
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

M
as

te
r’

s
th

es
is

Erik Wiker

Reducing the Search Space of
Neuroevolution using Monte Carlo
Tree Search

Master’s thesis in Informatics
Supervisor: Massimiliano Ruocco, Stefano Nichele

June 2019

Erik Wiker

Reducing the Search Space of
Neuroevolution using Monte Carlo Tree
Search

Master’s thesis in Informatics
Supervisor: Massimiliano Ruocco, Stefano Nichele
June 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

0

Preface

This is a master’s thesis for Informatics at the Norwegian University of Science and Technology

(NTNU) in the field Artificial Intelligence. The thesis is supervised by Massimiliano Ruocco and

co-supervised by Stefano Nichele.

I would like to thank my supervisors for giving valuable feedback and guidance throughout

the period.

Trondheim, June 13, 2019

Erik Wiker

1

Abstract

This thesis explores the possibility of using Monte-Carlo tree search to reduce the search space

of the well-known machine learning algorithm Neuroevolution of Augmenting Topologies, with

the goal of achieving shorter run-times and better solutions. How combination of the two algo-

rithms can be done is researched through design, implementation and experimentation. Three

main methods are proposed based on experimentation done in this thesis as well as the experi-

ence from previous work in the field. The algorithms were tested on environments from Open

AI gym and compared to the original algorithm.

The results show that none of the proposed algorithms are able to outperform Neuroevolu-

tion of Augmenting Topologies, producing larger solution networks, longer run-times or worse

fitnesses. However, as this is an early attempt at the strategy, the results show that the work pro-

posed in this thesis may serve as a important foundation for further development in the area.

The source code for this project can be found at https://github.com/MrWe/NEAT_MCTS.

https://github.com/MrWe/NEAT_MCTS

2

Sammendrag

Denne oppgaven undersøker muligheten for å bruke Monte-Carlo-tre-søk for å redusere søkeom-

rådet til den velkjente maskinlæringsalgoritmen Neuroevolution of Augmenting Topologies, med

sikte på å oppnå kortere kjøretider og bedre løsninger. Hvordan en kombinasjon av de to algo-

ritmene kan konstrueres er undersøkt gjennom design, implementering og eksperimentering.

Tre hovedmetoder er foreslått basert på eksperimentering utført i denne avhandlingen, samt

erfaringen fra tidligere arbeid i feltet. Algoritmene ble testet på miljøer fra Open AI gym og sam-

menlignet med den opprinnelige algoritmen.

Resultatene viser at ingen av de foreslåtte algoritmene er i stand til å overgå Neuroevolution

of Augmenting Topologies. De produserer ofte større nettverksløsninger, lengre løpstider eller

dårligere treningsformer. Men da dette er et tidlig forsøk på strategien, viser resultatene at ar-

beidet som foreslås i denne oppgaven kan fungere som et viktig grunnlag for videreutvikling i

området.

Koden for dette prosjektet er tilgjengelig på https://github.com/MrWe/NEAT_MCTS.

https://github.com/MrWe/NEAT_MCTS

Contents

Preface . 0

Abstract . 1

Acronyms 10

1 Introduction 11

1.1 Background and motivation . 11

1.2 Goal . 12

1.3 Research methods . 12

1.3.1 Research Protocol . 13

1.4 Contributions . 14

2 Related Works 15

2.1 Network Architecture Construction . 15

2.2 Monte Carlo Tree Search . 20

2.3 Architecture Search using Monte-Carlo Method . 20

3 Background Theory 22

3.1 Artificial Neural Networks . 22

3.1.1 Neural Architecture Search . 23

3.2 Evolutionary Algorithms . 24

3.2.1 Genotype to Phenotype . 25

3.2.2 Genetic Operators . 26

3.2.3 Fitness Evaluation . 27

3.3 Neuroevolution of Augmenting Topologies . 27

3

CONTENTS 4

3.3.1 Representation . 27

3.3.2 Crossover . 28

3.3.3 Mutation . 29

3.4 Monte Carlo Tree Search . 31

3.4.1 Selection . 31

3.4.2 Expansion . 31

3.4.3 Simulation . 32

3.4.4 Backpropagation . 32

4 Methods 33

4.1 Initial Experimentation . 33

4.2 Main Implementation . 35

4.2.1 Tree Implementation . 35

4.2.2 MCTS with Hill Climb Local Search . 37

4.2.3 MCTS with Genetic Algorithm Local Search 39

4.2.4 MCTS with Partial Genetic Algorithm Local Search 40

4.3 Tree Progression Example . 42

5 Experimental Setting 46

5.1 Test Environment . 46

5.1.1 Discrete & Continuous Actions and Observations 47

5.1.2 Environments . 47

6 Results and Discussion 56

6.1 Experimental Setup . 56

6.2 Quantitative Results and Discussion . 56

7 Conclusion 67

7.1 Further Work . 68

Bibliography 69

CONTENTS 5

A Additional Information 73

A.1 Evaluation Code . 73

A.1.1 Cart Pole . 73

A.1.2 Mountain Car . 74

A.1.3 Lunar Lander . 75

A.1.4 Pendulum . 76

A.1.5 Bipedal Walker . 76

A.2 Example Runs . 78

List of Figures

2.1 Connection matrix . 16

2.2 Neural architecture hill climb . 18

2.3 Hierarchical architecture search . 19

3.1 Simple neural network . 23

3.2 Activation function . 24

3.3 Neural architecture search . 25

3.4 Genotype to phenotype . 26

3.5 NEAT genome . 28

3.6 NEAT crossover . 29

3.7 NEAT mutation . 30

3.8 Monte carlo tree search . 32

4.1 Traveling salesman 30 cities . 34

4.2 Traveling salesman 52 cities . 35

4.3 Tree progression . 36

4.4 Tree pruning . 37

4.5 Hill Climb Local Search . 38

4.6 Genetic Algorithm Local Search . 40

4.7 Hill Climb . 41

4.8 Partial Genetic Algorithm Local Search . 42

4.9 Tree search progression example . 43

4.10 Tree search progression winner example . 45

6

LIST OF FIGURES 7

5.1 Agent / Environment . 47

5.2 OpenAI gym: Cart pole . 48

5.3 OpenAI gym: Mountain car . 49

5.4 OpenAI gym: Lunar lander . 51

5.5 OpenAI gym: Pendulum . 53

5.6 OpenAI gym: Bipedal Walker . 55

6.1 Lunar lander fitness comparisons . 61

6.2 Pendulum fitness comparisons . 62

6.3 Pendulum fitness comparisons . 63

6.4 mcWeightEvolPartialNEAT fitnesses . 64

6.5 mcWeightEvolPartialNEAT fitnesses . 65

A.1 Example run . 80

List of Tables

5.1 Cart Pole Observations . 48

5.2 Cart Pole Actions . 48

5.3 Mountain Car Observations . 49

5.4 Mountain Car Actions . 49

5.5 Lunar Lander Observations . 50

5.6 Lunar Lander Actions . 50

5.7 Pendulum Observations . 52

5.8 Pendulum Actions . 52

5.9 Bipedal Walker Observations . 54

5.10 Bipedal Walker Actions . 54

6.1 Cart Pole Results . 57

6.2 Mountain Car Results . 58

6.3 Lunar Lander Results . 59

6.4 Pendulum Results . 59

6.5 Bipedal Walker Results . 60

8

LIST OF TABLES 9

Acronyms

ANN Artificial Neural Network. 16, 22

CNN Convolutional Neural Network. 17

CoDeepNEAT Coevolution DeepNEAT. 17

CPPN Compositional pattern-producing network. 17

DNN Deep Neural Network. 20

HyperNEAT Hypercube-based NeuroEvolution of Augmenting Topologies. 16, 17

MCTS Monte Carlo Tree Search. 12, 14, 20, 31, 32, 35, 67, 68

NAS Neural Architecture Search with Reinforcement Learning. 17, 18

NEAT Neuroevolution of Augmenting Topologies. 12, 14–17, 27–29, 33, 35, 39, 46, 57–60, 63, 64,

66–68

RNN Recurrent Neural Network. 17

TWEANN Topology and Weight Evolving Artificial Neural Network. 12, 27

UCT Upper Confidence Bound applied to trees. 20

10

Chapter 1

Introduction

Artificial intelligence has quickly become a million dollar industry and is widely used in systems

like processing customer data for stores, assisting in medical diagnosing, to using face identifi-

cation to open phones, and as computing power increases so too does the number of possible

use cases for such systems. The main component in many artificial intelligence systems are

neural networks and large amounts of resources are used to improve this technology. One such

improvement is the creation process of the neural network. In the creation of neural networks,

much time is spent in finding the optimal architecture, topology, and weights. While this process

is negligible for many problems, many cases require a significant effort to construct adequate

architectures.

1.1 Background and motivation

The process of constructing and training neural networks is often time-consuming as well as

requiring expert knowledge to be done effectively. To make learning through neural networks

more attainable for the general populace, automating the process is vital. Existing methods are

already able to construct expert level topologies, however, often with the use of days, or even

months of GPU hours, as can be seen in [32]. Such computing power is unrealistic for the vast

number of researchers or even cooperation’s.

This thesis explores the possibilities of decreasing the time and computer power needed

in the creation and training of neural networks so as to decrease the effort required to do ma-

11

CHAPTER 1. INTRODUCTION 12

chine learning with neural networks. The process, called Topology and Weight Evolving Arti-

ficial Neural Network algorithms, involves exploring the search space of possible architectures

and weights, often through a process of evolution. The method explored will be an adaption

of Neuroevolution of Augmenting Topologies (NEAT) where the architecture search will be re-

placed with Monte Carlo Tree Search (MCTS). MCTS have met success in various situations in

later years [1], and a successful combination of Topology and Weight Evolving Artificial Neural

Network (TWEANN)s and MCTS can greatly improve upon the state of the art.

1.2 Goal

Goal Reducing the search space of the Neuroevolution Through Augmenting Topologies using

Monte Carlo Tree Search.

The goal of this thesis is to reduce the number of states the NEAT algorithm will have to

search through to encounter valid and acceptable solutions. To achieve this goal this thesis will

explore the effect of applying MCTS, firstly to a general evolutionary algorithm to document

general observations, and then to the NEAT algorithm itself to document domain specific ob-

servations.

To initialize the process of solving this goal, multiple questions must be answered. The re-

search questions below have been chosen so as to gradually build knowledge of the domain to a

point where the main goal can be achieved.

RQ1 How can Monte Carlo Tree Search be adapted to replace an evolutionary search pro-

cess?

RQ2 In which ways can Monte Carlo Tree Search be adapted to benefit Neuroevolution of

Augmenting Topologies, and which results does the adaptions yield compared to the standard

algorithm?

1.3 Research methods

The research method in this thesis will follow the same general path as that proposed in [19].

The paper proposes six main activities with the aim of producing and representing information.

CHAPTER 1. INTRODUCTION 13

The six activities are as follow:

1. Problem identification and motivation

2. Objectives of a solution

3. Design and development

4. Demonstration

5. Evaluation

6. Communication

Chapter 1 outlines both problem identification and the motivation for selecting this as the

topic of choice, as well as the reasoning behind the proposed solution to the problem. Chapter

4 will detail the design and development phase, as well as early work. A demonstration of the

results, as well as the evaluation of the proposed solutions, can be found in Chapter 6, while this

thesis in its entirety represents the sixth and last point.

1.3.1 Research Protocol

The research protocol used in this thesis is the snowball method as described in [30]. A short

summary of the method, as well as an explanation of why it is used in this thesis, will follow in

this section while a utilization of the method can be found in section 2.

Finding Start Set

To begin the snowballing method, a good start point should be found. The start set will be the

entry point to finding the rest of the literature and as such must accurately be identified.

The start set in this thesis was identified by a combination of finding articles as a basis for the

research and using a search query on relevant search engines to find research tightly connected

to the articles already found.

The basis of this thesis is [26] and [28], and as such these are the very beginning of the start

set. Relevant articles were then selected from both the citation list of the papers in the start

CHAPTER 1. INTRODUCTION 14

set, as well as articles that cite the start set. Named as forward and backward snowballing. The

process is then repeated as necessary with the new papers found until no new relevant papers

occur.

Iterations

When the start set decided both forwards and backwards snowballing can begin. Backwards

snowballing includes using the reference list of the paper being examined to find earlier papers

than the one being examined. Forwards snowballing is looking at the papers referencing the

paper being examined. This will result in newer papers than the current one. Papers that are

decided to be relevant are added to a set of new papers to examine. This iterative process is

repeated with the set of new papers until no new relevant papers can be found.

1.4 Contributions

The contributions for this thesis are:

C1: Examining ways of changing the search protocol of NEAT to a more structured tree search.

C2: An implementation of NEAT using MCTS as the search protocol.

C3: Comparisons between the standard NEAT algorithm, and two new methods proposed in

this thesis.

Chapter 2

Related Works

This section will present relevant state of the art within the field of study of this thesis. The

section will aim to give the reader an in-depth account of problems and solutions from early

development within the field to recent improvements.

2.1 Network Architecture Construction

Various approaches to architecture search, explained in Section 3.1.1, have been proposed, es-

pecially in later years, and great strides in both accuracy and search speeds have been achieved

from earlier algorithms. The search for algorithms which automatically creates neural networks

have persisted since the 1980s and in [23] outlined some of the first combinations of genetic

algorithms and neural networks. The paper outlined the problems regarding competing con-

ventions as well as illustrating a direct genome encoding scheme using a connection matrix,

showed in Figure 2.1, describing how such an approach will grow exponentially in the size of

matrix needed with the number of nodes in the network.

NEAT, proposed by [26], addressed both the problem of competing conventions and the

exponential growth of the genome representation. As this thesis builds upon NEAT, a more

in-depth explanation of the algorithm can be found in Section 3.3, however, a short summa-

rization will be given here. NEAT utilizes node- and connection-genes to describe a network,

where node-genes specify the nodes in the network, and connection-genes describe the rela-

tionship between each node. If there is no connection-gene specifying a connection between

15

CHAPTER 2. RELATED WORKS 16

Figure 2.1: Direct encoding of genome given as a Connection matrix with values restricted to 0
and 1, 0 being no connection and 1 being a full connection. New nodes are inserted by extending
the matrix with both a row and column. The figure is recreated from [23]

two nodes, the nodes are assumed to be not connected. Thus the algorithm does not need to

store the relationship between all nodes, only the nodes which are connected. As a solution to

competing conventions, NEAT gives all genes an innovation number, (see Section 3.3.2), which

can be compared between genomes to lower the probability of losing information in crossovers.

NEAT encounters difficulties when trying to solve problems requiring large networks because of

the number of possible permutations large networks can have which makes the solution space

slow to search through, as stated in [15].

The ideas behind NEAT were further developed by [25], in which Hypercube-based Neu-

roEvolution of Augmenting Topologies (HyperNEAT) were proposed. HyperNEAT tackles the

problems of scaling from NEAT by using an indirect genome representation instead of the genome

representation in NEAT. HyperNEAT works on the assumption that weight values of an Artificial

Neural Network (ANN) can be described as a function of the topology of the network. An as-

sumption which has proven to be quite successful in many problems. HyperNEAT utilizes two

different genomes, the first being what is called a substrate. The substrate is a neural network

with a fixed geometrical topology where only the weights need to be defined. The weights are

CHAPTER 2. RELATED WORKS 17

defined with the use of the other genome, a Compositional pattern-producing network (CPPN).

The CPPN takes as inputs spatial information of nodes in the substrate and outputs connection

weights between the nodes. The fitness of the CPPN is calculated from the results from the sub-

strate, and used to evolve the CPPN using NEAT. CPPNs tend to produce non-random patterns

when provided with spatial inputs which tend to create networks with less chaotic outputs. In

HyperNEAT the geometric ordering of the nodes in the substrate plays a large role for the final

result, however, there are variations where the substrate is evolved as well [21]. Despite promis-

ing results, [10] showed that the efficiency of HyperNEAT decreases as problems become more

complex by testing on multiple different problems.

Neural Architecture Search with Reinforcement Learning (NAS), proposed by [31], is an ap-

proach where a controller is given responsibility for learning to create the best neural network

architectures through reinforcement learning. The paper works on the observation that Convo-

lutional Neural Network (CNN)s can be described by their parameters such as number of filters,

filter height, filter width, stride height, etc. Picking these parameters can be seen as picking

actions in a reinforcement setting. The controller, being a Recurrent Neural Network (RNN), is

trained through reinforcement learning by picking actions, looking at the fitness of the resulting

CNN (after being trained) and using that fitness to update its own weights. Achieving impressive

results by hitting about 4% error rate on CIFAR-10, the algorithm is still very resource intensive,

using 800 GPUs to train 800 networks at any given time.

A similar approach is given in [15] where the authors propose an approach to adapt NEAT

to effectively evolve deep neural networks. The authors firstly propose DeepNEAT where the

nodes in the original NEAT genome no longer represents a neuron but instead represents a

layer in the deep neural network. The networks are trained with gradient descent for a fixed

number of epochs and fitness is evaluated based on the performance of the network. According

to the paper, this approach often produces complex and irregular structures and so Coevolu-

tion DeepNEAT (CoDeepNEAT) is proposed next. CoDeepNEAT, mainly inspired by the work of

[16], define the concepts of modules and blueprints. Modules represent small deep neural net-

works while blueprints are graphs where nodes contain pointers to specific modules. In this way

CoDeepNEAT can produce repetitive modular networks. The results in the paper are promising

but as stated in the [15], training time for each deep neural network is measured in days on

CHAPTER 2. RELATED WORKS 18

modern GPUs and during evolution up to thousands of networks must be trained. As such the

algorithm is only viable if no time constraint is given.

Also related to NAS, [5] suggests a simpler approach to architecture search. The proposed al-

gorithm is called Neural Architecture Search by Hillclimbing (NASH), noticeably replacing rein-

forcement learning with hillclimbing. Network architecture search by hillclimbing is a relatively

straightforward method, but presents undeniable results, in this case, hitting 4.7% on CIFAR-

100 with two days of training on one GPU representing a clear speedup from many state of the

art algorithms. NASH involves an iterative process of selecting the best current solution and

creating k neighbors which are modified n times by applying one of three mutations each time.

The process is illustrated in Figure 2.2. The networks are trained for a set amount of epochs

with stochastic gradient descent on each evolutionary iteration, and the trained weights are in-

herited by the children. This means that all networks except for the first iteration start training

from the same weights as the parent architecture. A problem often encountered with hillclimb-

ing is getting stuck in a local optimum, however, their results do not show this to be the case in

this instance.

Figure 2.2: Showing how the current best method is morphed into multiple children repeatedly.
The figure is retrieved from [5]

It is also worth noting that the authors propose a baseline of randomly constructing and

training networks with stochastic gradient descent. This very simple algorithm is able to achieve

6% - 7% test error on CIFAR-10.

CHAPTER 2. RELATED WORKS 19

[12] introduces a novel way of representing architectures. Architectures are represented in

three hierarchies, going from more to less detailed as shown in Figure 2.3. Since the genome

is given as a directed graph, manipulations to the network can be done through mutation of

the graph. Adding, removing and altering of edges are approaches given in the paper. As all

three levels are given as graphs, this enables the same mutations to be done on regardless of the

level. This enables the algorithm to efficiently construct larger networks consisting of sub-parts

in various different configurations to solve problems.

Figure 2.3: Figure showing assemblies from level 1 (o(1)
1 o(1)

2 o(1)
3) to a level 2 structure (o(2)

1). Level

2 structures (o(2)
1 o(2)

2 o(2)
3) can then be assembled into a level 3 structure (o(3)

1). Genomes are given
as a directed graph. The figure is retrieved from [12]

PathNet, proposed in [8], seeks to create one large neural network which can be trained to

perform multiple different tasks. To achieve this, PathNet initiates populations of competing

pathways through the network. The pathways are trained for a set number of iterations before

the best pathways are mutated and trained again in the next population. When a satisfactory

result is achieved, the winning pathway is fixed, so that further training does not delete already

learned solutions. Interestingly, the evolution, in this case, is used to guide where learning (gra-

dient descent) should be applied in the network, instead of evolving the topology itself.

CHAPTER 2. RELATED WORKS 20

2.2 Monte Carlo Tree Search

MCTS has been successfully utilized in various programs requiring some sort of decision pro-

cess, most notably perhaps in various computer games. However, the method can be used

in various problems which can be represented as tree traversal-problems. The term was first

coined in [4] where the algorithm was used for a 9x9 GO-game. Recently it has often been used

in games with large search spaces ([7], [13], [11]), and maybe most notably in alphaGo [24] where

it was used in conjunction with value- and policy networks to explore the search space of GO.

2.3 Architecture Search using Monte-Carlo Method

[29] achieves notably results by treating architecture search as a tree problem and utilizing Monte-

Carlo planning as well as two derivations of Upper Confidence Bound applied to trees (UCT),

explained in Section 3.4, to quickly search through architectures. One of the derivations being a

reward predictor which can estimate the reward from doing changes to existing networks. No-

tably, since almost every new network has to be trained before fitness can be evaluated they

only have time to run a relatively small number of roll-outs, which means that the algorithm

must converge to a solution quickly. Knowledge transfer using Net2Net [3] were used to speed

up the algorithm as well.

Recently [28] presented AlphaX, an algorithm which combines MCTS and a meta Deep Neu-

ral Network (DNN) to predict the value of sampled architectures. The meta DNN uses previous

experience to predict the performance of architectures. This is used to 1) heuristically guide the

search towards promising regions, and 2) preemptively backpropagate the accuracy with only

the score given by the meta DNN as a placeholder until a real score can be given. This is done

since each new network must be trained which will give a time between selection of an architec-

ture and the fitness of that architecture being returned. The overall networks in this algorithm

are structured in chunks, called cells, which are fixed. There are two types of cells, normal and

reduction, where Normal cells maintain the input and output sizes, while reduction cells re-

duce the size of inputs and outputs, by half. Inside each cell, there are blocks containing neural

network structures, which are evolved as the algorithm progresses. New architectures are se-

lected using MCTS, according to the fitness evaluation done by the meta DNN. The algorithm

CHAPTER 2. RELATED WORKS 21

runs using multiple GPUs over hours and days, meaning this algorithm is not viable for various

researchers or groups.

Chapter 3

Background Theory

This section will give brief introductions to the main concepts and algorithms used in this thesis.

3.1 Artificial Neural Networks

ANNs are a set of systems based originally on biological processes in brains [27]. ANNs contain

neurons (also called nodes) joined by directed connections controlling the flow of information

through the network. Often, the neurons are divided into layers, with the directed connections

connecting the layers, as can be seen in Figure 3.1. This is called a fully connected feedforward

network since data propagates from left to right, and all neurons in a layer are connected to the

layer before.

Neurons in neural networks contain a function called an activation function, which takes

as input a weighted sum of the inputs to that neuron and calculates an output. This process is

shown in Figure 3.2 for one neuron. The output of the neuron is either passed to the next neuron

in the network, or it may be considered the output of the network if the neuron is the last of the

network.

The connections between neurons represent weights which decide the importance of the

input to the neurons by multiplying the input to the corresponding weights. As can be seen in

Figure 3.2, if an input is multiplied with a low number, say 0.0, the original value of that weight

will have no say in the final output of the neuron. It is these weights that are changed when

the network is trained so that the network can learn how each input in the network should be

22

CHAPTER 3. BACKGROUND THEORY 23

Figure 3.1: An illustration of a simple feed-forward neural network consisting of two input-
neurons, three hidden-neurons and one output-neuron. This network is fully connected, mean-
ing all neurons are connected to all neurons in the layer before.

modified.

Multiple activation functions exist and are used for different purposes in different problems.

Popular ones are identity, tanh, softmax and sigmoid. Notably, activation functions map the

original output value of a neuron between two values, such as (-1,1) for sigmoid, or (0,1) for the

logistic activation function.

3.1.1 Neural Architecture Search

Neural architecture search is the process of searching through architectures to find topologies

according to some search strategy [6]. Figure 3.3 shows an abstract illustration of a general

search strategy. The search space defines the set of architectures that can be represented, in

theory. The search strategy is the method with which the search space is traversed. A problem

with search strategies is often to find the optimal balance between exploration and exploita-

tion where too much exploration will cause the algorithm to run for too long while too much

exploitation will lead to premature convergence on a sub-optimal result.

CHAPTER 3. BACKGROUND THEORY 24

Figure 3.2: A general activation function showing how the product of the inputs I 1, I 2, I 3 and
weights w1, w2, w3 are summed and passed to an activation function, before being sent as out-
put O

3.2 Evolutionary Algorithms

Genetic algorithms are a set of algorithms focusing on solving optimization problems. Inspired

by nature, these algorithms mimic the process of biological evolution by utilizing the principle of

evolving better and better solutions through an incremental process of population creation and

fitness evaluation. By creating new populations based on good traits from earlier populations,

as well as some rate of random mutations, these algorithms generally are able to move towards

more and more optimal candidate solutions. Genetic operators are specific operators used to

change populations over time. Specific operators are selected for specific problems, however,

the most used are cr ossover, sel ect i on & mut ati on.

CHAPTER 3. BACKGROUND THEORY 25

Figure 3.3: Simplified illustration of a neural architecture search scheme. A predefined search
strategy selects an architecture A from the search space. The architecture is then evaluated by a
performance estimation strategy which passes the estimation back to the search strategy. Figure
copied from [6]

Base Algorithm

Implementation variation will naturally differ from problem to problem, however most will con-

tain the basic instructions shown in Algorithm 1.

Algorithm 1 Base Evolutionary Algorithm copied from [20]

1: procedure BASE EA(a,b)
2: initialize population
3: evaluate population
4: while !stopCondition do . End when good enough solution is found
5: select the best-fit individuals for reproduction
6: breed new individuals through crossover and mutation operations
7: evaluate the individual fitness of new individuals
8: replace least-fit population with new individuals

The initial population is generated and evaluated in lines 2 and 3. The best k individuals of

the population are selected in line 5, and these are used as the basis for the next group of individ-

uals through crossover and mutation. In lines 7 and 8 the least fit individuals of the population

are replaced with new and hopefully better individuals.

3.2.1 Genotype to Phenotype

Another concept inspired by biological evolution is the distinction between genotype and phe-

notype where genotype is the hereditary information while the phenotype is the observed be-

havior of the individual. This distinction is used to simplify the process of making changes to the

solution via the genetic operators. To illustrate the difference the well-known traveling salesman

problem will be used. Given the genome [ci t y1,ci t y2,ci t y3,ci t y4,ci t y5,ci t y6], each element

CHAPTER 3. BACKGROUND THEORY 26

represents a unique id for a city, and the order of the elements represents the order in which the

salesman will have to visit the cities. A possible phenotype for this genome can be seen in Figure

3.4.

Figure 3.4: Figure showing a possible phenotype from the genome
[ci t y1,ci t y2,ci t y3,ci t y4,ci t y5,ci t y6]

3.2.2 Genetic Operators

Crossover is the process of combining the hereditary data from two parent individuals to create a

child individual. The operation is inspired by natural sexual reproduction which combines traits

from parents in nature. By combining the information from different individuals with different

traits multiple times it is hoped that at least one of the offspring will contain the best traits from

both parents.

Selection is used to decide which parents to use in reproduction. Multiple selection strategies

exist, however, most generally have a higher chance of selecting the more fit parents rather than

the less fit. This ensures that good traits continue to the next population.

Mutation is used to diversify the population by introducing new traits that cannot be pro-

duced through crossover. Mutations are often random changes to genomes which often creates

solutions that are worse than the original genome. However, by doing many mutations on many

individuals, some good traits may be discovered which did not exist in the population before the

mutation.

CHAPTER 3. BACKGROUND THEORY 27

3.2.3 Fitness Evaluation

To determine how good individuals are, they must be evaluated in some manner. The evaluation

is problem specific, but the fitness is always used to guide the evolutionary process towards

better and better solutions.

3.3 Neuroevolution of Augmenting Topologies

NEAT is a specific algorithm developed by Stanley et al. in [26] as a method to generate artificial

neural networks through an evolutionary process. NEAT is part of a group of algorithms called

TWEANNs, where the algorithm will simultaneously try to optimize both the weights and the

topology of a neural network.

Incremental Complexification

The initial structures in NEAT are very simple starting with input-nodes, output-nodes, and

connections between some, or all, of them. The genomes are made incrementally more com-

plex over time to ensure solutions with small networks gets a chance to evolve weights. Small

networks a preferable since they take less time to further evolve, as well as using less time to

compute a result. In addition, evolving small structures first keeps the search space of possible

structures as small as possible which heightens the performance of the overall algorithm.

3.3.1 Representation

In NEAT the genotype of a neural network is divided into two different gene types: Nodes, con-

taining an node_i d and whether it is an input, output or a hidden node, and connections

which contain the connection’s input node, output node, weight, whether it is enabled or not

and the innovation number of the connection. The node_i d of the node genes are used in the

connection genes to keep track of which nodes each connection gene connects, and is simply

globally incremented when new nodes are added in the evolutionary process. node_i d and

i nnovati on_number also serve a purpose in the crossover process, explained in Section 3.3.2.

An illustration of the genome representation, and how it can be decoded into a phenotype can

CHAPTER 3. BACKGROUND THEORY 28

be seen in Figure 3.5.

Figure 3.5: On the left: Illustration of how the genome in NEAT is divided between Node genes
and Connection genes. On the right: The phenotype of the genome, showing the nodes and
connections. Image copied from [9]

3.3.2 Crossover

Doing crossover on neural network architectures is not trivial since the computer will have

to distinguish between similar and different nodes and connections in different genomes to

be able to discern which exist in one parent and which does not. This is needed so that the

crossover process does not create children who are missing important traits from either par-

ent. To solve this problem, NEAT introduces node_i ds for nodes and i nnovati on_number s

for genes, collectively named history markers. The history marker is a global counter which is

incremented each time a new connection is created in the evolutionary process.

When doing crossover the genomes can be lined up using the history markers to ensure that

genes that exist in both parents are always continued in the child, and genes that exist in one

parent but not the other is continued in the child if they come from the best parent.

Figure 3.6 illustrates how two parents with similar, but not identical genomes can be com-

bined to form a child. For gene one through five the genes are taken from a random parent,

while the disjoint and disjoint genes are passed on from the best fit parent, or both if they are

CHAPTER 3. BACKGROUND THEORY 29

equally fit.

Figure 3.6: Crossover operation in NEAT showing how two parents can be combined to create a
child. Image copied from [26]

3.3.3 Mutation

The structure of a network in NEAT can be changed by two different mutations, both of which

are shown in Figure 3.7. In short, the two possibilities are adding a node or adding a connection.

When adding a node it is always done by selecting a connection which is divided into two con-

nections, with the newly made node as the node in between them. When adding a new connec-

tion, two nodes with no connection between them are selected and a new connection between

them is created. New nodes and connections are given a historical marker to distinguish them

from previous nodes and connections.

CHAPTER 3. BACKGROUND THEORY 30

Figure 3.7: Top: Showing how a connection is added between node 3 and 5 and given the inno-
vation number 7. Bottom: Showing how connection 3 is divided into 2 connections by adding a
node in the middle. Image copied from [26]

Speciation

To prevent the extinction of solutions that are not yet viable or satisfying in comparison to other

solutions, a speciation scheme is utilized. Speciation allows individuals containing specific

traits to improve those traits by making the individuals only compete with other individuals

containing the same overall traits. This prevents good, but not optimal individuals, from taking

over the global population which will often lead to the entire population stagnating at a local

optimum.

The history markings used in NEAT is utilized to calculate the distance between individuals

(genomes) by looking at the number of excess and disjoint genes between individuals. The dis-

tance δ between the structures is calculated by adding the disjoint D and excess E genes, and

the average weight difference of matching genes W . The Equation 3.1 explained in [26] explains

the δ - value.

δ= c1E

N
+ c2D

N
+ c3 ·W (3.1)

CHAPTER 3. BACKGROUND THEORY 31

Where c1, c2 and c3 are constants used to prioritize the importance of the three factors and

N is the number of genes in the largest genome used to normalize the values. According to [26],

N can be set to 1 for genomes smaller than 20 genes.

3.4 Monte Carlo Tree Search

MCTS is a statistical search method which utilizes a Monte Carlo method of random sampling

to create a heuristic for tree traversal [1]. The base algorithm consists of four steps: Selection, ex-

pansion, simulation and backpropagation. An illustration of these points can be seen in Figure

3.8.

3.4.1 Selection

Selection is done from the root node in the tree until a leaf node is encountered. The goal of the

selection process is to guide the search towards the most promising section of the tree, while

also ensuring that unsearched, or little searched sections of the tree aren’t ignored. This bal-

ance is categorized as exploration vs exploitation with the balance between them given from

the formula:

wi

ni
+ c

√
ln Ni

ni

where wi is the best-found fitness of the subtree from the current node, ni is the current

simulations ran from the current, Ni is the number of simulations ran from the parent of the

current node and c is a number weighting exploration and exploitation.

3.4.2 Expansion

When a leaf node is encountered after the selection process, one or more children is created

such that the tree is expanded. Available children represent legal actions that can be done from

the current node.

CHAPTER 3. BACKGROUND THEORY 32

3.4.3 Simulation

Simulation involves doing random actions from a child node of an expanded node, either until

a solution is found, a designated time frame is reached or a depth of the tree is reached.

3.4.4 Backpropagation

After a simulation is run the result is backpropagated from the node the simulation was run

from, up to the root node in the tree. This value is used to calculate whether or not the branch

is worth exploring more, or if other branches should be prioritized.

Figure 3.8: One iteration in MCTS. Image copied from [1]

Chapter 4

Methods

In this chapter the reimplementation of the reproduction scheme in NEAT will be explained,

as well as the reasoning behind the implementation decisions. The implementation is written

entirely in the coding language Python and is adapted from existing code written by [14], more

specifically the newest fork by Github user "drallensmith"1. The reasons for using this existing

code are mainly in regards to time constraints and result consistency. The project by [14] has

been developed since 2015 and been tested extensively, which will result in more reliable results

than would be possible with a system created during the time period of this thesis.

4.1 Initial Experimentation

To test the initial efficiency of applying Monte Carlo Tree Search to an evolutionary problem

the algorithm was first applied to the much simpler Traveling Salesman Problem (TSP). TSP is

an NP-hard problem with a smaller, but still very large, solution space than searching through

network topologies. This initial work was done to test the hypothesis of being able to efficiently

treat an evolutionary problem as a tree search, as well as to measure the performance of such a

solution versus a more standard genetic algorithm.

The algorithm was implemented by iteratively selecting and creating sub solutions by build-

ing a order of cities as the algorithm traverses down the tree. Each step down the tree will add

one city to the existing sub solution. More formally, if we have 5 cities [ci t y0,ci t y1,ci t y2,ci t y3,ci t y4]

1https://github.com/drallensmith/neat-python

33

https://github.com/drallensmith/neat-python

CHAPTER 4. METHODS 34

the root node in the tree will start with one of those cities. If the root node starts with ci t y1,

the possible children of the root node will be [ci t y1,ci t y0], [ci t y1,ci t y2], [ci t y1,ci t y3] and

[ci t y1,ci t y4]. The cities of these children are fixed and cannot be changed, such that simu-

lations on these nodes are only looking at the order of the rest of the cities. Selection is done

based on the best-encountered score for each node when a set of simulations has been run.

As can be seen from figures 4.1(a) and 4.1(b) there is a noticeable difference between run-

ning a pure MCTS algorithm and using MCTS with Beam Search. When using only MCTS the

algorithm was only able to generate very sub-optimal solutions because the search tree became

too big. When running MCTS with Beam Search to reduce the number of nodes being searched

the result is markedly better, however noticeably still not optimal.

(a) Using only Monte-Carlo Tree
Search

(b) Reducing the search space by ap-
plying Beam Search

Figure 4.1: Comparisons between using only Monte-Carlo Tree Search and Monte-Carlo Tree
Search with Beam Search on 30 cities.

Adding more cities resulted in increasingly worse solutions, however as can be seen in Figure

4.2 with 52 cities the algorithm is still fairly consistent inside the sub-solutions, that is, there are

only one large jump between two far away cities.

CHAPTER 4. METHODS 35

Figure 4.2: MCTS with Beam Search on 52 cities.

4.2 Main Implementation

Two different methods for updating the weights of the neural networks are explained below.

They were implemented to see the difference in approaches as each theoretically has their own

advantages and disadvantages: Hill climb tends to be faster and able to quickly climb towards

a solution, however, they often stagnate at a local optimum. Evolution is nearer to the standard

NEAT implementation. Evolution tends to climb slower towards solutions, but are also better

able to reach global optima. Both of the learning schemes are done on one node at a time as the

selection process progresses down the search tree, with a certain percentage.

4.2.1 Tree Implementation

The main element of the proposed system is the MCTS and the process of expanding the tree. As

can be seen in Figure 4.3 the tree expands by mutating the topology of an initial root network A.

The root network, in this case, has two input nodes and one output node, with both input nodes

being connected to the output. There are two possibilities for generating child nodes from a

network: Splitting an existing connection and adding a neuron in the middle or connecting

two previously unconnected neurons. The two only possible children of node A are therefore

CHAPTER 4. METHODS 36

nodes B and C. As can be seen in node D, a connection has been added between I2 and the

hidden node. The tree in the figure is not complete but it should be apparent that the width

of the tree will grow exponentially as the number of nodes and connections becomes larger.

The number of children of a network is the sum of connections and unconnected nodes, not

including connections between input nodes and between output nodes.

Figure 4.3: Incomplete progression of structures as search tree expands.

CHAPTER 4. METHODS 37

Pruning

Since the search tree will grow at a fast rate, an aggressive pruning method is vital so that the

algorithm can manage to find solutions within a reasonable timeframe. As the selection strategy

progresses down the tree there is a chance for each node selected to prune a set percentage of

its children based on the best-found fitness in that subtree. Figure 4.4 illustrates how node C

prunes one of its children, thereby removing the entire subtree from the search tree.

Figure 4.4: A sub-tree is pruned by removing node C from the tree.

4.2.2 MCTS with Hill Climb Local Search

Hill climb is an iterative process of creating or selecting the best current node, generating differ-

ent neighbors of that node and setting the next current if there is a new solution which is better

than the currently found best node. A more formal explanation can be found in Algorithm 2.

This algorithm will be identified as mcHillNEAT for the remaining of this thesis.

CHAPTER 4. METHODS 38

Algorithm 2 Hill climbing algorithm

1: procedure HILL CLIMB(i ni t i al _st ate)
2: priorityQueue = [i ni t i al_st ate]
3: best_f ound_sol uti on = i ni t i al_st ate
4: while !stopCondition do . End after a certain number of iterations
5: current = priorityQueue.pop()
6: best_f ound_sol uti on = current if current is more fit than best_f ound_sol uti on
7: create n-neighbours of current
8: add all neighbours to priorityQueue

The hill climbing process is done for only a single node at a time with a certain percentage

as the selection process proceeds down the tree. Multiple copies of the topology of that node

are created with small mutations to the weights. Each solution is then added to a priorityQueue,

and the process is repeated. See Figure 4.5 for an overview.

Figure 4.5: A node in the tree is selected for local search. The weights of the network are mutated
to create several neighbors, the best of which are selected for further mutation. This process
repeats N-times. The last network replaces the original node in the tree.

CHAPTER 4. METHODS 39

4.2.3 MCTS with Genetic Algorithm Local Search

This algorithm is more true to the standard NEAT algorithm by using the standard crossover-

operation as well as a genetic algorithm which is close to that used in standard NEAT. This algo-

rithm is done for only a single node at a time with a certain percentage as the selection process

proceeds down the tree. Multiple copies of the topology of that node are created with small

mutations to the weights. The copies are then selected as the initial population and placed into

a cycle of selection, crossover and mutation (see Figure 4.6. In each cycle, a set of individuals

are selected from the population for crossover. More fit individuals have a higher chance of be-

ing selected, but it is possible for all individuals to get selected. When new parents have been

selected, children are created using the standard crossover method explained in Section 3.3.2.

When the new child has been created it is mutated according to some chance and placed into a

new population. This is repeated until the new population contains as many individuals as the

last. The new population then replaces the old population and the cycle starts again. At each

iteration, the best individual is compared to see if it is better than already found solutions and

replaces the old solution if it is. This algorithm will be identified as mcWeightEvolNEAT for the

remaining of this thesis.

CHAPTER 4. METHODS 40

Figure 4.6: A node in the tree is selected for local search. The weights of the network are mu-
tated to create the initial population. A genetic algorithm is run to find better weights. The last
network replaces the original node in the tree.

4.2.4 MCTS with Partial Genetic Algorithm Local Search

This algorithm were created after the testing of mcHillNEAT and mcWeightEvolNEAT, based on

the observations from the behavior of mcWeightEvolNEAT. As can be seen in figures 6.1, 6.2 and

6.3, the fitness graph for mcWeightEvolNEAT has a tendency to initially climb very fast and then

stagnate in a local optima. This behavior is consistent standard hill climbing explained in [22,

Chapter 4.1]. Figure 4.7 illustrates how hill climbing algorithms may climb towards sub-optimal

solutions, and the theory is that a similar situation happens with mcWeightEvolNEAT since for

a node in the network is replaced after each local search. This forces the node to search in the

direction found by the very initial local search for that node. To combat this, the new algorithm,

which still has the same method of running weight evolution, only runs the genetic algorithm

one epoch. That is, only one new population is created when the local search is run. The entire

genetic algorithm is then stored until a local search is run on the node again, at which point the

CHAPTER 4. METHODS 41

genetic algorithm runs one more population. Figure 4.8 illustrates this process.

The theory is that this will enable a larger part of the search tree to move in parallel towards

solutions, thereby searching a greater part of the search space and ensuring that one node in

the network does not get a disproportionate amount of training compared to other nodes. This

algorithm will be identified as mcWeightEvolPartialNEAT for the remaining of this thesis.

Figure 4.7: Figure illustrating the search space of a hill climb algorithm, with the agent currently
traveling towards a local maximum. The figure is copied from [22, Chapter 4.1].

CHAPTER 4. METHODS 42

Figure 4.8: A node in the tree is selected for local search. The weights of the network are mutated
to create the initial population. A genetic algorithm is run to find better weights. When an
iteration of the genetic algorithm is finished the new population is stored until the next iteration
is run.

4.3 Tree Progression Example

This section will illustrate a real case scenario of tree progression. Figure 4.9 show how networks

are expanded. In this case it is clear that depth of the tree have been prioritized by the algorithm,

and only input -2 are connected to hidden nodes in the initial generations.

CHAPTER 4. METHODS 43

(a) 1 (b) 2 (c) 3

(d) 4

Figure 4.9: Example of how a tree search can progress down the search tree. Gray rectangles are
the inputs to the network, blue circles are outputs and white circles are hidden nodes. Green
and red arrows are positive and negative connection weights respectively.

CHAPTER 4. METHODS 44

4.10 is an illustration of how the best found neural network can look. In this case it can

be seen that node 2 from 4.9 is still in the final solution, however the other nodes have been

replaced.

CHAPTER 4. METHODS 45

Figure 4.10: Example of how the best found neural network from running the algorithm to its
finish can look. Gray rectangles are the inputs to the network, blue circles are outputs and white
circles are hidden nodes. Green and red arrows are positive and negative connection weights
respectively.

Chapter 5

Experimental Setting

This chapter will explain the environments used in testing the algorithms proposed in this the-

sis, as well as the original NEAT algorithm. The environments explained below are specifically

created for comparing various reinforcement learning algorithms, and as such are well suited

in this case. The environments have been selected in increasing difficulty, from mostly trivial to

relatively hard. The goal of using this methodology of testing is to reveal the difference in solv-

ing capability for the three algorithms tested, as well as highlight the strengths and weaknesses

in the three approaches. Another important aspect is how well the algorithms are able to scale,

that is: How will the complexity of the problem influence the run-time of the algorithm.

5.1 Test Environment

Open AI [17] has developed a toolkit for testing and evaluating learning algorithms. The toolkit

provides a set of virtual environments, called gyms [18], which can be observed and influenced

by an agent. Each gym operates in time steps where the agent performs an action in, or on,

the environment and receives an updated observation of the world. It is important to note that

each action taken increments the time step by one. Figure 5.1 illustrates this relationship on

one of the problems. Different environments have different complexity regarding the number

of possible actions and the number of observations that are returned. The possible actions and

observations are listed below.

Also of note is that all figures of the environments in this chapter, excluding Figure 5.1, are

46

CHAPTER 5. EXPERIMENTAL SETTING 47

copied from the Open AI website.

Figure 5.1: Showing the relationship between an agent and an environment.

5.1.1 Discrete & Continuous Actions and Observations

Actions and observations in the test environments can either be continuous or discrete, that is

a range from minimum to maximum, or either minimum or maximum. For actions where the

action are discrete the number of the selected action is passed to the environment e.g. in Table

5.2, the action selected are either 0 or 1. In Table 5.6 there is only one action, however, the action

is continuous, which means that the value which can be passed to the environment is a value

between -2.0 and 2.0 depending on the force which should be applied.

5.1.2 Environments

Cart Pole

The goal in this environment is to keep a pole in an upright position by moving the cart side to

side. An agent will fail when the pole reaches a certain angle, the cart moves offscreen or when

the number of time steps reaches 200. Rewards are given for each time completed time step.

Figure 5.2 represents how this environment looks while Table 5.1 and 5.2 shows the possible

observations and actions respectively. Specific evaluation code can be found in Appendix A.1.

CHAPTER 5. EXPERIMENTAL SETTING 48

Number Observation Minimum Maximum

0 Cart Position -2.4 2.4

1 Cart Velocity -Inf Inf

2 Pole Angle -41.8° 41.8°

3 Pole Velocity At Tip -Inf Inf

Table 5.1: Cart Pole Observations

Number Action

0 Push cart to the left

1 Push cart to the right

Table 5.2: Cart Pole Actions

Figure 5.2: Cart pole environment from OpenAI gym

Mountain Car

A cart is placed in a valley with the goal of reaching the flag to the right, as can be seen in Figure

5.3. The motor in the cart is not strong enough to simply drive up the slope. The agent must,

therefore, rock the cart from side to side until it has enough momentum to reach the top, using

the actions in Table 5.2. The maximum number of timesteps is 200 and the episode will end

CHAPTER 5. EXPERIMENTAL SETTING 49

either at 200 timesteps or when the flag is reached, with a reward being subtracted for each

timestep such that fast solution will get a better score. Observations from the environment can

be seen in Table 5.3. Specific evaluation code can be found in Appendix A.2.

Number Observation Minimum Maximum

0 Car position -1.2 0.6

1 Car velocity -0.07 0.07

Table 5.3: Mountain Car Observations

Number Action

0 Push car to the left

1 Do nothing

2 Push car to the right

Table 5.4: Mountain Car Actions

Figure 5.3: Mountain car environment from OpenAI gym

Lunar Lander

Two flags are placed on uneven ground and it is the goal of the agent to steer a lander to land

between the flags. A representation can be seen in Figure 5.4. The agent can steer the lander

CHAPTER 5. EXPERIMENTAL SETTING 50

by firing its engines as can be seen in Table 5.6. The episode ends when the lander crashes

or lands, with the rewards being -100 and 100 respectively. Additionally, the agent receives 10

reward when a leg is contacting the ground and -0.3 reward when firing the main engine. Obser-

vations from the environment can be seen in Table 5.5. Specific evaluation code can be found

in Appendix A.3.

Number Observation Minimum Maximum

0 Lander x-position -1.0 1.0 (normalized width of screen
with the middle being 0.0)

1 Lander y-position Minimum and maximum de-
pendent on the height of helipad

2 Lander x-velocity -Inf Inf

3 Lander y-velocity -Inf Inf

4 Lander angle -pi pi

5 Lander angular velocity -inf inf

6 Lander left leg contacts ground 0.0 1.0

6 Lander right leg contacts ground 0.0 1.0

Table 5.5: Lunar Lander Observations

Number Action

0 Do nothing

1 Fire left engine

2 Fire middle engine

3 Fire right engine

Table 5.6: Lunar Lander Actions

CHAPTER 5. EXPERIMENTAL SETTING 51

Figure 5.4: Lunar lander environment from OpenAI gym

Pendulum

The goal in this problem is to swing a pendulum such that it stays upright as long as possible.

Figure 5.5 shows how problem is illustrated. The possible action, as can be seen in Table 5.8

are continuous, meaning that the size and whether it is positive or negative corresponds to the

direction and force of a swing. Rewards are given by equation 5.1. Episodes terminate after a

user-defined number of timesteps. Observations from the environment can be seen in Table

5.7. Specific evaluation code can be found in Appendix A.4.

− (thet a2 +0.1∗ thet a_d t 2 +0.001∗acti on2) (5.1)

Equation 5.2: Theta is the angle of the pendulum and theta_dt is the rotational velocity.

CHAPTER 5. EXPERIMENTAL SETTING 52

Number Observation Minimum Maximum

0 cos(pole angle) -1.0 1.0

1 sin(pole angle) -1.0 1.0

2 Angular velocity of pole -8.0 8.0

3 Lander y-velocity -Inf Inf

4 Lander angle -pi pi

5 Lander angular velocity -inf inf

6 Lander left leg contacts ground 0 1

7 Lander right leg contacts ground 0 1

Table 5.7: Pendulum Observations

Number Action Minimum Maximum

0 Add force -2.0 2.0

Table 5.8: Pendulum Actions

CHAPTER 5. EXPERIMENTAL SETTING 53

Figure 5.5: Pendulum environment from OpenAI gym

Bipedal Walker

The agent must learn to move the legs of a walker in such a way as to make it move from left to

right, as can be seen in Figure 5.6. Multiple readings of the state can be observed such as the

speed of the different parts of the walker. Table 5.9 shows all the possible readings. Rewards

are given for moving from left to right, with a penalty of -100 being given when the walker falls.

Actions are shown in 5.10. Specific evaluation code can be found in Appendix A.5.

CHAPTER 5. EXPERIMENTAL SETTING 54

Number Observation Minimum Maximum

0 Hull angle 0.0 2*pi

1 Angular velocity of hull -Inf Inf

2 Hull x-velocity -1.0 1.0

3 Hull y-velocity -1.0 1.0

4 Hip joint 1 angle -Inf Inf

5 Hip joint 1 speed -Inf Inf

6 Knee joint 1 angle -Inf Inf

7 Knee joint 1 speed -Inf Inf

8 Leg 1 contacts ground 0.0 1.0

9 Hip joint 2 angle -Inf Inf

10 Hip joint 2 speed -Inf Inf

11 Knee joint 2 angle -Inf Inf

12 Knee joint 2 speed -Inf Inf

13 Leg 2 contacts ground 0.0 1.0

14-23 10 lidar (distance) readings -Inf Inf

Table 5.9: Bipedal Walker Observations

Number Action Minimum Maximum

0 Add force to hip 1 -1.0 1.0

1 Add force to knee 1 -1.0 1.0

2 Add force to hip 2 -1.0 1.0

3 Add force to knee 2 -1.0 1.0

Table 5.10: Bipedal Walker Actions

CHAPTER 5. EXPERIMENTAL SETTING 55

Figure 5.6: Bipedal Walker environment from OpenAI gym

Chapter 6

Results and Discussion

6.1 Experimental Setup

The algorithms were run on each of the environments for a comparable amount of time, and

with the same evaluation methods, that is with the same environment observations and asso-

ciated rewards. These algorithms are nondeterministic, meaning that for the same input, the

algorithms may generate distinct solutions for each time they are run. The results can, there-

fore, vary from run to run, meaning that while an algorithm may encounter a good solution fast

in one run, it may take considerably longer in the next. The results in this chapter are based

on the average for each algorithm over multiple runs to give a more representative picture on

how they compare, instead of using single cases where one algorithm may be lucky or unlucky.

See appendix A.2 for an example of 20 consecutive runs with the same algorithm on the same

problem.

6.2 Quantitative Results and Discussion

In this section, I will go through the quantitative results achieved for each algorithm in de-

tail. Later, I will aim to explain the differences in results as well as describe the behavior of

the algorithms in context through the use of fitness graphs for single runs and then average

fitness graphs for multiple runs. Firstly it is important to note that, as mentioned in 4.2.4,

mcWeightEvolPartialNEAT is created after the testing of mcHillNeat and mcWeightEvolNEAT,

56

CHAPTER 6. RESULTS AND DISCUSSION 57

and based on the observations from mcWeightEvolNEAT.

Cart Pole

Algorithm Run-time Achieved Fitness Solution Complexity

NEAT < 1 200/200 1/4

mcHillNEAT < 1 200/200 3/13

mcWeightEvolNEAT < 1 200/200 2/7

mcWeightEvolPartialNEAT < 1 200/200 1/4

Table 6.1: Cart Pole Results: All results are average over 20 runs. The run-time is given in sec-
onds. The fitness is given as (achieved fitness / maximum fitness). The complexity is given as
(number of nodes / number of connections). The number of nodes does not include input and
output nodes.

As a proof of concept, the cart-pole problem was tested initially. Being a relatively small

problem with only four inputs and two possible binary outputs combined with the fact that the

pole initializes as being upright means that the problem is quite forgiving even if the steering

agent were to input some sub-optimal inputs. As can be seen from Table 6.1, all four algorithms

achieved 200 out of 200 fitness, that is, they managed to keep the pole upright and the cart on-

screen for 200 time-steps, in on average less than a second. As can be seen, however, is that

the complexity of the solution-networks for mcHillNeat and mcWeightEvolNEAT are consid-

erably larger on average than for NEAT and mcWeightEvolPartialNEAT. This implies that they

have to proceed further down the search tree to find solutions, indicating that the local-search

scheme does not adequately find good weights on early architectures before moving on. Since

this problem is so small, however, it is hard to draw any definitive conclusions other than that

mcWeightEvolPartialNEAT, seemingly, is closer to NEAT in the ability to utilize small architec-

tures.

CHAPTER 6. RESULTS AND DISCUSSION 58

Mountain Car

Algorithm Run-time Solution Complexity

NEAT 50 1/4

mcHillNEAT 60 3/13

mcWeightEvolNEAT 70 2/7

mcWeightEvolPartialNEAT 50 6/13

Table 6.2: Mountain Car Results: All results are average over 20 runs. The run-time is given in
seconds. Fitness is not included here since finding a concrete solution is more important. All
three algorithms found a solution. The complexity is given as (number of nodes / number of
connections). The number of nodes does not include input and output nodes.

The mountain car problem, seen in Table 6.2, can initially seem simpler than the cart-pole

problem since it only has two inputs and three possible actions. What makes the problem more

complex is the combination of greater forces impacting the mountain car than the cart as well

as the car not starting in the winning position as the pole does. This heightened complexity

naturally produces longer run-times before solutions are found. Table 6.2 shows that, while

not a large difference overall, mcHillNeat and mcWeightEvolNEAT takes longer to produce so-

lutions, with mcWeightEvolNEAT being the slowest. Interestingly, mcWeightEvolPartialNEAT

is on average as fast as NEAT, however, the network-solutions are often much larger than the

solution-network created by NEAT. NEAT prioritizes starting with small architectures which are

slowly enlarged as the algorithm progresses, while the algorithms created in this thesis are able

to quickly create larger networks. Generally, in regards to both resource usage and training,

small solution-networks are preferable over larger networks if the produced fitness and run-

time is comparable.

CHAPTER 6. RESULTS AND DISCUSSION 59

Lunar Lander

Algorithm Run-time Achieved Fitness Solution Complexity

NEAT 1835 209 4/17

mcHillNEAT 2000 -150 6/35

mcWeightEvolNEAT 2000 -100 6/35

mcWeightEvolPartialNEAT 2000 -50 5/34

Table 6.3: Lunar Lander Results: All results are average over 20 runs. The run-time is given in
seconds. The fitness is given as (achieved fitness / maximum fitness). The complexity is given
as (number of nodes / number of connections). The number of nodes does not include input
and output nodes.

The fact that NEAT is better able to exploit smaller networks becomes apparent when ob-

serving Table 6.3 where the three proposed algorithms fall well behind NEAT in both fitness and

solution complexity. None of the three algorithms are able to find adequate solutions, struggling

more than NEAT in exploiting small networks, similar as in the mountain car problem, but also

struggling to search deep in the network because of the number of possible children of each

node. This is in spite of a rather strict pruning scheme, explained in Section 4.2.1.

Pendulum

Algorithm Run-time Achieved Fitness Solution Complexity

NEAT 500 -270 9/5

mcHillNEAT 500 -375 14/19

mcWeightEvolNEAT 500 -377 13/21

mcWeightEvolPartialNEAT 500 -250 6/35

Table 6.4: Pendulum Results: All results are average over 20 runs. The run-time is given in sec-
onds. The fitness is given as (achieved fitness / maximum fitness). The complexity is given as
(number of nodes / number of connections). The number of nodes does not include input and
output nodes.

CHAPTER 6. RESULTS AND DISCUSSION 60

Bipedal Walker

Algorithm Run-time Achieved Fitness Solution Complexity

NEAT 2000 12 5/75

mcHillNEAT 2000 9 5/92

mcWeightEvolNEAT 2000 9 6/93

mcWeightEvolPartialNEAT 2000 11 6/121

Table 6.5: Bipedal Walker Results: All results are average over 20 runs. The run-time is given in
seconds. The fitness is given as (achieved fitness / maximum fitness). The complexity is given
as (number of nodes / number of connections). The number of nodes does not include input
and output nodes.

This changes somewhat, however, when looking at table 6.4 and 6.5. In the pendulum prob-

lem NEAT has converged on a rather small network, while mcWeightEvolPartialNEATs network

is substantially larger and performs slightly better. While this do not indicate that mcWeightEvol-

PartialNEAT is overall better than NEAT, it does provide some nuance and indicates that there

are cases where a faster complexification of the solution networks may be beneficial. Likewise,

in the bipedal walker problem it can be observed that while mcHillNeat and mcWeightEvolNEAT

lags behind, mcWeightEvolPartialNEAT and NEAT have very comparable average fitness values

and, in some very few test runs, mcWeightEvolPartialNEAT even performed better.

CHAPTER 6. RESULTS AND DISCUSSION 61

(a) Neat fitness graph (b) mcHillNEAT fitness graph

(c) mcWeightEvolNEAT fitness graph

Figure 6.1: Fitness graph comparisons between NEAT, mcHillNEAT and mcWeightEvolNEAT for
the lunar lander environment. x-axis is number of generations and y-axis is the fitness. These
graphs are for a single run.

CHAPTER 6. RESULTS AND DISCUSSION 62

(a) Neat fitness graph (b) mcHillNEAT fitness graph

(c) mcWeightEvolNEAT fitness graph

Figure 6.2: Fitness graph comparisons between NEAT, mcHillNEAT and mcWeightEvolNEAT for
the pendulum environment. x-axis is number of generations and y-axis is the fitness. These
graphs are for a single run.

CHAPTER 6. RESULTS AND DISCUSSION 63

(a) Neat fitness graph (b) mcHillNEAT fitness graph

(c) mcWeightEvolNEAT fitness graph

Figure 6.3: Fitness graph comparisons between NEAT, mcHillNEAT and mcWeightEvolNEAT for
the bipedal walker environment. x-axis is number of generations and y-axis is the fitness. These
graphs are for a single run.

Figures 6.1, 6.2 and 6.3 shows the difference in search strategies for NEAT, mcHillNeat and

mcWeightEvolNEAT. The images, showing fitness progression for the three algorithms, illus-

trates how NEAT searches a larger search space before committing to a path while the two other

algorithms will very narrowly proceed towards the nearest local optimum. This is illustrated by

mcHillNeat and mcWeightEvolNEAT by an initial sudden jump in fitness, and then stagnation

at a low fitness. In contrast NEATs fitness rises more slowly and stagnates at a higher fitness.

CHAPTER 6. RESULTS AND DISCUSSION 64

(a) Lunar lander mcWeightEvolPartialNEAT (b) Pendulum mcWeightEvolPartialNEAT

(c) Bipedal walker mcWeightEvolPartialNEAT

Figure 6.4: Fitness graphs for mcWeightEvolPartialNEAT showing for the problems lunar lander,
pendulum and bipedal walker. x-axis is number of generations and y-axis is the fitness. These
graphs are for a single run.

As mentioned in 4.2.4, it was observed that a vital flaw with the proposed algorithms was the

rapid convergence on local optima and the adaption mcWeightEvolPartialNEAT were created as

an attempt to correct it. In Figure 6.4 the effect this change can be seen. While still not ideal,

the fitness graphs are now a step closer to those that are produced by NEAT, showing that the

change was a step in the right direction.

CHAPTER 6. RESULTS AND DISCUSSION 65

(a) mcHillNEAT average fitness graph (b) mcWeightEvolNEAT average fitness graph

(c) mcWeightEvolPartialNEAT average fitness graph

Figure 6.5: Average Fitness graphs for mcHillNEAT, mcWeightEvolNEAT and mcWeightEvolPar-
tialNEAT for the pendulum problem over 20 runs. x-axis is number of generations and y-axis is
the fitness. Note: For each generation only the best found fitness is graphed, and as such the
average fitness can never decrease.

Though illustrations of single runs are helpful when discussing algorithms, it is often more

advantageous to look at the overall behaviour of the algorithm by considering the average re-

sults over multiple runs. Figure 6.5 show the average fitness for 20 consecutive runs. From the

three figures it can be observed that all three show signs of having sudden and great leaps in fit-

ness. This i caused by the algorithms getting lucky in finding a path in one run which adds to the

average. It is important to note that although 6.5(c) in this case shows that mcWeightEvolPar-

tialNEAT achieves a good score, since this is largely because of a lucky leap in fitness, it does not

mean that the algorithms always will find as good solutions. Often, the results will vary greatly.

CHAPTER 6. RESULTS AND DISCUSSION 66

The quantitative results and associated discussion in this chapter demonstrate that the pro-

posed solutions do not currently outperform the original NEAT algorithm. Consistently they

achieve worse results and/or provide more complex solution-networks. This seems to be a prob-

lem with the size of the search space the algorithms are able to traverse in the same amount of

time as NEAT. One reason for this may be that a genetic algorithm is able to make small ’jumps’

in the search space and thus avoids having to explore every possibility in the vicinity of already

found solutions. In contrast, the proposed tree search expands a node by creating all possible

children of that node, causing the tree to grow exponentially. This likely causes the algorithms to

create many different topologies, making the resources required to train the found architectures

larger than that needed in NEAT.

Chapter 7

Conclusion

This thesis has explored the possibility of using MCTS in combination with NEAT to search for

both neural network topologies as well as weights. For this reason, three algorithms were cre-

ated, tested, and compared to the original algorithm. Experiments were run in the same en-

vironments so that valid comparisons could be made. Results showed that while all three al-

gorithms were able to learn simple tasks, none were equal, or better, than NEAT. Notably, on

the Bipedal walker-problem, mcWeightEvolPartialNEAT achieved results which are very nearly

as good as NEAT, and on some few runs were even able to get a better score. Some of the re-

sults were promising, however, and further research in the field could still reveal variances of

the proposed algorithms which can compete with NEAT.

In Chapter 1 two research questions were introduced, and in consecutive chapters I have

aimed to answer them.

RQ1 is the focal point of Chapter 4, where an initial study was done to explore the possibil-

ities in applying MCTS to problems traditionally solved with genetic algorithms. In this study,

it became apparent that a strict pruning method would need to be applied for the algorithm to

have a chance of progress down the search tree.

RQ2 is explored in chapters 4 and 6 where firstly the algorithms are proposed and explained

in detail and later evaluated. In Chapter 6 the concrete results are discussed and contextualized,

and the behavior of each algorithm is analyzed.

67

CHAPTER 7. CONCLUSION 68

7.1 Further Work

While the experiments in this thesis provide a basis for the evaluations of the proposed algo-

rithms, several improvements and adaptions should be tested in later experiments. A strength

of MCTS is parallelization; the nature of tree searches makes them ideal for parallelizing the

search of different subtrees [2]. This would enable the algorithms to simultaneously explore

multiple separate parts of the search space.

A clear advantage, and important aspect, of NEAT is the speciation aspect. In the proposed

algorithms, speciation has not been implemented in the local search, possibly giving up an im-

portant advantage.

Another interesting experiment would be to test a non-random simulation scheme. That

is, when running simulations it may be possible to generate some heuristics to guide the sim-

ulation. In the same vein, the leaf node of a simulation currently contains random weights. It

may be preferable to train the last network slightly to more accurately identify good and bad

branches.

Bibliography

[1] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfshagen,

S. Tavener, D. Perez, S. Samothrakis, and S. Colton. A survey of monte carlo tree search

methods. IEEE Transactions on Computational Intelligence and AI in Games, 4(1):1–43,

March 2012.

[2] G. M. J. B. Chaslot, M. H. M. Winands, and H. J. van den Herik. Parallel monte-carlo tree

search. In H. J. van den Herik, X. Xu, Z. Ma, and M. H. M. Winands, editors, Computers and

Games, pages 60–71, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[3] T. Chen, I. J. Goodfellow, and J. Shlens. Net2net: Accelerating learning via knowledge trans-

fer. CoRR, abs/1511.05641, 2015.

[4] R. Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In Inter-

national conference on computers and games, pages 72–83. Springer, 2006.

[5] T. Elsken, J.-H. Metzen, and F. Hutter. Simple and efficient architecture search for convolu-

tional neural networks. arXiv preprint arXiv:1711.04528, 2017.

[6] T. Elsken, J. H. Metzen, and F. Hutter. Neural architecture search: A survey. CoRR,

abs/1808.05377, 2018.

[7] T. Ewals. Playing and solving Havannah. PhD thesis, University of Alberta, 2012.

[8] C. Fernando, D. Banarse, C. Blundell, Y. Zwols, D. Ha, A. A. Rusu, A. Pritzel, and D. Wier-

stra. Pathnet: Evolution channels gradient descent in super neural networks. CoRR,

abs/1701.08734, 2017.

69

BIBLIOGRAPHY 70

[9] D. Floreano, P. Dürr, and C. Mattiussi. Neuroevolution: From architectures to learning. Evol

Intell, 1, 03 2008.

[10] T. G. van den Berg and S. Whiteson. Critical factors in the performance of hyperneat. pages

759–766, 07 2013.

[11] T. Kozelek. Methods of mcts and the game arimaa. 2009.

[12] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and K. Kavukcuoglu. Hierarchical represen-

tations for efficient architecture search. CoRR, abs/1711.00436, 2017.

[13] R. J. Lorentz. Amazons discover monte-carlo. In H. J. van den Herik, X. Xu, Z. Ma, and

M. H. M. Winands, editors, Computers and Games, pages 13–24, Berlin, Heidelberg, 2008.

Springer Berlin Heidelberg.

[14] A. McIntyre, M. Kallada, C. G. Miguel, and C. F. da Silva. neat-python. https://github.

com/CodeReclaimers/neat-python.

[15] R. Miikkulainen, J. Z. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon, B. Raju,

H. Shahrzad, A. Navruzyan, N. Duffy, and B. Hodjat. Evolving deep neural networks. CoRR,

abs/1703.00548, 2017.

[16] D. E. Moriarty and R. Miikkulainen. Forming neural networks through efficient and adap-

tive coevolution. Evolutionary Computation, 5:373–399, 1997.

[17] OpenAI. Open ai website, 2019.

[18] OpenAIGym. Open ai gym website, 2019.

[19] K. Peffers, T. Tuunanen, C. Gengler, M. Rossi, W. Hui, V. Virtanen, and J. Bragge. The de-

sign science research process: A model for producing and presenting information systems

research. Proceedings of First International Conference on Design Science Research in Infor-

mation Systems and Technology DESRIST, 02 2006.

[20] M. Rashid, M. A. H. Newton, M. Hoque, and A. Sattar. Mixing energy models in ge-

netic algorithms for on-lattice protein structure prediction. BioMed research international,

2013:924137, 09 2013.

https://github.com/CodeReclaimers/neat-python
https://github.com/CodeReclaimers/neat-python

BIBLIOGRAPHY 71

[21] S. Risi, J. Lehman, and K. Stanley. Evolving the placement and density of neurons in the

hyperneat substrate. pages 563–570, 01 2010.

[22] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall Press,

Upper Saddle River, NJ, USA, 3rd edition, 2009.

[23] J. Schaffer, D. Whitley, and L. J. Eshelman. Cogann-92 combinations of genetic algorithms

and neural networks. pages 1 – 37, 07 1992.

[24] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,

I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the game of go with deep

neural networks and tree search. nature, 529(7587):484, 2016.

[25] K. O. Stanley, D. B. D’Ambrosio, and J. Gauci. A hypercube-based encoding for evolving

large-scale neural networks. Artif. Life, 15(2):185–212, Apr. 2009.

[26] K. O. Stanley and R. Miikkulainen. Evolving neural networks through augmenting topolo-

gies. Evolutionary Computation, 10(2):99–127, June 2002.

[27] D. Svozil, V. Kvasnicka, and J. Pospichal. Introduction to multi-layer feed-forward neural

networks. Chemometrics and Intelligent Laboratory Systems, 39(1):43 – 62, 1997.

[28] L. Wang, Y. Zhao, and Y. Jinnai. Alphax: exploring neural architectures with deep neural

networks and monte carlo tree search. CoRR, abs/1805.07440, 2018.

[29] M. Wistuba. Finding competitive network architectures within a day using UCT. CoRR,

abs/1712.07420, 2017.

[30] C. Wohlin. Guidelines for snowballing in systematic literature studies and a replication in

software engineering. In Proceedings of the 18th International Conference on Evaluation

and Assessment in Software Engineering, EASE ’14, pages 38:1–38:10, New York, NY, USA,

2014. ACM.

[31] B. Zoph and Q. V. Le. Neural architecture search with reinforcement learning. CoRR,

abs/1611.01578, 2016.

BIBLIOGRAPHY 72

[32] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learning transferable architectures for scal-

able image recognition. CoRR, abs/1707.07012, 2017.

Appendix A

Additional Information

A.1 Evaluation Code

A.1.1 Cart Pole

1 def eval_genomes (genomes , config) :

2 observation = env . r eset ()

3 for genome_id , genome in genomes :

4 net = neat . nn . FeedForwardNetwork . create (genome, config)

5 genome . f i t n e s s = 0

6

7 for _ in range (500) :

8 action = net . a c t i v a t e (observation) [0]

9 action = 1 i f action > 0.5 else 0

10 observation , reward , done , info = env . step (action)

11 genome . f i t n e s s += reward

12

13 i f done :

14 observation = env . r eset ()

15 break

Listing A.1: Cart pole evaluation

73

APPENDIX A. ADDITIONAL INFORMATION 74

A.1.2 Mountain Car

1 def eval_genomes (genomes , config) :

2 observation = env . r eset ()

3 for genome_id , genome in genomes :

4 observation = env . r eset ()

5 net = neat . nn . FeedForwardNetwork . create (genome, config)

6 genome . f i t n e s s = 0

7 max_height_reached = −i n f

8 max_vel_reached = −i n f

9

10 for _ in range (200) :

11 actions = net . a c t i v a t e (observation)

12 action = actions . index (max(actions))

13 observation , reward , done , info = env . step (action)

14 i f done :

15 observation = env . r eset ()

16 break

17 genome . f i t n e s s += reward

18 max_height_reached = observation [0] i f observation [0] > max_height_reached else

max_height_reached

19 max_vel_reached = observation [1] i f observation [1] > max_vel_reached else

max_vel_reached

20 genome . f i t n e s s += (1 + abs (max_height_reached)) ** 2

21 genome . f i t n e s s += (1 + abs (max_vel_reached)) ** 2

Listing A.2: Mountain car evaluation

APPENDIX A. ADDITIONAL INFORMATION 75

A.1.3 Lunar Lander

1 def eval_genomes (genomes , config) :

2 observation = env . r eset ()

3 for genome_id , genome in genomes :

4 worst_found_fitness = i n f

5 net = neat . nn . FeedForwardNetwork . create (genome, config)

6 for __ in range (10) :

7 observation = env . re set ()

8 c u r r _ f i t n e s s = 0

9

10 for _ in range (1000) :

11 action = net . a c t i v a t e (observation)

12 high = action . index (max(action))

13 observation , reward , done , info = env . step (high)

14 c u r r _ f i t n e s s += reward

15

16 i f done :

17 observation = env . re set ()

18 break

19 worst_found_fitness = c u r r _ f i t n e s s i f c u r r _ f i t n e s s < worst_found_fitness else

worst_found_fitness

20 genome . f i t n e s s = worst_found_fitness

Listing A.3: Lunar lander evaluation

APPENDIX A. ADDITIONAL INFORMATION 76

A.1.4 Pendulum

1 def eval_genomes (genomes , config) :

2 observation = env . r eset ()

3 for genome_id , genome in genomes :

4 observation = env . r eset ()

5 net = neat . nn . FeedForwardNetwork . create (genome, config)

6 genome . f i t n e s s = 0

7 for __ in range (2) :

8 for _ in range (100) :

9 action = net . a c t i v a t e (observation) [0]

10 action *= 2

11 observation , reward , done , info = env . step ([action])

12 genome . f i t n e s s += reward

Listing A.4: Pendulum evaluation

A.1.5 Bipedal Walker

1 def eval_genomes (genomes , config) :

2 observation = env . r eset ()

3 for genome_id , genome in genomes :

4 observation = env . r eset ()

5 net = neat . nn . FeedForwardNetwork . create (genome, config)

6 genome . f i t n e s s = 0

7

8 for _ in range (100) :

9 action = net . a c t i v a t e (observation)

10 observation , reward , done , info = env . step (action)

11 genome . f i t n e s s += reward

12

13 i f done :

14 observation = env . r eset ()

15 break

Listing A.5: Bipedal walker evaluation

APPENDIX A. ADDITIONAL INFORMATION 77

APPENDIX A. ADDITIONAL INFORMATION 78

A.2 Example Runs

APPENDIX A. ADDITIONAL INFORMATION 79

APPENDIX A. ADDITIONAL INFORMATION 80

Figure A.1: Example of mcWeightEvolPartialNEAT being run on the inverted pendulum problem
20 times

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

M
as

te
r’

s
th

es
is

Erik Wiker

Reducing the Search Space of
Neuroevolution using Monte Carlo
Tree Search

Master’s thesis in Informatics
Supervisor: Massimiliano Ruocco, Stefano Nichele

June 2019

	Preface
	Abstract
	Acronyms
	Introduction
	Background and motivation
	Goal
	Research methods
	Research Protocol

	Contributions

	Related Works
	Network Architecture Construction
	Monte Carlo Tree Search
	Architecture Search using Monte-Carlo Method

	Background Theory
	Artificial Neural Networks
	Neural Architecture Search

	Evolutionary Algorithms
	Genotype to Phenotype
	Genetic Operators
	Fitness Evaluation

	Neuroevolution of Augmenting Topologies
	Representation
	Crossover
	Mutation

	Monte Carlo Tree Search
	Selection
	Expansion
	Simulation
	Backpropagation

	Methods
	Initial Experimentation
	Main Implementation
	Tree Implementation
	MCTS with Hill Climb Local Search
	MCTS with Genetic Algorithm Local Search
	MCTS with Partial Genetic Algorithm Local Search

	Tree Progression Example

	Experimental Setting
	Test Environment
	Discrete & Continuous Actions and Observations
	Environments

	Results and Discussion
	Experimental Setup
	Quantitative Results and Discussion

	Conclusion
	Further Work

	Bibliography
	Additional Information
	Evaluation Code
	Cart Pole
	Mountain Car
	Lunar Lander
	Pendulum
	Bipedal Walker

	Example Runs

