resource consumption, latency and general benefits
of SDN.

IKE SA key-change: A normal IKEv2 SA key-change (Phase 1 in IKEv1) runs period-
ically every 3-4 hours. However, this experimental setup with short key-change intervals,
intends to compare the performance of the different IPsec key-changing methods. The re-
sults show that the initial IKE setup and periodic key-changes in IKEv2 SA spends about
the same time changing keys as with SD-SA (in average 3.6ms vs 4.0ms in Table: 2). How-
ever, IKE SA demands more computation resources than SD-SA, such as 31,0% vs 2,5%
CPU time Table: 3)

A consequence of this is also seen when running IKE reconnections with a 2-second
interval, where the whole process congests and measuring is not possible. This is because
the process is not finished before a new key-change thread is initiated (Table: 2).

IKE child SA key-change: Traditional IKEv2 with child SA key-changes (Phase 2 in
IKEv1) has less time period of packet loss than non-IKE with SD-SA (1.6ms versus 4.0ms
in Table: 2). However, this difference is not reflected in the TCP bandwidth test, where
SD-SA, in fact, performs better than IKEv2 (682Mbps vs 702Mbps in Table: 2). A child SA
key-change is more frequent than an SA key-change, but for SD-SA there is no difference
in these type key-changes. Hence, the performance results of child SAs are considered
more important and relevant. However, in virtualised environments with dynamic resource
allocation, it is also reasonable to have many IKE reconnections due to Virtual Machine
migrations [66].

Throughput: Interestingly, the performance tests show that the throughput is not sig-
nificantly affected by the number of key-changes (Figure: 2). By monitoring the process
consumption, we discovered that our Ubuntu operating system automatically dedicated
CPU resources to data plane packet-handling (processor one) and control plane key-changes

20



(processor two) respectively. The Linux kernel on the VPN peers spend most of the CPU
time on handling software interrupts when running VPN data traffic through them. This
causes one of the CPU to peak close to a 100% utilisation while performing packet encryp-
tion. The reduction of 168 bytes of available packet size is another reason for the system
not to be able to archive 717 Mbps with no key-change.

Resource consumption: With respect to resource consumption, we measured memory and
CPU time without running any data plane traffic. Table: 3 shows that IKEv2 reconnections
require a significant amount of CPU time. Both 30 and 1000 connections were not able to
finish within the time intervals of 4 and 30 seconds. Therefore these measurements are not
precise with respect to memory consumption per connection. The main reason for this delay
is the waiting time for network packets from the remote peer. Hence, this result indicates
that SD SA is a much more efficient way to reconnect IPsec sessions.

The reason behind the significant differences in memory consumption across the tests
is that the IPsec application Strongswan prepares and installs the next keys in advance.
Therefore the memory consumption is doubled. In our simplified experiment, we did not
consider SA overlapping during key-changes for SD-SA. However, it is possible to have two
incoming ESP packet policies that ensure that the VPN peer receiver does not delete the
old IPsec policy before a new one is active. We chose not to implement this feature for both
IPsec/SD-IKE and IPsec/SD-SA. In respect to the measurements in the experiment, this
parallelism feature would not enable a precise measurement of the time gap for key-change
delays. However, it is assumed that overlapping IPSec policies would reduce the packet loss.
The main difference between the IPsec based on IKE or SD-SA would concern the amount
of resource consumption.

Latency: Another factor that influences the performance is the distance and latency
between the VNFs. In the presented test scenario the virtual machines are provisioned in a
closed environment with direct peerings between the hosts, that enables a very low latency
between the hosts. If the SDN controller is placed outside of the data centre, or if the
VPN peers exist in different data centres, this would increase the latency between the peers
and consequently affect the delay between the key-changes on each VPN peer. However, It
is expected that this delay is similar for IPsec with IKE and for SD-SA. This is because
the SDN controller sends a similar key update to both the SD-SA application and the IKE
application and therefore the difference should be equally linearly to the latency. Also, for
this proof of concept demonstration, we primarily aim to show that SD SA works equally
or better than IKE in order to further apply it to an NFV domain. For that reason, this
latency is not highly relevant when comparing the methods.

Communication constraints: Concerning performance, IKE and SD-SA perform rela-
tively similar, but SD-SA performs slightly better when the number of key-changes is high.
We have shown that both IPsec enabled with IKE and with SD-SA can ensure isolation
of Virtual Links in federated NFV environments. However, SD-SA consumes less resources
and has the advantage of not being dependent on the transport protocol on the data plane.
For example, if the data plane transport channel is based on NSH, direct communication
between the VNFs is not possible over NSH. Hence, a separate control-channel is required
in order to make the VPN peers (the VNFs) exchange keys. This implies that, regardless

21



of performance, IPsec with SD-SA is more suitable in federated NFV domains due to these
communication constraints. However, for comparison reasons, we did not use NSH on the
data plane in our performance test

Benefits of SDN: Our approach of separating IKE from packet encryption is similar to
related results performed by Vajaranta et.al [67]. Their experiment was based on utilising
OpenFlow to load-balance IPsec. Their results showed that, for high bandwidths in particu-
lar, OpenFlow enhances the IPsec availability and performance. Our experiment was based
on NFV with a secure distribution of keys and not based on OpenFlow as a load-balancer.
However, the distributed design and flow-based control of SDN for both experiments em-
phasise the scalability benefit in distributed environments. This confirms our results, but
it also indicates that our design of secure key distribution is applicable to other application
domains such as load-balancing of IPsec.

IKE drawbacks in Virtualised environments: The consequence of VM migration and
dynamic resource allocation in virtual environments also favorises SD-SA in front of IKE.
Having encryption services running as VNFs implies that the encryption services can migrate
between hosts and change virtual machines along with SFC changes. Every VM migration
would require an IKE reconnection, while SD-SA only requires a key update if we follow our
suggested architecture [1]. This clearly distinguishes VPN setups in virtual infrastructure
domains and hardware-based VPN networks. If an SDN controller is responsible for both
distributing encryption keys and performing routing, it is expected that such topologies can
reduce the failover time compared to traditional BGP routing [68] and IKE IPSec. We aim
to test this in our future work (see Section: 6.4).

6.2. Security Analysis

In this Section, we analyse the security of our proposal. Due to the use of multiple proto-
cols, components and communication planes, a formal method or a code analysis is difficult
to archive in order to analyse the level of security. Also, the operational characteristics of
the key exchange mechanism are not fully specified, that makes a formal verification diffi-
cult. However, we did analyse standard network protocol security features and resistance
against well-known attacks according to basic security principles [69] such as confidentiality,
integrity, availability.

Confidentiality: The objective of our security mechanism is to keep the encryption key
and the integrity key for the SA in IPsec private. For IKEv2, the peers derive these keys
between each other from parameters such as the preshared key, while in SD-SA the keys are
sent directly to the peers from the controller. Both methods require that the configuration
channel between the controller and the VPN peer is protected. In both scenarios, the config-
uration channel is protected by SSL. This means that the underlying keys are dependent on
the integrity and confidentiality of the configuration channel. This implies both the protec-
tion of the network, such as the quality of the ciphering algorithm, but also the protection
of software components. The system fully relies on the orchestrator in distributing the keys
to the VNFs. A compromised VNF or a compromised orchestrator therefore breaks the
security and enables the adversary to launch attacks using the keys obtained.

22



Both IKE v1 and IKE v2 focus on multiple iterations of key derivations to make sure that
the encryption key and the integrity keys are kept confidential. The keys are not transferred
between the peers such as we suggested for SD-SA. However, for future extensions, the
SD-SA key transfers are also possible to extend with additional key derivations such as
Diffie-Hellman [70]. In addition to key derivations in IKE, the keys are also kept protected
inside the kernel and the IPsec application and not shown in a configuration file. This
makes the encryption key and the integrity key less available in a system that is not fully
compromised.

We have not investigated how the security mechanism can be protected from a compro-
mised SDN controller, authentication centre, orchestration system or VNF. However, it is
assumed that additional security features such as integrity attestation of software packages
must co-exist with the presented key exchange mechanism.

Integrity: It is not investigated how replay attacks are possible over the configurations
channels. However, the NETconf protocol states that the underlying transport protocol
must handle such protection [71].

Scalability The number of controllers and the number of virtual machines can easily
be adjusted in a virtualised environment, However, the computational resources needed for
encryption and decryption is closely connected to how much data traffic the end-users are
consuming. Sudden changes in behavioural patterns, such as viral videos, could potentially
demand more computational power than available in the NFV domain. Virtual environments
use shared resources and often overbooked services. In use cases where each user runs SFCs
with multiple encrypted Virtual Links, the computational need for performing encryption is
exponential to the bandwidth utilisation and number of Virtual Links.

Availability: Both the VPN peers and the SDN controller is vulnerable for Denial
of Service attacks. Especially, DDoS towards VPN peers can result in amplified resource
consumption as mentioned in the previous section. For DDoS towards the SDN controller,
we assume that it runs in a federated control plane domain [1] separated for the data plane.
Hence, the attack surface is considered relatively low. However, a DDoS attack on the data
plane in multiple VPN channels will increase the CPU resource consumption for all types
of encrypted topologies. Hence, this problem will affect both IPsec/IKE, IPsec/SD-SA or
other underlying IPsec channels in an SFC with a similar amount of resource consumption.

Another aspect of availability is network attacks on the IKE UDP port 500. Half-open
IKE connection is a resource consumption problem that comes from establishing too many
IKE connection. Because the IKE protocol often runs over a network port available on the
data plane, IKE is more vulnerable for such attacks than SD-SA. This is because SD-SA is
suggested to run over a control plane network that is separated from the data plane.

Reliability: Our implementation did not take into account the aforementioned scenarios
where the SDN controller or other components become unavailable. For example, if the
controller becomes unavailable, it is important that the VPN peers do not use the cipher
key after the lifetime expires. For such cases, the local configuration service in the VPN
peer has to ensure that the key expires if no key is received from the SDN controller. We did
neither consider system responses to deadlock or system crash in any of the components.

23



6.3. Interoperability

This article suggests a new key distribution paradigm for the encryption of Virtual
Links per SFC in NFV. This raises an interoperability problem of both the VNFs and the
NFV infrastructure components. From a NFV infrastructure perspective, the suggested
architecture is proposed in interconnected and federated NFV domains. This implies that
the underlying infrastructures support multi-tenant domains, where each tenant, in theory,
is capable of running their own customer-specific SFC routing method, supported by a
network overlay. However, VNF interoperability is more challenging. According to the SFC
specification, the VNFs can be (1) SFC-aware or (2) SFC-unaware supported by an SFC
aware proxy. This implies that the SFC proxy or the VNF must be aware of the SFC
routing mechanism, such as the NSH headers. Consequently, the encrypting VNFs must
also support SFC routing. The different SFC routing methods, such as segment routing in
MPLS, IPv6 or NSH, put a burden on VNF developers in supporting different standards.
This is a general VNF problem and not specific to our application. However, our application
introduces an additional parameter for the VNF developer to consider. It also raises a new
standardisation issue of encryption applications and their programming interface towards the
AuC and how to deal with different types the SFC data forwarding standards. Hence, this
proof of concept experiment aims to contribute to the standardisation of VNF application
interfaces for enabling encrypted Virtual Links. This also indicates a need for a standardised
encryption header in the SFC protocol, such as NSH.

6.4. Future work

In this article, we chose to focus on the security mechanism of the key-exchange between
virtual encryption functions for providing isolated SFCs. We did not take SFC transport
mechanisms such as MPLS or NSH into account when we performed our measurements.
Neither did we consider topology changes and the effect of routing protocols delays in our
design. For future work, the routing protocol of the SFCs needs to be aware of the crypto-
graphic endpoints for every hop in an SFC. This brings an additional cryptographic attribute
the NFV routing and resource allocation problem [72]. This optimization problem is an NP-
hard problem that we aim to resolve by distributing the routing decisions by the use of
multiprotocol BGP [68]. Consequently, our future work relies on providing a testbed for
integrating the encryption functions and the routing mechanism into an NFV testbed.

7. Conclusion

We have presented a new way of utilising SDN in NFV by automating the key distribu-
tion in the setup of secure VPN channels between VNFs. This mechanism was specifically
developed in order to enable per-flow encryption in federated NFV environments. However,
it also solves the communication problem of establishing an IKE Security Association be-
tween two VNFs in an SFC. Through our proof of concept demonstration, we have shown
that the automation procedure can be utilised to setup Security Associations between VPN
peers for both IKE and non-IKE IPsec VPN connections. However, in comparison, the
proposed SD-SA mechanism can be even more efficient and scalable than traditional IKE.

24



The results of the performance tests show that the delay between rekeying the VPN peers
are slightly faster when running IKE, while SD-SA requires less resources. The presented
architecture can be utilised both for small and large data centre deployments. However,
the automated key distribution mechanism is excepted to have the greatest benefit in an
NFV environment, with a lot of encrypted channels, such as in a per-flow per service chain
encryption. The proposed bootstrapped mechanism is based on standard internet security
protocols such as HTTPS and RESTconf where the majority of the security relies on these
underlying protocols. We have seen that the most critical factor for our proposal is to have
available compute resources for encryption and decryption.

Author Contributions:

The main author of this paper is H.G.; V.G. and T.K. have contributed with respect to
the methodology, paper structure, quality assurance and editing.

Funding:

This research was funded by Eidsiva, the Norwegian Research Council and the Norwegian
University of Science and Technology (NTNU).

Conflicts of Interest:

The authors declare no conflict of interest.

References

[1] H. Gunleifsen, V. Gkioulos, T. Kemmerich, A tiered control plane model for service function chaining
isolation, Future Internet 10 (6) (2018) 46.

[2] H. Gunleifsen, T. Kemmerich, Security requirements for service function chaining isolation and en-
cryption, in: 2017 IEEE 17th International Conference on Communication Technology (ICCT), pp.
1360–1365.

[3] H. Gunleifsen, T. Kemmerich, S. Petrovic, An end-to-end security model of inter-domain communication
in network function virtualization, Norsk Informasjonssikkerhetskonferanse (NISK): Bergen, Norway
(2016) 7–18.

[4] European Telecommunications Standards Institute (ETSI), Network functions virtualisation
(nfv): Architectural framework v1.1.1Available online: http://www.etsi.org/deliver/etsi gs/NFV-
MAN/001 099/001/01.01.01 60/gs nfvman001v010101p.pdf (accessed on 24 January 2019).

[5] N. Figueira, R. Krishnan, D. Lopez, S. Wright, D. Krishnaswamy, Policy Architecture and Framework
for NFV Infrastructures, Active Internet-Draft, IETF Secretariat, Internet-Draft draft-irtf-nfvrg-nfv-
policy-arch-01.

[6] J. M. Halpern, C. Pignataro, Service Function Chaining (SFC) Architecture, RFC 7665 (Oct. 2015).
doi:10.17487/RFC7665.

[7] V. Manral, S. R. Hanna, Auto-Discovery VPN Problem Statement and Requirements, RFC 7018 (Sep.
2013). doi:10.17487/RFC7018.

[8] S. Hyun, J. P. Jeong, T. Roh, S. Wi, P. Jung-Soo, I2NSF Registration Interface Data Model, Internet-
Draft draft-hyun-i2nsf-registration-interface-dm-06, Internet Engineering Task Force, work in Progress
(Jul. 2018).

[9] D. Lopez, E. Lopez, L. Dunbar, J. Strassner, R. Kumar, Framework for Interface to Network Security
Functions, RFC 8329 (Feb. 2018). doi:10.17487/RFC8329.

[10] A. Atlas, J. M. Halpern, S. Hares, D. Ward, T. Nadeau, An Architecture for the Interface to the
Routing System, RFC 7921 (Jun. 2016). doi:10.17487/RFC7921.

25

http://dx.doi.org/10.17487/RFC7665
http://dx.doi.org/10.17487/RFC7018
http://dx.doi.org/10.17487/RFC8329
http://dx.doi.org/10.17487/RFC7921


[11] P. Quinn, U. Elzur, C. Pignataro, Network Service Header (NSH), RFC 8300 (Jan. 2018). doi:

10.17487/RFC8300.
[12] A. M. Alwakeel, A. K. Alnaim, E. B. Fernandez, A survey of network function virtualization security,

in: SoutheastCon 2018, IEEE, 2018, pp. 1–8.
[13] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, H. Flinck, Network slicing and softwarization: A survey

on principles, enabling technologies, and solutions, IEEE Communications Surveys & Tutorials 20 (3)
(2018) 2429–2453.

[14] M. D. Firoozjaei, J. P. Jeong, H. Ko, H. Kim, Security challenges with network functions virtualization,
Future Generation Computer Systems 67 (2017) 315–324.

[15] S. Lal, T. Taleb, A. Dutta, Nfv: Security threats and best practices, IEEE Communications Magazine
55 (8) (2017) 211–217.

[16] D. Naylor, K. Schomp, M. Varvello, I. Leontiadis, J. Blackburn, D. R. López, K. Papagiannaki, P. Ro-
driguez Rodriguez, P. Steenkiste, Multi-context tls (mctls): Enabling secure in-network functionality
in tls, ACM SIGCOMM Computer Communication Review 45 (4) (2015) 199–212.

[17] K. Bhargavan, I. Boureanu, A. Delignat-Lavaud, P.-A. Fouque, C. Onete, A formal treatment of ac-
countable proxying over tls, in: 2018 IEEE Symposium on Security and Privacy (SP), IEEE, 2018, pp.
799–816.

[18] J. Arkko, V. Lehtovirta, P. Eronen, Improved Extensible Authentication Protocol Method for 3rd
Generation Authentication and Key Agreement (EAP-AKA), RFC 5448 (May 2009). doi:10.17487/

RFC5448.
[19] D. C. Neuman, S. D. Hartman, K. Raeburn, T. Yu, The Kerberos Network Authentication Service

(V5), RFC 4120 (Jul. 2005). doi:10.17487/RFC4120.
[20] R. Lopez, G. Lopez-Millan, Software-Defined Networking (SDN)-based IPsec Flow Protection, Internet-

Draft draft-ietf-i2nsf-sdn-ipsec-flow-protection-02, Internet Engineering Task Force, work in Progress
(Jul. 2018).

[21] K. Seo, S. Kent, Security Architecture for the Internet Protocol, RFC 4301 (Dec. 2005). doi:10.

17487/RFC4301.
[22] P. E. Hoffman, Algorithms for Internet Key Exchange version 1 (IKEv1), RFC 4109 (May 2005).

doi:10.17487/RFC4109.
[23] P. Eronen, Y. Nir, P. E. Hoffman, C. Kaufman, Internet Key Exchange Protocol Version 2 (IKEv2),

RFC 5996 (Sep. 2010). doi:10.17487/RFC5996.
[24] T. Reddy, P. Patil, S. Fluhrer, P. Quinn, Authenticated and encrypted NSH service chains, Internet-

Draft draft-reddy-sfc-nsh-encrypt-00, Internet Engineering Task Force, work in Progress (Apr. 2015).
[25] I. Kotuliak, P. Rybár, P. Trúchly, Performance comparison of ipsec and tls based vpn technologies,

in: 2011 9th International Conference on Emerging eLearning Technologies and Applications (ICETA),
IEEE, pp. 217–221.

[26] J. A. Donenfeld, Wireguard: next generation kernel network tunnel, in: 24th Annual Network and
Distributed System Security Symposium, NDSS, 2017.

[27] A. S. Braadland, Key management for data plane encryption in sdn using wireguard, Master’s thesis,
NTNU (2017).

[28] S. Hyun, J. Kim, H. Kim, J. Jeong, S. Hares, L. Dunbar, A. Farrel, Interface to network security
functions for cloud-based security services, IEEE Communications Magazine 56 (1) (2018) 171–178.

[29] K. M. Eie, Authentication in protected core networking, Master’s thesis, NTNU (2016).
[30] N. Okabe, S. Sakane, K. Miyazawa, K. Kamada, M. Ishiyama, A. Inoue, H. Esaki, Implementing a

secure autonomous bootstrap mechanism for control networks, IEICE Transactions on Information and
Systems 89 (12) (2006) 2822–2830.

[31] J. Latvakoski, A. Iivari, P. Vitic, B. Jubeh, M. B. Alaya, T. Monteil, Y. Lopez, G. Talavera, J. Gonzalez,
N. Granqvist, et al., A survey on m2m service networks, Computers 3 (4) (2014) 130–173.

[32] L. Zhou, Z. J. Haas, Securing ad hoc networks, IEEE network 13 (6) (1999) 24–30.
[33] N. Aboudagga, M. T. Refaei, M. Eltoweissy, L. A. DaSilva, J.-J. Quisquater, Authentication protocols

for ad hoc networks: taxonomy and research issues, in: Proceedings of the 1st ACM international

26

http://dx.doi.org/10.17487/RFC8300
http://dx.doi.org/10.17487/RFC8300
http://dx.doi.org/10.17487/RFC5448
http://dx.doi.org/10.17487/RFC5448
http://dx.doi.org/10.17487/RFC4120
http://dx.doi.org/10.17487/RFC4301
http://dx.doi.org/10.17487/RFC4301
http://dx.doi.org/10.17487/RFC4109
http://dx.doi.org/10.17487/RFC5996


workshop on Quality of service & security in wireless and mobile networks, ACM, 2005, pp. 96–104.
[34] Y. Gao, C. Phillips, L. He, Dvm based dynamic vpn architecture for group working and orchestrated

distributed computing, in: Third International Conference on Digital Information Management, 2008.
ICDIM 2008., IEEE, 2008, pp. 763–768.

[35] S. Gokhale, P. Dasgupta, Distributed authentication for peer-to-peer networks, in: 2003 Symposium
on Applications and the Internet Workshops, IEEE, 2003, pp. 347–353.

[36] S. Aoyagi, M. Takizawa, M. Saito, H. Aida, H. Tokuda, Ela: a fully distributed vpn system over
peer-to-peer network, in: The 2005 Symposium on Applications and the Internet, IEEE, 2005, pp.
89–92.

[37] S. Zhu, S. Setia, S. Jajodia, Leap+: Efficient security mechanisms for large-scale distributed sensor
networks, ACM Transactions on Sensor Networks (TOSN) 2 (4) (2006) 500–528.

[38] W. A. Simpson, PPP Authentication Protocols, RFC 1334 (Oct. 1992). doi:10.17487/RFC1334.
[39] W. A. Simpson, PPP Challenge Handshake Authentication Protocol (CHAP), RFC 1994 (Aug. 1996).

doi:10.17487/RFC1994.
[40] G. Zorn, Microsoft PPP CHAP Extensions, Version 2, RFC 2759 (Jan. 2000). doi:10.17487/RFC2759.
[41] A. Rubens, C. Rigney, S. Willens, W. A. Simpson, Remote Authentication Dial In User Service (RA-

DIUS), RFC 2865 (Jun. 2000). doi:10.17487/RFC2865.
[42] T. Dahm, A. Ota, dcmgash@cisco.com, D. Carrel, L. Grant, The TACACS+ Protocol, Internet-Draft

draft-ietf-opsawg-tacacs-11, Internet Engineering Task Force, work in Progress (Sep. 2018).
[43] P. R. Calhoun, E. Guttman, J. Arkko, J. Loughney, Diameter Base Protocol, RFC 3588 (Sep. 2003).

doi:10.17487/RFC3588.
[44] D. Simon, B. D. Aboba, P. Eronen, Extensible Authentication Protocol (EAP) Key Management

Framework, RFC 5247 (Aug. 2008). doi:10.17487/RFC5247.
[45] A. Palekar, S. Josefsson, D. Simon, G. Zorn, Protected EAP Protocol (PEAP) Version 2, Internet-Draft

draft-josefsson-pppext-eap-tls-eap-10, Internet Engineering Task Force, work in Progress (Oct. 2004).
[46] E. Rescorla, T. Dierks, The Transport Layer Security (TLS) Protocol Version 1.2, RFC 5246 (Aug.

2008). doi:10.17487/RFC5246.
[47] E. Rescorla, The Transport Layer Security (TLS) Protocol Version 1.3, RFC 8446 (Aug. 2018). doi:

10.17487/RFC8446.
[48] E. Rescorla, N. Modadugu, Datagram Transport Layer Security Version 1.2, RFC 6347 (Jan. 2012).

doi:10.17487/RFC6347.
[49] B. Campbell, C. Mortimore, M. Jones, Security Assertion Markup Language (SAML) 2.0 Profile for

OAuth 2.0 Client Authentication and Authorization Grants, RFC 7522 (May 2015). doi:10.17487/

RFC7522.
[50] D. Hardt, The OAuth 2.0 Authorization Framework, RFC 6749 (Oct. 2012). doi:10.17487/RFC6749.
[51] F. Detienne, M. Kumar, M. Sullenberger, Flexible Dynamic Mesh VPN, Internet-Draft draft-detienne-

dmvpn-01, Internet Engineering Task Force, work in Progress (Dec. 2013).
[52] D. Simon, D. B. D. A. Ph.D., P. Eronen, Extensible Authentication Protocol (EAP) Key Management

Framework, RFC 5247 (Aug. 2008). doi:10.17487/RFC5247.
[53] H. Harney, A. Colegrove, U. Meth, G. Gross, GSAKMP: Group Secure Association Key Management

Protocol, RFC 4535 (Jun. 2006). doi:10.17487/RFC4535.
[54] J. G. Myers, Simple Authentication and Security Layer (SASL), RFC 2222 (Oct. 1997). doi:10.17487/

RFC2222.
[55] D. Piper, B. Swander, A GSS-API Authentication Method for IKE, Internet-Draft draft-ietf-ipsec-

isakmp-gss-auth-07, Internet Engineering Task Force, work in Progress (Jul. 2001).
[56] J. Vilhuber, K. Kamada, S. Sakane, M. Thomas, Kerberized Internet Negotiation of Keys (KINK),

RFC 4430 (Mar. 2006). doi:10.17487/RFC4430.
[57] M. Khalid, W. S. Wainner, A. Akhter, P. Quinn, VPN processing via service insertion architecture, US

Patent 8,429,400 (Apr. 23 2013).
[58] D. McAlister, J. C. Orange, Protocol/API between a key server (KAP) and an enforcement point

(PEP), US Patent App. 11/541,424 (Apr. 3 2008).

27

http://dx.doi.org/10.17487/RFC1334
http://dx.doi.org/10.17487/RFC1994
http://dx.doi.org/10.17487/RFC2759
http://dx.doi.org/10.17487/RFC2865
http://dx.doi.org/10.17487/RFC3588
http://dx.doi.org/10.17487/RFC5247
http://dx.doi.org/10.17487/RFC5246
http://dx.doi.org/10.17487/RFC8446
http://dx.doi.org/10.17487/RFC8446
http://dx.doi.org/10.17487/RFC6347
http://dx.doi.org/10.17487/RFC7522
http://dx.doi.org/10.17487/RFC7522
http://dx.doi.org/10.17487/RFC6749
http://dx.doi.org/10.17487/RFC5247
http://dx.doi.org/10.17487/RFC4535
http://dx.doi.org/10.17487/RFC2222
http://dx.doi.org/10.17487/RFC2222
http://dx.doi.org/10.17487/RFC4430


[59] M. L. Sullenberger, J. Vilhuber, Method and apparatus for establishing a dynamic multipoint encrypted
virtual private network, US Patent 7,447,901 (Nov. 4 2008).

[60] Y. Nir, Q. Wu, An Internet Key Exchange Protocol Version 2 (IKEv2) Extension to Support EAP
Re-authentication Protocol (ERP), RFC 6867 (Jan. 2013). doi:10.17487/RFC6867.

[61] F. Wei, C. Ma, Z. Zhang, Gateway-oriented password-authenticated key exchange protocol with
stronger security, in: International Conference on Provable Security, Springer, 2011, pp. 366–379.

[62] K. Kamada, M. Ishiyama, S. Sakane, S. Zrelli, Problem Statement on the Cross-Realm Operation of
Kerberos, RFC 5868 (May 2010). doi:10.17487/RFC5868.

[63] A. Bierman, M. Björklund, K. Watsen, RESTConf Protocol, RFC 8040 (Jan. 2017). doi:10.17487/

RFC8040.
[64] H. Wang, X. Chen, Yang Data Model for Internet Protocol Security (IPsec), Internet-Draft draft-tran-

ipsecme-yang-01, Internet Engineering Task Force, work in Progress (Mar. 2016).
[65] H. Soussi, M. Hussain, H. Afifi, D. Seret, IKEv1 and IKEv2: A quantitative analyses, in: Proceedings

of World Academy of Science, Engineering and Technology, Vol. 6, 2005, pp. 194–197.
[66] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, A. Warfield, Live migration of

virtual machines, in: Proceedings of the 2nd Conference on Symposium on Networked Systems Design
& Implementation-Volume 2, USENIX Association, 2005, pp. 273–286.

[67] M. Vajaranta, J. Kannisto, J. Harju, IPsec and IKE as Functions in SDN Controlled Network, in:
Network and System Security, Springer International Publishing, 2017, pp. 521–530.

[68] Y. Rekhter, T. Li, A Border Gateway Protocol 4 (BGP-4), RFC 1654 (Jul. 1994). doi:10.17487/

RFC1654.
[69] C. A. Sunshine, Survey of protocol definition and verification techniques, ACM SIGCOMM Computer

Communication Review 8 (3) (1978) 35–41.
[70] E. Rescorla, Diffie-Hellman Key Agreement Method, RFC 2631 (Jun. 1999). doi:10.17487/RFC2631.
[71] R. Enns, M. Björklund, A. Bierman, J. Schönwälder, Network Configuration Protocol (NETConf),

RFC 6241 (Jun. 2011). doi:10.17487/RFC6241.
[72] H. Feng, J. Llorca, A. M. Tulino, D. Raz, A. F. Molisch, Approximation algorithms for the NFV

service distribution problem, in: INFOCOM 2017-IEEE Conference on Computer Communications,
IEEE, IEEE, 2017, pp. 1–9.

28

http://dx.doi.org/10.17487/RFC6867
http://dx.doi.org/10.17487/RFC5868
http://dx.doi.org/10.17487/RFC8040
http://dx.doi.org/10.17487/RFC8040
http://dx.doi.org/10.17487/RFC1654
http://dx.doi.org/10.17487/RFC1654
http://dx.doi.org/10.17487/RFC2631
http://dx.doi.org/10.17487/RFC6241

	Introduction
	Related work

	Extraction and Discussion of Requirements
	Architecture
	Implementation
	Verification by experiments
	Discussion and Evaluation
	The performance results
	Security Analysis
	Interoperability
	Future work

	Conclusion

